Update LAPACK to 3.9.0
This commit is contained in:
parent
688af253bf
commit
a421ab9ce2
|
@ -82,7 +82,7 @@
|
|||
*> \param[out] DELTA
|
||||
*> \verbatim
|
||||
*> DELTA is DOUBLE PRECISION array, dimension (N)
|
||||
*> If N .GT. 2, DELTA contains (D(j) - lambda_I) in its j-th
|
||||
*> If N > 2, DELTA contains (D(j) - lambda_I) in its j-th
|
||||
*> component. If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5
|
||||
*> for detail. The vector DELTA contains the information necessary
|
||||
*> to construct the eigenvectors by DLAED3 and DLAED9.
|
||||
|
|
|
@ -353,7 +353,7 @@
|
|||
Z( I ) = W( INDX( I ) )
|
||||
40 CONTINUE
|
||||
*
|
||||
* Calculate the allowable deflation tolerence
|
||||
* Calculate the allowable deflation tolerance
|
||||
*
|
||||
IMAX = IDAMAX( N, Z, 1 )
|
||||
JMAX = IDAMAX( N, D, 1 )
|
||||
|
|
|
@ -125,7 +125,7 @@
|
|||
*> then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
|
||||
*> returns the smallest positive integer j such that
|
||||
*>
|
||||
*> abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
|
||||
*> abs( u(j,j) ) <= norm( (T - lambda*I)(j) )*TOL,
|
||||
*>
|
||||
*> where norm( A(j) ) denotes the sum of the absolute values of
|
||||
*> the jth row of the matrix A. If no such j exists then IN(n)
|
||||
|
@ -138,7 +138,7 @@
|
|||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> .lt. 0: if INFO = -k, the kth argument had an illegal value
|
||||
*> < 0: if INFO = -k, the kth argument had an illegal value
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
|
|
|
@ -122,12 +122,12 @@
|
|||
*> \param[in,out] TOL
|
||||
*> \verbatim
|
||||
*> TOL is DOUBLE PRECISION
|
||||
*> On entry, with JOB .lt. 0, TOL should be the minimum
|
||||
*> On entry, with JOB < 0, TOL should be the minimum
|
||||
*> perturbation to be made to very small diagonal elements of U.
|
||||
*> TOL should normally be chosen as about eps*norm(U), where eps
|
||||
*> is the relative machine precision, but if TOL is supplied as
|
||||
*> non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
|
||||
*> If JOB .gt. 0 then TOL is not referenced.
|
||||
*> If JOB > 0 then TOL is not referenced.
|
||||
*>
|
||||
*> On exit, TOL is changed as described above, only if TOL is
|
||||
*> non-positive on entry. Otherwise TOL is unchanged.
|
||||
|
@ -137,8 +137,8 @@
|
|||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> .lt. 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*> .gt. 0: overflow would occur when computing the INFO(th)
|
||||
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*> > 0: overflow would occur when computing the INFO(th)
|
||||
*> element of the solution vector x. This can only occur
|
||||
*> when JOB is supplied as positive and either means
|
||||
*> that a diagonal element of U is very small, or that
|
||||
|
|
|
@ -151,25 +151,25 @@
|
|||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> .GT. 0: If INFO = i, DLAHQR failed to compute all the
|
||||
*> > 0: If INFO = i, DLAHQR failed to compute all the
|
||||
*> eigenvalues ILO to IHI in a total of 30 iterations
|
||||
*> per eigenvalue; elements i+1:ihi of WR and WI
|
||||
*> contain those eigenvalues which have been
|
||||
*> successfully computed.
|
||||
*>
|
||||
*> If INFO .GT. 0 and WANTT is .FALSE., then on exit,
|
||||
*> If INFO > 0 and WANTT is .FALSE., then on exit,
|
||||
*> the remaining unconverged eigenvalues are the
|
||||
*> eigenvalues of the upper Hessenberg matrix rows
|
||||
*> and columns ILO thorugh INFO of the final, output
|
||||
*> and columns ILO through INFO of the final, output
|
||||
*> value of H.
|
||||
*>
|
||||
*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
|
||||
*> If INFO > 0 and WANTT is .TRUE., then on exit
|
||||
*> (*) (initial value of H)*U = U*(final value of H)
|
||||
*> where U is an orthognal matrix. The final
|
||||
*> where U is an orthogonal matrix. The final
|
||||
*> value of H is upper Hessenberg and triangular in
|
||||
*> rows and columns INFO+1 through IHI.
|
||||
*>
|
||||
*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
|
||||
*> If INFO > 0 and WANTZ is .TRUE., then on exit
|
||||
*> (final value of Z) = (initial value of Z)*U
|
||||
*> where U is the orthogonal matrix in (*)
|
||||
*> (regardless of the value of WANTT.)
|
||||
|
|
|
@ -49,7 +49,7 @@
|
|||
*> the first column of each being the real part and the second
|
||||
*> being the imaginary part.
|
||||
*>
|
||||
*> "s" is a scaling factor (.LE. 1), computed by DLALN2, which is
|
||||
*> "s" is a scaling factor (<= 1), computed by DLALN2, which is
|
||||
*> so chosen that X can be computed without overflow. X is further
|
||||
*> scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
|
||||
*> than overflow.
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
*> \brief \b DLAMSWLQ
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
*> \brief \b DLAMTSQR
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
|
|
|
@ -129,6 +129,7 @@
|
|||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* December 2016
|
||||
*
|
||||
IMPLICIT NONE
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER NORM
|
||||
INTEGER KL, KU, LDAB, N
|
||||
|
@ -139,22 +140,24 @@
|
|||
*
|
||||
* =====================================================================
|
||||
*
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ONE, ZERO
|
||||
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, J, K, L
|
||||
DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
|
||||
DOUBLE PRECISION SUM, VALUE, TEMP
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME, DISNAN
|
||||
EXTERNAL LSAME, DISNAN
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ, DCOMBSSQ
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MAX, MIN, SQRT
|
||||
* ..
|
||||
|
@ -206,15 +209,22 @@
|
|||
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
||||
*
|
||||
* Find normF(A).
|
||||
* SSQ(1) is scale
|
||||
* SSQ(2) is sum-of-squares
|
||||
* For better accuracy, sum each column separately.
|
||||
*
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
DO 90 J = 1, N
|
||||
L = MAX( 1, J-KU )
|
||||
K = KU + 1 - J + L
|
||||
CALL DLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
90 CONTINUE
|
||||
VALUE = SCALE*SQRT( SUM )
|
||||
VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
|
||||
END IF
|
||||
*
|
||||
DLANGB = VALUE
|
||||
|
|
|
@ -119,6 +119,7 @@
|
|||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* December 2016
|
||||
*
|
||||
IMPLICIT NONE
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER NORM
|
||||
INTEGER LDA, M, N
|
||||
|
@ -135,10 +136,13 @@
|
|||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, J
|
||||
DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
|
||||
DOUBLE PRECISION SUM, VALUE, TEMP
|
||||
* ..
