diff --git a/common_level3.h b/common_level3.h index 1f5490baa..6fa902be8 100644 --- a/common_level3.h +++ b/common_level3.h @@ -47,6 +47,14 @@ __global__ void cuda_dgemm_kernel(int, int, int, double *, double *, double *); extern "C" { #endif +extern void sgemm_kernel_direct(BLASLONG M, BLASLONG N, BLASLONG K, + float * A, BLASLONG strideA, + float * B, BLASLONG strideB, + float * R, BLASLONG strideR); + +extern int sgemm_kernel_direct_performant(BLASLONG M, BLASLONG N, BLASLONG K); + + int sgemm_beta(BLASLONG, BLASLONG, BLASLONG, float, float *, BLASLONG, float *, BLASLONG, float *, BLASLONG); int dgemm_beta(BLASLONG, BLASLONG, BLASLONG, double, diff --git a/interface/gemm.c b/interface/gemm.c index a3bac5984..97e71bc85 100644 --- a/interface/gemm.c +++ b/interface/gemm.c @@ -271,6 +271,14 @@ void CNAME(enum CBLAS_ORDER order, enum CBLAS_TRANSPOSE TransA, enum CBLAS_TRANS PRINT_DEBUG_CNAME; +#if !defined(COMPLEX) && !defined(DOUBLE) && defined(USE_SGEMM_KERNEL_DIRECT) + if (beta == 0 && alpha == 1.0 && order == CblasRowMajor && TransA == CblasNoTrans && TransB == CblasNoTrans && sgemm_kernel_direct_performant(m,n,k)) { + sgemm_kernel_direct(m, n, k, a, lda, b, ldb, c, ldc); + return; + } + +#endif + #ifndef COMPLEX args.alpha = (void *)α args.beta = (void *)β diff --git a/kernel/x86_64/sgemm_kernel_16x4_skylakex.c b/kernel/x86_64/sgemm_kernel_16x4_skylakex.c index 10d3d22ed..3246e681f 100644 --- a/kernel/x86_64/sgemm_kernel_16x4_skylakex.c +++ b/kernel/x86_64/sgemm_kernel_16x4_skylakex.c @@ -760,7 +760,7 @@ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************************/ int __attribute__ ((noinline)) -CNAME(BLASLONG m, BLASLONG n, BLASLONG k, float alpha, float * __restrict__ A, float * __restrict__ B, float * __restrict__ C, BLASLONG ldc) +CNAME(BLASLONG m, BLASLONG n, BLASLONG k, float alpha, float * __restrict A, float * __restrict B, float * __restrict C, BLASLONG ldc) { unsigned long M = m, N = n, K = k; if (M == 0) @@ -1175,3 +1175,468 @@ CNAME(BLASLONG m, BLASLONG n, BLASLONG k, float alpha, float * __restrict__ A, f return 0; } + + +/* + * "Direct sgemm" code. This code operates directly on the inputs and outputs + * of the sgemm call, avoiding the copies, memory realignments and threading, + * and only supports alpha = 1 and beta = 0. + * This is a common case and provides value for relatively small matrixes. + * For larger matrixes the "regular" sgemm code is superior, there the cost of + * copying/shuffling the B matrix really pays off. + */ + + + +#define DECLARE_RESULT_512(N,M) __m512 result##N##M = _mm512_setzero_ps() +#define BROADCAST_LOAD_A_512(N,M) __m512 Aval##M = _mm512_broadcastss_ps(_mm_load_ss(&A[k + strideA * (i+M)])) +#define LOAD_B_512(N,M) __m512 Bval##N = _mm512_loadu_ps(&B[strideB * k + j + (N*16)]) +#define MATMUL_512(N,M) result##N##M = _mm512_fmadd_ps(Aval##M, Bval##N , result##N##M) +#define