Add a "sgemm direct" mode for small matrixes

OpenBLAS has a fancy algorithm for copying the input data while laying
it out in a more CPU friendly memory layout.

This is great for large matrixes; the cost of the copy is easily
ammortized by the gains from the better memory layout.

But for small matrixes (on CPUs that can do efficient unaligned loads) this
copy can be a net loss.

This patch adds (for SKYLAKEX initially) a "sgemm direct" mode, that bypasses
the whole copy machinary for ALPHA=1/BETA=0/... standard arguments,
for small matrixes only.

What is small? For the non-threaded case this has been measured to be
in the M*N*K = 28 * 512 * 512 range, while in the threaded case it's
less, around M*N*K = 1 * 512 * 512
This commit is contained in:
Arjan van de Ven 2018-12-12 16:45:57 +00:00
parent 87718807f0
commit cdc668d82b
4 changed files with 483 additions and 1 deletions

View File

@ -47,6 +47,14 @@ __global__ void cuda_dgemm_kernel(int, int, int, double *, double *, double *);
extern "C" {
#endif
extern void sgemm_kernel_direct(BLASLONG M, BLASLONG N, BLASLONG K,
float * A, BLASLONG strideA,
float * B, BLASLONG strideB,
float * R, BLASLONG strideR);
extern int sgemm_kernel_direct_performant(BLASLONG M, BLASLONG N, BLASLONG K);
int sgemm_beta(BLASLONG, BLASLONG, BLASLONG, float,
float *, BLASLONG, float *, BLASLONG, float *, BLASLONG);
int dgemm_beta(BLASLONG, BLASLONG, BLASLONG, double,

View File

@ -271,6 +271,14 @@ void CNAME(enum CBLAS_ORDER order, enum CBLAS_TRANSPOSE TransA, enum CBLAS_TRANS
PRINT_DEBUG_CNAME;
#if !defined(COMPLEX) && !defined(DOUBLE) && defined(USE_SGEMM_KERNEL_DIRECT)
if (beta == 0 && alpha == 1.0 && order == CblasRowMajor && TransA == CblasNoTrans && TransB == CblasNoTrans && sgemm_kernel_direct_performant(m,n,k)) {
sgemm_kernel_direct(m, n, k, a, lda, b, ldb, c, ldc);
return;
}
#endif
#ifndef COMPLEX
args.alpha = (void *)α
args.beta = (void *)β

