commit
5d67c97783
|
|
@ -0,0 +1,36 @@
|
|||
name: 赛题(CP)
|
||||
description: 参赛题目
|
||||
title: "[cp]: "
|
||||
labels: ["cp"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
感谢你积极参与比赛,并提交自己希望参加的赛题,当出现一样的题目、一样的性能的时候,以谁创建赛题的时间早者优先。
|
||||
- type: textarea
|
||||
id: desired-solution
|
||||
attributes:
|
||||
label: 你提交的赛题的内容介绍
|
||||
description: 清晰并简洁地描述你希望参赛的内容详细的描述,尽量清晰方便他人了解赛题希望达成的目标。
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: alternatives
|
||||
attributes:
|
||||
label: 赛题有对应的预期结果
|
||||
description: 清晰并简洁地描述赛题完成的预期结果,最佳的方式是知道如何测试验证预期结果的正确性。
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: additional-context
|
||||
attributes:
|
||||
label: 你有其他相关背景的信息吗?
|
||||
description: 在此处添加有关想法的任何其他上下文或截图。
|
||||
validations:
|
||||
required: false
|
||||
- type: checkboxes
|
||||
attributes:
|
||||
label: 推荐其它选手完成【如选否,请创建后assign赛题给自己】
|
||||
options:
|
||||
- label: 是否希望推荐给别人完成该赛题。
|
||||
required: false
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
name: 想法(GPUKernelContest)
|
||||
name: 想法
|
||||
description: 对本赛题提出一个想法或建议
|
||||
title: "[idea]: "
|
||||
labels: ["idea"]
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
name: 任务(GPUKernelContest)
|
||||
name: 任务
|
||||
description: 对本赛题提出一个任务,用于后续跟踪和执行。
|
||||
title: "[task]: "
|
||||
labels: ["task"]
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
.DS_Store
|
||||
*.bak
|
||||
*.pyc
|
||||
*.o
|
||||
*/build/
|
||||
cp_template/*.yaml
|
||||
91
README.md
91
README.md
|
|
@ -32,10 +32,70 @@
|
|||
|
||||
---
|
||||
|
||||
## 📥 如何参与提交?
|
||||
## 🚀 快速上手
|
||||
|
||||
本竞赛旨在评估参赛者在GPU并行计算领域的算法优化能力。为了快速让参赛者进入比赛状态,我们提供了三个核心算法的高性能版本参考,供参赛选手不断优化性能:
|
||||
- **ReduceSum**: 高精度归约求和
|
||||
- **SortPair**: 键值对稳定排序
|
||||
- **TopkPair**: 键值对TopK选择
|
||||
|
||||
[三个核心算法赛题模板](./cp_template/)
|
||||
|
||||
### 📥 选手赛题准备
|
||||
|
||||
1. 点击[创建赛题](https://gitee.com/ccf-ai-infra/GPUKernelContest/issues/new?template=cp.yml)
|
||||
2. 记录赛题的ID,例如:[ICTN0N](https://gitee.com/ccf-ai-infra/GPUKernelContest/issues/ICTN0N)
|
||||
3. Fork仓库并初始化比赛环境(三个核心算法题优化赛题以外自定义的赛题需有入口run.sh脚本,供CI自动测试验证)
|
||||
1. 拷贝赛题样例`cp_template`到赛题`ICTN0N`目录
|
||||
```
|
||||
├── S1(说明:第一季比赛名)
|
||||
│ ├── ICTN0N(说明:以赛题ID命名目录存放赛题的PR)
|
||||
| | ├── utils
|
||||
│ | ├── run.sh(说明:作为CI自动测试验证的入口)
|
||||
| | └── ……
|
||||
│ └── ……
|
||||
└── S2(说明:第二季比赛名)
|
||||
└── 赛题目录1
|
||||
└── 赛题目录2
|
||||
```
|
||||
|
||||
### 编译和测试
|
||||
|
||||
选手赛题目录内提供了编译、测试的脚本,供选手熟悉比赛环境,步骤如下:
|
||||
|
||||
```bash
|
||||
# !!!注意参赛选手需要根据自己的赛题ID进入自己初始化的目录!!!!
|
||||
cd GPUKernelContest/S1/ICTN0N
|
||||
```
|
||||
|
||||
|
||||
#### 1. 全量编译和运行
|
||||
```bash
|
||||
# 编译并运行所有算法测试(默认行为)
|
||||
./run.sh
|
||||
|
||||
# 编译并运行单个算法测试
|
||||
./run.sh --run_reduce # ReduceSum算法
|
||||
./run.sh --run_sort # SortPair算法
|
||||
./run.sh --run_topk # TopkPair算法
|
||||
```
|
||||
|
||||
#### 2. 手动运行测试
|
||||
|
||||
```bash
|
||||
# 仅编译所有算法,不运行测试
|
||||
./run.sh --build-only
|
||||
|
||||
# 单个运行不同算法的测试
|
||||
./build/test_reducesum [correctness|performance|all]
|
||||
./build/test_sortpair [correctness|performance|all]
|
||||
./build/test_topkpair [correctness|performance|all]
|
||||
```
|
||||
|
||||
对于如何提交可参考:[如何贡献](how-to-contribute.md)
|
||||
|
||||
### ✅ 参赛要求:
|
||||
- 提交内容必须可以在沐曦自研 GPU **曦云 C500** 上运行。
|
||||
- 提交内容必须可以在MACA软件上运行。
|
||||
- 所提交的优化代码将由主办方审核,**需成功合并(Merge)到官方 Gitee 仓库,才算有效提交。**
|
||||
|
||||
### 📦 提交内容包含:
|
||||
|
|
@ -47,7 +107,7 @@
|
|||
|
||||
## 📈 评分机制
|
||||
|
||||
每次提交会按以下规则评分:
|
||||
每次合并的提交会按以下规则评分:
|
||||
|
||||
### 🎯 基础得分(Level):
|
||||
| 等级 | 内容描述 | 分值 |
|
||||
|
|
@ -56,7 +116,7 @@
|
|||
| Level 2 | 融合优化 2~9 个算子 | 10 分 |
|
||||
| Level 3 | 含 MMA(多维矩阵乘)融合算子 | 50 分 |
|
||||
| Level 4 | 用于大模型推理的复杂融合算子 | 50 分 |
|
||||
| 合并至metax-maca开源项目仓库的每个PR | - | 50 分 |
|
||||
| 合并至MACA开源项目仓库的每个PR<需要在赛题提供对应合并的记录,并确保和参赛使用的邮箱一致的提交邮箱> | - | 50 分 |
|
||||
|
||||
### ✨ 加分项:
|
||||
| 内容 | 分值 |
|
||||
|
|
@ -70,18 +130,19 @@
|
|||
|
||||
---
|
||||
|
||||
## 🏅 排名规则
|
||||
## 🏆 排名机制
|
||||
|
||||
- 比赛周期:2 个月
|
||||
- 排名按累计得分排序,取前 12 名!
|
||||
|
||||
若得分相同:
|
||||
1. 提交次数多者优先
|
||||
2. 提交时间早者优先
|
||||
1. 评委评分从高到低排序
|
||||
2. **评估规则:** 取前 12 名作为最终获奖选手
|
||||
3. 若基础得分相同:
|
||||
- 加分项多者优先
|
||||
- 提交数量多者优先
|
||||
- 提交时间早者优先
|
||||
4. 当同一参赛选手在本赛题有多个赛题的提交时,多个赛题计算累计得分
|
||||
|
||||
---
|
||||
|
||||
## 📚 官方参考项目仓库
|
||||
## 📚 参考MACA开源项目仓库
|
||||
|
||||
你可以参考以下项目仓库,了解算子开发与提交格式:
|
||||
|
||||
|
|
@ -92,12 +153,6 @@
|
|||
|
||||
---
|
||||
|
||||
## 🖥️ 可用资源
|
||||
|
||||
- 曦云 **C500 GPU 1/2卡**,主办方通过算力券的形式发放给报名的同学。
|
||||
|
||||
---
|
||||
|
||||
## 💡 术语解释
|
||||
|
||||
- **算子(Operator)**:指深度学习框架中的基本计算模块,例如矩阵乘法、卷积等。
|
||||
|
|
|
|||
Binary file not shown.
