doc: update query result

This commit is contained in:
Shengliang Guan 2024-10-31 12:11:44 +08:00
parent e886a140d5
commit 385c4934d2
1 changed files with 165 additions and 144 deletions

View File

@ -20,21 +20,22 @@ taosBenchmark --start-timestamp=1600000000000 --tables=100 --records=10000000 --
```sql
SELECT * FROM meters
WHERE voltage > 10
WHERE voltage > 230
ORDER BY ts DESC
LIMIT 5
LIMIT 5;
```
上面的 SQL从超级表 `meters` 中查询出电压 `voltage` 大于 10 的记录,按时间降序排列,且仅输出前 5 行。查询结果如下:
上面的 SQL从超级表 `meters` 中查询出电压 `voltage` 大于 230 的记录,按时间降序排列,且仅输出前 5 行。查询结果如下:
```text
ts | current | voltage | phase | groupid | location |
==========================================================================================================
2023-11-14 22:13:10.000 | 1.1294620 | 18 | 0.3531540 | 8 | California.MountainView |
2023-11-14 22:13:10.000 | 1.0294620 | 12 | 0.3631540 | 2 | California.Campbell |
2023-11-14 22:13:10.000 | 1.0294620 | 16 | 0.3531540 | 1 | California.Campbell |
2023-11-14 22:13:10.000 | 1.1294620 | 18 | 0.3531540 | 2 | California.Campbell |
2023-11-14 22:13:10.000 | 1.1294620 | 16 | 0.3431540 | 7 | California.PaloAlto |
ts | current | voltage | phase | groupid | location |
============================================================================================================
2023-11-15 06:13:10.000 | 14.0601978 | 232 | 146.5000000 | 10 | California.Sunnyvale |
2023-11-15 06:13:10.000 | 14.0601978 | 232 | 146.5000000 | 1 | California.LosAngles |
2023-11-15 06:13:10.000 | 14.0601978 | 232 | 146.5000000 | 10 | California.Sunnyvale |
2023-11-15 06:13:10.000 | 14.0601978 | 232 | 146.5000000 | 5 | California.Cupertino |
2023-11-15 06:13:10.000 | 14.0601978 | 232 | 146.5000000 | 4 | California.SanFrancisco |
Query OK, 5 row(s) in set (0.145403s)
```
## 聚合查询
@ -48,28 +49,28 @@ TDengine 支持通过 GROUP BY 子句对数据进行聚合查询。SQL 语句
group by 子句用于对数据进行分组,并为每个分组返回一行汇总信息。在 group by 子句中,可以使用表或视图中的任何列作为分组依据,这些列不需要出现在 select 列表中。此外,用户可以直接在超级表上执行聚合查询,无须预先创建子表。以智能电表的数据模型为例,使用 group by 子句的 SQL 如下:
```sql
SELECT groupid,avg(voltage)
SELECT groupid, avg(voltage)
FROM meters
WHERE ts >= "2022-01-01T00:00:00+08:00"
AND ts < "2023-01-01T00:00:00+08:00"
GROUP BY groupid
GROUP BY groupid;
```
上面的 SQL查询超级表 `meters` 中,时间戳大于等于 `2022-01-01T00:00:00+08:00`,且时间戳小于 `2023-01-01T00:00:00+08:00` 的数据,按照 `groupid` 进行分组,求每组的平均电压。查询结果如下:
```text
groupid | avg(voltage) |
==========================================
8 | 9.104040404040404 |
5 | 9.078333333333333 |
1 | 9.087037037037037 |
7 | 8.991414141414142 |
9 | 8.789814814814815 |
6 | 9.051010101010101 |
4 | 9.135353535353536 |
10 | 9.213131313131314 |
2 | 9.008888888888889 |
3 | 8.783888888888889 |
groupid | avg(voltage) |
======================================
8 | 243.961981544901079 |
5 | 243.961981544901079 |
1 | 243.961981544901079 |
7 | 243.961981544901079 |
