homework-jianmu/docs/en/12-taos-sql/14-stream.md

123 lines
4.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
sidebar_label: 流式计算
title: 流式计算
---
在时序数据的处理中,经常要对原始数据进行清洗、预处理,再使用时序数据库进行长久的储存。用户通常需要在时序数据库之外再搭建 Kafka、Flink、Spark 等流计算处理引擎,增加了用户的开发成本和维护成本。
使用 TDengine 3.0 的流式计算引擎能够最大限度的减少对这些额外中间件的依赖,真正将数据的写入、预处理、长期存储、复杂分析、实时计算、实时报警触发等功能融为一体,并且,所有这些任务只需要使用 SQL 完成,极大降低了用户的学习成本、使用成本。
## 创建流式计算
```sql
CREATE STREAM [IF NOT EXISTS] stream_name [stream_options] INTO stb_name AS subquery
stream_options: {
TRIGGER [AT_ONCE | WINDOW_CLOSE | MAX_DELAY time]
WATERMARK time
}
```
其中 subquery 是 select 普通查询语法的子集:
```sql
subquery: SELECT [DISTINCT] select_list
from_clause
[WHERE condition]
[PARTITION BY tag_list]
[window_clause]
[group_by_clause]
```
不支持 order_bylimitslimitfill 语句
例如,如下语句创建流式计算,同时自动创建名为 avg_vol 的超级表此流计算以一分钟为时间窗口、30 秒为前向增量统计这些电表的平均电压,并将来自 meters 表的数据的计算结果写入 avg_vol 表,不同 partition 的数据会分别创建子表并写入不同子表。
```sql
CREATE STREAM avg_vol_s INTO avg_vol AS
SELECT _wstartts, count(*), avg(voltage) FROM meters PARTITION BY tbname INTERVAL(1m) SLIDING(30s);
```
## 删除流式计算
```sql
DROP STREAM [IF NOT EXISTS] stream_name
```
仅删除流式计算任务,由流式计算写入的数据不会被删除。
## 展示流式计算
```sql
SHOW STREAMS;
```
## 流式计算的触发模式
在创建流时,可以通过 TRIGGER 指令指定流式计算的触发模式。
对于非窗口计算,流式计算的触发是实时的;对于窗口计算,目前提供 3 种触发模式:
1. AT_ONCE写入立即触发
2. WINDOW_CLOSE窗口关闭时触发窗口关闭由事件时间决定可配合 watermark 使用,详见《流式计算的乱序数据容忍策略》)
3. MAX_DELAY time若窗口关闭则触发计算。若窗口未关闭且未关闭时长超过 max delay 指定的时间,则触发计算。
由于窗口关闭是由事件时间决定的,如事件流中断、或持续延迟,则事件时间无法更新,可能导致无法得到最新的计算结果。
因此,流式计算提供了以事件时间结合处理时间计算的 MAX_DELAY 触发模式。
MAX_DELAY 模式在窗口关闭时会立即触发计算。此外,当数据写入后,计算触发的时间超过 max delay 指定的时间,则立即触发计算
## 流式计算的乱序数据容忍策略
在创建流时,可以在 stream_option 中指定 watermark。
流式计算通过 watermark 来度量对乱序数据的容忍程度watermark 默认为 0。
T = 最新事件时间 - watermark
每批到来的数据都会以上述公式更新窗口关闭时间,并将窗口结束时间 < T 的所有打开的窗口关闭若触发模式为 WINDOW_CLOSE MAX_DELAY则推送窗口聚合结果
流式计算的过期数据处理策略
对于已关闭的窗口再次落入该窗口中的数据被标记为过期数据对于过期数据流式计算提供两种处理方式
1. 直接丢弃这是常见流式计算引擎提供的默认甚至是唯一计算模式
2. 重新计算 TSDB 中重新查找对应窗口的所有数据并重新计算得到最新结果
无论在哪种模式下watermark 都应该被妥善设置来得到正确结果直接丢弃模式或避免频繁触发重算带来的性能开销重新计算模式)。
## 流式计算的数据填充策略
TODO
## 流式计算与会话窗口session window
```sql
window_clause: {
SESSION(ts_col, tol_val)
| STATE_WINDOW(col)
| INTERVAL(interval_val [, interval_offset]) [SLIDING (sliding_val)] [FILL(fill_mod_and_val)]
}
```
其中SESSION 是会话窗口tol_val 是时间间隔的最大范围 tol_val 时间间隔范围内的数据都属于同一个窗口如果连续的两条数据的时间超过 tol_val则自动开启下一个窗口
## 流式计算的监控与流任务分布查询
TODO
## 流式计算的内存控制与存算分离
TODO
## 流式计算的暂停与恢复
```sql
STOP STREAM stream_name;
RESUME STREAM stream_name;
```