Create labelme2yolo.py

This commit is contained in:
rooneysh 2021-08-18 15:26:18 +08:00 committed by GitHub
parent 094423e851
commit a711d5aafc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 146 additions and 0 deletions

146
labelme2yolo.py Normal file
View File

@ -0,0 +1,146 @@
'''
Created on Aug 18, 2021
@author: xiaosonh
'''
import os
import sys
import argparse
import json
import cv2
import PIL.Image
from sklearn.model_selection import train_test_split
from labelme import utils
class Labelme2YOLO(object):
def __init__(self, json_dir):
self._json_dir = json_dir
self._label_id_map = self._get_label_id_map(self._json_dir)
self._label_dir_path = os.path.join(json_dir, 'YOLODataset/labels/')
self._image_dir_path = os.path.join(json_dir, 'YOLODataset/images/')
self._make_train_val_dir(self._json_dir)
def _make_train_val_dir(self):
for yolo_path in (os.path.join(self._label_dir_path + 'train/'),
os.path.join(self._label_dir_path + 'val/'),
os.path.join(self._image_dir_path + 'train/'),
os.path.join(self._image_dir_path + 'val/')):
if not os.path.exists(yolo_path):
os.makedirs(yolo_path)
def _get_label_id_map(self, json_dir):
label_set = set()
for file_name in os.listdir(json_dir):
if file_name.endswith('json'):
json_path = os.path.join(json_dir, file_name)
data = json.load(open(json_path))
for shape in data['shapes']:
label_set.add(shape['label'])
return {label: label_id for label_id, label in enumerate(label_set)}
def _train_test_split(self, folders, json_names, val_size):
if len(folders) > 0 and 'train' in folders and 'val' in folders:
train_folder = os.path.join(self._json_dir, 'train/')
train_json_names = [train_sample_name + '.json' \
for train_sample_name in os.listdir(train_folder) \
if os.path.isdir(os.path.join(train_folder, train_sample_name))]
val_folder = os.path.join(self._json_dir, 'val/')
val_json_names = [val_sample_name + '.json' \
for val_sample_name in os.listdir(val_folder) \
if os.path.isdir(os.path.join(val_folder, val_sample_name))]
return train_json_names, val_json_names
train_idxs, val_idxs = train_test_split(range(len(json_names)),
test_size=val_size)
train_json_names = [json_names[train_idx] for train_idx in train_idxs]
val_json_names = [json_names[val_idx] for val_idx in val_idxs]
return train_json_names, val_json_names
def convert(self, val_size=0.2):
json_names = [file_name for file_name in os.listdir(self._json_dir) \
if os.path.isfile(os.path.join(self._json_dir, file_name)) and \
file_name.endswith('.json')]
folders = [file_name for file_name in os.listdir(self._json_dir) \
if os.path.isdir(os.path.join(self._json_dir, file_name))]
train_json_names, val_json_names = self._train_test_split(folders, json_names, val_size)
# convert labelme object to yolo format object, and save them to files
# also get image from labelme json file and save them under images folder
for target_dir, json_name in zip(('train/', 'val/'), (train_json_names, val_json_names)):
json_path = os.path.join(self._json_dir, json_name)
json_data = json.load(open(json_path))
img_path = self._save_yolo_image(json_data, json_name, target_dir)
yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
self._save_yolo_label(json_path, target_dir, yolo_obj_list)
def _get_yolo_object_list(self, json_data, img_path):
def __get_object_desc(obj_port_list):
__get_dist = lambda int_list: max(int_list) - min(int_list)
x_lists = [port[0] for port in obj_port_list]
y_lists = [port[1] for port in obj_port_list]
return min(x_lists), __get_dist(x_lists), min(y_lists), __get_dist(y_lists)
yolo_obj_list = []
for shape in json_data['shapes']:
obj_x_min, obj_w, obj_y_min, obj_h = __get_object_desc(shape['points'])
img_h, img_w, _ = cv2.imread(img_path).shape
yolo_center_x= round(float((obj_x_min + obj_w / 2.0) / img_w), 6)
yolo_center_y = round(float((obj_y_min + obj_h / 2.0) / img_h), 6)
yolo__w = round(float(obj_w / img_w), 6)
yolo_h = round(float(obj_h / img_h), 6)
label_id = self._label_id_map[shape['label']]
yolo_obj_list.append((label_id, yolo_center_x, yolo_center_y, yolo__w, yolo_h))
return yolo_obj_list
def _save_yolo_label(self, json_path, yolo_obj_list):
txt_path = json_path.replace('.json', '.text')
with open(txt_path, 'w+') as f:
for yolo_obj in yolo_obj_list:
f.write('%s %s %s %s %s\n' % yolo_obj)
def _save_yolo_image(self, json_data, json_name, target_dir):
img = utils.img_b64_to_arr(json_data['imageData'])
img_name = json_name.replace('.json', '.png')
img_path = os.path.join(self._image_dir_path, target_dir,img_name )
PIL.Image.fromarray(img).save(img_path)
return img_path
if __name__ == '__main__':
argv = sys.argv[1:]
parser = argparse.ArgumentParser()
parser.add_argument('--json_dir',type=str,
help='Please input the path of the labelme json files.')
parser.add_argument('--val_size',type=str,
help='Please input the validation dataset size, for example 0.1 ')
json_dir, val_size = parser.parse_args(argv)
convertor = Labelme2YOLO(json_dir)
convertor.convert(val_size=val_size)