9 | 243.961981544901079 |
6 | 243.961981544901079 |
4 | 243.961981544901079 |
10 | 243.961981544901079 |
2 | 243.961981544901079 |
3 | 243.961981544901079 |
Query OK, 10 row(s) in set (0.042446s)
```
@ -110,24 +111,24 @@ TDengine 按如下方式处理数据切分子句。
```sql
SELECT location, avg(voltage)
FROM meters
PARTITION BY location
PARTITION BY location;
```
上面的示例 SQL 查询超级表 `meters`,将数据按标签 `location` 进行分组,每个分组计算电压的平均值。查询结果如下:
```text
location | avg(voltage) |
=========================================================
California.SantaClara | 8.793334320000000 |
California.SanFrancisco | 9.017645882352941 |
California.SanJose | 9.156112940000000 |
California.LosAngles | 9.036753507692307 |
California.SanDiego | 8.967037053333334 |
California.Sunnyvale | 8.978572085714285 |
California.PaloAlto | 8.936665800000000 |
California.Cupertino | 8.987654066666666 |
California.MountainView | 9.046297266666667 |
California.Campbell | 9.149999028571429 |
location | avg(voltage) |
======================================================
California.SantaClara | 243.962050000000005 |
California.SanFrancisco | 243.962050000000005 |
California.SanJose | 243.962050000000005 |
California.LosAngles | 243.962050000000005 |
California.SanDiego | 243.962050000000005 |
California.Sunnyvale | 243.962050000000005 |
California.PaloAlto | 243.962050000000005 |
California.Cupertino | 243.962050000000005 |
California.MountainView | 243.962050000000005 |
California.Campbell | 243.962050000000005 |
Query OK, 10 row(s) in set (2.415961s)
```
@ -200,20 +201,20 @@ SLIMIT 2;
上面的 SQL查询超级表 `meters` 中,时间戳大于等于 `2022-01-01T00:00:00+08:00`,且时间戳小于 `2022-01-01T00:05:00+08:00` 的数据;数据首先按照子表名 `tbname` 进行数据切分,再按照每 1 分钟的时间窗口进行切分,且每个时间窗口向后偏移 5 秒;最后,仅取前 2 个分片的数据作为结果。查询结果如下:
```text
tbname | _wstart | _wend | avg(voltage) |
==========================================================================================
d40 | 2021-12-31 15:59:05.000 | 2021-12-31 16:00:05.000 | 4.000000000000000 |
d40 | 2021-12-31 16:00:05.000 | 2021-12-31 16:01:05.000 | 5.000000000000000 |
d40 | 2021-12-31 16:01:05.000 | 2021-12-31 16:02:05.000 | 8.000000000000000 |
d40 | 2021-12-31 16:02:05.000 | 2021-12-31 16:03:05.000 | 7.666666666666667 |
d40 | 2021-12-31 16:03:05.000 | 2021-12-31 16:04:05.000 | 9.666666666666666 |
d40 | 2021-12-31 16:04:05.000 | 2021-12-31 16:05:05.000 | 15.199999999999999 |
d41 | 2021-12-31 15:59:05.000 | 2021-12-31 16:00:05.000 | 4.000000000000000 |
d41 | 2021-12-31 16:00:05.000 | 2021-12-31 16:01:05.000 | 7.000000000000000 |
d41 | 2021-12-31 16:01:05.000 | 2021-12-31 16:02:05.000 | 9.000000000000000 |
d41 | 2021-12-31 16:02:05.000 | 2021-12-31 16:03:05.000 | 10.666666666666666 |
d41 | 2021-12-31 16:03:05.000 | 2021-12-31 16:04:05.000 | 8.333333333333334 |
d41 | 2021-12-31 16:04:05.000 | 2021-12-31 16:05:05.000 | 9.600000000000000 |