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ
|
||||
EXTERNAL DLASSQ, DCOMBSSQ
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME, DISNAN
|
||||
|
@ -194,13 +198,19 @@
|
|||
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
||||
*
|
||||
* Find normF(A).
|
||||
* SSQ(1) is scale
|
||||
* SSQ(2) is sum-of-squares
|
||||
* For better accuracy, sum each column separately.
|
||||
*
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
DO 90 J = 1, N
|
||||
CALL DLASSQ( M, A( 1, J ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( M, A( 1, J ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
90 CONTINUE
|
||||
VALUE = SCALE*SQRT( SUM )
|
||||
VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
|
||||
END IF
|
||||
*
|
||||
DLANGE = VALUE
|
||||
|
|
|
@ -113,6 +113,7 @@
|
|||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* December 2016
|
||||
*
|
||||
IMPLICIT NONE
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER NORM
|
||||
INTEGER LDA, N
|
||||
|
@ -129,15 +130,18 @@
|
|||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, J
|
||||
DOUBLE PRECISION SCALE, SUM, VALUE
|
||||
DOUBLE PRECISION SUM, VALUE
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME, DISNAN
|
||||
EXTERNAL LSAME, DISNAN
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ, DCOMBSSQ
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MIN, SQRT
|
||||
* ..
|
||||
|
@ -188,13 +192,20 @@
|
|||
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
||||
*
|
||||
* Find normF(A).
|
||||
* SSQ(1) is scale
|
||||
* SSQ(2) is sum-of-squares
|
||||
* For better accuracy, sum each column separately.
|
||||
*
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
DO 90 J = 1, N
|
||||
CALL DLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( MIN( N, J+1 ), A( 1, J ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
90 CONTINUE
|
||||
VALUE = SCALE*SQRT( SUM )
|
||||
VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
|
||||
END IF
|
||||
*
|
||||
DLANHS = VALUE
|
||||
|
|
|
@ -134,6 +134,7 @@
|
|||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* December 2016
|
||||
*
|
||||
IMPLICIT NONE
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER NORM, UPLO
|
||||
INTEGER K, LDAB, N
|
||||
|
@ -150,15 +151,18 @@
|
|||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, J, L
|
||||
DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
|
||||
DOUBLE PRECISION ABSA, SUM, VALUE
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME, DISNAN
|
||||
EXTERNAL LSAME, DISNAN
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ, DCOMBSSQ
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MAX, MIN, SQRT
|
||||
* ..
|
||||
|
@ -225,29 +229,47 @@
|
|||
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
||||
*
|
||||
* Find normF(A).
|
||||
* SSQ(1) is scale
|
||||
* SSQ(2) is sum-of-squares
|
||||
* For better accuracy, sum each column separately.
|
||||
*
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
*
|
||||
* Sum off-diagonals
|
||||
*
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
IF( K.GT.0 ) THEN
|
||||
IF( LSAME( UPLO, 'U' ) ) THEN
|
||||
DO 110 J = 2, N
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
|
||||
$ 1, SCALE, SUM )
|
||||
$ 1, COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
110 CONTINUE
|
||||
L = K + 1
|
||||
ELSE
|
||||
DO 120 J = 1, N - 1
|
||||
CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
|
||||
$ SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
120 CONTINUE
|
||||
L = 1
|
||||
END IF
|
||||
SUM = 2*SUM
|
||||
SSQ( 2 ) = 2*SSQ( 2 )
|
||||
ELSE
|
||||
L = 1
|
||||
END IF
|
||||
CALL DLASSQ( N, AB( L, 1 ), LDAB, SCALE, SUM )
|
||||
VALUE = SCALE*SQRT( SUM )
|
||||
*
|
||||
* Sum diagonal
|
||||
*
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( N, AB( L, 1 ), LDAB, COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
|
||||
END IF
|
||||
*
|
||||
DLANSB = VALUE
|
||||
|
|
|
@ -119,6 +119,7 @@
|
|||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* December 2016
|
||||
*
|
||||
IMPLICIT NONE
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER NORM, UPLO
|
||||
INTEGER N
|
||||
|
@ -135,15 +136,18 @@
|
|||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, J, K
|
||||
DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
|
||||
DOUBLE PRECISION ABSA, SUM, VALUE
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME, DISNAN
|
||||
EXTERNAL LSAME, DISNAN
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ, DCOMBSSQ
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, SQRT
|
||||
* ..
|
||||
|
@ -217,31 +221,48 @@
|
|||
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
||||
*
|
||||
* Find normF(A).
|
||||
* SSQ(1) is scale
|
||||
* SSQ(2) is sum-of-squares
|
||||
* For better accuracy, sum each column separately.
|
||||
*
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
*
|
||||
* Sum off-diagonals
|
||||
*
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
K = 2
|
||||
IF( LSAME( UPLO, 'U' ) ) THEN
|
||||
DO 110 J = 2, N
|
||||
CALL DLASSQ( J-1, AP( K ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( J-1, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
K = K + J
|
||||
110 CONTINUE
|
||||
ELSE
|
||||
DO 120 J = 1, N - 1
|
||||
CALL DLASSQ( N-J, AP( K ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( N-J, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
K = K + N - J + 1
|
||||
120 CONTINUE
|
||||
END IF
|
||||
SUM = 2*SUM
|
||||
SSQ( 2 ) = 2*SSQ( 2 )
|
||||
*
|
||||
* Sum diagonal
|
||||
*
|
||||
K = 1
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
DO 130 I = 1, N
|
||||
IF( AP( K ).NE.ZERO ) THEN
|
||||
ABSA = ABS( AP( K ) )
|
||||
IF( SCALE.LT.ABSA ) THEN
|
||||
SUM = ONE + SUM*( SCALE / ABSA )**2
|
||||
SCALE = ABSA
|
||||
IF( COLSSQ( 1 ).LT.ABSA ) THEN
|
||||
COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2
|
||||
COLSSQ( 1 ) = ABSA
|
||||
ELSE
|
||||
SUM = SUM + ( ABSA / SCALE )**2
|
||||
COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2
|
||||
END IF
|
||||
END IF
|
||||
IF( LSAME( UPLO, 'U' ) ) THEN
|
||||
|
@ -250,7 +271,8 @@
|
|||
K = K + N - I + 1
|
||||
END IF
|
||||
130 CONTINUE
|
||||
VALUE = SCALE*SQRT( SUM )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
|
||||
END IF
|
||||
*
|
||||
DLANSP = VALUE
|
||||
|
|
|
@ -127,6 +127,7 @@
|
|||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* December 2016
|
||||
*
|
||||
IMPLICIT NONE
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER NORM, UPLO
|
||||
INTEGER LDA, N
|
||||
|
@ -143,15 +144,18 @@
|
|||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, J
|
||||
DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
|
||||
DOUBLE PRECISION ABSA, SUM, VALUE
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME, DISNAN
|
||||
EXTERNAL LSAME, DISNAN
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ, DCOMBSSQ
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, SQRT
|
||||
* ..
