diff --git a/docs/zh/06-advanced/06-TDgpt/04-forecast/index.md b/docs/zh/06-advanced/06-TDgpt/04-forecast/index.md index 71b97aa996..087d6540e6 100644 --- a/docs/zh/06-advanced/06-TDgpt/04-forecast/index.md +++ b/docs/zh/06-advanced/06-TDgpt/04-forecast/index.md @@ -91,3 +91,18 @@ taos> select _flow, _fhigh, _frowts, forecast(i32) from foo; ## 内置预测算法 - [arima](./02-arima.md) - [holtwinters](./03-holtwinters.md) +- CES (Complex Exponential Smoothing) +- Theta +- Prophet +- XGBoost +- LightGBM +- Multiple Seasonal-Trend decomposition using LOESS (MSTL) +- ETS (Error, Trend, Seasonal) +- Long Short-Term Memory (LSTM) +- Multilayer Perceptron (MLP) +- DeepAR +- N-BEATS +- N-HiTS +- PatchTST (Patch Time Series Transformer) +- Temporal Fusion Transformer +- TimesNet diff --git a/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/02-statistics-approach.md b/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/02-statistics-approach.md index d0d6815c25..4055d42572 100644 --- a/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/02-statistics-approach.md +++ b/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/02-statistics-approach.md @@ -50,6 +50,13 @@ FROM foo ANOMALY_WINDOW(foo.i32, "algo=shesd,direction=both,anoms=0.05") ``` +后续待添加异常检测算法 +- Gaussian Process Regression + +基于变点检测的异常检测算法 +- CUSUM (Cumulative Sum Control Chart) +- PELT (Pruned Exact Linear Time) + ### 参考文献 1. [https://en.wikipedia.org/wiki/68–95–99.7 rule](https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule) 2. https://en.wikipedia.org/wiki/Interquartile_range diff --git a/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/03-data-density.md b/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/03-data-density.md index 7c0998c917..00cd7aaa61 100644 --- a/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/03-data-density.md +++ b/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/03-data-density.md @@ -3,7 +3,7 @@ title: "数据密度算法" sidebar_label: "数据密度算法" --- -### 基于数据密度的检测方法 +### 基于数据密度/数据挖掘的检测算法 LOF[1]: Local Outlier Factor(LOF),局部离群因子/局部异常因子, 是 Breunig 在 2000 年提出的一种基于密度的局部离群点检测算法,该方法适用于不同类簇密度分散情况迥异的数据。根据数据点周围的数据密集情况,首先计算每个数据点的一个局部可达密度,然后通过局部可达密度进一步计算得到每个数据点的一个离群因子, 该离群因子即标识了一个数据点的离群程度,因子值越大,表示离群程度越高,因子值越小,表示离群程度越低。最后,输出离群程度最大的 $topK$ 个点。 @@ -15,6 +15,14 @@ FROM foo ANOMALY_WINDOW(foo.i32, "algo=lof") ``` +后续待添加基于数据挖掘检测算法 +- DBSCAN (Density-Based Spatial Clustering of Applications with Noise) +- K-Nearest Neighbors (KNN) +- Principal Component Analysis (PCA) + +第三方异常检测算法库 +- PyOD + ### 参考文献 1. Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; Sander, J. (2000). LOF: Identifying Density-based Local Outliers (PDF). Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. SIGMOD. pp. 93–104. doi:10.1145/335191.335388. ISBN 1-58113-217-4. diff --git a/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/04-machine-learning.md b/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/04-machine-learning.md index ec76d6a0a3..b752d446eb 100644 --- a/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/04-machine-learning.md +++ b/docs/zh/06-advanced/06-TDgpt/05-anomaly-detection/04-machine-learning.md @@ -12,6 +12,11 @@ FROM foo ANOMALY_WINDOW(col1, 'algo=encoder, model=ad_autoencoder_foo'); ``` +后续添加机器(深度)学习异常检测算法 +- Isolation Forest +- One-Class Support Vector Machines (SVM) +- Prophet + ### 参考文献 1. https://en.wikipedia.org/wiki/Autoencoder diff --git a/docs/zh/06-advanced/06-TDgpt/07-faq.md b/docs/zh/06-advanced/06-TDgpt/07-faq.md new file mode 100644 index 0000000000..a8338265bc --- /dev/null +++ b/docs/zh/06-advanced/06-TDgpt/07-faq.md @@ -0,0 +1,24 @@ +--- +title: "常见问题" +sidebar_label: "常见问题" +--- + +1. 创建 anode 失败 + +```bash +taos> create anode '127.0.0.1:6090'; + +DB error: Analysis service can't access[0x80000441] (0.117446s) +``` + +请检查 anode 服务是否工作正常。 + +```bash +curl '127.0.0.1:6090' +curl: (7) Failed to connect to 127.0.0.1 port 6090: Connection refused +``` + +```bash +TDengine© Time Series Data Analytics Platform (ver 1.0.x) +``` +