From 385c4934d291883fe56c2f9d39c84cb326d41920 Mon Sep 17 00:00:00 2001 From: Shengliang Guan Date: Thu, 31 Oct 2024 12:11:44 +0800 Subject: [PATCH] doc: update query result --- docs/zh/05-basic/03-query.md | 309 +++++++++++++++++++---------------- 1 file changed, 165 insertions(+), 144 deletions(-) diff --git a/docs/zh/05-basic/03-query.md b/docs/zh/05-basic/03-query.md index 6afdba0997..21f4b74f73 100644 --- a/docs/zh/05-basic/03-query.md +++ b/docs/zh/05-basic/03-query.md @@ -20,21 +20,22 @@ taosBenchmark --start-timestamp=1600000000000 --tables=100 --records=10000000 -- ```sql SELECT * FROM meters -WHERE voltage > 10 +WHERE voltage > 230 ORDER BY ts DESC -LIMIT 5 +LIMIT 5; ``` -上面的 SQL,从超级表 `meters` 中查询出电压 `voltage` 大于 10 的记录,按时间降序排列,且仅输出前 5 行。查询结果如下: +上面的 SQL,从超级表 `meters` 中查询出电压 `voltage` 大于 230 的记录,按时间降序排列,且仅输出前 5 行。查询结果如下: ```text - ts | current | voltage | phase | groupid | location | -========================================================================================================== -2023-11-14 22:13:10.000 | 1.1294620 | 18 | 0.3531540 | 8 | California.MountainView | -2023-11-14 22:13:10.000 | 1.0294620 | 12 | 0.3631540 | 2 | California.Campbell | -2023-11-14 22:13:10.000 | 1.0294620 | 16 | 0.3531540 | 1 | California.Campbell | -2023-11-14 22:13:10.000 | 1.1294620 | 18 | 0.3531540 | 2 | California.Campbell | -2023-11-14 22:13:10.000 | 1.1294620 | 16 | 0.3431540 | 7 | California.PaloAlto | + ts | current | voltage | phase | groupid | location | +============================================================================================================ +2023-11-15 06:13:10.000 | 14.0601978 | 232 | 146.5000000 | 10 | California.Sunnyvale | +2023-11-15 06:13:10.000 | 14.0601978 | 232 | 146.5000000 | 1 | California.LosAngles | +2023-11-15 06:13:10.000 | 14.0601978 | 232 | 146.5000000 | 10 | California.Sunnyvale | +2023-11-15 06:13:10.000 | 14.0601978 | 232 | 146.5000000 | 5 | California.Cupertino | +2023-11-15 06:13:10.000 | 14.0601978 | 232 | 146.5000000 | 4 | California.SanFrancisco | +Query OK, 5 row(s) in set (0.145403s) ``` ## 聚合查询 @@ -48,28 +49,28 @@ TDengine 支持通过 GROUP BY 子句,对数据进行聚合查询。SQL 语句 group by 子句用于对数据进行分组,并为每个分组返回一行汇总信息。在 group by 子句中,可以使用表或视图中的任何列作为分组依据,这些列不需要出现在 select 列表中。此外,用户可以直接在超级表上执行聚合查询,无须预先创建子表。以智能电表的数据模型为例,使用 group by 子句的 SQL 如下: ```sql -SELECT groupid,avg(voltage) +SELECT groupid, avg(voltage) FROM meters WHERE ts >= "2022-01-01T00:00:00+08:00" AND ts < "2023-01-01T00:00:00+08:00" -GROUP BY groupid +GROUP BY groupid; ``` 上面的 SQL,查询超级表 `meters` 中,时间戳大于等于 `2022-01-01T00:00:00+08:00`,且时间戳小于 `2023-01-01T00:00:00+08:00` 的数据,按照 `groupid` 进行分组,求每组的平均电压。