diff --git a/.gitee/ISSUE_TEMPLATE/cp.yml b/.gitee/ISSUE_TEMPLATE/cp.yml new file mode 100644 index 0000000..0bd2589 --- /dev/null +++ b/.gitee/ISSUE_TEMPLATE/cp.yml @@ -0,0 +1,36 @@ +name: 赛题(CP) +description: 参赛题目 +title: "[cp]: " +labels: ["cp"] +body: + - type: markdown + attributes: + value: | + 感谢你积极参与比赛,并提交自己希望参加的赛题,当出现一样的题目、一样的性能的时候,以谁创建赛题的时间早者优先。 + - type: textarea + id: desired-solution + attributes: + label: 你提交的赛题的内容介绍 + description: 清晰并简洁地描述你希望参赛的内容详细的描述,尽量清晰方便他人了解赛题希望达成的目标。 + validations: + required: true + - type: textarea + id: alternatives + attributes: + label: 赛题有对应的预期结果 + description: 清晰并简洁地描述赛题完成的预期结果,最佳的方式是知道如何测试验证预期结果的正确性。 + validations: + required: false + - type: textarea + id: additional-context + attributes: + label: 你有其他相关背景的信息吗? + description: 在此处添加有关想法的任何其他上下文或截图。 + validations: + required: false + - type: checkboxes + attributes: + label: 推荐其它选手完成【如选否,请创建后assign赛题给自己】 + options: + - label: 是否希望推荐给别人完成该赛题。 + required: false \ No newline at end of file diff --git a/.gitee/ISSUE_TEMPLATE/feature.yml b/.gitee/ISSUE_TEMPLATE/idea.yml similarity index 97% rename from .gitee/ISSUE_TEMPLATE/feature.yml rename to .gitee/ISSUE_TEMPLATE/idea.yml index abcd8f2..403a614 100644 --- a/.gitee/ISSUE_TEMPLATE/feature.yml +++ b/.gitee/ISSUE_TEMPLATE/idea.yml @@ -1,4 +1,4 @@ -name: 想法(GPUKernelContest) +name: 想法 description: 对本赛题提出一个想法或建议 title: "[idea]: " labels: ["idea"] diff --git a/.gitee/ISSUE_TEMPLATE/bug.yml b/.gitee/ISSUE_TEMPLATE/task.yml similarity index 98% rename from .gitee/ISSUE_TEMPLATE/bug.yml rename to .gitee/ISSUE_TEMPLATE/task.yml index d627214..a79a487 100644 --- a/.gitee/ISSUE_TEMPLATE/bug.yml +++ b/.gitee/ISSUE_TEMPLATE/task.yml @@ -1,4 +1,4 @@ -name: 任务(GPUKernelContest) +name: 任务 description: 对本赛题提出一个任务,用于后续跟踪和执行。 title: "[task]: " labels: ["task"] diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..503f6e4 --- /dev/null +++ b/.gitignore @@ -0,0 +1,6 @@ +.DS_Store +*.bak +*.pyc +*.o +*/build/ +cp_template/*.yaml \ No newline at end of file diff --git a/README.md b/README.md index 1c017fd..e458741 100644 --- a/README.md +++ b/README.md @@ -32,10 +32,70 @@ --- -## 📥 如何参与提交? +## 🚀 快速上手 + +本竞赛旨在评估参赛者在GPU并行计算领域的算法优化能力。为了快速让参赛者进入比赛状态,我们提供了三个核心算法的高性能版本参考,供参赛选手不断优化性能: +- **ReduceSum**: 高精度归约求和 +- **SortPair**: 键值对稳定排序 +- **TopkPair**: 键值对TopK选择 + +[三个核心算法赛题模板](./cp_template/) + +### 📥 选手赛题准备 + +1. 点击[创建赛题](https://gitee.com/ccf-ai-infra/GPUKernelContest/issues/new?template=cp.yml) +2. 记录赛题的ID,例如:[ICTN0N](https://gitee.com/ccf-ai-infra/GPUKernelContest/issues/ICTN0N) +3. Fork仓库并初始化比赛环境(三个核心算法题优化赛题以外自定义的赛题需有入口run.sh脚本,供CI自动测试验证) + 1. 拷贝赛题样例`cp_template`到赛题`ICTN0N`目录 + ``` + ├── S1(说明:第一季比赛名) + │ ├── ICTN0N(说明:以赛题ID命名目录存放赛题的PR) + | | ├── utils + │ | ├── run.sh(说明:作为CI自动测试验证的入口) + | | └── …… + │ └── …… + └── S2(说明:第二季比赛名) + └── 赛题目录1 + └── 赛题目录2 + ``` + +### 编译和测试 + +选手赛题目录内提供了编译、测试的脚本,供选手熟悉比赛环境,步骤如下: + +```bash +# !!!