homework-jianmu/docs/zh/07-develop/index.md

28 lines
2.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: 开发指南
sidebar_label: 开发指南
description: 让开发者能够快速上手的指南
---
开发一个应用,如果你准备采用 TDengine 作为时序数据处理的工具,那么有如下几个事情要做:
1. 确定应用到 TDengine 的连接方式。无论你使用何种编程语言,你总是可以使用 REST 接口, 但也可以使用每种编程语言独有的连接器进行方便的连接。
2. 根据自己的应用场景,确定数据模型。根据数据特征,决定建立一个还是多个库;分清静态标签、采集量,建立正确的超级表,建立子表。
3. 决定插入数据的方式。TDengine 支持使用标准的 SQL 写入,但同时也支持 Schemaless 模式写入,这样不用手工建表,可以将数据直接写入。
4. 根据业务要求,看需要撰写哪些 SQL 查询语句。
5. 如果你要基于时序数据做轻量级的实时统计分析,包括各种监测看板,那么建议你采用 TDengine 3.0 的流式计算功能,而不用额外部署 Spark, Flink 等复杂的流式计算系统。
6. 如果你的应用有模块需要消费插入的数据,希望有新的数据插入时,就能获取通知,那么建议你采用 TDengine 提供的数据订阅功能,而无需专门部署 Kafka 或其他消息队列软件。
7. 在很多场景下(如车辆管理),应用需要获取每个数据采集点的最新状态,那么建议你采用 TDengine 的 Cache 功能,而不用单独部署 Redis 等缓存软件。
8. 如果你发现 TDengine 的函数无法满足你的要求那么你可以使用用户自定义函数UDF来解决问题。
本部分内容就是按照上述顺序组织的。为便于理解TDengine 为每个功能和每个支持的编程语言都提供了示例代码。如果你希望深入了解 SQL 的使用,需要查看[SQL 手册](/taos-sql/)。如果想更深入地了解各连接器的使用,请阅读[连接器参考指南](../connector/)。如果还希望想将 TDengine 与第三方系统集成起来,比如 Grafana, 请参考[第三方工具](../third-party/)。
如果在开发过程中遇到任何问题,请点击每个页面下方的["反馈问题"](https://github.com/taosdata/TDengine/issues/new/choose), 在 GitHub 上直接递交 Issue。
```mdx-code-block
import DocCardList from '@theme/DocCardList';
import {useCurrentSidebarCategory} from '@docusaurus/theme-common';
<DocCardList items={useCurrentSidebarCategory().items}/>
```