|
|
@ -0,0 +1,26 @@
|
|||
# ReduceSum算法性能测试结果
|
||||
# 生成时间: 2025-09-04 18:32:03
|
||||
|
||||
algorithm: "ReduceSum"
|
||||
data_types:
|
||||
input: "float"
|
||||
output: "float"
|
||||
formulas:
|
||||
throughput: "elements / time(s) / 1e9 (G/s)"
|
||||
performance_data:
|
||||
- data_size: 1000000
|
||||
time_ms: 0.051046
|
||||
throughput_gps: 19.590022
|
||||
data_type: "float"
|
||||
- data_size: 134217728
|
||||
time_ms: 0.405018
|
||||
throughput_gps: 331.387385
|
||||
data_type: "float"
|
||||
- data_size: 536870912
|
||||
time_ms: 1.351834
|
||||
throughput_gps: 397.142754
|
||||
data_type: "float"
|
||||
- data_size: 1073741824
|
||||
time_ms: 2.618675
|
||||
throughput_gps: 410.032451
|
||||
data_type: "float"
|
||||
|
|
@ -0,0 +1,46 @@
|
|||
# SortPair算法性能测试结果
|
||||
# 生成时间: 2025-09-03 22:37:18
|
||||
|
||||
algorithm: "SortPair"
|
||||
data_types:
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
formulas:
|
||||
throughput: "elements / time(s) / 1e9 (G/s)"
|
||||
performance_data:
|
||||
- data_size: 1000000
|
||||
ascending:
|
||||
time_ms: 0.351488
|
||||
throughput_gps: 2.845047
|
||||
descending:
|
||||
time_ms: 0.343270
|
||||
throughput_gps: 2.913155
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 134217728
|
||||
ascending:
|
||||
time_ms: 22.273815
|
||||
throughput_gps: 6.025808
|
||||
descending:
|
||||
time_ms: 22.494003
|
||||
throughput_gps: 5.966823
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 536870912
|
||||
ascending:
|
||||
time_ms: 88.856277
|
||||
throughput_gps: 6.042014
|
||||
descending:
|
||||
time_ms: 89.913918
|
||||
throughput_gps: 5.970943
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 1073741824
|
||||
ascending:
|
||||
time_ms: 181.409576
|
||||
throughput_gps: 5.918882
|
||||
descending:
|
||||
time_ms: 183.428955
|
||||
throughput_gps: 5.853720
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
|
|
@ -0,0 +1,210 @@
|
|||
# TopkPair算法性能测试结果
|
||||
# 生成时间: 2025-09-03 22:40:54
|
||||
|
||||
algorithm: "TopkPair"
|
||||
data_types:
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
formulas:
|
||||
throughput: "elements / time(s) / 1e9 (G/s)"
|
||||
performance_data:
|
||||
- data_size: 1000000
|
||||
k_value: 32
|
||||
ascending:
|
||||
time_ms: 0.402509
|
||||
throughput_gps: 2.484418
|
||||
descending:
|
||||
time_ms: 0.416307
|
||||
throughput_gps: 2.402072
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 1000000
|
||||
k_value: 50
|
||||
ascending:
|
||||
time_ms: 0.404787
|
||||
throughput_gps: 2.470434
|
||||
descending:
|
||||
time_ms: 0.414669
|
||||
throughput_gps: 2.411563
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 1000000
|
||||
k_value: 100
|
||||
ascending:
|
||||
time_ms: 0.398336
|
||||
throughput_gps: 2.510443
|
||||
descending:
|
||||
time_ms: 0.408320
|
||||
throughput_gps: 2.449060
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 1000000
|
||||
k_value: 256
|
||||
ascending:
|
||||
time_ms: 0.410752
|
||||
throughput_gps: 2.434559
|
||||
descending:
|
||||
time_ms: 0.403379
|
||||
