Merge pull request #29679 from taosdata/doc/analysis
doc: update faq doc for TDgpt
This commit is contained in:
commit
8031553eb8
|
@ -91,3 +91,18 @@ taos> select _flow, _fhigh, _frowts, forecast(i32) from foo;
|
||||||
## 内置预测算法
|
## 内置预测算法
|
||||||
- [arima](./02-arima.md)
|
- [arima](./02-arima.md)
|
||||||
- [holtwinters](./03-holtwinters.md)
|
- [holtwinters](./03-holtwinters.md)
|
||||||
|
- CES (Complex Exponential Smoothing)
|
||||||
|
- Theta
|
||||||
|
- Prophet
|
||||||
|
- XGBoost
|
||||||
|
- LightGBM
|
||||||
|
- Multiple Seasonal-Trend decomposition using LOESS (MSTL)
|
||||||
|
- ETS (Error, Trend, Seasonal)
|
||||||
|
- Long Short-Term Memory (LSTM)
|
||||||
|
- Multilayer Perceptron (MLP)
|
||||||
|
- DeepAR
|
||||||
|
- N-BEATS
|
||||||
|
- N-HiTS
|
||||||
|
- PatchTST (Patch Time Series Transformer)
|
||||||
|
- Temporal Fusion Transformer
|
||||||
|
- TimesNet
|
||||||
|
|
|
@ -50,6 +50,13 @@ FROM foo
|
||||||
ANOMALY_WINDOW(foo.i32, "algo=shesd,direction=both,anoms=0.05")
|
ANOMALY_WINDOW(foo.i32, "algo=shesd,direction=both,anoms=0.05")
|
||||||
```
|
```
|
||||||
|
|
||||||
|
后续待添加异常检测算法
|
||||||
|
- Gaussian Process Regression
|
||||||
|
|
||||||
|
基于变点检测的异常检测算法
|
||||||
|
- CUSUM (Cumulative Sum Control Chart)
|
||||||
|
- PELT (Pruned Exact Linear Time)
|
||||||
|
|
||||||
### 参考文献
|
### 参考文献
|
||||||
1. [https://en.wikipedia.org/wiki/68–95–99.7 rule](https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule)
|
1. [https://en.wikipedia.org/wiki/68–95–99.7 rule](https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule)
|
||||||
2. https://en.wikipedia.org/wiki/Interquartile_range
|
2. https://en.wikipedia.org/wiki/Interquartile_range
|
||||||
|
|
|
@ -3,7 +3,7 @@ title: "数据密度算法"
|
||||||
sidebar_label: "数据密度算法"
|
sidebar_label: "数据密度算法"
|
||||||
---
|
---
|
||||||
|
|
||||||
### 基于数据密度的检测方法
|
### 基于数据密度/数据挖掘的检测算法
|
||||||
LOF<sup>[1]</sup>: Local Outlier Factor(LOF),局部离群因子/局部异常因子,
|
LOF<sup>[1]</sup>: Local Outlier Factor(LOF),局部离群因子/局部异常因子,
|
||||||
是 Breunig 在 2000 年提出的一种基于密度的局部离群点检测算法,该方法适用于不同类簇密度分散情况迥异的数据。根据数据点周围的数据密集情况,首先计算每个数据点的一个局部可达密度,然后通过局部可达密度进一步计算得到每个数据点的一个离群因子,
|
是 Breunig 在 2000 年提出的一种基于密度的局部离群点检测算法,该方法适用于不同类簇密度分散情况迥异的数据。根据数据点周围的数据密集情况,首先计算每个数据点的一个局部可达密度,然后通过局部可达密度进一步计算得到每个数据点的一个离群因子,
|
||||||
该离群因子即标识了一个数据点的离群程度,因子值越大,表示离群程度越高,因子值越小,表示离群程度越低。最后,输出离群程度最大的 $topK$ 个点。
|
该离群因子即标识了一个数据点的离群程度,因子值越大,表示离群程度越高,因子值越小,表示离群程度越低。最后,输出离群程度最大的 $topK$ 个点。
|
||||||
|
@ -15,6 +15,14 @@ FROM foo
|
||||||
ANOMALY_WINDOW(foo.i32, "algo=lof")
|
ANOMALY_WINDOW(foo.i32, "algo=lof")
|
||||||
```
|
```
|
||||||
|
|
||||||
|
后续待添加基于数据挖掘检测算法
|
||||||
|
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
|
||||||
|
- K-Nearest Neighbors (KNN)
|
||||||
|
- Principal Component Analysis (PCA)
|
||||||
|
|
||||||
|
第三方异常检测算法库
|
||||||
|
- PyOD
|
||||||
|
|
||||||
### 参考文献
|
### 参考文献
|
||||||
|
|
||||||
1. Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; Sander, J. (2000). LOF: Identifying Density-based Local Outliers (PDF). Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. SIGMOD. pp. 93–104. doi:10.1145/335191.335388. ISBN 1-58113-217-4.
|
1. Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; Sander, J. (2000). LOF: Identifying Density-based Local Outliers (PDF). Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. SIGMOD. pp. 93–104. doi:10.1145/335191.335388. ISBN 1-58113-217-4.
|
||||||
|
|
|
@ -12,6 +12,11 @@ FROM foo
|
||||||
ANOMALY_WINDOW(col1, 'algo=encoder, model=ad_autoencoder_foo');
|
ANOMALY_WINDOW(col1, 'algo=encoder, model=ad_autoencoder_foo');
|
||||||
```
|
```
|
||||||
|
|
||||||
|
后续添加机器(深度)学习异常检测算法
|
||||||
|
- Isolation Forest
|
||||||
|
- One-Class Support Vector Machines (SVM)
|
||||||
|
- Prophet
|
||||||
|
|
||||||
### 参考文献
|
### 参考文献
|
||||||
|
|
||||||
1. https://en.wikipedia.org/wiki/Autoencoder
|
1. https://en.wikipedia.org/wiki/Autoencoder
|
||||||
|
|
|
@ -0,0 +1,24 @@
|
||||||
|
---
|
||||||
|
title: "常见问题"
|
||||||
|
sidebar_label: "常见问题"
|
||||||
|
---
|
||||||
|
|
||||||
|
1. 创建 anode 失败
|
||||||
|
|
||||||
|
```bash
|
||||||
|
taos> create anode '127.0.0.1:6090';
|
||||||
|
|
||||||
|
DB error: Analysis service can't access[0x80000441] (0.117446s)
|
||||||
|
```
|
||||||
|
|
||||||
|
请检查 anode 服务是否工作正常。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl '127.0.0.1:6090'
|
||||||
|
curl: (7) Failed to connect to 127.0.0.1 port 6090: Connection refused
|
||||||
|
```
|
||||||
|
|
||||||
|
```bash
|
||||||
|
TDengine© Time Series Data Analytics Platform (ver 1.0.x)
|
||||||
|
```
|
||||||
|
|
Loading…
Reference in New Issue