查询结果如下: ```text - groupid | avg(voltage) | -========================================== - 8 | 9.104040404040404 | - 5 | 9.078333333333333 | - 1 | 9.087037037037037 | - 7 | 8.991414141414142 | - 9 | 8.789814814814815 | - 6 | 9.051010101010101 | - 4 | 9.135353535353536 | - 10 | 9.213131313131314 | - 2 | 9.008888888888889 | - 3 | 8.783888888888889 | + groupid | avg(voltage) | +====================================== + 8 | 243.961981544901079 | + 5 | 243.961981544901079 | + 1 | 243.961981544901079 | + 7 | 243.961981544901079 | + 9 | 243.961981544901079 | + 6 | 243.961981544901079 | + 4 | 243.961981544901079 | + 10 | 243.961981544901079 | + 2 | 243.961981544901079 | + 3 | 243.961981544901079 | Query OK, 10 row(s) in set (0.042446s) ``` @@ -110,24 +111,24 @@ TDengine 按如下方式处理数据切分子句。 ```sql SELECT location, avg(voltage) FROM meters -PARTITION BY location +PARTITION BY location; ``` 上面的示例 SQL 查询超级表 `meters`,将数据按标签 `location` 进行分组,每个分组计算电压的平均值。查询结果如下: ```text - location | avg(voltage) | -========================================================= - California.SantaClara | 8.793334320000000 | - California.SanFrancisco | 9.017645882352941 | - California.SanJose | 9.156112940000000 | - California.LosAngles | 9.036753507692307 | - California.SanDiego | 8.967037053333334 | - California.Sunnyvale | 8.978572085714285 | - California.PaloAlto | 8.936665800000000 | - California.Cupertino | 8.987654066666666 | - California.MountainView | 9.046297266666667 | - California.Campbell | 9.149999028571429 | + location | avg(voltage) | +====================================================== + California.SantaClara | 243.962050000000005 | + California.SanFrancisco | 243.962050000000005 | + California.SanJose | 243.962050000000005 | + California.LosAngles | 243.962050000000005 | + California.SanDiego | 243.962050000000005 | + California.Sunnyvale | 243.962050000000005 | + California.PaloAlto | 243.962050000000005 | + California.Cupertino | 243.962050000000005 | + California.MountainView | 243.962050000000005 | + California.Campbell | 243.962050000000005 | Query OK, 10 row(s) in set (2.415961s) ``` @@ -200,20 +201,20 @@ SLIMIT 2; 上面的 SQL,查询超级表 `meters` 中,时间戳大于等于 `2022-01-01T00:00:00+08:00`,且时间戳小于 `2022-01-01T00:05:00+08:00` 的数据;数据首先按照子表名 `tbname` 进行数据切分,再按照每 1 分钟的时间窗口进行切分,且每个时间窗口向后偏移 5 秒;最后,仅取前 2 个分片的数据作为结果。查询结果如下: ```text - tbname | _wstart | _wend | avg(voltage) | -========================================================================================== - d40 | 2021-12-31 15:59:05.000 | 2021-12-31 16:00:05.000 | 4.000000000000000 | - d40 | 2021-12-31 16:00:05.000 | 2021-12-31 16:01:05.000 | 5.000000000000000 | - d40 | 2021-12-31 16:01:05.000 | 2021-12-31 16:02:05.000 | 8.000000000000000 | - d40 | 2021-12-31 16:02:05.000 | 2021-12-31 16:03:05.000 | 7.666666666666667 | - d40 | 2021-12-31 16:03:05.000 | 2021-12-31 16:04:05.000 | 9.666666666666666 | - d40 | 2021-12-31 16:04:05.000 | 2021-12-31 16:05:05.000 | 15.199999999999999 | - d41 | 2021-12-31 15:59:05.000 | 2021-12-31 16:00:05.000 | 4.000000000000000 | - d41 | 2021-12-31 16:00:05.000 | 2021-12-31 16:01:05.000 | 7.000000000000000 | - d41 | 2021-12-31 16:01:05.000 | 2021-12-31 16:02:05.000 | 9.000000000000000 | - d41 | 2021-12-31 16:02:05.000 | 2021-12-31 