STORE_512(N,M) _mm512_storeu_ps(&R[(i+M) * strideR + j+(N*16)], result##N##M) + + +#define DECLARE_RESULT_256(N,M) __m256 result##N##M = _mm256_setzero_ps() +#define BROADCAST_LOAD_A_256(N,M) __m256 Aval##M = _mm256_broadcastss_ps(_mm_load_ss(&A[k + strideA * (i+M)])) +#define LOAD_B_256(N,M) __m256 Bval##N = _mm256_loadu_ps(&B[strideB * k + j + (N*8)]) +#define MATMUL_256(N,M) result##N##M = _mm256_fmadd_ps(Aval##M, Bval##N , result##N##M) +#define STORE_256(N,M) _mm256_storeu_ps(&R[(i+M) * strideR + j+(N*8)], result##N##M) + +#define DECLARE_RESULT_128(N,M) __m128 result##N##M = _mm_setzero_ps() +#define BROADCAST_LOAD_A_128(N,M) __m128 Aval##M = _mm_broadcastss_ps(_mm_load_ss(&A[k + strideA * (i+M)])) +#define LOAD_B_128(N,M) __m128 Bval##N = _mm_loadu_ps(&B[strideB * k + j + (N*4)]) +#define MATMUL_128(N,M) result##N##M = _mm_fmadd_ps(Aval##M, Bval##N , result##N##M) +#define STORE_128(N,M) _mm_storeu_ps(&R[(i+M) * strideR + j+(N*4)], result##N##M) + +#define DECLARE_RESULT_SCALAR(N,M) float result##N##M = 0; +#define BROADCAST_LOAD_A_SCALAR(N,M) float Aval##M = A[k + strideA * (i + M)]; +#define LOAD_B_SCALAR(N,M) float Bval##N = B[k * strideB + j + N]; +#define MATMUL_SCALAR(N,M) result##N##M += Aval##M * Bval##N; +#define STORE_SCALAR(N,M) R[(i+M) * strideR + j + N] = result##N##M; + +int sgemm_kernel_direct_performant(BLASLONG M, BLASLONG N, BLASLONG K) +{ + int mnk = M * N * K; + /* large matrixes -> not performant */ + if (mnk >= 28 * 512 * 512) + return 0; + + /* + * if the B matrix is not a nice multiple if 4 we get many unaligned accesses, + * and the regular sgemm copy/realignment of data pays off much quicker + */ + if ((N & 3) != 0 && (mnk >= 8 * 512 * 512)) + return 0; + +#ifdef SMP + /* if we can run multithreaded, the threading changes the based threshold */ + if (mnk > 2 * 350 * 512 && num_cpu_avail(3)> 1) + return 0; +#endif + + return 1; +} + + + +void sgemm_kernel_direct (BLASLONG M, BLASLONG N, BLASLONG K, float * __restrict A, BLASLONG strideA, float * __restrict B, BLASLONG strideB , float * __restrict R, BLASLONG strideR) +{ + int i, j, k; + + int m4 = M & ~3; + int m2 = M & ~1; + + int n64 = N & ~63; + int n32 = N & ~31; + int n16 = N & ~15; + int n8 = N & ~7; + int n4 = N & ~3; + int n2 = N & ~1; + + i = 0; + + for (i = 0; i < m4; i+=4) { + + for (j = 0; j < n64; j+= 64) { + k = 0; + DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0); + DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1); + DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2); DECLARE_RESULT_512(2, 2); DECLARE_RESULT_512(3, 2); + DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3); DECLARE_RESULT_512(2, 3); DECLARE_RESULT_512(3, 3); + + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_512(x, 0); + BROADCAST_LOAD_A_512(x, 1); + BROADCAST_LOAD_A_512(x, 2); + BROADCAST_LOAD_A_512(x, 