1.8 KiB
1.8 KiB
知 - 智能框架
基本框架
工厂中不仅有气压、温度等环境数据,还有很多图像、声音等数据,比如工业设备仪表盘、厂房工人分布等,这些数据也需要检测并处理。传统方案使用嵌入式终端采集、云端处理的架构。而当前越来越多的硬件厂商开始将一部分AI算力下沉到嵌入式终端上,比如 ST 推出的针对 STM 平台的神经网络加速库 STM32 Cube.AI,ARM 即将发布的针对嵌入式场景的 Ethos-U55 神经网络处理器,以及 勘智 K210 平台嵌入了一颗卷积网络加速器 KPU。本系统提供了在嵌入式节点端做轻量级AI处理的应用框架,可以在 Arm Cortex-M 或者 有神经网络加速器的平台(比如 勘智 K210)运行。对于复杂的 AI 应用,可以选择完全在 边缘或者云侧处理,也可以选择在 节点端做简单预处理,在 边缘或者云侧做后续的处理。基本结构如下:
端侧智能运行框架中,目前在 STM32 平台上支持 TensorFlow Lite for Microcontroller,勘智K210 上支持 KPU Model,CV算子目前暂不支持。模型库中有一些已经训练好的模型,可以直接使用,比如人物检测模型,仪表盘识别模型等。
端侧 Framework 的使用说明
在 STM32 平台,本系统提供 TensorFlow Lite for Microcontroller 框架,关于 TF Lite for MCU 的使用,可以参照 TF Lite for MCU 官方教程 ,详细说明后续补充。
在 勘智 K210 平台,本系统提供 KPU Model 的框架,详细使用可以参考 勘智官方说明 的 “神经网络处理器(KPU)”章节,详细说明后续补充。