16:03:05.000 | 10.666666666666666 | - d41 | 2021-12-31 16:03:05.000 | 2021-12-31 16:04:05.000 | 8.333333333333334 | - d41 | 2021-12-31 16:04:05.000 | 2021-12-31 16:05:05.000 | 9.600000000000000 | + tbname | _wstart | _wend | avg(voltage) | +====================================================================================== + d2 | 2021-12-31 23:59:05.000 | 2022-01-01 00:00:05.000 | 253.000000000000000 | + d2 | 2022-01-01 00:00:05.000 | 2022-01-01 00:01:05.000 | 244.166666666666657 | + d2 | 2022-01-01 00:01:05.000 | 2022-01-01 00:02:05.000 | 241.833333333333343 | + d2 | 2022-01-01 00:02:05.000 | 2022-01-01 00:03:05.000 | 243.166666666666657 | + d2 | 2022-01-01 00:03:05.000 | 2022-01-01 00:04:05.000 | 240.833333333333343 | + d2 | 2022-01-01 00:04:05.000 | 2022-01-01 00:05:05.000 | 244.800000000000011 | + d26 | 2021-12-31 23:59:05.000 | 2022-01-01 00:00:05.000 | 253.000000000000000 | + d26 | 2022-01-01 00:00:05.000 | 2022-01-01 00:01:05.000 | 244.166666666666657 | + d26 | 2022-01-01 00:01:05.000 | 2022-01-01 00:02:05.000 | 241.833333333333343 | + d26 | 2022-01-01 00:02:05.000 | 2022-01-01 00:03:05.000 | 243.166666666666657 | + d26 | 2022-01-01 00:03:05.000 | 2022-01-01 00:04:05.000 | 240.833333333333343 | + d26 | 2022-01-01 00:04:05.000 | 2022-01-01 00:05:05.000 | 244.800000000000011 | Query OK, 12 row(s) in set (0.021265s) ``` @@ -255,19 +256,19 @@ SLIMIT 1; 上面的 SQL,查询超级表 `meters` 中,时间戳大于等于 `2022-01-01T00:00:00+08:00`,且时间戳小于 `2022-01-01T00:05:00+08:00` 的数据,数据首先按照子表名 `tbname` 进行数据切分,再按照每 1 分钟的时间窗口进行切分,且时间窗口按照 30 秒进行滑动;最后,仅取前 1 个分片的数据作为结果。查询结果如下: ```text - tbname | _wstart | avg(voltage) | -================================================================ - d40 | 2021-12-31 15:59:30.000 | 4.000000000000000 | - d40 | 2021-12-31 16:00:00.000 | 5.666666666666667 | - d40 | 2021-12-31 16:00:30.000 | 4.333333333333333 | - d40 | 2021-12-31 16:01:00.000 | 5.000000000000000 | - d40 | 2021-12-31 16:01:30.000 | 9.333333333333334 | - d40 | 2021-12-31 16:02:00.000 | 9.666666666666666 | - d40 | 2021-12-31 16:02:30.000 | 10.000000000000000 | - d40 | 2021-12-31 16:03:00.000 | 10.333333333333334 | - d40 | 2021-12-31 16:03:30.000 | 10.333333333333334 | - d40 | 2021-12-31 16:04:00.000 | 13.000000000000000 | - d40 | 2021-12-31 16:04:30.000 | 15.333333333333334 | + tbname | _wstart | avg(voltage) | +============================================================= + d2 | 2021-12-31 23:59:30.000 | 248.333333333333343 | + d2 | 2022-01-01 00:00:00.000 | 246.000000000000000 | + d2 | 2022-01-01 00:00:30.000 | 244.666666666666657 | + d2 | 2022-01-01 00:01:00.000 | 240.833333333333343 | + d2 | 2022-01-01 00:01:30.000 | 239.500000000000000 | + d2 | 2022-01-01 00:02:00.000 | 243.833333333333343 | + d2 | 2022-01-01 00:02:30.000 | 243.833333333333343 | + d2 | 2022-01-01 00:03:00.000 | 241.333333333333343 | + d2 | 2022-01-01 00:03:30.000 | 241.666666666666657 | + d2 | 2022-01-01 00:04:00.000 | 244.166666666666657 | + d2 | 2022-01-01 00:04:30.000 | 244.666666666666657 | Query OK, 11 row(s) in set (0.013153s) ``` @@ -290,13 +291,13 @@ SLIMIT 1; 上面的 SQL,查询超级表 `meters` 中,时间戳大于等于 `2022-01-01T00:00:00+08:00`,且时间戳小于 `2022-01-01T00:05:00+08:00` 的数据,数据首先按照子表名 `tbname` 进行数据切分,再按照每 1 分钟的时间窗口进行切分,且时间窗口按照 1 分钟进行切分;最后,仅取前 1 个分片的数据作为结果。