homework-jianmu/docs/zh/07-develop/08-cache.md

50 lines
3.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
sidebar_label: 缓存
title: 缓存
description: "TDengine 内部的缓存设计"
---
为了实现高效的写入和查询TDengine 充分利用了各种缓存技术,本节将对 TDengine 中对缓存的使用做详细的说明。
## 写缓存
TDengine 采用时间驱动缓存管理策略First-In-First-OutFIFO又称为写驱动的缓存管理机制。这种策略有别于读驱动的数据缓存模式Least-Recent-UsedLRU直接将最近写入的数据保存在系统的缓存中。当缓存达到临界值的时候将最早的数据批量写入磁盘。一般意义上来说对于物联网数据的使用用户最为关心最近产生的数据即当前状态。TDengine 充分利用了这一特性,将最近到达的(当前状态)数据保存在缓存中。
每个 vnode 的写入缓存大小在创建数据库时决定,创建数据库时的两个关键参数 vgroups 和 buffer 分别决定了该数据库中的数据由多少个 vgroup 处理,以及向其中的每个 vnode 分配多少写入缓存。
```sql
create database db0 vgroups 100 buffer 16MB
```
理论上缓存越大越好,但超过一定阈值后再增加缓存对写入性能提升并无帮助,一般情况下使用默认值即可。
## 读缓存
在创建数据库时可以选择是否缓存该数据库中每个子表的最新数据。由参数 cachemodel 设置,分为四种情况:
- none: 不缓存
- last_row: 缓存子表最近一行数据,这将显著改善 last_row 函数的性能
- last_value: 缓存子表每一列最近的非 NULL 值,这将显著改善无特殊影响(比如 WHERE, ORDER BY, GROUP BY, INTERVAL时的 last 函数的性能
- both: 同时缓存最近的行和列,即等同于上述 cachemodel 值为 last_row 和 last_value 的行为同时生效
## 元数据缓存
为了更高效地处理查询和写入,每个 vnode 都会缓存自己曾经获取到的元数据。元数据缓存由创建数据库时的两个参数 pages 和 pagesize 决定。
```sql
create database db0 pages 128 pagesize 16kb
```
上述语句会为数据库 db0 的每个 vnode 创建 128 个 page每个 page 16kb 的元数据缓存。
## 文件系统缓存
TDengine 利用 WAL 技术来提供基本的数据可靠性。写入 WAL 本质上是以顺序追加的方式写入磁盘文件。此时文件系统缓存在写入性能中也会扮演关键角色。在创建数据库时可以利用 wal 参数来选择性能优先或者可靠性优先。
- 1: 写 WAL 但不执行 fsync ,新写入 WAL 的数据保存在文件系统缓存中但并未写入磁盘,这种方式性能优先
- 2: 写 WAL 且执行 fsync新写入 WAL 的数据被立即同步到磁盘上,可靠性更高
## 客户端缓存
为了进一步提升整个系统的处理效率,除了以上提到的服务端缓存技术之外,在 TDengine 的所有客户端都要调用的核心库 libtaos.so (也称为 taosc )中也充分利用了缓存技术。在 taosc 中会缓存所访问过的各个数据库、超级表以及子表的元数据,集群的拓扑结构等关键元数据。
当有多个客户端同时访问 TDengine 集群,且其中一个客户端对某些元数据进行了修改的情况下,有可能会出现其它客户端所缓存的元数据不同步或失效的情况,此时需要在客户端执行 "reset query cache" 以让整个缓存失效从而强制重新拉取最新的元数据重新建立缓存。