throughput_gps: 2.479057
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 1000000
|
||||
k_value: 1024
|
||||
ascending:
|
||||
time_ms: 0.391091
|
||||
throughput_gps: 2.556949
|
||||
descending:
|
||||
time_ms: 0.391142
|
||||
throughput_gps: 2.556613
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 134217728
|
||||
k_value: 32
|
||||
ascending:
|
||||
time_ms: 22.394062
|
||||
throughput_gps: 5.993452
|
||||
descending:
|
||||
time_ms: 22.263729
|
||||
throughput_gps: 6.028538
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 134217728
|
||||
k_value: 50
|
||||
ascending:
|
||||
time_ms: 22.379187
|
||||
throughput_gps: 5.997435
|
||||
descending:
|
||||
time_ms: 22.228352
|
||||
throughput_gps: 6.038132
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 134217728
|
||||
k_value: 100
|
||||
ascending:
|
||||
time_ms: 22.436581
|
||||
throughput_gps: 5.982094
|
||||
descending:
|
||||
time_ms: 22.229326
|
||||
throughput_gps: 6.037868
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 134217728
|
||||
k_value: 256
|
||||
ascending:
|
||||
time_ms: 22.463232
|
||||
throughput_gps: 5.974996
|
||||
descending:
|
||||
time_ms: 22.319946
|
||||
throughput_gps: 6.013354
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 134217728
|
||||
k_value: 1024
|
||||
ascending:
|
||||
time_ms: 22.468454
|
||||
throughput_gps: 5.973608
|
||||
descending:
|
||||
time_ms: 22.335976
|
||||
throughput_gps: 6.009038
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 536870912
|
||||
k_value: 32
|
||||
ascending:
|
||||
time_ms: 89.437294
|
||||
throughput_gps: 6.002763
|
||||
descending:
|
||||
time_ms: 88.605972
|
||||
throughput_gps: 6.059083
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 536870912
|
||||
k_value: 50
|
||||
ascending:
|
||||
time_ms: 89.460587
|
||||
throughput_gps: 6.001200
|
||||
descending:
|
||||
time_ms: 88.546509
|
||||
throughput_gps: 6.063152
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 536870912
|
||||
k_value: 100
|
||||
ascending:
|
||||
time_ms: 89.203011
|
||||
throughput_gps: 6.018529
|
||||
descending:
|
||||
time_ms: 88.809097
|
||||
throughput_gps: 6.045224
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 536870912
|
||||
k_value: 256
|
||||
ascending:
|
||||
time_ms: 89.500465
|
||||
throughput_gps: 5.998526
|
||||
descending:
|
||||
time_ms: 88.743912
|
||||
throughput_gps: 6.049665
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 536870912
|
||||
k_value: 1024
|
||||
ascending:
|
||||
time_ms: 89.405357
|
||||
throughput_gps: 6.004908
|
||||
descending:
|
||||
time_ms: 88.446083
|
||||
throughput_gps: 6.070036
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 1073741824
|
||||
k_value: 32
|
||||
ascending:
|
||||
time_ms: 182.233307
|
||||
throughput_gps: 5.892127
|
||||
descending:
|
||||
time_ms: 181.076950
|
||||
throughput_gps: 5.929754
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 1073741824
|
||||
k_value: 50
|
||||
ascending:
|
||||
time_ms: 182.273239
|
||||
throughput_gps: 5.890836
|
||||
descending:
|
||||