查询结果如下: ```text - tbname | _wstart | _wend | avg(voltage) | -================================================================================================================= - d28 | 2021-12-31 16:00:00.000 | 2021-12-31 16:01:00.000 | 7.333333333333333 | - d28 | 2021-12-31 16:01:00.000 | 2021-12-31 16:02:00.000 | 8.000000000000000 | - d28 | 2021-12-31 16:02:00.000 | 2021-12-31 16:03:00.000 | 11.000000000000000 | - d28 | 2021-12-31 16:03:00.000 | 2021-12-31 16:04:00.000 | 6.666666666666667 | - d28 | 2021-12-31 16:04:00.000 | 2021-12-31 16:05:00.000 | 10.000000000000000 | + tbname | _wstart | _wend | avg(voltage) | +====================================================================================== + d2 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:00.000 | 246.000000000000000 | + d2 | 2022-01-01 00:01:00.000 | 2022-01-01 00:02:00.000 | 240.833333333333343 | + d2 | 2022-01-01 00:02:00.000 | 2022-01-01 00:03:00.000 | 243.833333333333343 | + d2 | 2022-01-01 00:03:00.000 | 2022-01-01 00:04:00.000 | 241.333333333333343 | + d2 | 2022-01-01 00:04:00.000 | 2022-01-01 00:05:00.000 | 244.166666666666657 | Query OK, 5 row(s) in set (0.016812s) ``` @@ -342,53 +343,65 @@ SLIMIT 2; 上面的 SQL,查询超级表 `meters` 中,时间戳大于等于 `2022-01-01T00:00:00+08:00`,且时间戳小于 `2022-01-01T00:05:00+08:00` 的数据;数据首先按照子表名 `tbname` 进行数据切分,再按照每 1 分钟的时间窗口进行切分,如果窗口内的数据出现缺失,则使用使用前一个非 NULL 值填充数据;最后,仅取前 2 个分片的数据作为结果。查询结果如下: ```text - tbname | _wstart | _wend | avg(voltage) | -================================================================================================================= - d40 | 2021-12-31 16:00:00.000 | 2021-12-31 16:01:00.000 | 5.666666666666667 | - d40 | 2021-12-31 16:01:00.000 | 2021-12-31 16:02:00.000 | 5.000000000000000 | - d40 | 2021-12-31 16:02:00.000 | 2021-12-31 16:03:00.000 | 9.666666666666666 | - d40 | 2021-12-31 16:03:00.000 | 2021-12-31 16:04:00.000 | 10.333333333333334 | - d40 | 2021-12-31 16:04:00.000 | 2021-12-31 16:05:00.000 | 13.000000000000000 | - d41 | 2021-12-31 16:00:00.000 | 2021-12-31 16:01:00.000 | 5.666666666666667 | - d41 | 2021-12-31 16:01:00.000 | 2021-12-31 16:02:00.000 | 9.333333333333334 | - d41 | 2021-12-31 16:02:00.000 | 2021-12-31 16:03:00.000 | 11.000000000000000 | - d41 | 2021-12-31 16:03:00.000 | 2021-12-31 16:04:00.000 | 7.666666666666667 | - d41 | 2021-12-31 16:04:00.000 | 2021-12-31 16:05:00.000 | 10.000000000000000 | + tbname | _wstart | _wend | avg(voltage) | +======================================================================================= + d2 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:00.000 | 246.000000000000000 | + d2 | 2022-01-01 