xuos-web/docs/doc/demo/meter_reading.md

26 lines
1.9 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 仪表读数识别
## 应用场景
在老式工厂厂房中分布着很多机械式仪表盘,需要工人定期查看仪表数据,费时费力。我们需要一种自动化采集的装置完成工厂数据的采集,不需要工人人工操作,提高效率,节省人力。
如何采集仪表数据?有些仪表盘可以方便的获取数据,比如智能电表,但是有些仪表盘获取数据并不容易,比如有些设备上的仪表盘,工厂不允许轻易接入设备控制系统,需要一种非侵入式的数据采集方式,再比如一些老式的机械仪表盘,本身没有电子系统,需要通过图像方式采集。我们提供了两种基于图像采集、图像分析的非侵入式解决方案来完成仪表读数的自动识别,方案具体细节见下文展示。
## 应用展示
### 基于端侧采集、边缘识别的方案
方案一采用 端侧采集、边缘识别 的方案,该方案在节点端采集仪表盘图像,然后通过 wifi 传输到边缘端识别,完成读数计算。基本结构如下:
![端侧采集边缘识别](./imagesrc/meter-reading-1.png)
该方案在边缘端服务器上完成仪表盘读数识别,利用服务器上强大的算力可以准确识别表盘数据,但是需要端侧频繁发送图像数据。
### 基于端侧识别的方案
方案二采用端侧识别的方案,该方案在初始化的时候需要边缘侧或者云侧通信,利用边缘侧或者云侧的算力完成表盘数字识别,然后后续运行中不依赖边缘侧或云侧,只需要在端侧利用智能算法完成指针识别,并计算出读数。基本结构如下:
![端侧识别](./imagesrc/meter-reading-2.png)
该方案需要端侧具备一定的算力,比如 Kendryte K210其具有神经网络加速器可以完成指针的识别。该方案利用端侧识别的方式运行中不需要和边缘、云侧通信可以更快速、更高效的完成读数识别。