1.1 KiB
1.1 KiB
title | sidebar_label |
---|---|
LSTM | LSTM |
本节说明 LSTM 模型的使用方法。
功能概述
LSTM 模型即长短期记忆网络(Long Short Term Memory),是一种特殊的循环神经网络,适用于处理时间序列数据、自然语言处理等任务,通过其独特的门控机制,能够有效捕捉长期依赖关系, 解决传统 RNN 的梯度消失问题,从而对序列数据进行准确预测,不过它不直接提供计算的置信区间范围结果。
完整的调用 SQL 语句如下:
SELECT _frowts, FORECAST(i32, "algo=lstm,alpha=95,period=10,start_p=1,max_p=5,start_q=1,max_q=5") from foo
{
"rows": fc_rows, // 返回结果的行数
"period": period, // 返回结果的周期性,同输入
"alpha": alpha, // 返回结果的置信区间,同输入
"algo": "lstm", // 返回结果使用的算法
"mse": mse, // 拟合输入时间序列时候生成模型的最小均方误差(MSE)
"res": res // 列模式的结果
}
参考文献
- [1] Hochreiter S. Long Short-term Memory[J]. Neural Computation MIT-Press, 1997.