Delete labelme2yolo
This commit is contained in:
parent
b9860f9cac
commit
094423e851
146
labelme2yolo
146
labelme2yolo
|
@ -1,146 +0,0 @@
|
|||
'''
|
||||
Created on Aug 18, 2021
|
||||
|
||||
@author: xiaosonh
|
||||
'''
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
|
||||
import json
|
||||
import cv2
|
||||
import PIL.Image
|
||||
|
||||
from sklearn.model_selection import train_test_split
|
||||
from labelme import utils
|
||||
|
||||
class Labelme2YOLO(object):
|
||||
|
||||
def __init__(self, json_dir):
|
||||
self._json_dir = json_dir
|
||||
|
||||
self._label_id_map = self._get_label_id_map(self._json_dir)
|
||||
|
||||
self._label_dir_path = os.path.join(json_dir, 'YOLODataset/labels/')
|
||||
self._image_dir_path = os.path.join(json_dir, 'YOLODataset/images/')
|
||||
|
||||
self._make_train_val_dir(self._json_dir)
|
||||
|
||||
def _make_train_val_dir(self):
|
||||
for yolo_path in (os.path.join(self._label_dir_path + 'train/'),
|
||||
os.path.join(self._label_dir_path + 'val/'),
|
||||
os.path.join(self._image_dir_path + 'train/'),
|
||||
os.path.join(self._image_dir_path + 'val/')):
|
||||
if not os.path.exists(yolo_path):
|
||||
os.makedirs(yolo_path)
|
||||
|
||||
def _get_label_id_map(self, json_dir):
|
||||
label_set = set()
|
||||
|
||||
for file_name in os.listdir(json_dir):
|
||||
if file_name.endswith('json'):
|
||||
json_path = os.path.join(json_dir, file_name)
|
||||
data = json.load(open(json_path))
|
||||
for shape in data['shapes']:
|
||||
label_set.add(shape['label'])
|
||||
|
||||
return {label: label_id for label_id, label in enumerate(label_set)}
|
||||
|
||||
def _train_test_split(self, folders, json_names, val_size):
|
||||
if len(folders) > 0 and 'train' in folders and 'val' in folders:
|
||||
train_folder = os.path.join(self._json_dir, 'train/')
|
||||
train_json_names = [train_sample_name + '.json' \
|
||||
for train_sample_name in os.listdir(train_folder) \
|
||||
if os.path.isdir(os.path.join(train_folder, train_sample_name))]
|
||||
|
||||
val_folder = os.path.join(self._json_dir, 'val/')
|
||||
val_json_names = [val_sample_name + '.json' \
|
||||
for val_sample_name in os.listdir(val_folder) \
|
||||
if os.path.isdir(os.path.join(val_folder, val_sample_name))]
|
||||
|
||||
return train_json_names, val_json_names
|
||||
|
||||
train_idxs, val_idxs = train_test_split(range(len(json_names)),
|
||||
test_size=val_size)
|
||||
train_json_names = [json_names[train_idx] for train_idx in train_idxs]
|
||||
val_json_names = [json_names[val_idx] for val_idx in val_idxs]
|
||||
|
||||
return train_json_names, val_json_names
|
||||
|
||||
def convert(self, val_size=0.2):
|
||||
json_names = [file_name for file_name in os.listdir(self._json_dir) \
|
||||
if os.path.isfile(os.path.join(self._json_dir, file_name)) and \
|
||||
file_name.endswith('.json')]
|
||||
folders = [file_name for file_name in os.listdir(self._json_dir) \
|
||||
if os.path.isdir(os.path.join(self._json_dir, file_name))]
|
||||
|
||||
train_json_names, val_json_names = self._train_test_split(folders, json_names, val_size)
|
||||
|
||||
# convert labelme object to yolo format object, and save them to files
|
||||
# also get image from labelme json file and save them under images folder
|
||||
for target_dir, json_name in zip(('train/', 'val/'), (train_json_names, val_json_names)):
|
||||
json_path = os.path.join(self._json_dir, json_name)
|
||||
json_data = json.load(open(json_path))
|
||||
|
||||
img_path = self._save_yolo_image(json_data, json_name, target_dir)
|
||||
|
||||
yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
|
||||
self._save_yolo_label(json_path, target_dir, yolo_obj_list)
|
||||
|
||||
def _get_yolo_object_list(self, json_data, img_path):
|
||||
def __get_object_desc(obj_port_list):
|
||||
__get_dist = lambda int_list: max(int_list) - min(int_list)
|
||||
|
||||
x_lists = [port[0] for port in obj_port_list]
|
||||
y_lists = [port[1] for port in obj_port_list]
|
||||
|
||||
return min(x_lists), __get_dist(x_lists), min(y_lists), __get_dist(y_lists)
|
||||
|
||||
yolo_obj_list = []
|
||||
|
||||
for shape in json_data['shapes']:
|
||||
obj_x_min, obj_w, obj_y_min, obj_h = __get_object_desc(shape['points'])
|
||||
|
||||
img_h, img_w, _ = cv2.imread(img_path).shape
|
||||
|
||||
yolo_center_x= round(float((obj_x_min + obj_w / 2.0) / img_w), 6)
|
||||
yolo_center_y = round(float((obj_y_min + obj_h / 2.0) / img_h), 6)
|
||||
yolo__w = round(float(obj_w / img_w), 6)
|
||||
yolo_h = round(float(obj_h / img_h), 6)
|
||||
|
||||
label_id = self._label_id_map[shape['label']]
|
||||
|
||||
yolo_obj_list.append((label_id, yolo_center_x, yolo_center_y, yolo__w, yolo_h))
|
||||
|
||||
return yolo_obj_list
|
||||
|
||||
def _save_yolo_label(self, json_path, yolo_obj_list):
|
||||
txt_path = json_path.replace('.json', '.text')
|
||||
|
||||
with open(txt_path, 'w+') as f:
|
||||
for yolo_obj in yolo_obj_list:
|
||||
f.write('%s %s %s %s %s\n' % yolo_obj)
|
||||
|
||||
def _save_yolo_image(self, json_data, json_name, target_dir):
|
||||
img = utils.img_b64_to_arr(json_data['imageData'])
|
||||
|
||||
img_name = json_name.replace('.json', '.png')
|
||||
img_path = os.path.join(self._image_dir_path, target_dir,img_name )
|
||||
|
||||
PIL.Image.fromarray(img).save(img_path)
|
||||
|
||||
return img_path
|
||||
|
||||
if __name__ == '__main__':
|
||||
argv = sys.argv[1:]
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--json_dir',type=str,
|
||||
help='Please input the path of the labelme json files.')
|
||||
parser.add_argument('--val_size',type=str,
|
||||
help='Please input the validation dataset size, for example 0.1 ')
|
||||
json_dir, val_size = parser.parse_args(argv)
|
||||
|
||||
convertor = Labelme2YOLO(json_dir)
|
||||
convertor.convert(val_size=val_size)
|
||||
|
Loading…
Reference in New Issue