注意参赛选手需要根据自己的赛题ID进入自己初始化的目录!!!! +cd GPUKernelContest/S1/ICTN0N +``` + + +#### 1. 全量编译和运行 +```bash +# 编译并运行所有算法测试(默认行为) +./run.sh + +# 编译并运行单个算法测试 +./run.sh --run_reduce # ReduceSum算法 +./run.sh --run_sort # SortPair算法 +./run.sh --run_topk # TopkPair算法 +``` + +#### 2. 手动运行测试 + +```bash +# 仅编译所有算法,不运行测试 +./run.sh --build-only + +# 单个运行不同算法的测试 +./build/test_reducesum [correctness|performance|all] +./build/test_sortpair [correctness|performance|all] +./build/test_topkpair [correctness|performance|all] +``` + +对于如何提交可参考:[如何贡献](how-to-contribute.md) ### ✅ 参赛要求: -- 提交内容必须可以在沐曦自研 GPU **曦云 C500** 上运行。 +- 提交内容必须可以在MACA软件上运行。 - 所提交的优化代码将由主办方审核,**需成功合并(Merge)到官方 Gitee 仓库,才算有效提交。** ### 📦 提交内容包含: @@ -47,7 +107,7 @@ ## 📈 评分机制 -每次提交会按以下规则评分: +每次合并的提交会按以下规则评分: ### 🎯 基础得分(Level): | 等级 | 内容描述 | 分值 | @@ -56,7 +116,7 @@ | Level 2 | 融合优化 2~9 个算子 | 10 分 | | Level 3 | 含 MMA(多维矩阵乘)融合算子 | 50 分 | | Level 4 | 用于大模型推理的复杂融合算子 | 50 分 | -| 合并至metax-maca开源项目仓库的每个PR | - | 50 分 | +| 合并至MACA开源项目仓库的每个PR<需要在赛题提供对应合并的记录,并确保和参赛使用的邮箱一致的提交邮箱> | - | 50 分 | ### ✨ 加分项: | 内容 | 分值 | @@ -70,18 +130,19 @@ --- -## 🏅 排名规则 +## 🏆 排名机制 -- 比赛周期:2 个月 -- 排名按累计得分排序,取前 12 名! - -若得分相同: -1. 提交次数多者优先 -2. 提交时间早者优先 +1. 评委评分从高到低排序 +2. **评估规则:** 取前 12 名作为最终获奖选手 +3. 若基础得分相同: + - 加分项多者优先 + - 提交数量多者优先 + - 提交时间早者优先 +4. 当同一参赛选手在本赛题有多个赛题的提交时,多个赛题计算累计得分 --- -## 📚 官方参考项目仓库 +## 📚 参考MACA开源项目仓库 你可以参考以下项目仓库,了解算子开发与提交格式: @@ -92,12 +153,6 @@ --- -## 🖥️ 可用资源 - -- 曦云 **C500 GPU 1/2卡**,主办方通过算力券的形式发放给报名的同学。 - ---- - ## 💡 术语解释 - **算子(Operator)**:指深度学习框架中的基本计算模块,例如矩阵乘法、卷积等。 diff --git a/S1/ICTN0N/build/test_reducesum b/S1/ICTN0N/build/test_reducesum new file mode 100755 index 0000000..b4a526c Binary files /dev/null and b/S1/ICTN0N/build/test_reducesum differ diff --git a/S1/ICTN0N/reduce_sum_algorithm.maca b/S1/ICTN0N/reduce_sum_algorithm.maca old mode 100644 new mode 100755 diff --git a/S1/ICTN0N/reduce_sum_performance.yaml b/S1/ICTN0N/reduce_sum_performance.yaml new file mode 100755 index 0000000..e520aa0 --- /dev/null +++ b/S1/ICTN0N/reduce_sum_performance.yaml @@ -0,0 +1,26 @@ +# ReduceSum算法性能测试结果 +# 生成时间: 2025-09-04 18:32:03 + +algorithm: "ReduceSum" +data_types: + input: "float" + output: "float" +formulas: + throughput: "elements / time(s) / 1e9 (G/s)" +performance_data: + - data_size: 1000000 + time_ms: 0.051046 + throughput_gps: 19.590022 + data_type: "float" + - data_size: 134217728 + time_ms: 0.405018 + throughput_gps: 331.387385 + data_type: "float" + - data_size: 536870912 + time_ms: 1.351834 + throughput_gps: 397.142754 + data_type: "float" + - data_size: 1073741824 + time_ms: 2.618675 + throughput_gps: 410.032451 + data_type: "float" diff --git a/S1/ICTN0N/run.sh b/S1/ICTN0N/run.sh old mode 100644 new mode 100755 diff --git a/S1/ICTN0N/sort_pair_algorithm.maca b/S1/ICTN0N/sort_pair_algorithm.maca