time_ms: 180.944550
|
||||
throughput_gps: 5.934093
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 1073741824
|
||||
k_value: 100
|
||||
ascending:
|
||||
time_ms: 182.374191
|
||||
throughput_gps: 5.887576
|
||||
descending:
|
||||
time_ms: 181.277100
|
||||
throughput_gps: 5.923207
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 1073741824
|
||||
k_value: 256
|
||||
ascending:
|
||||
time_ms: 182.349457
|
||||
throughput_gps: 5.888374
|
||||
descending:
|
||||
time_ms: 181.248199
|
||||
throughput_gps: 5.924152
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
- data_size: 1073741824
|
||||
k_value: 1024
|
||||
ascending:
|
||||
time_ms: 182.378326
|
||||
throughput_gps: 5.887442
|
||||
descending:
|
||||
time_ms: 181.025803
|
||||
throughput_gps: 5.931430
|
||||
key_type: "float"
|
||||
value_type: "uint32_t"
|
||||
|
|
@ -1,59 +1,12 @@
|
|||
# GPU 高性能并行计算算法优化竞赛
|
||||
|
||||
## 🎯 竞赛概述
|
||||
|
||||
本竞赛旨在评估参赛者在GPU并行计算领域的算法优化能力。参赛者可选择实现三个核心算法的高性能版本:
|
||||
- **ReduceSum**: 高精度归约求和
|
||||
- **SortPair**: 键值对稳定排序
|
||||
- **TopkPair**: 键值对TopK选择
|
||||
|
||||
## 🚀 快速开始
|
||||
|
||||
### 编译和测试
|
||||
|
||||
#### 1. 全量编译和运行
|
||||
```bash
|
||||
# 编译并运行所有算法测试(默认行为)
|
||||
./build_and_run.sh
|
||||
|
||||
# 仅编译所有算法,不运行测试
|
||||
./build_and_run.sh --build-only
|
||||
|
||||
# 编译并运行单个算法测试
|
||||
./build_and_run.sh --run_reduce # ReduceSum算法
|
||||
./build_and_run.sh --run_sort # SortPair算法
|
||||
./build_and_run.sh --run_topk # TopkPair算法
|
||||
```
|
||||
|
||||
#### 2. 单独编译和运行
|
||||
```bash
|
||||
# 编译并运行ReduceSum算法(默认行为)
|
||||
./build_and_run_reduce_sum.sh
|
||||
|
||||
# 仅编译ReduceSum算法,不运行测试
|
||||
./build_and_run_reduce_sum.sh --build-only
|
||||
|
||||
# 编译并运行SortPair正确性测试
|
||||
./build_and_run_sort_pair.sh --run correctness
|
||||
|
||||
# 编译并运行TopkPair性能测试
|
||||
./build_and_run_topk_pair.sh --run performance
|
||||
```
|
||||
|
||||
#### 3. 手动运行测试
|
||||
```bash
|
||||
./build/test_reducesum [correctness|performance|all]
|
||||
./build/test_sortpair [correctness|performance|all]
|
||||
./build/test_topkpair [correctness|performance|all]
|
||||
```
|
||||
|
||||
## 📝 参赛指南
|
||||
|
||||
### 实现位置
|
||||
参赛者需要在以下文件中替换Thrust实现:
|
||||
- `src/reduce_sum_algorithm.maca` - 替换Thrust归约求和
|
||||
- `src/sort_pair_algorithm.maca` - 替换Thrust稳定排序
|
||||
- `src/topk_pair_algorithm.maca` - 替换Thrust TopK选择
|
||||
- `reduce_sum_algorithm.maca` - 替换Thrust归约求和
|
||||
- `sort_pair_algorithm.maca` - 替换Thrust稳定排序
|
||||
- `topk_pair_algorithm.maca` - 替换Thrust TopK选择
|
||||
|
||||
### 算法要求
|
||||
见competition_parallel_algorithms.md
|
||||
|
|
@ -92,25 +45,21 @@
|
|||
- 各数据规模的详细性能数据
|
||||
- 升序/降序分别统计(适用时)
|
||||
|
||||
## 📁 项目结构
|
||||
## 📁 提交内容结构
|
||||
|
||||
```
|
||||
├── build_and_run.sh # 统一编译和运行脚本(默认编译+运行所有算法)
|
||||
├── build_common.sh # 公共编译配置和函数
|
||||
├── build_and_run_reduce_sum.sh # ReduceSum独立编译和运行脚本
|
||||
├── build_and_run_sort_pair.sh # SortPair独立编译和运行脚本
|
||||
├── build_and_run_topk_pair.sh # TopkPair独立编译和运行脚本
|
||||
├── run.sh # 统一编译和运行脚本(默认编译+运行所有算法)
|
||||
├── competition_parallel_algorithms.md # 详细题目说明