3); + + LOAD_B_512(0, x); LOAD_B_512(1, x); LOAD_B_512(2, x); LOAD_B_512(3, x); + + MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0); + MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1); + MATMUL_512(0, 2); MATMUL_512(1, 2); MATMUL_512(2, 2); MATMUL_512(3, 2); + MATMUL_512(0, 3); MATMUL_512(1, 3); MATMUL_512(2, 3); MATMUL_512(3, 3); + } + STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0); + STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1); + STORE_512(0, 2); STORE_512(1, 2); STORE_512(2, 2); STORE_512(3, 2); + STORE_512(0, 3); STORE_512(1, 3); STORE_512(2, 3); STORE_512(3, 3); + } + + for (; j < n32; j+= 32) { + DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); + DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); + DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2); + DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_512(x, 0); + BROADCAST_LOAD_A_512(x, 1); + BROADCAST_LOAD_A_512(x, 2); + BROADCAST_LOAD_A_512(x, 3); + + LOAD_B_512(0, x); LOAD_B_512(1, x); + + MATMUL_512(0, 0); MATMUL_512(1, 0); + MATMUL_512(0, 1); MATMUL_512(1, 1); + MATMUL_512(0, 2); MATMUL_512(1, 2); + MATMUL_512(0, 3); MATMUL_512(1, 3); + } + STORE_512(0, 0); STORE_512(1, 0); + STORE_512(0, 1); STORE_512(1, 1); + STORE_512(0, 2); STORE_512(1, 2); + STORE_512(0, 3); STORE_512(1, 3); + } + + for (; j < n16; j+= 16) { + DECLARE_RESULT_512(0, 0); + DECLARE_RESULT_512(0, 1); + DECLARE_RESULT_512(0, 2); + DECLARE_RESULT_512(0, 3); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_512(x, 0); + BROADCAST_LOAD_A_512(x, 1); + BROADCAST_LOAD_A_512(x, 2); + BROADCAST_LOAD_A_512(x, 3); + + LOAD_B_512(0, x); + + MATMUL_512(0, 0); + MATMUL_512(0, 1); + MATMUL_512(0, 2); + MATMUL_512(0, 3); + } + STORE_512(0, 0); + STORE_512(0, 1); + STORE_512(0, 2); + STORE_512(0, 3); + } + + for (; j < n8; j+= 8) { + DECLARE_RESULT_256(0, 0); + DECLARE_RESULT_256(0, 1); + DECLARE_RESULT_256(0, 2); + DECLARE_RESULT_256(0, 3); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_256(x, 0); + BROADCAST_LOAD_A_256(x, 1); + BROADCAST_LOAD_A_256(x, 2); + BROADCAST_LOAD_A_256(x, 3); + + LOAD_B_256(0, x); + + MATMUL_256(0, 0); + MATMUL_256(0, 1); + MATMUL_256(0, 2); + MATMUL_256(0, 3); + } + STORE_256(0, 0); + STORE_256(0, 1); + STORE_256(0, 2); + STORE_256(0, 3); + } + + for (; j < n4; j+= 4) { + DECLARE_RESULT_128(0, 0); + DECLARE_RESULT_128(0, 1); + DECLARE_RESULT_128(0, 2); + DECLARE_RESULT_128(0, 3); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_128(x, 0); + BROADCAST_LOAD_A_128(x, 1); + BROADCAST_LOAD_A_128(x, 2); + BROADCAST_LOAD_A_128(x, 3); + + LOAD_B_128(0, x); + + MATMUL_128(0, 0); + MATMUL_128(0, 1); + MATMUL_128(0, 2); + MATMUL_128(0, 3); + } + STORE_128(0, 0); + STORE_128(0, 1); + STORE_128(0, 2); + STORE_128(0, 3); + } + + for (; j < n2; j+= 2) { + DECLARE_RESULT_SCALAR(0, 0); DECLARE_RESULT_SCALAR(1, 0); + DECLARE_RESULT_SCALAR(0, 1); DECLARE_RESULT_SCALAR(1, 1); + DECLARE_RESULT_SCALAR(0, 