tbname | _wstart | _wend | avg(voltage) |
======================================================================================
d2 | 2021-12-31 23:59:05.000 | 2022-01-01 00:00:05.000 | 253.000000000000000 |
d2 | 2022-01-01 00:00:05.000 | 2022-01-01 00:01:05.000 | 244.166666666666657 |
d2 | 2022-01-01 00:01:05.000 | 2022-01-01 00:02:05.000 | 241.833333333333343 |
d2 | 2022-01-01 00:02:05.000 | 2022-01-01 00:03:05.000 | 243.166666666666657 |
d2 | 2022-01-01 00:03:05.000 | 2022-01-01 00:04:05.000 | 240.833333333333343 |
d2 | 2022-01-01 00:04:05.000 | 2022-01-01 00:05:05.000 | 244.800000000000011 |
d26 | 2021-12-31 23:59:05.000 | 2022-01-01 00:00:05.000 | 253.000000000000000 |
d26 | 2022-01-01 00:00:05.000 | 2022-01-01 00:01:05.000 | 244.166666666666657 |
d26 | 2022-01-01 00:01:05.000 | 2022-01-01 00:02:05.000 | 241.833333333333343 |
d26 | 2022-01-01 00:02:05.000 | 2022-01-01 00:03:05.000 | 243.166666666666657 |
d26 | 2022-01-01 00:03:05.000 | 2022-01-01 00:04:05.000 | 240.833333333333343 |
d26 | 2022-01-01 00:04:05.000 | 2022-01-01 00:05:05.000 | 244.800000000000011 |
Query OK, 12 row(s) in set (0.021265s)
```
@ -255,19 +256,19 @@ SLIMIT 1;
上面的 SQL查询超级表 `meters` 中,时间戳大于等于 `2022-01-01T00:00:00+08:00`,且时间戳小于 `2022-01-01T00:05:00+08:00` 的数据,数据首先按照子表名 `tbname` 进行数据切分,再按照每 1 分钟的时间窗口进行切分,且时间窗口按照 30 秒进行滑动;最后,仅取前 1 个分片的数据作为结果。查询结果如下:
```text
tbname | _wstart | avg(voltage) |
================================================================
d40 | 2021-12-31 15:59:30.000 | 4.000000000000000 |
d40 | 2021-12-31 16:00:00.000 | 5.666666666666667 |
d40 | 2021-12-31 16:00:30.000 | 4.333333333333333 |
d40 | 2021-12-31 16:01:00.000 | 5.000000000000000 |
d40 | 2021-12-31 16:01:30.000 | 9.333333333333334 |
d40 | 2021-12-31 16:02:00.000 | 9.666666666666666 |
d40 | 2021-12-31 16:02:30.000 | 10.000000000000000 |
d40 | 2021-12-31 16:03:00.000 | 10.333333333333334 |
d40 | 2021-12-31 16:03:30.000 | 10.333333333333334 |
d40 | 2021-12-31 16:04:00.000 | 13.000000000000000 |
d40 | 2021-12-31 16:04:30.000 | 15.333333333333334 |
tbname | _wstart | avg(voltage) |
=============================================================
d2 | 2021-12-31 23:59:30.000 | 248.333333333333343 |
d2 | 2022-01-01 00:00:00.000 | 246.000000000000000 |
d2 | 2022-01-01 00:00:30.000 | 244.666666666666657 |
d2 | 2022-01-01 00:01:00.000 | 240.833333333333343 |
d2 | 2022-01-01 00:01:30.000 | 239.500000000000000 |
d2 | 2022-01-01 00:02:00.000 | 243.833333333333343 |
d2 | 2022-01-01 00:02:30.000 | 243.833333333333343 |
d2 | 2022-01-01 00:03:00.000 | 241.333333333333343 |
d2 | 2022-01-01 00:03:30.000 | 241.666666666666657 |
d2 | 2022-01-01 00:04:00.000 | 244.166666666666657 |
d2 | 2022-01-01 00:04:30.000 | 244.666666666666657 |
Query OK, 11 row(s) in set (0.013153s)
```
@ -290,13 +291,13 @@ SLIMIT 1;