old mode 100644 new mode 100755 diff --git a/S1/ICTN0N/sort_pair_performance.yaml b/S1/ICTN0N/sort_pair_performance.yaml new file mode 100755 index 0000000..9af8853 --- /dev/null +++ b/S1/ICTN0N/sort_pair_performance.yaml @@ -0,0 +1,46 @@ +# SortPair算法性能测试结果 +# 生成时间: 2025-09-03 22:37:18 + +algorithm: "SortPair" +data_types: + key_type: "float" + value_type: "uint32_t" +formulas: + throughput: "elements / time(s) / 1e9 (G/s)" +performance_data: + - data_size: 1000000 + ascending: + time_ms: 0.351488 + throughput_gps: 2.845047 + descending: + time_ms: 0.343270 + throughput_gps: 2.913155 + key_type: "float" + value_type: "uint32_t" + - data_size: 134217728 + ascending: + time_ms: 22.273815 + throughput_gps: 6.025808 + descending: + time_ms: 22.494003 + throughput_gps: 5.966823 + key_type: "float" + value_type: "uint32_t" + - data_size: 536870912 + ascending: + time_ms: 88.856277 + throughput_gps: 6.042014 + descending: + time_ms: 89.913918 + throughput_gps: 5.970943 + key_type: "float" + value_type: "uint32_t" + - data_size: 1073741824 + ascending: + time_ms: 181.409576 + throughput_gps: 5.918882 + descending: + time_ms: 183.428955 + throughput_gps: 5.853720 + key_type: "float" + value_type: "uint32_t" diff --git a/S1/ICTN0N/topk_pair_algorithm.maca b/S1/ICTN0N/topk_pair_algorithm.maca old mode 100644 new mode 100755 diff --git a/S1/ICTN0N/topk_pair_performance.yaml b/S1/ICTN0N/topk_pair_performance.yaml new file mode 100755 index 0000000..f8dab18 --- /dev/null +++ b/S1/ICTN0N/topk_pair_performance.yaml @@ -0,0 +1,210 @@ +# TopkPair算法性能测试结果 +# 生成时间: 2025-09-03 22:40:54 + +algorithm: "TopkPair" +data_types: + key_type: "float" + value_type: "uint32_t" +formulas: + throughput: "elements / time(s) / 1e9 (G/s)" +performance_data: + - data_size: 1000000 + k_value: 32 + ascending: + time_ms: 0.402509 + throughput_gps: 2.484418 + descending: + time_ms: 0.416307 + throughput_gps: 2.402072 + key_type: "float" + value_type: "uint32_t" + - data_size: 1000000 + k_value: 50 + ascending: + time_ms: 0.404787 + throughput_gps: 2.470434 + descending: + time_ms: 0.414669 + throughput_gps: 2.411563 + key_type: "float" + value_type: "uint32_t" + - data_size: 1000000 + k_value: 100 + ascending: + time_ms: 0.398336 + throughput_gps: 2.510443 + descending: + time_ms: 0.408320 + throughput_gps: 2.449060 + key_type: "float" + value_type: "uint32_t" + - data_size: 1000000 + k_value: 256 + ascending: + time_ms: 0.410752 + throughput_gps: 2.434559 + descending: + time_ms: 0.403379 + throughput_gps: 2.479057 + key_type: "float" + value_type: "uint32_t" + - data_size: 1000000 + k_value: 1024 + ascending: + time_ms: 0.391091 + throughput_gps: 2.556949 + descending: + time_ms: 0.391142 + throughput_gps: 2.556613 + key_type: "float" + value_type: "uint32_t" + - data_size: 134217728 + k_value: 32 + ascending: + time_ms: 