|
||||
|
@ -216,21 +220,39 @@
|
|||
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
||||
*
|
||||
* Find normF(A).
|
||||
* SSQ(1) is scale
|
||||
* SSQ(2) is sum-of-squares
|
||||
* For better accuracy, sum each column separately.
|
||||
*
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
*
|
||||
* Sum off-diagonals
|
||||
*
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
IF( LSAME( UPLO, 'U' ) ) THEN
|
||||
DO 110 J = 2, N
|
||||
CALL DLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( J-1, A( 1, J ), 1, COLSSQ(1), COLSSQ(2) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
110 CONTINUE
|
||||
ELSE
|
||||
DO 120 J = 1, N - 1
|
||||
CALL DLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( N-J, A( J+1, J ), 1, COLSSQ(1), COLSSQ(2) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
120 CONTINUE
|
||||
END IF
|
||||
SUM = 2*SUM
|
||||
CALL DLASSQ( N, A, LDA+1, SCALE, SUM )
|
||||
VALUE = SCALE*SQRT( SUM )
|
||||
SSQ( 2 ) = 2*SSQ( 2 )
|
||||
*
|
||||
* Sum diagonal
|
||||
*
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( N, A, LDA+1, COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
|
||||
END IF
|
||||
*
|
||||
DLANSY = VALUE
|
||||
|
|
|
@ -145,6 +145,7 @@
|
|||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* December 2016
|
||||
*
|
||||
IMPLICIT NONE
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER DIAG, NORM, UPLO
|
||||
INTEGER K, LDAB, N
|
||||
|
@ -162,15 +163,18 @@
|
|||
* .. Local Scalars ..
|
||||
LOGICAL UDIAG
|
||||
INTEGER I, J, L
|
||||
DOUBLE PRECISION SCALE, SUM, VALUE
|
||||
DOUBLE PRECISION SUM, VALUE
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME, DISNAN
|
||||
EXTERNAL LSAME, DISNAN
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ, DCOMBSSQ
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MAX, MIN, SQRT
|
||||
* ..
|
||||
|
@ -311,46 +315,61 @@
|
|||
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
||||
*
|
||||
* Find normF(A).
|
||||
* SSQ(1) is scale
|
||||
* SSQ(2) is sum-of-squares
|
||||
* For better accuracy, sum each column separately.
|
||||
*
|
||||
IF( LSAME( UPLO, 'U' ) ) THEN
|
||||
IF( LSAME( DIAG, 'U' ) ) THEN
|
||||
SCALE = ONE
|
||||
SUM = N
|
||||
SSQ( 1 ) = ONE
|
||||
SSQ( 2 ) = N
|
||||
IF( K.GT.0 ) THEN
|
||||
DO 280 J = 2, N
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( MIN( J-1, K ),
|
||||
$ AB( MAX( K+2-J, 1 ), J ), 1, SCALE,
|
||||
$ SUM )
|
||||
$ AB( MAX( K+2-J, 1 ), J ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
280 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
DO 290 J = 1, N
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
|
||||
$ 1, SCALE, SUM )
|
||||
$ 1, COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
290 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IF( LSAME( DIAG, 'U' ) ) THEN
|
||||
SCALE = ONE
|
||||
SUM = N
|
||||
SSQ( 1 ) = ONE
|
||||
SSQ( 2 ) = N
|
||||
IF( K.GT.0 ) THEN
|
||||
DO 300 J = 1, N - 1
|
||||
CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
|
||||
$ SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
300 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
DO 310 J = 1, N
|
||||
CALL DLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1, SCALE,
|
||||
$ SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
310 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
VALUE = SCALE*SQRT( SUM )
|
||||
VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
|
||||
END IF
|
||||
*
|
||||
DLANTB = VALUE
|
||||
|
|
|
@ -129,6 +129,7 @@
|
|||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* December 2016
|
||||
*
|
||||
IMPLICIT NONE
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER DIAG, NORM, UPLO
|
||||
INTEGER N
|
||||
|
@ -146,15 +147,18 @@
|
|||
* .. Local Scalars ..
|
||||
LOGICAL UDIAG
|
||||
INTEGER I, J, K
|
||||
DOUBLE PRECISION SCALE, SUM, VALUE
|
||||
DOUBLE PRECISION SUM, VALUE
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME, DISNAN
|
||||
EXTERNAL LSAME, DISNAN
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ, DCOMBSSQ
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, SQRT
|
||||
* ..
|
||||
|
@ -306,45 +310,64 @@
|
|||
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
||||
*
|
||||
* Find normF(A).
|
||||
* SSQ(1) is scale
|
||||
* SSQ(2) is sum-of-squares
|
||||
* For better accuracy, sum each column separately.
|
||||
*
|
||||
IF( LSAME( UPLO, 'U' ) ) THEN
|
||||
IF( LSAME( DIAG, 'U' ) ) THEN
|
||||
SCALE = ONE
|
||||
SUM = N
|
||||
SSQ( 1 ) = ONE
|
||||
SSQ( 2 ) = N
|
||||
K = 2
|
||||
DO 280 J = 2, N
|
||||
CALL DLASSQ( J-1, AP( K ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( J-1, AP( K ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
K = K + J
|
||||
280 CONTINUE
|
||||
ELSE
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
K = 1
|
||||
DO 290 J = 1, N
|
||||
CALL DLASSQ( J, AP( K ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( J, AP( K ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
K = K + J
|
||||
290 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IF( LSAME( DIAG, 'U' ) ) THEN
|
||||
SCALE = ONE
|
||||
SUM = N
|
||||
SSQ( 1 ) = ONE
|
||||
SSQ( 2 ) = N
|
||||
K = 2
|
||||
DO 300 J = 1, N - 1
|
||||
CALL DLASSQ( N-J, AP( K ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( N-J, AP( K ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
K = K + N - J + 1
|
||||
300 CONTINUE
|
||||
ELSE
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
K = 1
|
||||
DO 310 J = 1, N
|
||||
CALL DLASSQ( N-J+1, AP( K ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( N-J+1, AP( K ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
K = K + N - J + 1
|
||||
310 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
VALUE = SCALE*SQRT( SUM )
|
||||
VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
|
||||
END IF
|
||||
*
|
||||
DLANTP = VALUE
|
||||
|
|
|
@ -146,6 +146,7 @@
|
|||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* December 2016
|
||||
*
|
||||
IMPLICIT NONE
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER DIAG, NORM, UPLO
|
||||
INTEGER LDA, M, N
|
||||
|
@ -163,15 +164,18 @@
|
|||
* .. Local Scalars ..