上面的 SQL查询超级表 `meters` 中,时间戳大于等于 `2022-01-01T00:00:00+08:00`,且时间戳小于 `2022-01-01T00:05:00+08:00` 的数据,数据首先按照子表名 `tbname` 进行数据切分,再按照每 1 分钟的时间窗口进行切分,且时间窗口按照 1 分钟进行切分;最后,仅取前 1 个分片的数据作为结果。查询结果如下:
```text
tbname | _wstart | _wend | avg(voltage) |
=================================================================================================================
d28 | 2021-12-31 16:00:00.000 | 2021-12-31 16:01:00.000 | 7.333333333333333 |
d28 | 2021-12-31 16:01:00.000 | 2021-12-31 16:02:00.000 | 8.000000000000000 |
d28 | 2021-12-31 16:02:00.000 | 2021-12-31 16:03:00.000 | 11.000000000000000 |
d28 | 2021-12-31 16:03:00.000 | 2021-12-31 16:04:00.000 | 6.666666666666667 |
d28 | 2021-12-31 16:04:00.000 | 2021-12-31 16:05:00.000 | 10.000000000000000 |
tbname | _wstart | _wend | avg(voltage) |
======================================================================================
d2 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:00.000 | 246.000000000000000 |
d2 | 2022-01-01 00:01:00.000 | 2022-01-01 00:02:00.000 | 240.833333333333343 |
d2 | 2022-01-01 00:02:00.000 | 2022-01-01 00:03:00.000 | 243.833333333333343 |
d2 | 2022-01-01 00:03:00.000 | 2022-01-01 00:04:00.000 | 241.333333333333343 |
d2 | 2022-01-01 00:04:00.000 | 2022-01-01 00:05:00.000 | 244.166666666666657 |
Query OK, 5 row(s) in set (0.016812s)
```
@ -342,53 +343,65 @@ SLIMIT 2;
上面的 SQL查询超级表 `meters` 中,时间戳大于等于 `2022-01-01T00:00:00+08:00`,且时间戳小于 `2022-01-01T00:05:00+08:00` 的数据;数据首先按照子表名 `tbname` 进行数据切分,再按照每 1 分钟的时间窗口进行切分,如果窗口内的数据出现缺失,则使用使用前一个非 NULL 值填充数据;最后,仅取前 2 个分片的数据作为结果。查询结果如下:
```text
tbname | _wstart | _wend | avg(voltage) |
=================================================================================================================
d40 | 2021-12-31 16:00:00.000 | 2021-12-31 16:01:00.000 | 5.666666666666667 |
d40 | 2021-12-31 16:01:00.000 | 2021-12-31 16:02:00.000 | 5.000000000000000 |
d40 | 2021-12-31 16:02:00.000 | 2021-12-31 16:03:00.000 | 9.666666666666666 |
d40 | 2021-12-31 16:03:00.000 | 2021-12-31 16:04:00.000 | 10.333333333333334 |
d40 | 2021-12-31 16:04:00.000 | 2021-12-31 16:05:00.000 | 13.000000000000000 |
d41 | 2021-12-31 16:00:00.000 | 2021-12-31 16:01:00.000 | 5.666666666666667 |
d41 | 2021-12-31 16:01:00.000 | 2021-12-31 16:02:00.000 | 9.333333333333334 |
d41 | 2021-12-31 16:02:00.000 | 2021-12-31 16:03:00.000 | 11.000000000000000 |
d41 | 2021-12-31 16:03:00.000 | 2021-12-31 16:04:00.000 | 7.666666666666667 |
d41 | 2021-12-31 16:04:00.000 | 2021-12-31 16:05:00.000 | 10.000000000000000 |
tbname | _wstart | _wend | avg(voltage) |
=======================================================================================
d2 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:00.000 | 246.000000000000000 |
d2 | 2022-01-01 00:01:00.000 | 2022-01-01 00:02:00.000 | 240.833333333333343 |
d2 | 2022-01-01 00:02:00.000 | 2022-01-01 00:03:00.000 | 243.833333333333343 |