|
||||
├── src/ # 算法实现和工具文件
|
||||
│ ├── reduce_sum_algorithm.maca # 1. ReduceSum测试程序
|
||||
│ ├── sort_pair_algorithm.maca # 2. SortPair测试程序
|
||||
│ ├── topk_pair_algorithm.maca # 3. TopkPair测试程序
|
||||
│── reduce_sum_algorithm.maca # 1. ReduceSum测试程序
|
||||
│── sort_pair_algorithm.maca # 2. SortPair测试程序
|
||||
│── topk_pair_algorithm.maca # 3. TopkPair测试程序
|
||||
├── utils/ # 工具文件
|
||||
│ ├── test_utils.h # 测试工具和CPU参考实现
|
||||
│ ├── yaml_reporter.h # YAML性能报告生成器
|
||||
│ └── performance_utils.h # 性能测试工具
|
||||
├── final_results/reduce_sum_results.yaml #ReduceSum性能数据
|
||||
├── final_results/sort_pair_results.yaml #替换Thrust稳定排序
|
||||
└── final_results/topk_pair_results.yaml #TopkPair性能数据
|
||||
├── reduce_sum_results.yaml #ReduceSum性能数据
|
||||
├── sort_pair_results.yaml #替换Thrust稳定排序
|
||||
└── topk_pair_results.yaml #TopkPair性能数据
|
||||
```
|
||||
|
||||
## 🔧 开发工具
|
||||
|
|
@ -134,7 +83,7 @@ mxcc -O3 -std=c++17 --extended-lambda -Isrc
|
|||
|--------|--------|------|
|
||||
| `COMPILER` | `mxcc` | CUDA编译器路径 |
|
||||
| `COMPILER_FLAGS` | `-O3 -std=c++17 --extended-lambda` | 编译标志 |
|
||||
| `INCLUDE_DIR` | `src` | 头文件目录 |
|
||||
| `HEADER_DIR` | `utils` | 头文件目录 |
|
||||
| `BUILD_DIR` | `build` | 构建输出目录 |
|
||||
|
||||
### 调试模式
|
||||
10
competition_parallel_algorithms.md → cp_template/competition_parallel_algorithms.md
Normal file → Executable file
10
competition_parallel_algorithms.md → cp_template/competition_parallel_algorithms.md
Normal file → Executable file
|
|
@ -1,11 +1,11 @@
|
|||
# 题目:
|
||||
# 样例赛题说明
|
||||
|
||||
## GPU高性能并行计算算法优化
|
||||
|
||||
要求参赛者通过一个或多个global kernel 函数(允许配套 device 辅助函数),实现高性能算法。
|
||||
|
||||
在正确性、稳定性前提下,比拼算法性能。
|
||||
|
||||
|
||||
# 1. ReduceSum算法优化
|
||||
```cpp
|
||||
template <typename InputT = float, typename OutputT = float>
|
||||
|
|
@ -23,14 +23,12 @@ public:
|
|||
* 系统将测试评估1M, 128M, 512M, 1G element number下的算法性能
|
||||
* 假定输入d\_in数据量为num\_items
|
||||
|
||||
|
||||
注意事项
|
||||
|
||||
* 累计误差不大于cpu double golden基准的0.5%
|
||||
* 注意针对NAN和INF等异常值的处理
|
||||
|
||||
|
||||
|
||||
加分项
|
||||
|
||||
* 使用tensor core计算reduce
|
||||
|
|
@ -62,14 +60,11 @@ public:
|
|||
* 需要校验结果正确性
|
||||
* 结果必须稳定排序
|
||||
|
||||
|
||||
加分项
|
||||
|
||||
* 支持其他不同数据类型的排序,如half、double、int32_t等
|
||||
* 覆盖更全面的数据范围,提供良好稳定的性能表现
|
||||
|
||||
|
||||
|
||||
# 3. Topk Pair算法优化
|
||||
```cpp
|
||||
template <typename KeyType, typename ValueType>
|
||||
|
|
@ -95,7 +90,6 @@ public:
|
|||
|
||||
* 结果必须稳定排序
|
||||
|
||||
|
||||
加分项
|
||||
|
||||
* 支持其他不同数据类型的键值对,实现类型通用算法
|
||||
|
|
@ -36,11 +36,11 @@ COMPILER=${COMPILER:-mxcc}
|
|||
COMPILER_FLAGS=${COMPILER_FLAGS:-"-O3 -std=c++17 --extended-lambda -DRUN_FULL_TEST"}
|
||||
|
||||
# ***** 这里是关键修改点1:头文件目录 *****
|
||||
# 现在头文件在 includes/ 目录下
|
||||
# 现在头文件在 utils/ 目录下
|
||||
HEADER_DIR=${HEADER_DIR:-utils}
|
||||
|
||||
# ***** 这里是关键修改点2:源文件目录 *****
|
||||
# 现在源文件在 algorithms/ 目录下
|
||||
# 现在源文件在 ./ 目录下
|
||||
SOURCE_CODE_DIR=${SOURCE_CODE_DIR:-}
|
||||
|
||||
BUILD_DIR=${BUILD_DIR:-build}
|
||||
Loading…
Reference in New Issue