|
||||
LOGICAL UDIAG
|
||||
INTEGER I, J
|
||||
DOUBLE PRECISION SCALE, SUM, VALUE
|
||||
DOUBLE PRECISION SUM, VALUE
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME, DISNAN
|
||||
EXTERNAL LSAME, DISNAN
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DLASSQ, DCOMBSSQ
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MIN, SQRT
|
||||
* ..
|
||||
|
@ -281,7 +285,7 @@
|
|||
END IF
|
||||
ELSE
|
||||
IF( LSAME( DIAG, 'U' ) ) THEN
|
||||
DO 210 I = 1, N
|
||||
DO 210 I = 1, MIN( M, N )
|
||||
WORK( I ) = ONE
|
||||
210 CONTINUE
|
||||
DO 220 I = N + 1, M
|
||||
|
@ -311,38 +315,56 @@
|
|||
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
|
||||
*
|
||||
* Find normF(A).
|
||||
* SSQ(1) is scale
|
||||
* SSQ(2) is sum-of-squares
|
||||
* For better accuracy, sum each column separately.
|
||||
*
|
||||
IF( LSAME( UPLO, 'U' ) ) THEN
|
||||
IF( LSAME( DIAG, 'U' ) ) THEN
|
||||
SCALE = ONE
|
||||
SUM = MIN( M, N )
|
||||
SSQ( 1 ) = ONE
|
||||
SSQ( 2 ) = MIN( M, N )
|
||||
DO 290 J = 2, N
|
||||
CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
290 CONTINUE
|
||||
ELSE
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
DO 300 J = 1, N
|
||||
CALL DLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( MIN( M, J ), A( 1, J ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
300 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IF( LSAME( DIAG, 'U' ) ) THEN
|
||||
SCALE = ONE
|
||||
SUM = MIN( M, N )
|
||||
SSQ( 1 ) = ONE
|
||||
SSQ( 2 ) = MIN( M, N )
|
||||
DO 310 J = 1, N
|
||||
CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
|
||||
$ SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
310 CONTINUE
|
||||
ELSE
|
||||
SCALE = ZERO
|
||||
SUM = ONE
|
||||
SSQ( 1 ) = ZERO
|
||||
SSQ( 2 ) = ONE
|
||||
DO 320 J = 1, N
|
||||
CALL DLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
|
||||
COLSSQ( 1 ) = ZERO
|
||||
COLSSQ( 2 ) = ONE
|
||||
CALL DLASSQ( M-J+1, A( J, J ), 1,
|
||||
$ COLSSQ( 1 ), COLSSQ( 2 ) )
|
||||
CALL DCOMBSSQ( SSQ, COLSSQ )
|
||||
320 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
VALUE = SCALE*SQRT( SUM )
|
||||
VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
|
||||
END IF
|
||||
*
|
||||
DLANTR = VALUE
|
||||
|
|
|
@ -161,7 +161,6 @@
|
|||
IF( C.EQ.ZERO ) THEN
|
||||
CS = ONE
|
||||
SN = ZERO
|
||||
GO TO 10
|
||||
*
|
||||
ELSE IF( B.EQ.ZERO ) THEN
|
||||
*
|
||||
|
@ -174,12 +173,12 @@
|
|||
A = TEMP
|
||||
B = -C
|
||||
C = ZERO
|
||||
GO TO 10
|
||||
*
|
||||
ELSE IF( ( A-D ).EQ.ZERO .AND. SIGN( ONE, B ).NE.SIGN( ONE, C ) )
|
||||
$ THEN
|
||||
CS = ONE
|
||||
SN = ZERO
|
||||
GO TO 10
|
||||
*
|
||||
ELSE
|
||||
*
|
||||
TEMP = A - D
|
||||
|
@ -207,6 +206,7 @@
|
|||
SN = C / TAU
|
||||
B = B - C
|
||||
C = ZERO
|
||||
*
|
||||
ELSE
|
||||
*
|
||||
* Complex eigenvalues, or real (almost) equal eigenvalues.
|
||||
|
@ -268,8 +268,6 @@
|
|||
END IF
|
||||
*
|
||||
END IF
|
||||
*
|
||||
10 CONTINUE
|
||||
*
|
||||
* Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
|
||||
*
|
||||
|
|
|
@ -0,0 +1,248 @@
|
|||
*> \brief \b DLAORHR_COL_GETRFNP
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DLAORHR_COL_GETRFNP + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INFO, LDA, M, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A( LDA, * ), D( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLAORHR_COL_GETRFNP computes the modified LU factorization without
|
||||
*> pivoting of a real general M-by-N matrix A. The factorization has
|
||||
*> the form:
|
||||
*>
|
||||
*> A - S = L * U,
|
||||
*>
|
||||
*> where:
|
||||
*> S is a m-by-n diagonal sign matrix with the diagonal D, so that
|
||||
*> D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
|
||||
*> as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
|
||||
*> i-1 steps of Gaussian elimination. This means that the diagonal
|
||||
*> element at each step of "modified" Gaussian elimination is
|
||||
*> at least one in absolute value (so that division-by-zero not
|
||||
*> not possible during the division by the diagonal element);
|
||||
*>
|
||||
*> L is a M-by-N lower triangular matrix with unit diagonal elements
|
||||
*> (lower trapezoidal if M > N);
|
||||
*>
|
||||
*> and U is a M-by-N upper triangular matrix
|
||||
*> (upper trapezoidal if M < N).
|
||||
*>
|
||||
*> This routine is an auxiliary routine used in the Householder
|
||||
*> reconstruction routine DORHR_COL. In DORHR_COL, this routine is
|
||||
*> applied to an M-by-N matrix A with orthonormal columns, where each
|
||||
*> element is bounded by one in absolute value. With the choice of
|
||||
*> the matrix S above, one can show that the diagonal element at each
|
||||
*> step of Gaussian elimination is the largest (in absolute value) in
|
||||
*> the column on or below the diagonal, so that no pivoting is required
|
||||
*> for numerical stability [1].
|
||||
*>
|
||||
*> For more details on the Householder reconstruction algorithm,
|
||||
*> including the modified LU factorization, see [1].
|
||||
*>
|
||||
*> This is the blocked right-looking version of the algorithm,
|
||||
*> calling Level 3 BLAS to update the submatrix. To factorize a block,
|
||||
*> this routine calls the recursive routine DLAORHR_COL_GETRFNP2.
|
||||
*>
|
||||
*> [1] "Reconstructing Householder vectors from tall-skinny QR",
|
||||
*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
|
||||
*> E. Solomonik, J. Parallel Distrib. Comput.,
|
||||
*> vol. 85, pp. 3-31, 2015.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> The number of rows of the matrix A. M >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of columns of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> On entry, the M-by-N matrix to be factored.
|
||||
*> On exit, the factors L and U from the factorization
|
||||
*> A-S=L*U; the unit diagonal elements of L are not stored.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(1,M).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] D
|
||||
*> \verbatim
|
||||
*> D is DOUBLE PRECISION array, dimension min(M,N)
|
||||
*> The diagonal elements of the diagonal M-by-N sign matrix S,
|
||||
*> D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can
|
||||
*> be only plus or minus one.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*> \endverbatim
|
||||
*>
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2019
|
||||
*
|
||||
*> \ingroup doubleGEcomputational
|
||||
*
|
||||
*> \par Contributors:
|
||||
* ==================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> November 2019, Igor Kozachenko,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
|
||||
IMPLICIT NONE
|
||||
*
|
||||
* -- LAPACK computational routine (version 3.9.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2019
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, M, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION A( LDA, * ), D( * )
|
||||
* ..