d2 | 2022-01-01 00:03:00.000 | 2022-01-01 00:04:00.000 | 241.333333333333343 |
d2 | 2022-01-01 00:04:00.000 | 2022-01-01 00:05:00.000 | 244.166666666666657 |
d26 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:00.000 | 246.000000000000000 |
d26 | 2022-01-01 00:01:00.000 | 2022-01-01 00:02:00.000 | 240.833333333333343 |
d26 | 2022-01-01 00:02:00.000 | 2022-01-01 00:03:00.000 | 243.833333333333343 |
d26 | 2022-01-01 00:03:00.000 | 2022-01-01 00:04:00.000 | 241.333333333333343 |
d26 | 2022-01-01 00:04:00.000 | 2022-01-01 00:05:00.000 | 244.166666666666657 |
Query OK, 10 row(s) in set (0.022866s)
```
### 状态窗口
使用整数布尔值或字符串来标识产生记录时候设备的状态量。产生的记录如果具有相同的状态量数值则归属于同一个状态窗口数值改变后该窗口关闭。TDengine 还支持将 CASE 表达式用在状态量,可以表达某个状态的开始是由满足某个条件而触发,这个状态的结束是由另外一个条件满足而触发的语义。以智能电表为例,电压正常范围是 205V 到 235V那么可以通过监控电压来判断电路是否正常。
使用整数布尔值或字符串来标识产生记录时候设备的状态量。产生的记录如果具有相同的状态量数值则归属于同一个状态窗口数值改变后该窗口关闭。TDengine 还支持将 CASE 表达式用在状态量,可以表达某个状态的开始是由满足某个条件而触发,这个状态的结束是由另外一个条件满足而触发的语义。以智能电表为例,电压正常范围是 225V 到 235V那么可以通过监控电压来判断电路是否正常。
```sql
SELECT tbname, _wstart, _wend,_wduration, CASE WHEN voltage >= 205 and voltage <= 235 THEN 1 ELSE 0 END status
SELECT tbname, _wstart, _wend,_wduration, CASE WHEN voltage >= 225 and voltage <= 235 THEN 1 ELSE 0 END status
FROM meters
WHERE ts >= "2022-01-01T00:00:00+08:00"
AND ts < "2022-01-01T00:05:00+08:00"
PARTITION BY tbname
STATE_WINDOW(
CASE WHEN voltage >= 205 and voltage <= 235 THEN 1 ELSE 0 END
CASE WHEN voltage >= 225 and voltage <= 235 THEN 1 ELSE 0 END
)
SLIMIT 10;
SLIMIT 2;
```
以上 SQL查询超级表 meters 中,时间戳大于等于 2022-01-01T00:00:00+08:00且时间戳小于 2022-01-01T00:05:00+08:00的数据数据首先按照子表名 tbname 进行数据切分;根据电压是否在正常范围内进行状态窗口的划分;最后,取前 10 个分片的数据作为结果。查询结果如下:
以上 SQL查询超级表 meters 中,时间戳大于等于 2022-01-01T00:00:00+08:00且时间戳小于 2022-01-01T00:05:00+08:00的数据数据首先按照子表名 tbname 进行数据切分;根据电压是否在正常范围内进行状态窗口的划分;最后,取前 2 个分片的数据作为结果。查询结果如下:(由于数据是随机生成,结果集包含的数据条数会有不同)
```text
tbname | _wstart | _wend | _wduration | status |
=====================================================================================================================================
d76 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 |
d47 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 |
d37 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 |
d87 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 |
d64 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 |
d35 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 |
d83 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 |
d51 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 |
d63 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 |
d0 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 |
Query OK, 10 row(s) in set (0.040495s)
tbname | _wstart | _wend | _wduration | status |
===============================================================================================