2); DECLARE_RESULT_SCALAR(1, 2); + DECLARE_RESULT_SCALAR(0, 3); DECLARE_RESULT_SCALAR(1, 3); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_SCALAR(x, 0); + BROADCAST_LOAD_A_SCALAR(x, 1); + BROADCAST_LOAD_A_SCALAR(x, 2); + BROADCAST_LOAD_A_SCALAR(x, 3); + + LOAD_B_SCALAR(0, x); LOAD_B_SCALAR(1, x); + + MATMUL_SCALAR(0, 0); MATMUL_SCALAR(1, 0); + MATMUL_SCALAR(0, 1); MATMUL_SCALAR(1, 1); + MATMUL_SCALAR(0, 2); MATMUL_SCALAR(1, 2); + MATMUL_SCALAR(0, 3); MATMUL_SCALAR(1, 3); + } + STORE_SCALAR(0, 0); STORE_SCALAR(1, 0); + STORE_SCALAR(0, 1); STORE_SCALAR(1, 1); + STORE_SCALAR(0, 2); STORE_SCALAR(1, 2); + STORE_SCALAR(0, 3); STORE_SCALAR(1, 3); + } + + for (; j < N; j++) { + DECLARE_RESULT_SCALAR(0, 0) + DECLARE_RESULT_SCALAR(0, 1) + DECLARE_RESULT_SCALAR(0, 2) + DECLARE_RESULT_SCALAR(0, 3) + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_SCALAR(0, 0); + BROADCAST_LOAD_A_SCALAR(0, 1); + BROADCAST_LOAD_A_SCALAR(0, 2); + BROADCAST_LOAD_A_SCALAR(0, 3); + + LOAD_B_SCALAR(0, 0); + + MATMUL_SCALAR(0, 0); + MATMUL_SCALAR(0, 1); + MATMUL_SCALAR(0, 2); + MATMUL_SCALAR(0, 3); + } + STORE_SCALAR(0, 0); + STORE_SCALAR(0, 1); + STORE_SCALAR(0, 2); + STORE_SCALAR(0, 3); + } + } + + for (; i < m2; i+=2) { + j = 0; + + for (; j < n64; j+= 64) { + DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0); + DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1); + + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_512(x, 0); + BROADCAST_LOAD_A_512(x, 1); + + LOAD_B_512(0, x); LOAD_B_512(1, x); LOAD_B_512(2, x); LOAD_B_512(3, x); + + MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0); + MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1); + } + STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0); + STORE_512(0, 1); STORE_512(1, 1); STORE_512(2, 1); STORE_512(3, 1); + } + + for (; j < n32; j+= 32) { + DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); + DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_512(x, 0); + BROADCAST_LOAD_A_512(x, 1); + + LOAD_B_512(0, x); LOAD_B_512(1, x); + + MATMUL_512(0, 0); MATMUL_512(1, 0); + MATMUL_512(0, 1); MATMUL_512(1, 1); + } + STORE_512(0, 0); STORE_512(1, 0); + STORE_512(0, 1); STORE_512(1, 1); + } + + + for (; j < n16; j+= 16) { + DECLARE_RESULT_512(0, 0); + DECLARE_RESULT_512(0, 1); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_512(x, 0); + BROADCAST_LOAD_A_512(x, 1); + + LOAD_B_512(0, x); + + MATMUL_512(0, 0); + MATMUL_512(0, 1); + } + STORE_512(0, 0); + STORE_512(0, 1); + } + + for (; j < n8; j+= 8) { + DECLARE_RESULT_256(0, 0); + DECLARE_RESULT_256(0, 1); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_256(x, 0); + BROADCAST_LOAD_A_256(x, 1); + + LOAD_B_256(0, x); + + MATMUL_256(0, 0); + MATMUL_256(0, 1); + } + STORE_256(0, 0); + STORE_256(0, 1); + } + + for (; j < n4; j+= 4) { + DECLARE_RESULT_128(0, 0); + DECLARE_RESULT_128(0, 1); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_128(x, 0); + BROADCAST_LOAD_A_128(x, 1); + + LOAD_B_128(0, x); + + MATMUL_128(0, 0); + MATMUL_128(0, 1); + } + STORE_128(0, 0); + STORE_128(0, 1); + } + for (; j < n2; j+= 2) { + DECLARE_RESULT_SCALAR(0, 0); DECLARE_RESULT_SCALAR(1, 0); + DECLARE_RESULT_SCALAR(0, 1); DECLARE_RESULT_SCALAR(1, 1); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_SCALAR(x, 0); + BROADCAST_LOAD_A_SCALAR(x, 1); + + LOAD_B_SCALAR(0, x); LOAD_B_SCALAR(1, x); + + MATMUL_SCALAR(0, 0); MATMUL_SCALAR(1, 0); + MATMUL_SCALAR(0, 1); MATMUL_SCALAR(1, 1); + } + STORE_SCALAR(0, 0); STORE_SCALAR(1, 0); + STORE_SCALAR(0, 1); STORE_SCALAR(1, 1); + } + + for (; j < N; j++) { + DECLARE_RESULT_SCALAR(0, 0); + DECLARE_RESULT_SCALAR(0, 1); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_SCALAR(0, 0); + BROADCAST_LOAD_A_SCALAR(0, 1); + + LOAD_B_SCALAR(0, 0); + + MATMUL_SCALAR(0, 0); + MATMUL_SCALAR(0, 1); + } + STORE_SCALAR(0, 0); + STORE_SCALAR(0, 1); + } + } + + for (; i < M; i+=1) { + j = 0; + for (; j < n64; j+= 64) { + DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_512(x, 0); + LOAD_B_512(0, x); LOAD_B_512(1, x); LOAD_B_512(2, x); LOAD_B_512(3, x); + MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0); + } + STORE_512(0, 0); STORE_512(1, 0); STORE_512(2, 0); STORE_512(3, 0); + } + for (; j < n32; j+= 32) { + DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_512(x, 0); + LOAD_B_512(0, x); LOAD_B_512(1, x); + MATMUL_512(0, 0); MATMUL_512(1, 0); + } + STORE_512(0, 0); STORE_512(1, 0); + } + + + for (; j < n16; j+= 16) { + DECLARE_RESULT_512(0, 0); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_512(x, 0); + + LOAD_B_512(0, x); + + MATMUL_512(0, 0); + } + STORE_512(0, 0); + } + + for (; j < n8; j+= 8) { + DECLARE_RESULT_256(0, 0); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_256(x, 0); + LOAD_B_256(0, x); + MATMUL_256(0, 0); + } + STORE_256(0, 0); + } + + for (; j < n4; j+= 4) { + DECLARE_RESULT_128(0, 0); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_128(x, 0); + LOAD_B_128(0, x); + MATMUL_128(0, 0); + } + STORE_128(0, 0); + } + + for (; j < n2; j+= 2) { + DECLARE_RESULT_SCALAR(0, 0); DECLARE_RESULT_SCALAR(1, 0); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_SCALAR(x, 0); + LOAD_B_SCALAR(0, 0); LOAD_B_SCALAR(1, 0); + MATMUL_SCALAR(0, 0); MATMUL_SCALAR(1, 0); + } + STORE_SCALAR(0, 0); STORE_SCALAR(1, 0); + } + + for (; j < N; j++) { + DECLARE_RESULT_SCALAR(0, 0); + + for (k = 0; k < K; k++) { + BROADCAST_LOAD_A_SCALAR(0, 0); + LOAD_B_SCALAR(0, 0); + MATMUL_SCALAR(0, 0); + } + STORE_SCALAR(0, 0); + } + } +} \ No newline at end of file diff --git a/param.h b/param.h index 8f56cdaaa..7a18d82d7 100644 --- a/param.h +++ b/param.h @@ -1628,6 +1628,7 @@ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #define SWITCH_RATIO 32 #define GEMM_PREFERED_SIZE 32 +#define USE_SGEMM_KERNEL_DIRECT 1 #ifdef ARCH_X86