View File

@ -760,7 +760,7 @@ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************************/
int __attribute__ ((noinline))
CNAME(BLASLONG m, BLASLONG n, BLASLONG k, float alpha, float * __restrict__ A, float * __restrict__ B, float * __restrict__ C, BLASLONG ldc)
CNAME(BLASLONG m, BLASLONG n, BLASLONG k, float alpha, float * __restrict A, float * __restrict B, float * __restrict C, BLASLONG ldc)
{
unsigned long M = m, N = n, K = k;
if (M == 0)
@ -1175,3 +1175,468 @@ CNAME(BLASLONG m, BLASLONG n, BLASLONG k, float alpha, float * __restrict__ A, f
return 0;
}
/*
* "Direct sgemm" code. This code operates directly on the inputs and outputs
* of the sgemm call, avoiding the copies, memory realignments and threading,
* and only supports alpha = 1 and beta = 0.
* This is a common case and provides value for relatively small matrixes.
* For larger matrixes the "regular" sgemm code is superior, there the cost of
* copying/shuffling the B matrix really pays off.
*/
#define DECLARE_RESULT_512(N,M) __m512 result##N##M = _mm512_setzero_ps()
#define BROADCAST_LOAD_A_512(N,M) __m512 Aval##M = _mm512_broadcastss_ps(_mm_load_ss(&A[k + strideA * (i+M)]))
#define LOAD_B_512(N,M) __m512 Bval##N = _mm512_loadu_ps(&B[strideB * k + j + (N*16)])
#define MATMUL_512(N,M) result##N##M = _mm512_fmadd_ps(Aval##M, Bval##N , result##N##M)
#define STORE_512(N,M) _mm512_storeu_ps(&R[(i+M) * strideR + j+(N*16)], result##N##M)
#define DECLARE_RESULT_256(N,M) __m256 result##N##M = _mm256_setzero_ps()
#define BROADCAST_LOAD_A_256(N,M) __m256 Aval##M = _mm256_broadcastss_ps(_mm_load_ss(&A[k + strideA * (i+M)]))
#define LOAD_B_256(N,M) __m256 Bval##N = _mm256_loadu_ps(&B[strideB * k + j + (N*8)])
#define MATMUL_256(N,M) result##N##M = _mm256_fmadd_ps(Aval##M, Bval##N , result##N##M)
#define STORE_256(N,M) _mm256_storeu_ps(&R[(i+M) * strideR + j+(N*8)], result##N##M)
#define DECLARE_RESULT_128(N,M) __m128 result##N##M = _mm_setzero_ps()
#define BROADCAST_LOAD_A_128(N,M) __m128 Aval##M = _mm_broadcastss_ps(_mm_load_ss(&A[k + strideA * (i+M)]))
#define LOAD_B_128(N,M) __m128 Bval##N = _mm_loadu_ps(&B[strideB * k + j + (N*4)])
#define MATMUL_128(N,M) result##N##M = _mm_fmadd_ps(Aval##M, Bval##N , result##N##M)
#define STORE_128(N,M) _mm_storeu_ps(&R[(i+M) * strideR + j+(N*4)], result##N##M)
#define DECLARE_RESULT_SCALAR(N,M) float result##N##M = 0;
#define BROADCAST_LOAD_A_SCALAR(N,M) float Aval##M = A[k + strideA * (i + M)];
#define LOAD_B_SCALAR(N,M) float Bval##N = B[k * strideB + j + N];
#define MATMUL_SCALAR(N,M) result##N##M += Aval##M * Bval##N;
#define STORE_SCALAR(N,M) R[(i+M) * strideR + j + N] = result##N##M;
int sgemm_kernel_direct_performant(BLASLONG M, BLASLONG N, BLASLONG K)
{
int mnk = M * N * K;
/* large matrixes -> not performant */
if (mnk >= 28 * 512 * 512)
return 0;
/*
* if the B matrix is not a nice multiple if 4 we get many unaligned accesses,
* and the regular sgemm copy/realignment of data pays off much quicker
*/
if ((N & 3) != 0 && (mnk >= 8 * 512 * 512))
return 0;
#ifdef SMP
/* if we can run multithreaded, the threading changes the based threshold */
if (mnk > 2 * 350 * 512 && num_cpu_avail(3)> 1)
return 0;
#endif
return 1;
}
void sgemm_kernel_direct (BLASLONG M, BLASLONG N, BLASLONG K, float * __restrict A, BLASLONG strideA, float * __restrict B, BLASLONG strideB , float * __restrict R, BLASLONG strideR)
{
int i, j, k;
int m4 = M & ~3;
int m2 = M & ~1;
int n64 = N & ~63;
int n32 = N & ~31;
int n16 = N & ~15;
int n8 = N & ~7;
int n4 = N & ~3;
int n2 = N & ~1;
i = 0;
for (i = 0; i < m4; i+=4) {
for (j = 0; j < n64; j+= 64) {
k = 0;
DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2); DECLARE_RESULT_512(2, 2); DECLARE_RESULT_512(3, 2);
DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3); DECLARE_RESULT_512(2, 3); DECLARE_RESULT_512(3, 3);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_512(x, 0);