d2 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:20.000 | 80000 | 0 |
d2 | 2022-01-01 00:01:30.000 | 2022-01-01 00:01:30.000 | 0 | 1 |
d2 | 2022-01-01 00:01:40.000 | 2022-01-01 00:01:40.000 | 0 | 0 |
d2 | 2022-01-01 00:01:50.000 | 2022-01-01 00:01:50.000 | 0 | 1 |
d2 | 2022-01-01 00:02:00.000 | 2022-01-01 00:02:20.000 | 20000 | 0 |
d2 | 2022-01-01 00:02:30.000 | 2022-01-01 00:02:30.000 | 0 | 1 |
d2 | 2022-01-01 00:02:40.000 | 2022-01-01 00:03:00.000 | 20000 | 0 |
d2 | 2022-01-01 00:03:10.000 | 2022-01-01 00:03:10.000 | 0 | 1 |
d2 | 2022-01-01 00:03:20.000 | 2022-01-01 00:03:40.000 | 20000 | 0 |
d2 | 2022-01-01 00:03:50.000 | 2022-01-01 00:03:50.000 | 0 | 1 |
d2 | 2022-01-01 00:04:00.000 | 2022-01-01 00:04:50.000 | 50000 | 0 |
d26 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:20.000 | 80000 | 0 |
d26 | 2022-01-01 00:01:30.000 | 2022-01-01 00:01:30.000 | 0 | 1 |
d26 | 2022-01-01 00:01:40.000 | 2022-01-01 00:01:40.000 | 0 | 0 |
d26 | 2022-01-01 00:01:50.000 | 2022-01-01 00:01:50.000 | 0 | 1 |
d26 | 2022-01-01 00:02:00.000 | 2022-01-01 00:02:20.000 | 20000 | 0 |
d26 | 2022-01-01 00:02:30.000 | 2022-01-01 00:02:30.000 | 0 | 1 |
d26 | 2022-01-01 00:02:40.000 | 2022-01-01 00:03:00.000 | 20000 | 0 |
d26 | 2022-01-01 00:03:10.000 | 2022-01-01 00:03:10.000 | 0 | 1 |
d26 | 2022-01-01 00:03:20.000 | 2022-01-01 00:03:40.000 | 20000 | 0 |
d26 | 2022-01-01 00:03:50.000 | 2022-01-01 00:03:50.000 | 0 | 1 |
d26 | 2022-01-01 00:04:00.000 | 2022-01-01 00:04:50.000 | 50000 | 0 |
Query OK, 22 row(s) in set (0.153403s)
```
### 会话窗口
@ -417,18 +430,18 @@ SLIMIT 10;
上面的 SQL查询超级表 meters 中,时间戳大于等于 2022-01-01T00:00:00+08:00且时间戳小于 2022-01-01T00:10:00+08:00的数据数据先按照子表名 tbname 进行数据切分,再根据 10 分钟的会话窗口进行切分;最后,取前 10 个分片的数据作为结果,返回子表名、窗口开始时间、窗口结束时间、窗口宽度、窗口内数据条数。查询结果如下:
```text
tbname | _wstart | _wend | _wduration | count(*) |
=====================================================================================================================================
d76 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 |
d47 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 |
d37 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 |
d87 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 |
d64 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 |
d35 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 |
d83 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 |
d51 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 |
d63 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 |
d0 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 |
tbname | _wstart | _wend | _wduration | count(*) |
===============================================================================================
d2 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 |