00:01:00.000 | 2022-01-01 00:02:00.000 | 240.833333333333343 | + d2 | 2022-01-01 00:02:00.000 | 2022-01-01 00:03:00.000 | 243.833333333333343 | + d2 | 2022-01-01 00:03:00.000 | 2022-01-01 00:04:00.000 | 241.333333333333343 | + d2 | 2022-01-01 00:04:00.000 | 2022-01-01 00:05:00.000 | 244.166666666666657 | + d26 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:00.000 | 246.000000000000000 | + d26 | 2022-01-01 00:01:00.000 | 2022-01-01 00:02:00.000 | 240.833333333333343 | + d26 | 2022-01-01 00:02:00.000 | 2022-01-01 00:03:00.000 | 243.833333333333343 | + d26 | 2022-01-01 00:03:00.000 | 2022-01-01 00:04:00.000 | 241.333333333333343 | + d26 | 2022-01-01 00:04:00.000 | 2022-01-01 00:05:00.000 | 244.166666666666657 | Query OK, 10 row(s) in set (0.022866s) ``` ### 状态窗口 -使用整数(布尔值)或字符串来标识产生记录时候设备的状态量。产生的记录如果具有相同的状态量数值则归属于同一个状态窗口,数值改变后该窗口关闭。TDengine 还支持将 CASE 表达式用在状态量,可以表达某个状态的开始是由满足某个条件而触发,这个状态的结束是由另外一个条件满足而触发的语义。以智能电表为例,电压正常范围是 205V 到 235V,那么可以通过监控电压来判断电路是否正常。 +使用整数(布尔值)或字符串来标识产生记录时候设备的状态量。产生的记录如果具有相同的状态量数值则归属于同一个状态窗口,数值改变后该窗口关闭。TDengine 还支持将 CASE 表达式用在状态量,可以表达某个状态的开始是由满足某个条件而触发,这个状态的结束是由另外一个条件满足而触发的语义。以智能电表为例,电压正常范围是 225V 到 235V,那么可以通过监控电压来判断电路是否正常。 ```sql -SELECT tbname, _wstart, _wend,_wduration, CASE WHEN voltage >= 205 and voltage <= 235 THEN 1 ELSE 0 END status +SELECT tbname, _wstart, _wend,_wduration, CASE WHEN voltage >= 225 and voltage <= 235 THEN 1 ELSE 0 END status FROM meters WHERE ts >= "2022-01-01T00:00:00+08:00" AND ts < "2022-01-01T00:05:00+08:00" PARTITION BY tbname STATE_WINDOW( - CASE WHEN voltage >= 205 and voltage <= 235 THEN 1 ELSE 0 END + CASE WHEN voltage >= 225 and voltage <= 235 THEN 1 ELSE 0 END ) -SLIMIT 10; +SLIMIT 2; ``` -以上 SQL,查询超级表 meters 中,时间戳大于等于 2022-01-01T00:00:00+08:00,且时间戳小于 2022-01-01T00:05:00+08:00的数据;数据首先按照子表名 tbname 进行数据切分;根据电压是否在正常范围内进行状态窗口的划分;最后,取前 10 个分片的数据作为结果。查询结果如下: +以上 SQL,查询超级表 meters 中,时间戳大于等于 2022-01-01T00:00:00+08:00,且时间戳小于 2022-01-01T00:05:00+08:00的数据;数据首先按照子表名 tbname 进行数据切分;根据电压是否在正常范围内进行状态窗口的划分;最后,取前 2 个分片的数据作为结果。查询结果如下:(由于数据是随机生成,结果集包含的数据条数会有不同) ```text - tbname | _wstart | _wend | _wduration | status | -===================================================================================================================================== - d76 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 | - d47 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 | - d37 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 | - d87 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 | - d64 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 | - d35 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 | - d83 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 | - d51 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 | - d63 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 | - d0 | 2021-12-31 16:00:00.000 | 2021-12-31 16:04:50.000 | 290000 | 0 | -Query OK, 10 row(s) in set (0.040495s) + tbname | _wstart | _wend | _wduration | status | +=============================================================================================== + d2 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:20.000 | 80000 | 0 | + d2 | 2022-01-01 00:01:30.000 | 2022-01-01 00:01:30.000 | 0 | 1 | + d2 | 2022-01-01 00:01:40.000 | 2022-01-01 00:01:40.000 | 0 | 0 | + d2 | 2022-01-01 00:01:50.000 | 2022-01-01 00:01:50.000 | 0 | 1 | + d2 | 2022-01-01 00:02:00.000 | 2022-01-01 00:02:20.000 | 20000 | 0 | + d2 | 2022-01-01 00:02:30.000 | 2022-01-01 00:02:30.000 | 0 | 1 | + d2 | 2022-01-01 00:02:40.000 | 2022-01-01 00:03:00.000 | 20000 | 0 | + d2 | 2022-01-01 00:03:10.000 | 2022-01-01 00:03:10.000 | 0 | 1 | + d2 | 2022-01-01 00:03:20.000 | 2022-01-01 00:03:40.000 | 20000 | 0 | + d2 | 2022-01-01 00:03:50.000 | 2022-01-01 00:03:50.000 | 0 | 1 | + d2 | 2022-01-01 00:04:00.000 | 2022-01-01 00:04:50.000 | 50000 | 0 | + d26 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:20.000 | 80000 | 0 | + d26 | 2022-01-01 00:01:30.000 | 2022-01-01 00:01:30.000 | 0 | 1 | + d26 | 2022-01-01 00:01:40.000 | 2022-01-01 00:01:40.000 | 0 | 0 | + d26 | 2022-01-01 00:01:50.000 | 2022-01-01 00:01:50.000 | 0 | 1 | + d26 | 2022-01-01 00:02:00.000 | 2022-01-01 00:02:20.000 | 20000 | 0 | + d26 | 2022-01-01 00:02:30.000 | 2022-01-01 00:02:30.000 | 0 | 1 | + d26 | 2022-01-01 00:02:40.000 | 2022-01-01 00:03:00.000 | 20000 | 0 | + d26 | 2022-01-01 00:03:10.000 | 2022-01-01 00:03:10.000 | 0 | 1 | + d26 | 2022-01-01 00:03:20.000 | 2022-01-01 00:03:40.000 | 20000 | 0 | + d26 | 2022-01-01 00:03:50.000 | 2022-01-01 00:03:50.000 | 0 | 1 | + d26 | 2022-01-01 00:04:00.000 | 2022-01-01 00:04:50.000 | 50000 | 0 | +Query OK, 22 row(s) in set (0.153403s) ``` ### 会话窗口 @@ -417,18 +430,18 @@ SLIMIT 10; 上面的 SQL,查询超级表 meters 中,时间戳大于等于 2022-01-01T00:00:00+08:00,且时间戳小于 2022-01-01T00:10:00+08:00的数据;数据先按照子表名 tbname 进行数据切分,再根据 10 分钟的会话窗口进行切分;最后,取前 10 个分片的数据作为结果,返回子表名、窗口开始时间、窗口结束时间、窗口宽度、窗口内数据条数。查询结果如下: ```text - tbname | _wstart | _wend | _wduration | count(*) | -===================================================================================================================================== - d76 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 | - d47 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 | - d37 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 | - d87 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 | - d64 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 | - d35 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 | - d83 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 | - d51 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 | - d63 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 | - d0 | 2021-12-31 16:00:00.000 | 2021-12-31 16:09:50.000 | 590000 | 60 | + tbname | _wstart | _wend | _wduration | count(*) | +=============================================================================================== + d2 