BROADCAST_LOAD_A_512(x, 1);
BROADCAST_LOAD_A_512(x, 2);
BROADCAST_LOAD_A_512(x, 3);
LOAD_B_512(0, x); LOAD_B_512(1, x); LOAD_B_512(2, x); LOAD_B_512(3, x);
MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
MATMUL_512(0, 2); MATMUL_512(1, 2); MATMUL_512(2, 2); MATMUL_512(3, 2);
MATMUL_512(0, 3); MATMUL_512(1, 3); MATMUL_512(2, 3); MATMUL_512(3, 3);
}
STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1);
STORE_512(0, 2); STORE_512(1, 2); STORE_512(2, 2); STORE_512(3, 2);
STORE_512(0, 3); STORE_512(1, 3); STORE_512(2, 3); STORE_512(3, 3);
}
for (; j < n32; j+= 32) {
DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2);
DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_512(x, 0);
BROADCAST_LOAD_A_512(x, 1);
BROADCAST_LOAD_A_512(x, 2);
BROADCAST_LOAD_A_512(x, 3);
LOAD_B_512(0, x); LOAD_B_512(1, x);
MATMUL_512(0, 0); MATMUL_512(1, 0);
MATMUL_512(0, 1); MATMUL_512(1, 1);
MATMUL_512(0, 2); MATMUL_512(1, 2);
MATMUL_512(0, 3); MATMUL_512(1, 3);
}
STORE_512(0, 0); STORE_512(1, 0);
STORE_512(0, 1); STORE_512(1, 1);
STORE_512(0, 2); STORE_512(1, 2);
STORE_512(0, 3); STORE_512(1, 3);
}
for (; j < n16; j+= 16) {
DECLARE_RESULT_512(0, 0);
DECLARE_RESULT_512(0, 1);
DECLARE_RESULT_512(0, 2);
DECLARE_RESULT_512(0, 3);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_512(x, 0);
BROADCAST_LOAD_A_512(x, 1);
BROADCAST_LOAD_A_512(x, 2);
BROADCAST_LOAD_A_512(x, 3);
LOAD_B_512(0, x);
MATMUL_512(0, 0);
MATMUL_512(0, 1);
MATMUL_512(0, 2);
MATMUL_512(0, 3);
}
STORE_512(0, 0);
STORE_512(0, 1);
STORE_512(0, 2);
STORE_512(0, 3);
}
for (; j < n8; j+= 8) {
DECLARE_RESULT_256(0, 0);
DECLARE_RESULT_256(0, 1);
DECLARE_RESULT_256(0, 2);
DECLARE_RESULT_256(0, 3);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_256(x, 0);
BROADCAST_LOAD_A_256(x, 1);
BROADCAST_LOAD_A_256(x, 2);
BROADCAST_LOAD_A_256(x, 3);
LOAD_B_256(0, x);
MATMUL_256(0, 0);
MATMUL_256(0, 1);
MATMUL_256(0, 2);
MATMUL_256(0, 3);
}
STORE_256(0, 0);
STORE_256(0, 1);
STORE_256(0, 2);
STORE_256(0, 3);
}
for (; j < n4; j+= 4) {
DECLARE_RESULT_128(0, 0);
DECLARE_RESULT_128(0, 1);
DECLARE_RESULT_128(0, 2);
DECLARE_RESULT_128(0, 3);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_128(x, 0);
BROADCAST_LOAD_A_128(x, 1);
BROADCAST_LOAD_A_128(x, 2);
BROADCAST_LOAD_A_128(x, 3);
LOAD_B_128(0, x);
MATMUL_128(0, 0);
MATMUL_128(0, 1);
MATMUL_128(0, 2);
MATMUL_128(0, 3);
}
STORE_128(0, 0);
STORE_128(0, 1);
STORE_128(0, 2);
STORE_128(0, 3);
}
for (; j < n2; j+= 2) {
DECLARE_RESULT_SCALAR(0, 0); DECLARE_RESULT_SCALAR(1, 0);
DECLARE_RESULT_SCALAR(0, 1); DECLARE_RESULT_SCALAR(1, 1);
DECLARE_RESULT_SCALAR(0, 2); DECLARE_RESULT_SCALAR(1, 2);
DECLARE_RESULT_SCALAR(0, 3); DECLARE_RESULT_SCALAR(1, 3);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_SCALAR(x, 0);
BROADCAST_LOAD_A_SCALAR(x, 1);
BROADCAST_LOAD_A_SCALAR(x, 2);
BROADCAST_LOAD_A_SCALAR(x, 3);
LOAD_B_SCALAR(0, x); LOAD_B_SCALAR(1, x);
MATMUL_SCALAR(0, 0); MATMUL_SCALAR(1, 0);
MATMUL_SCALAR(0, 1); MATMUL_SCALAR(1, 1);
MATMUL_SCALAR(0, 2); MATMUL_SCALAR(1, 2);
MATMUL_SCALAR(0, 3); MATMUL_SCALAR(1, 3);
}
STORE_SCALAR(0, 0); STORE_SCALAR(1, 0);
STORE_SCALAR(0, 1); STORE_SCALAR(1, 1);
STORE_SCALAR(0, 2); STORE_SCALAR(1, 2);
STORE_SCALAR(0, 3); STORE_SCALAR(1, 3);
}
for (; j < N; j++) {
DECLARE_RESULT_SCALAR(0, 0)
DECLARE_RESULT_SCALAR(0, 1)
DECLARE_RESULT_SCALAR(0, 2)
DECLARE_RESULT_SCALAR(0, 3)
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_SCALAR(0, 0);
BROADCAST_LOAD_A_SCALAR(0, 1);
BROADCAST_LOAD_A_SCALAR(0, 2);
BROADCAST_LOAD_A_SCALAR(0, 3);
LOAD_B_SCALAR(0, 0);
MATMUL_SCALAR(0, 0);
MATMUL_SCALAR(0, 1);
MATMUL_SCALAR(0, 2);
MATMUL_SCALAR(0, 3);
}
STORE_SCALAR(0, 0);
STORE_SCALAR(0, 1);
STORE_SCALAR(0, 2);
STORE_SCALAR(0, 3);
}
}
for (; i < m2; i+=2) {