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ONE
|
||||
PARAMETER ( ONE = 1.0D+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER IINFO, J, JB, NB
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DGEMM, DLAORHR_COL_GETRFNP2, DTRSM, XERBLA
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
INTEGER ILAENV
|
||||
EXTERNAL ILAENV
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX, MIN
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF( M.LT.0 ) THEN
|
||||
INFO = -1
|
||||
ELSE IF( N.LT.0 ) THEN
|
||||
INFO = -2
|
||||
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||||
INFO = -4
|
||||
END IF
|
||||
IF( INFO.NE.0 ) THEN
|
||||
CALL XERBLA( 'DLAORHR_COL_GETRFNP', -INFO )
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( MIN( M, N ).EQ.0 )
|
||||
$ RETURN
|
||||
*
|
||||
* Determine the block size for this environment.
|
||||
*
|
||||
|
||||
NB = ILAENV( 1, 'DLAORHR_COL_GETRFNP', ' ', M, N, -1, -1 )
|
||||
|
||||
IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
|
||||
*
|
||||
* Use unblocked code.
|
||||
*
|
||||
CALL DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
|
||||
ELSE
|
||||
*
|
||||
* Use blocked code.
|
||||
*
|
||||
DO J = 1, MIN( M, N ), NB
|
||||
JB = MIN( MIN( M, N )-J+1, NB )
|
||||
*
|
||||
* Factor diagonal and subdiagonal blocks.
|
||||
*
|
||||
CALL DLAORHR_COL_GETRFNP2( M-J+1, JB, A( J, J ), LDA,
|
||||
$ D( J ), IINFO )
|
||||
*
|
||||
IF( J+JB.LE.N ) THEN
|
||||
*
|
||||
* Compute block row of U.
|
||||
*
|
||||
CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
|
||||
$ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
|
||||
$ LDA )
|
||||
IF( J+JB.LE.M ) THEN
|
||||
*
|
||||
* Update trailing submatrix.
|
||||
*
|
||||
CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,
|
||||
$ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
|
||||
$ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
|
||||
$ LDA )
|
||||
END IF
|
||||
END IF
|
||||
END DO
|
||||
END IF
|
||||
RETURN
|
||||
*
|
||||
* End of DLAORHR_COL_GETRFNP
|
||||
*
|
||||
END
|
|
@ -0,0 +1,305 @@
|
|||
*> \brief \b DLAORHR_COL_GETRFNP2
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DLAORHR_GETRF2NP + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp2.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp2.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp2.f">
|
||||
*> [TXT]</a>
|
||||
*> \endhtmlonly
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* RECURSIVE SUBROUTINE DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INFO, LDA, M, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A( LDA, * ), D( * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLAORHR_COL_GETRFNP2 computes the modified LU factorization without
|
||||
*> pivoting of a real general M-by-N matrix A. The factorization has
|
||||
*> the form:
|
||||
*>
|
||||
*> A - S = L * U,
|
||||
*>
|
||||
*> where:
|
||||
*> S is a m-by-n diagonal sign matrix with the diagonal D, so that
|
||||
*> D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
|
||||
*> as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
|
||||
*> i-1 steps of Gaussian elimination. This means that the diagonal
|
||||
*> element at each step of "modified" Gaussian elimination is at
|
||||
*> least one in absolute value (so that division-by-zero not
|
||||
*> possible during the division by the diagonal element);
|
||||
*>
|
||||
*> L is a M-by-N lower triangular matrix with unit diagonal elements
|
||||
*> (lower trapezoidal if M > N);
|
||||
*>
|
||||
*> and U is a M-by-N upper triangular matrix
|
||||
*> (upper trapezoidal if M < N).
|
||||
*>
|
||||
*> This routine is an auxiliary routine used in the Householder
|
||||
*> reconstruction routine DORHR_COL. In DORHR_COL, this routine is
|
||||
*> applied to an M-by-N matrix A with orthonormal columns, where each
|
||||
*> element is bounded by one in absolute value. With the choice of
|
||||
*> the matrix S above, one can show that the diagonal element at each
|
||||
*> step of Gaussian elimination is the largest (in absolute value) in
|
||||
*> the column on or below the diagonal, so that no pivoting is required
|
||||
*> for numerical stability [1].
|
||||
*>
|
||||
*> For more details on the Householder reconstruction algorithm,
|
||||
*> including the modified LU factorization, see [1].
|
||||
*>
|
||||
*> This is the recursive version of the LU factorization algorithm.
|
||||
*> Denote A - S by B. The algorithm divides the matrix B into four
|
||||
*> submatrices:
|
||||
*>
|
||||
*> [ B11 | B12 ] where B11 is n1 by n1,
|
||||
*> B = [ -----|----- ] B21 is (m-n1) by n1,
|
||||
*> [ B21 | B22 ] B12 is n1 by n2,
|
||||
*> B22 is (m-n1) by n2,
|
||||
*> with n1 = min(m,n)/2, n2 = n-n1.
|
||||
*>
|
||||
*>
|
||||
*> The subroutine calls itself to factor B11, solves for B21,
|
||||
*> solves for B12, updates B22, then calls itself to factor B22.
|
||||
*>
|
||||
*> For more details on the recursive LU algorithm, see [2].
|
||||
*>
|
||||
*> DLAORHR_COL_GETRFNP2 is called to factorize a block by the blocked
|
||||
*> routine DLAORHR_COL_GETRFNP, which uses blocked code calling
|
||||
*. Level 3 BLAS to update the submatrix. However, DLAORHR_COL_GETRFNP2
|
||||
*> is self-sufficient and can be used without DLAORHR_COL_GETRFNP.
|
||||
*>
|
||||
*> [1] "Reconstructing Householder vectors from tall-skinny QR",
|
||||
*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
|
||||
*> E. Solomonik, J. Parallel Distrib. Comput.,
|
||||
*> vol. 85, pp. 3-31, 2015.
|
||||
*>
|
||||
*> [2] "Recursion leads to automatic variable blocking for dense linear
|
||||
*> algebra algorithms", F. Gustavson, IBM J. of Res. and Dev.,
|
||||
*> vol. 41, no. 6, pp. 737-755, 1997.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> The number of rows of the matrix A. M >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of columns of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> On entry, the M-by-N matrix to be factored.
|
||||
*> On exit, the factors L and U from the factorization
|
||||
*> A-S=L*U; the unit diagonal elements of L are not stored.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(1,M).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] D
|
||||
*> \verbatim
|
||||
*> D is DOUBLE PRECISION array, dimension min(M,N)
|
||||
*> The diagonal elements of the diagonal M-by-N sign matrix S,
|
||||
*> D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can
|
||||
*> be only plus or minus one.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*> \endverbatim
|
||||
*>
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2019
|
||||
*
|
||||
*> \ingroup doubleGEcomputational
|
||||
*
|
||||
*> \par Contributors:
|
||||
* ==================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> November 2019, Igor Kozachenko,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
* =====================================================================
|
||||
RECURSIVE SUBROUTINE DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
|
||||
IMPLICIT NONE
|
||||
*
|
||||
* -- LAPACK computational routine (version 3.9.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2019
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, M, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION A( LDA, * ), D( * )
|
||||
* ..