d26 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 |
d52 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 |
d64 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 |
d76 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 |
d28 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 |
d4 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 |
d88 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 |
d77 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 |
d54 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 |
Query OK, 10 row(s) in set (0.043489s)
```
@ -458,26 +471,26 @@ FROM meters
WHERE ts >= "2022-01-01T00:00:00+08:00"
AND ts < "2022-01-01T00:10:00+08:00"
PARTITION BY tbname
EVENT_WINDOW START WITH voltage >= 10 END WITH voltage < 20
LIMIT 10;
EVENT_WINDOW START WITH voltage >= 225 END WITH voltage < 235
LIMIT 5;
```
上面的 SQL查询超级表meters中时间戳大于等于2022-01-01T00:00:00+08:00且时间戳小于2022-01-01T00:10:00+08:00的数据数据先按照子表名tbname进行数据切分再根据事件窗口条件电压大于等于 10V且小于 20V 进行切分;最后,取前 10 行的数据作为结果,返回子表名、窗口开始时间、窗口结束时间、窗口宽度、窗口内数据条数。查询结果如下:
上面的 SQL查询超级表meters中时间戳大于等于2022-01-01T00:00:00+08:00且时间戳小于2022-01-01T00:10:00+08:00的数据数据先按照子表名tbname进行数据切分再根据事件窗口条件电压大于等于 225V且小于 235V 进行切分;最后,取每个分片的前 5 行的数据作为结果,返回子表名、窗口开始时间、窗口结束时间、窗口宽度、窗口内数据条数。查询结果如下:
```text
tbname | _wstart | _wend | _wduration | count(*) |
=====================================================================================================================================
d0 | 2021-12-31 16:00:00.000 | 2021-12-31 16:00:00.000 | 0 | 1 |
d0 | 2021-12-31 16:00:30.000 | 2021-12-31 16:00:30.000 | 0 | 1 |
d0 | 2021-12-31 16:00:40.000 | 2021-12-31 16:00:40.000 | 0 | 1 |
d0 | 2021-12-31 16:01:20.000 | 2021-12-31 16:01:20.000 | 0 | 1 |
d0 | 2021-12-31 16:02:20.000 | 2021-12-31 16:02:20.000 | 0 | 1 |
d0 | 2021-12-31 16:02:30.000 | 2021-12-31 16:02:30.000 | 0 | 1 |
d0 | 2021-12-31 16:03:10.000 | 2021-12-31 16:03:10.000 | 0 | 1 |
d0 | 2021-12-31 16:03:30.000 | 2021-12-31 16:03:30.000 | 0 | 1 |
d0 | 2021-12-31 16:03:40.000 | 2021-12-31 16:03:40.000 | 0 | 1 |
d0 | 2021-12-31 16:03:50.000 | 2021-12-31 16:03:50.000 | 0 | 1 |
Query OK, 10 row(s) in set (0.034127s)
tbname | _wstart | _wend | _wduration | count(*) |
==============================================================================================
d0 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:30.000 | 90000 | 10 |
d0 | 2022-01-01 00:01:40.000 | 2022-01-01 00:02:30.000 | 50000 | 6 |
d0 | 2022-01-01 00:02:40.000 | 2022-01-01 00:03:10.000 | 30000 | 4 |
d0 | 2022-01-01 00:03:20.000 | 2022-01-01 00:07:10.000 | 230000 | 24 |
d0 | 2022-01-01 00:07:20.000 | 2022-01-01 00:07:50.000 | 30000 | 4 |
d1 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:30.000 | 90000 | 10 |
d1 | 2022-01-01 00:01:40.000 | 2022-01-01 00:02:30.000 | 50000 | 6 |
d1 | 2022-01-01 00:02:40.000 | 2022-01-01 00:03:10.000 | 30000 | 4 |
