Merge pull request #28781 from taosdata/doc/analysis
doc: Update 02-anomaly-detection.md
This commit is contained in:
commit
3f0e99e608
|
@ -1,6 +1,6 @@
|
|||
---
|
||||
title: "异常检测算法"
|
||||
sidebar_label: "异常检测算法"
|
||||
title: "检测算法"
|
||||
sidebar_label: "检测算法"
|
||||
---
|
||||
|
||||
本节介绍内置异常检测算法模型的定义和使用方法。
|
||||
|
@ -18,19 +18,19 @@ sidebar_label: "异常检测算法"
|
|||
|k|标准差倍数|选填|3|
|
||||
|
||||
|
||||
- IQR<sup>[2]</sup>:四分位距 (Interquartile range, IQR) 是一种衡量变异性的方法. 四分位数将一个按等级排序的数据集划分为四个相等的部分。即 Q1(第 1 个四分位数)、Q2(第 2 个四分位数)和 Q3(第 3 个四分位数)。IQR 定义为 $Q3–Q1$,位于 $Q3+1.5$。无输入参数。
|
||||
- IQR<sup>[2]</sup>:Interquartile range(IQR),四分位距是一种衡量变异性的方法。四分位数将一个按等级排序的数据集划分为四个相等的部分。即 Q1(第 1 个四分位数)、Q2(第 2 个四分位数)和 Q3(第 3 个四分位数)。 $IQR=Q3-Q1$,对于 $v$, $Q1-(1.5 \times IQR) \le v \le Q3+(1.5 \times IQR)$ 是正常值,范围之外的是异常值。无输入参数。
|
||||
|
||||
- Grubbs<sup>[3]</sup>: 又称为 Grubbs' test,即最大标准残差测试。Grubbs 通常用作检验最大值、最小值偏离均值的程度是否为异常,该单变量数据集遵循近似标准正态分布。非正态分布数据集不能使用该方法。无输入参数。
|
||||
- Grubbs<sup>[3]</sup>: Grubbs' test,即最大标准残差测试。Grubbs 通常用作检验最大值、最小值偏离均值的程度是否为异常,要求单变量数据集遵循近似标准正态分布。非正态分布数据集不能使用该方法。无输入参数。
|
||||
|
||||
- SHESD<sup>[4]</sup>: 带有季节性的 ESD 检测算法。ESD 可以检测时间序列数据的多异常点。需要指定异常点比例的上界***k***,最差的情况是至多 49.9%。数据集的异常比例一般不超过 5%
|
||||
|
||||
|参数|说明|是否必选|默认值|
|
||||
|---|---|---|---|
|
||||
|k|异常点在输入数据集中占比,范围是 $1\le K \le 49.9$ |选填|5|
|
||||
|k|异常点在输入数据集中占比 $1 \le K \le 49.9$ |选填|5|
|
||||
|
||||
|
||||
### 基于数据密度的检测方法
|
||||
LOF<sup>[5]</sup>: 局部离群因子(LOF,又叫局部异常因子)算法是 Breunig 于 2000 年提出的一种基于密度的局部离群点检测算法,该方法适用于不同类簇密度分散情况迥异的数据。根据数据点周围的数据密集情况,首先计算每个数据点的一个局部可达密度,然后通过局部可达密度进一步计算得到每个数据点的一个离群因子,该离群因子即标识了一个数据点的离群程度,因子值越大,表示离群程度越高,因子值越小,表示离群程度越低。最后,输出离群程度最大的 $top(n)$ 个点。
|
||||
LOF<sup>[5]</sup>: Local Outlier Factor(LOF),局部离群因子/局部异常因子,是 Breunig 在 2000 年提出的一种基于密度的局部离群点检测算法,该方法适用于不同类簇密度分散情况迥异的数据。根据数据点周围的数据密集情况,首先计算每个数据点的一个局部可达密度,然后通过局部可达密度进一步计算得到每个数据点的一个离群因子,该离群因子即标识了一个数据点的离群程度,因子值越大,表示离群程度越高,因子值越小,表示离群程度越低。最后,输出离群程度最大的 $topK$ 个点。
|
||||
|
||||
|
||||
### 基于自编码器的检测方法
|
||||
|
|
Loading…
Reference in New Issue