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ONE
|
||||
PARAMETER ( ONE = 1.0D+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE PRECISION SFMIN
|
||||
INTEGER I, IINFO, N1, N2
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
DOUBLE PRECISION DLAMCH
|
||||
EXTERNAL DLAMCH
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DGEMM, DSCAL, DTRSM, XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, DSIGN, MAX, MIN
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test the input parameters
|
||||
*
|
||||
INFO = 0
|
||||
IF( M.LT.0 ) THEN
|
||||
INFO = -1
|
||||
ELSE IF( N.LT.0 ) THEN
|
||||
INFO = -2
|
||||
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||||
INFO = -4
|
||||
END IF
|
||||
IF( INFO.NE.0 ) THEN
|
||||
CALL XERBLA( 'DLAORHR_COL_GETRFNP2', -INFO )
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( MIN( M, N ).EQ.0 )
|
||||
$ RETURN
|
||||
|
||||
IF ( M.EQ.1 ) THEN
|
||||
*
|
||||
* One row case, (also recursion termination case),
|
||||
* use unblocked code
|
||||
*
|
||||
* Transfer the sign
|
||||
*
|
||||
D( 1 ) = -DSIGN( ONE, A( 1, 1 ) )
|
||||
*
|
||||
* Construct the row of U
|
||||
*
|
||||
A( 1, 1 ) = A( 1, 1 ) - D( 1 )
|
||||
*
|
||||
ELSE IF( N.EQ.1 ) THEN
|
||||
*
|
||||
* One column case, (also recursion termination case),
|
||||
* use unblocked code
|
||||
*
|
||||
* Transfer the sign
|
||||
*
|
||||
D( 1 ) = -DSIGN( ONE, A( 1, 1 ) )
|
||||
*
|
||||
* Construct the row of U
|
||||
*
|
||||
A( 1, 1 ) = A( 1, 1 ) - D( 1 )
|
||||
*
|
||||
* Scale the elements 2:M of the column
|
||||
*
|
||||
* Determine machine safe minimum
|
||||
*
|
||||
SFMIN = DLAMCH('S')
|
||||
*
|
||||
* Construct the subdiagonal elements of L
|
||||
*
|
||||
IF( ABS( A( 1, 1 ) ) .GE. SFMIN ) THEN
|
||||
CALL DSCAL( M-1, ONE / A( 1, 1 ), A( 2, 1 ), 1 )
|
||||
ELSE
|
||||
DO I = 2, M
|
||||
A( I, 1 ) = A( I, 1 ) / A( 1, 1 )
|
||||
END DO
|
||||
END IF
|
||||
*
|
||||
ELSE
|
||||
*
|
||||
* Divide the matrix B into four submatrices
|
||||
*
|
||||
N1 = MIN( M, N ) / 2
|
||||
N2 = N-N1
|
||||
|
||||
*
|
||||
* Factor B11, recursive call
|
||||
*
|
||||
CALL DLAORHR_COL_GETRFNP2( N1, N1, A, LDA, D, IINFO )
|
||||
*
|
||||
* Solve for B21
|
||||
*
|
||||
CALL DTRSM( 'R', 'U', 'N', 'N', M-N1, N1, ONE, A, LDA,
|
||||
$ A( N1+1, 1 ), LDA )
|
||||
*
|
||||
* Solve for B12
|
||||
*
|
||||
CALL DTRSM( 'L', 'L', 'N', 'U', N1, N2, ONE, A, LDA,
|
||||
$ A( 1, N1+1 ), LDA )
|
||||
*
|
||||
* Update B22, i.e. compute the Schur complement
|
||||
* B22 := B22 - B21*B12
|
||||
*
|
||||
CALL DGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( N1+1, 1 ), LDA,
|
||||
$ A( 1, N1+1 ), LDA, ONE, A( N1+1, N1+1 ), LDA )
|
||||
*
|
||||
* Factor B22, recursive call
|
||||
*
|
||||
CALL DLAORHR_COL_GETRFNP2( M-N1, N2, A( N1+1, N1+1 ), LDA,
|
||||
$ D( N1+1 ), IINFO )
|
||||
*
|
||||
END IF
|
||||
RETURN
|
||||
*
|
||||
* End of DLAORHR_COL_GETRFNP2
|
||||
*
|
||||
END
|
|
@ -127,7 +127,7 @@
|
|||
*> \param[in,out] AUXV
|
||||
*> \verbatim
|
||||
*> AUXV is DOUBLE PRECISION array, dimension (NB)
|
||||
*> Auxiliar vector.
|
||||
*> Auxiliary vector.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] F
|
||||
|
|
|
@ -67,7 +67,7 @@
|
|||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix H. N .GE. 0.
|
||||
*> The order of the matrix H. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ILO
|
||||
|
@ -79,12 +79,12 @@
|
|||
*> \verbatim
|
||||
*> IHI is INTEGER
|
||||
*> It is assumed that H is already upper triangular in rows
|
||||
*> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
|
||||
*> and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
|
||||
*> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
|
||||
*> previous call to DGEBAL, and then passed to DGEHRD when the
|
||||
*> matrix output by DGEBAL is reduced to Hessenberg form.
|
||||
*> Otherwise, ILO and IHI should be set to 1 and N,
|
||||
*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
|
||||
*> respectively. If N > 0, then 1 <= ILO <= IHI <= N.
|
||||
*> If N = 0, then ILO = 1 and IHI = 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
@ -97,19 +97,19 @@
|
|||
*> decomposition (the Schur form); 2-by-2 diagonal blocks
|
||||
*> (corresponding to complex conjugate pairs of eigenvalues)
|
||||
*> are returned in standard form, with H(i,i) = H(i+1,i+1)
|
||||
*> and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
|
||||
*> and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
|
||||
*> .FALSE., then the contents of H are unspecified on exit.
|
||||
*> (The output value of H when INFO.GT.0 is given under the
|
||||
*> (The output value of H when INFO > 0 is given under the
|
||||
*> description of INFO below.)