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 | + d26 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 | + d52 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 | + d64 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 | + d76 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 | + d28 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 | + d4 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 | + d88 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 | + d77 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 | + d54 | 2022-01-01 00:00:00.000 | 2022-01-01 00:09:50.000 | 590000 | 60 | Query OK, 10 row(s) in set (0.043489s) ``` @@ -458,26 +471,26 @@ FROM meters WHERE ts >= "2022-01-01T00:00:00+08:00" AND ts < "2022-01-01T00:10:00+08:00" PARTITION BY tbname -EVENT_WINDOW START WITH voltage >= 10 END WITH voltage < 20 -LIMIT 10; +EVENT_WINDOW START WITH voltage >= 225 END WITH voltage < 235 +LIMIT 5; ``` -上面的 SQL,查询超级表meters中,时间戳大于等于2022-01-01T00:00:00+08:00,且时间戳小于2022-01-01T00:10:00+08:00的数据;数据先按照子表名tbname进行数据切分,再根据事件窗口条件:电压大于等于 10V,且小于 20V 进行切分;最后,取前 10 行的数据作为结果,返回子表名、窗口开始时间、窗口结束时间、窗口宽度、窗口内数据条数。查询结果如下: +上面的 SQL,查询超级表meters中,时间戳大于等于2022-01-01T00:00:00+08:00,且时间戳小于2022-01-01T00:10:00+08:00的数据;数据先按照子表名tbname进行数据切分,再根据事件窗口条件:电压大于等于 225V,且小于 235V 进行切分;最后,取每个分片的前 5 行的数据作为结果,返回子表名、窗口开始时间、窗口结束时间、窗口宽度、窗口内数据条数。查询结果如下: ```text - tbname | _wstart | _wend | _wduration | count(*) | -===================================================================================================================================== - d0 | 2021-12-31 16:00:00.000 | 2021-12-31 16:00:00.000 | 0 | 1 | - d0 | 2021-12-31 16:00:30.000 | 2021-12-31 16:00:30.000 | 0 | 1 | - d0 | 2021-12-31 16:00:40.000 | 2021-12-31 16:00:40.000 | 0 | 1 | - d0 | 2021-12-31 16:01:20.000 | 2021-12-31 16:01:20.000 | 0 | 1 | - d0 | 2021-12-31 16:02:20.000 | 2021-12-31 16:02:20.000 | 0 | 1 | - d0 | 2021-12-31 16:02:30.000 | 2021-12-31 16:02:30.000 | 0 | 1 | - d0 | 2021-12-31 16:03:10.000 | 2021-12-31 16:03:10.000 | 0 | 1 | - d0 | 2021-12-31 16:03:30.000 | 2021-12-31 16:03:30.000 | 0 | 1 | - d0 | 2021-12-31 16:03:40.000 | 2021-12-31 16:03:40.000 | 0 | 1 | - d0 | 2021-12-31 16:03:50.000 | 2021-12-31 16:03:50.000 | 0 | 1 | -Query OK, 10 row(s) in set (0.034127s) + tbname | _wstart | _wend | _wduration | count(*) | +============================================================================================== + d0 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:30.000 | 90000 | 10 | + d0 | 2022-01-01 00:01:40.000 | 2022-01-01 00:02:30.000 | 50000 | 6 | + d0 | 2022-01-01 00:02:40.000 | 2022-01-01 00:03:10.000 | 30000 | 4 | + d0 | 2022-01-01 00:03:20.000 | 2022-01-01 00:07:10.000 | 230000 | 24 | + d0 | 2022-01-01 00:07:20.000 | 2022-01-01 00:07:50.000 | 30000 | 4 | + d1 | 2022-01-01 00:00:00.000 | 2022-01-01 00:01:30.000 | 90000 | 10 | + d1 | 2022-01-01 00:01:40.000 | 2022-01-01 00:02:30.000 | 50000 | 6 | + d1 | 2022-01-01 