22.394062 + throughput_gps: 5.993452 + descending: + time_ms: 22.263729 + throughput_gps: 6.028538 + key_type: "float" + value_type: "uint32_t" + - data_size: 134217728 + k_value: 50 + ascending: + time_ms: 22.379187 + throughput_gps: 5.997435 + descending: + time_ms: 22.228352 + throughput_gps: 6.038132 + key_type: "float" + value_type: "uint32_t" + - data_size: 134217728 + k_value: 100 + ascending: + time_ms: 22.436581 + throughput_gps: 5.982094 + descending: + time_ms: 22.229326 + throughput_gps: 6.037868 + key_type: "float" + value_type: "uint32_t" + - data_size: 134217728 + k_value: 256 + ascending: + time_ms: 22.463232 + throughput_gps: 5.974996 + descending: + time_ms: 22.319946 + throughput_gps: 6.013354 + key_type: "float" + value_type: "uint32_t" + - data_size: 134217728 + k_value: 1024 + ascending: + time_ms: 22.468454 + throughput_gps: 5.973608 + descending: + time_ms: 22.335976 + throughput_gps: 6.009038 + key_type: "float" + value_type: "uint32_t" + - data_size: 536870912 + k_value: 32 + ascending: + time_ms: 89.437294 + throughput_gps: 6.002763 + descending: + time_ms: 88.605972 + throughput_gps: 6.059083 + key_type: "float" + value_type: "uint32_t" + - data_size: 536870912 + k_value: 50 + ascending: + time_ms: 89.460587 + throughput_gps: 6.001200 + descending: + time_ms: 88.546509 + throughput_gps: 6.063152 + key_type: "float" + value_type: "uint32_t" + - data_size: 536870912 + k_value: 100 + ascending: + time_ms: 89.203011 + throughput_gps: 6.018529 + descending: + time_ms: 88.809097 + throughput_gps: 6.045224 + key_type: "float" + value_type: "uint32_t" + - data_size: 536870912 + k_value: 256 + ascending: + time_ms: 89.500465 + throughput_gps: 5.998526 + descending: + time_ms: 88.743912 + throughput_gps: 6.049665 + key_type: "float" + value_type: "uint32_t" + - data_size: 536870912 + k_value: 1024 + ascending: + time_ms: 89.405357 + throughput_gps: 6.004908 + descending: + time_ms: 88.446083 + throughput_gps: 6.070036 + key_type: "float" + value_type: "uint32_t" + - data_size: 1073741824 + k_value: 32 + ascending: + time_ms: 182.233307 + throughput_gps: 5.892127 + descending: + time_ms: 181.076950 + throughput_gps: 5.929754 + key_type: "float" + value_type: "uint32_t" + - data_size: 1073741824 + k_value: 50 + ascending: + time_ms: 182.273239 + throughput_gps: 5.890836 + descending: + time_ms: 180.944550 + throughput_gps: 5.934093 + key_type: "float" + value_type: "uint32_t" + - data_size: 1073741824 + k_value: 100 + ascending: + time_ms: 182.374191 + throughput_gps: 5.887576 + descending: + time_ms: 181.277100 + throughput_gps: 5.923207 + key_type: "float" + value_type: "uint32_t" + - data_size: 1073741824 + k_value: 256 + ascending: + time_ms: 182.349457 + throughput_gps: 5.888374 + descending: + time_ms: 181.248199 + throughput_gps: 5.924152 + key_type: "float" + value_type: "uint32_t" + - data_size: 1073741824 + k_value: 1024 + ascending: + time_ms: 182.378326 + throughput_gps: 5.887442 + descending: + time_ms: 181.025803 + throughput_gps: 5.931430 + key_type: "float" + value_type: "uint32_t" diff --git a/cp_guide.md b/cp_run_guide.md similarity index 51% rename from cp_guide.md rename to cp_run_guide.md index 3385ae0..b7c4ca2 100644 --- a/cp_guide.md +++ b/cp_run_guide.md @@ -1,59 +1,12 @@ # GPU 高性能并行计算算法优化竞赛 -## 🎯 竞赛概述 - -本竞赛旨在评估参赛者在GPU并行计算领域的算法优化能力。参赛者可选择实现三个核心算法的高性能版本: -- **ReduceSum**: 高精度归约求和 -- **SortPair**: 键值对稳定排序 -- **TopkPair**: 键值对TopK选择 - -## 🚀 快速开始 - -### 编译和测试 - -#### 1. 全量编译和运行 -```bash -# 编译并运行所有算法测试(默认行为) -./build_and_run.sh - -# 仅编译所有算法,不运行测试 -./build_and_run.sh --build-only - -# 编译并运行单个算法测试 -./build_and_run.sh --run_reduce # ReduceSum算法 -./build_and_run.sh --run_sort # SortPair算法 -./build_and_run.sh --run_topk # TopkPair算法 -``` - -#### 2. 单独编译和运行 -```bash -# 编译并运行ReduceSum算法(默认行为) -./build_and_run_reduce_sum.sh - -# 仅编译ReduceSum算法,不运行测试 -./build_and_run_reduce_sum.sh --build-only - -# 编译并运行SortPair正确性测试 -./build_and_run_sort_pair.sh --run correctness - -# 编译并运行TopkPair性能测试 -./build_and_run_topk_pair.sh --run performance -``` - -#### 3. 手动运行测试 -```bash -./build/test_reducesum [correctness|performance|all] -./build/test_sortpair [correctness|performance|all] -./build/test_topkpair [correctness|performance|all] -``` - ## 📝 参赛指南 ### 实现位置 参赛者需要在以下文件中替换Thrust实现: -- `src/reduce_sum_algorithm.maca` - 替换Thrust归约求和 -- `src/sort_pair_algorithm.maca` - 替换Thrust稳定排序 -- `src/topk_pair_algorithm.maca` - 替换Thrust TopK选择 +- `reduce_sum_algorithm.maca` - 替换Thrust归约求和 +- `sort_pair_algorithm.maca` - 替换Thrust稳定排序 +- `topk_pair_algorithm.maca` - 替换Thrust TopK选择 ### 算法要求 见competition_parallel_algorithms.md @@ -92,25 +45,21 @@ - 各数据规模的详细性能数据 - 升序/降序分别统计(适用时) -## 📁 项目结构 +## 📁 提交内容结构 ``` -├── build_and_run.sh # 统一编译和运行脚本(默认编译+运行所有算法) -├── build_common.sh # 公共编译配置和函数 -├── build_and_run_reduce_sum.sh # ReduceSum独立编译和运行脚本 -├── build_and_run_sort_pair.sh # SortPair独立编译和运行脚本 -├── build_and_run_topk_pair.sh # TopkPair独立编译和运行脚本 +├── run.sh # 统一编译和运行脚本(默认编译+运行所有算法) ├── competition_parallel_algorithms.md # 详细题目说明 -├── src/ # 算法实现和工具文件 -│ ├── reduce_sum_algorithm.maca # 1. ReduceSum测试程序 -│ ├── sort_pair_algorithm.maca # 2. SortPair测试程序 -│ ├── topk_pair_algorithm.maca # 3. TopkPair测试程序 +│── reduce_sum_algorithm.maca # 1. ReduceSum测试程序 +│── sort_pair_algorithm.maca # 2. SortPair测试程序 +│── topk_pair_algorithm.maca # 3. TopkPair测试程序 +├── utils/ # 工具文件 │ ├── test_utils.h # 测试工具和CPU参考实现 │ ├── yaml_reporter.h # YAML性能报告生成器 │ └── performance_utils.h # 性能测试工具 -├── final_results/reduce_sum_results.yaml #ReduceSum性能数据 -├── final_results/sort_pair_results.yaml #替换Thrust稳定排序 -└── final_results/topk_pair_results.yaml #TopkPair性能数据 +├── reduce_sum_results.yaml #ReduceSum性能数据 +├── sort_pair_results.yaml #替换Thrust稳定排序 +└── topk_pair_results.yaml #TopkPair性能数据 ``` ## 🔧 开发工具 @@ -134,7 +83,7 @@ mxcc -O3 -std=c++17 --extended-lambda -Isrc |--------|--------|------| | `COMPILER` | `mxcc` | CUDA编译器路径 | | `COMPILER_FLAGS` | `-O3 -std=c++17 --extended-lambda` | 编译标志 | -| `INCLUDE_DIR` | `src` | 头文件目录 | +| `HEADER_DIR` | `utils` | 头文件目录 | | `BUILD_DIR` | `build` | 构建输出目录 | ### 调试模式 diff --git a/competition_parallel_algorithms.md b/cp_template/competition_parallel_algorithms.md old mode 100644 new mode 100755 similarity index 99% rename from competition_parallel_algorithms.md rename to cp_template/competition_parallel_algorithms.md index 6cf1efd..70bf630 --- a/competition_parallel_algorithms.md +++ b/cp_template/competition_parallel_algorithms.md @@ -1,11 +1,11 @@ -# 题目: +# 样例赛题说明 + ## GPU高性能并行计算算法优化 要求参赛者通过一个或多个global kernel 函数(允许配套 device 辅助函数),实现高性能算法。 在正确性、稳定性前提下,比拼算法性能。 - # 1. ReduceSum算法优化 ```cpp template @@ -23,14 +23,12 @@ public: * 系统将测试评估1M, 128M, 512M, 1G element number下的算法性能 * 假定输入d\_in数据量为num\_items - 注意事项 * 累计误差不大于cpu double golden基准的0.5% * 注意针对NAN和INF等异常值的处理 - 加分项 * 使用tensor core计算reduce @@ -62,14 +60,11 @@ public: * 需要校验结果正确性 * 结果必须稳定排序 - 加分项 * 支持其他不同数据类型的排序,如half、double、int32_t等 * 覆盖更全面的数据范围,提供良好稳定的性能表现 - - # 3. Topk Pair算法优化 ```cpp template @@ -95,7 +90,6 @@ public: * 结果必须稳定排序 - 加分项 * 支持其他不同数据类型的键值对,实现类型通用算法 diff --git a/cp_template/reduce_sum_algorithm.maca b/cp_template/reduce_sum_algorithm.maca old mode 100644 new mode 100755 diff --git a/run.sh b/cp_template/run.sh old mode 100644 new mode 100755 similarity index 99% rename from run.sh rename to cp_template/run.sh index d6b612a..a437ff8 --- a/run.sh +++ b/cp_template/run.sh @@ -36,11 +36,11 @@ COMPILER=${COMPILER:-mxcc} COMPILER_FLAGS=${COMPILER_FLAGS:-"-O3 -std=c++17 --extended-lambda -DRUN_FULL_TEST"} # ***** 这里是关键修改点1:头文件目录 ***** -# 现在头文件在 includes/ 目录下 +# 现在头文件在 utils/ 目录下 HEADER_DIR=${HEADER_DIR:-utils} # ***** 这里是关键修改点2:源文件目录 ***** -# 现在源文件在 algorithms/ 目录下 +# 现在源文件在 ./ 目录下 SOURCE_CODE_DIR=${SOURCE_CODE_DIR:-} BUILD_DIR=${BUILD_DIR:-build} diff --git a/cp_template/sort_pair_algorithm.maca b/cp_template/sort_pair_algorithm.maca old mode 100644 new mode 100755 diff --git a/cp_template/topk_pair_algorithm.maca b/cp_template/topk_pair_algorithm.maca old mode 100644 new mode 100755 diff --git a/utils/performance_utils.h b/cp_template/utils/performance_utils.h similarity index 100% rename from utils/performance_utils.h rename to cp_template/utils/performance_utils.h diff --git a/utils/test_utils.h b/cp_template/utils/test_utils.h similarity index 100% rename from utils/test_utils.h rename to cp_template/utils/test_utils.h diff --git a/utils/yaml_reporter.h b/cp_template/utils/yaml_reporter.h similarity index 100% rename from utils/yaml_reporter.h rename to cp_template/utils/yaml_reporter.h