j = 0;
for (; j < n64; j+= 64) {
DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_512(x, 0);
BROADCAST_LOAD_A_512(x, 1);
LOAD_B_512(0, x); LOAD_B_512(1, x); LOAD_B_512(2, x); LOAD_B_512(3, x);
MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
}
STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1);
}
for (; j < n32; j+= 32) {
DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_512(x, 0);
BROADCAST_LOAD_A_512(x, 1);
LOAD_B_512(0, x); LOAD_B_512(1, x);
MATMUL_512(0, 0); MATMUL_512(1, 0);
MATMUL_512(0, 1); MATMUL_512(1, 1);
}
STORE_512(0, 0); STORE_512(1, 0);
STORE_512(0, 1); STORE_512(1, 1);
}
for (; j < n16; j+= 16) {
DECLARE_RESULT_512(0, 0);
DECLARE_RESULT_512(0, 1);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_512(x, 0);
BROADCAST_LOAD_A_512(x, 1);
LOAD_B_512(0, x);
MATMUL_512(0, 0);
MATMUL_512(0, 1);
}
STORE_512(0, 0);
STORE_512(0, 1);
}
for (; j < n8; j+= 8) {
DECLARE_RESULT_256(0, 0);
DECLARE_RESULT_256(0, 1);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_256(x, 0);
BROADCAST_LOAD_A_256(x, 1);
LOAD_B_256(0, x);
MATMUL_256(0, 0);
MATMUL_256(0, 1);
}
STORE_256(0, 0);
STORE_256(0, 1);
}
for (; j < n4; j+= 4) {
DECLARE_RESULT_128(0, 0);
DECLARE_RESULT_128(0, 1);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_128(x, 0);
BROADCAST_LOAD_A_128(x, 1);
LOAD_B_128(0, x);
MATMUL_128(0, 0);
MATMUL_128(0, 1);
}
STORE_128(0, 0);
STORE_128(0, 1);
}
for (; j < n2; j+= 2) {
DECLARE_RESULT_SCALAR(0, 0); DECLARE_RESULT_SCALAR(1, 0);
DECLARE_RESULT_SCALAR(0, 1); DECLARE_RESULT_SCALAR(1, 1);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_SCALAR(x, 0);
BROADCAST_LOAD_A_SCALAR(x, 1);
LOAD_B_SCALAR(0, x); LOAD_B_SCALAR(1, x);
MATMUL_SCALAR(0, 0); MATMUL_SCALAR(1, 0);
MATMUL_SCALAR(0, 1); MATMUL_SCALAR(1, 1);
}
STORE_SCALAR(0, 0); STORE_SCALAR(1, 0);
STORE_SCALAR(0, 1); STORE_SCALAR(1, 1);
}
for (; j < N; j++) {
DECLARE_RESULT_SCALAR(0, 0);
DECLARE_RESULT_SCALAR(0, 1);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_SCALAR(0, 0);
BROADCAST_LOAD_A_SCALAR(0, 1);
LOAD_B_SCALAR(0, 0);
MATMUL_SCALAR(0, 0);
MATMUL_SCALAR(0, 1);
}
STORE_SCALAR(0, 0);
STORE_SCALAR(0, 1);
}
}
for (; i < M; i+=1) {
j = 0;
for (; j < n64; j+= 64) {
DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_512(x, 0);
LOAD_B_512(0, x); LOAD_B_512(1, x); LOAD_B_512(2, x); LOAD_B_512(3, x);
MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
}
STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0);
}
for (; j < n32; j+= 32) {
DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_512(x, 0);
LOAD_B_512(0, x); LOAD_B_512(1, x);
MATMUL_512(0, 0); MATMUL_512(1, 0);
}
STORE_512(0, 0); STORE_512(1, 0);
}
for (; j < n16; j+= 16) {
DECLARE_RESULT_512(0, 0);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_512(x, 0);
LOAD_B_512(0, x);
MATMUL_512(0, 0);
}
STORE_512(0, 0);
}
for (; j < n8; j+= 8) {
DECLARE_RESULT_256(0, 0);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_256(x, 0);
LOAD_B_256(0, x);
MATMUL_256(0, 0);
}
STORE_256(0, 0);
}
for (; j < n4; j+= 4) {
DECLARE_RESULT_128(0, 0);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_128(x, 0);
LOAD_B_128(0, x);
MATMUL_128(0, 0);
}
STORE_128(0, 0);
}
for (; j < n2; j+= 2) {
DECLARE_RESULT_SCALAR(0, 0); DECLARE_RESULT_SCALAR(1, 0);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_SCALAR(x, 0);
LOAD_B_SCALAR(0, 0); LOAD_B_SCALAR(1, 0);
MATMUL_SCALAR(0, 0); MATMUL_SCALAR(1, 0);
}
STORE_SCALAR(0, 0); STORE_SCALAR(1, 0);
}
for (; j < N; j++) {
DECLARE_RESULT_SCALAR(0, 0);
for (k = 0; k < K; k++) {
BROADCAST_LOAD_A_SCALAR(0, 0);
LOAD_B_SCALAR(0, 0);
MATMUL_SCALAR(0, 0);
}
STORE_SCALAR(0, 0);
}
}
}

View File

@ -1628,6 +1628,7 @@ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define SWITCH_RATIO 32
#define GEMM_PREFERED_SIZE 32
#define USE_SGEMM_KERNEL_DIRECT 1
#ifdef ARCH_X86