00:02:40.000 | 2022-01-01 00:03:10.000 | 30000 | 4 | + d1 | 2022-01-01 00:03:20.000 | 2022-01-01 00:07:10.000 | 230000 | 24 | +…… +Query OK, 500 row(s) in set (0.328557s) ``` ### 计数窗口 @@ -492,17 +505,25 @@ sliding_val 是一个常量,表示窗口滑动的数量,类似于 interval select _wstart, _wend, count(*) from meters where ts >= "2022-01-01T00:00:00+08:00" and ts < "2022-01-01T00:30:00+08:00" -count_window(10); +count_window(1000); ``` -上面的 SQL 查询超级表 meters 中时间戳大于等于 2022-01-01T00:00:00+08:00 且时间戳小于 2022-01-01T00:10:00+08:00 的数据。以每 10 条数据为一组,返回每组的开始时间、结束时间和分组条数。查询结果如下。 +上面的 SQL 查询超级表 meters 中时间戳大于等于 2022-01-01T00:00:00+08:00 且时间戳小于 2022-01-01T00:10:00+08:00 的数据。以每 1000 条数据为一组,返回每组的开始时间、结束时间和分组条数。查询结果如下: ```text -_wstart | _wend |count(*)| -=========================================================== -2021-12-31 16:00:00.000 | 2021-12-31 16:10:00.000 | 10 | -2021-12-31 16:10:00.000 | 2021-12-31 16:20:00.000 | 10 | -2021-12-31 16:20:00.000 | 2021-12-31 16:30:00.000 | 10 | + _wstart | _wend | count(*) | +===================================================================== + 2022-01-01 00:00:00.000 | 2022-01-01 00:01:30.000 | 1000 | + 2022-01-01 00:01:40.000 | 2022-01-01 00:03:10.000 | 1000 | + 2022-01-01 00:03:20.000 | 2022-01-01 00:04:50.000 | 1000 | + 2022-01-01 00:05:00.000 | 2022-01-01 00:06:30.000 | 1000 | + 2022-01-01 00:06:40.000 | 2022-01-01 00:08:10.000 | 1000 | + 2022-01-01 00:08:20.000 | 2022-01-01 00:09:50.000 | 1000 | + 2022-01-01 00:10:00.000 | 2022-01-01 00:11:30.000 | 1000 | + 2022-01-01 00:11:40.000 | 2022-01-01 00:13:10.000 | 1000 | + 2022-01-01 00:13:20.000 | 2022-01-01 00:14:50.000 | 1000 | + 2022-01-01 00:15:00.000 | 2022-01-01 00:16:30.000 | 1000 | +Query OK, 10 row(s) in set (0.062794s) ``` ## 时序数据特有函数 @@ -563,14 +584,14 @@ UNION ALL 上面的 SQL,分别查询:子表 d1 的 1 条数据,子表 d11 的 2 条数据,子表 d21 的 3 条数据,并将结果合并。返回的结果如下: ```text - tbname | ts | current | voltage | phase | -================================================================================================= - d11 | 2020-09-13 12:26:40.000 | 1.0260611 | 6 | 0.3620200 | - d11 | 2020-09-13 12:26:50.000 | 2.9544230 | 8 | 1.0048079 | - d21 | 2020-09-13 12:26:40.000 | 1.0260611 | 2 | 0.3520200 | - d21 | 2020-09-13 12:26:50.000 | 2.9544230 | 2 | 0.9948080 | - d21 | 2020-09-13 12:27:00.000 | -0.0000430 | 12 | 0.0099860 | - d1 | 2020-09-13 12:26:40.000 | 1.0260611 | 10 | 0.3520200 | + tbname | ts | current | voltage | phase | +==================================================================================== + d11 | 2020-09-13 20:26:40.000 | 11.5680809 | 247 | 146.5000000 | + d11 | 2020-09-13 20:26:50.000 | 14.2392311 | 234 | 148.0000000 | + d1 | 2020-09-13 20:26:40.000 | 11.5680809 | 247 | 146.5000000 | + d21 | 2020-09-13 20:26:40.000 | 11.5680809 | 247 | 146.5000000 | + d21 | 2020-09-13 20:26:50.000 | 14.2392311 | 234 | 148.0000000 | + d21 | 2020-09-13 20:27:00.000 | 10.0999422 | 251 | 146.0000000 | Query OK, 6 row(s) in set (0.006438s) ```