d1 | 2022-01-01 00:03:20.000 | 2022-01-01 00:07:10.000 | 230000 | 24 |
……
Query OK, 500 row(s) in set (0.328557s)
```
### 计数窗口
@ -492,17 +505,25 @@ sliding_val 是一个常量,表示窗口滑动的数量,类似于 interval
select _wstart, _wend, count(*)
from meters
where ts >= "2022-01-01T00:00:00+08:00" and ts < "2022-01-01T00:30:00+08:00"
count_window(10);
count_window(1000);
```
上面的 SQL 查询超级表 meters 中时间戳大于等于 2022-01-01T00:00:00+08:00 且时间戳小于 2022-01-01T00:10:00+08:00 的数据。以每 10 条数据为一组,返回每组的开始时间、结束时间和分组条数。查询结果如下
上面的 SQL 查询超级表 meters 中时间戳大于等于 2022-01-01T00:00:00+08:00 且时间戳小于 2022-01-01T00:10:00+08:00 的数据。以每 1000 条数据为一组,返回每组的开始时间、结束时间和分组条数。查询结果如下
```text
_wstart | _wend |count(*)|
===========================================================
2021-12-31 16:00:00.000 | 2021-12-31 16:10:00.000 | 10 |
2021-12-31 16:10:00.000 | 2021-12-31 16:20:00.000 | 10 |
2021-12-31 16:20:00.000 | 2021-12-31 16:30:00.000 | 10 |
_wstart | _wend | count(*) |
=====================================================================
2022-01-01 00:00:00.000 | 2022-01-01 00:01:30.000 | 1000 |
2022-01-01 00:01:40.000 | 2022-01-01 00:03:10.000 | 1000 |
2022-01-01 00:03:20.000 | 2022-01-01 00:04:50.000 | 1000 |
2022-01-01 00:05:00.000 | 2022-01-01 00:06:30.000 | 1000 |
2022-01-01 00:06:40.000 | 2022-01-01 00:08:10.000 | 1000 |
2022-01-01 00:08:20.000 | 2022-01-01 00:09:50.000 | 1000 |
2022-01-01 00:10:00.000 | 2022-01-01 00:11:30.000 | 1000 |
2022-01-01 00:11:40.000 | 2022-01-01 00:13:10.000 | 1000 |
2022-01-01 00:13:20.000 | 2022-01-01 00:14:50.000 | 1000 |
2022-01-01 00:15:00.000 | 2022-01-01 00:16:30.000 | 1000 |
Query OK, 10 row(s) in set (0.062794s)
```
## 时序数据特有函数
@ -563,14 +584,14 @@ UNION ALL
上面的 SQL分别查询子表 d1 的 1 条数据,子表 d11 的 2 条数据,子表 d21 的 3 条数据,并将结果合并。返回的结果如下:
```text
tbname | ts | current | voltage | phase |
=================================================================================================
d11 | 2020-09-13 12:26:40.000 | 1.0260611 | 6 | 0.3620200 |
d11 | 2020-09-13 12:26:50.000 | 2.9544230 | 8 | 1.0048079 |
d21 | 2020-09-13 12:26:40.000 | 1.0260611 | 2 | 0.3520200 |
d21 | 2020-09-13 12:26:50.000 | 2.9544230 | 2 | 0.9948080 |
d21 | 2020-09-13 12:27:00.000 | -0.0000430 | 12 | 0.0099860 |
d1 | 2020-09-13 12:26:40.000 | 1.0260611 | 10 | 0.3520200 |
tbname | ts | current | voltage | phase |
====================================================================================
d11 | 2020-09-13 20:26:40.000 | 11.5680809 | 247 | 146.5000000 |
d11 | 2020-09-13 20:26:50.000 | 14.2392311 | 234 | 148.0000000 |
d1 | 2020-09-13 20:26:40.000 | 11.5680809 | 247 | 146.5000000 |
d21 | 2020-09-13 20:26:40.000 | 11.5680809 | 247 | 146.5000000 |
d21 | 2020-09-13 20:26:50.000 | 14.2392311 | 234 | 148.0000000 |
d21 | 2020-09-13 20:27:00.000 | 10.0999422 | 251 | 146.0000000 |
Query OK, 6 row(s) in set (0.006438s)
```