|
||||
*>
|
||||
*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
|
||||
*> This subroutine may explicitly set H(i,j) = 0 for i > j and
|
||||
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDH
|
||||
*> \verbatim
|
||||
*> LDH is INTEGER
|
||||
*> The leading dimension of the array H. LDH .GE. max(1,N).
|
||||
*> The leading dimension of the array H. LDH >= max(1,N).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WR
|
||||
|
@ -125,7 +125,7 @@
|
|||
*> and WI(ILO:IHI). If two eigenvalues are computed as a
|
||||
*> complex conjugate pair, they are stored in consecutive
|
||||
*> elements of WR and WI, say the i-th and (i+1)th, with
|
||||
*> WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
|
||||
*> WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
|
||||
*> the eigenvalues are stored in the same order as on the
|
||||
*> diagonal of the Schur form returned in H, with
|
||||
*> WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
|
||||
|
@ -143,7 +143,7 @@
|
|||
*> IHIZ is INTEGER
|
||||
*> Specify the rows of Z to which transformations must be
|
||||
*> applied if WANTZ is .TRUE..
|
||||
*> 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
|
||||
*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] Z
|
||||
|
@ -153,7 +153,7 @@
|
|||
*> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
|
||||
*> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
|
||||
*> orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
|
||||
*> (The output value of Z when INFO.GT.0 is given under
|
||||
*> (The output value of Z when INFO > 0 is given under
|
||||
*> the description of INFO below.)
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
@ -161,7 +161,7 @@
|
|||
*> \verbatim
|
||||
*> LDZ is INTEGER
|
||||
*> The leading dimension of the array Z. if WANTZ is .TRUE.
|
||||
*> then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
|
||||
*> then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
|
@ -174,7 +174,7 @@
|
|||
*> \param[in] LWORK
|
||||
*> \verbatim
|
||||
*> LWORK is INTEGER
|
||||
*> The dimension of the array WORK. LWORK .GE. max(1,N)
|
||||
*> The dimension of the array WORK. LWORK >= max(1,N)
|
||||
*> is sufficient, but LWORK typically as large as 6*N may
|
||||
*> be required for optimal performance. A workspace query
|
||||
*> to determine the optimal workspace size is recommended.
|
||||
|
@ -191,18 +191,18 @@
|
|||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> .GT. 0: if INFO = i, DLAQR0 failed to compute all of
|
||||
*> > 0: if INFO = i, DLAQR0 failed to compute all of
|
||||
*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
|
||||
*> and WI contain those eigenvalues which have been
|
||||
*> successfully computed. (Failures are rare.)
|
||||
*>
|
||||
*> If INFO .GT. 0 and WANT is .FALSE., then on exit,
|
||||
*> If INFO > 0 and WANT is .FALSE., then on exit,
|
||||
*> the remaining unconverged eigenvalues are the eigen-
|
||||
*> values of the upper Hessenberg matrix rows and
|
||||
*> columns ILO through INFO of the final, output
|
||||
*> value of H.
|
||||
*>
|
||||
*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
|
||||
*> If INFO > 0 and WANTT is .TRUE., then on exit
|
||||
*>
|
||||
*> (*) (initial value of H)*U = U*(final value of H)
|
||||
*>
|
||||
|
@ -210,7 +210,7 @@
|
|||
*> value of H is upper Hessenberg and quasi-triangular
|
||||
*> in rows and columns INFO+1 through IHI.
|
||||
*>
|
||||
*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
|
||||
*> If INFO > 0 and WANTZ is .TRUE., then on exit
|
||||
*>
|
||||
*> (final value of Z(ILO:IHI,ILOZ:IHIZ)
|
||||
*> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
|
||||
|
@ -218,7 +218,7 @@
|
|||
*> where U is the orthogonal matrix in (*) (regard-
|
||||
*> less of the value of WANTT.)
|
||||
*>
|
||||
*> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
|
||||
*> If INFO > 0 and WANTZ is .FALSE., then Z is not
|
||||
*> accessed.
|
||||
*> \endverbatim
|
||||
*
|
||||
|
@ -678,7 +678,7 @@
|
|||
END IF
|
||||
END IF
|
||||
*
|
||||
* ==== Use up to NS of the the smallest magnatiude
|
||||
* ==== Use up to NS of the the smallest magnitude
|
||||
* . shifts. If there aren't NS shifts available,
|
||||
* . then use them all, possibly dropping one to
|
||||
* . make the number of shifts even. ====
|
||||
|
|
|
@ -69,7 +69,7 @@
|
|||
*> \verbatim
|
||||
*> LDH is INTEGER
|
||||
*> The leading dimension of H as declared in
|
||||
*> the calling procedure. LDH.GE.N
|
||||
*> the calling procedure. LDH >= N
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] SR1
|
||||
|
|
|
@ -103,7 +103,7 @@
|
|||
*> \param[in] NW
|
||||
*> \verbatim
|
||||
*> NW is INTEGER
|
||||
*> Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
|
||||
*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] H
|
||||
|
@ -121,7 +121,7 @@
|
|||
*> \verbatim
|
||||
*> LDH is INTEGER
|
||||
*> Leading dimension of H just as declared in the calling
|
||||
*> subroutine. N .LE. LDH
|
||||
*> subroutine. N <= LDH
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ILOZ
|
||||
|
@ -133,7 +133,7 @@
|
|||
*> \verbatim
|
||||
*> IHIZ is INTEGER
|
||||
*> Specify the rows of Z to which transformations must be
|
||||
*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
|
||||
*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] Z
|
||||
|
@ -149,7 +149,7 @@
|
|||
*> \verbatim
|
||||
*> LDZ is INTEGER
|
||||
*> The leading dimension of Z just as declared in the
|
||||
*> calling subroutine. 1 .LE. LDZ.
|
||||
*> calling subroutine. 1 <= LDZ.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] NS
|
||||
|
@ -194,13 +194,13 @@
|
|||
*> \verbatim
|
||||
*> LDV is INTEGER
|
||||
*> The leading dimension of V just as declared in the
|
||||
*> calling subroutine. NW .LE. LDV
|
||||
*> calling subroutine. NW <= LDV
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] NH
|
||||
*> \verbatim
|
||||
*> NH is INTEGER
|
||||
*> The number of columns of T. NH.GE.NW.
|
||||
*> The number of columns of T. NH >= NW.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] T
|
||||
|
@ -212,14 +212,14 @@
|
|||
*> \verbatim
|
||||
*> LDT is INTEGER
|
||||
*> The leading dimension of T just as declared in the
|
||||
*> calling subroutine. NW .LE. LDT
|
||||
*> calling subroutine. NW <= LDT
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] NV
|
||||
*> \verbatim
|
||||
*> NV is INTEGER
|
||||
*> The number of rows of work array WV available for
|
||||
*> workspace. NV.GE.NW.
|
||||
*> workspace. NV >= NW.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WV
|
||||
|
@ -231,7 +231,7 @@
|
|||
*> \verbatim
|
||||
*> LDWV is INTEGER
|
||||
*> The leading dimension of W just as declared in the
|
||||
*> calling subroutine. NW .LE. LDV
|
||||
*> calling subroutine. NW <= LDV
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
|
|
|
@ -100,7 +100,7 @@
|
|||
*> \param[in] NW
|
||||
*> \verbatim
|
||||
*> NW is INTEGER
|
||||
*> Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
|
||||
*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] H
|
||||
|
@ -118,7 +118,7 @@
|
|||
*> \verbatim
|
||||
*> LDH is INTEGER
|
||||
*> Leading dimension of H just as declared in the calling
|
||||
*> subroutine. N .LE. LDH
|
||||
*> subroutine. N <= LDH
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ILOZ
|
||||
|
@ -130,7 +130,7 @@
|
|||
*> \verbatim
|
||||
*> IHIZ is INTEGER
|
||||
*> Specify the rows of Z to which transformations must be
|
||||
*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
|
||||
*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] Z
|
||||
|
@ -146,7 +146,7 @@
|
|||
*> \verbatim
|
||||
*> LDZ is INTEGER
|
||||
*> The leading dimension of Z just as declared in the
|
||||
*> calling subroutine. 1 .LE. LDZ.
|
||||
*> calling subroutine. 1 <= LDZ.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] NS
|
||||
|
@ -191,13 +191,13 @@
|
|||
*> \verbatim
|
||||
*> LDV is INTEGER
|
||||
*> The leading dimension of V just as declared in the
|
||||
*> calling subroutine. NW .LE. LDV
|
||||
*> calling subroutine. NW <= LDV
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] NH
|
||||
*> \verbatim
|
||||
*> NH is INTEGER
|
||||
*> The number of columns of T. NH.GE.NW.
|
||||
*> The number of columns of T. NH >= NW.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] T
|
||||
|
@ -209,14 +209,14 @@
|
|||
*> \verbatim
|
||||
*> LDT is INTEGER
|
||||
*> The leading dimension of T just as declared in the
|
||||
*> calling subroutine. NW .LE. LDT
|
||||
*> calling subroutine. NW <= LDT
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] NV
|
||||
*> \verbatim
|
||||
*> NV is INTEGER
|
||||
*> The number of rows of work array WV available for
|
||||
*> workspace. NV.GE.NW.
|
||||
*> workspace. NV >= NW.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WV
|
||||
|
@ -228,7 +228,7 @@
|
|||
*> \verbatim
|
||||
*> LDWV is INTEGER
|
||||
*> The leading dimension of W just as declared in the
|
||||
*> calling subroutine. NW .LE. LDV
|
||||
*> calling subroutine. NW <= LDV
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
|
|
|
@ -74,7 +74,7 @@
|
|||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix H. N .GE. 0.
|
||||
*> The order of the matrix H. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ILO
|
||||
|
@ -86,12 +86,12 @@
|
|||
*> \verbatim
|
||||
*> IHI is INTEGER
|
||||
*> It is assumed that H is already upper triangular in rows
|
||||
*> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
|
||||
*> and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
|
||||
*> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
|
||||
*> previous call to DGEBAL, and then passed to DGEHRD when the
|
||||
*> matrix output by DGEBAL is reduced to Hessenberg form.
|
||||
*> Otherwise, ILO and IHI should be set to 1 and N,
|
||||
*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
|
||||
*> respectively. If N > 0, then 1 <= ILO <= IHI <= N.
|
||||
*> If N = 0, then ILO = 1 and IHI = 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
@ -104,19 +104,19 @@
|
|||
*> decomposition (the Schur form); 2-by-2 diagonal blocks
|
||||
*> (corresponding to complex conjugate pairs of eigenvalues)
|
||||
*> are returned in standard form, with H(i,i) = H(i+1,i+1)
|
||||
*> and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
|
||||
*> and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
|
||||
*> .FALSE., then the contents of H are unspecified on exit.
|
||||
*> (The output value of H when INFO.GT.0 is given under the
|
||||
*> (The output value of H when INFO > 0 is given under the
|
||||
*> description of INFO below.)
|
||||
*>
|
||||
*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
|
||||
*> This subroutine may explicitly set H(i,j) = 0 for i > j and
|
||||
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDH
|
||||
*> \verbatim
|
||||
*> LDH is INTEGER
|
||||
*> The leading dimension of the array H. LDH .GE. max(1,N).
|
||||
*> The leading dimension of the array H. LDH >= max(1,N).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WR
|
||||
|
@ -132,7 +132,7 @@
|
|||
*> and WI(ILO:IHI). If two eigenvalues are computed as a
|
||||
*> complex conjugate pair, they are stored in consecutive
|
||||
*> elements of WR and WI, say the i-th and (i+1)th, with
|
||||
*> WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
|
||||
*> WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
|
||||
*> the eigenvalues are stored in the same order as on the
|
||||
*> diagonal of the Schur form returned in H, with
|
||||
*> WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
|
||||
|
@ -150,7 +150,7 @@
|
|||
*> IHIZ is INTEGER
|
||||
*> Specify the rows of Z to which transformations must be
|
||||
*> applied if WANTZ is .TRUE..
|
||||
*> 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
|
||||
*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] Z
|
||||
|
@ -160,7 +160,7 @@
|
|||
*> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
|
||||
*> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
|
||||
*> orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
|
||||
*> (The output value of Z when INFO.GT.0 is given under
|
||||
*> (The output value of Z when INFO > 0 is given under
|
||||
*> the description of INFO below.)
|
||||
*> \endverbatim
|
||||
*>
|
||||
|
@ -168,7 +168,7 @@
|
|||
*> \verbatim
|
||||
*> LDZ is INTEGER
|
||||
*> The leading dimension of the array Z. if WANTZ is .TRUE.
|
||||
*> then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
|
||||
*> then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
|
@ -181,7 +181,7 @@
|
|||
*> \param[in] LWORK
|
||||
*> \verbatim
|
||||
*> LWORK is INTEGER
|
||||
*> The dimension of the array WORK. LWORK .GE. max(1,N)
|
||||
*> The dimension of the array WORK. LWORK >= max(1,N)
|
||||
*> is sufficient, but LWORK typically as large as 6*N may
|
||||
*> be required for optimal performance. A workspace query
|
||||
*> to determine the optimal workspace size is recommended.
|
||||
|
@ -198,18 +198,18 @@
|
|||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> .GT. 0: if INFO = i, DLAQR4 failed to compute all of
|
||||
*> > 0: if INFO = i, DLAQR4 failed to compute all of
|
||||
*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
|
||||
*> and WI contain those eigenvalues which have been
|
||||
*> successfully computed. (Failures are rare.)
|
||||
*>
|
||||
*> If INFO .GT. 0 and WANT is .FALSE., then on exit,
|
||||
*> If INFO > 0 and WANT is .FALSE., then on exit,
|
||||
*> the remaining unconverged eigenvalues are the eigen-
|
||||
*> values of the upper Hessenberg matrix rows and
|
||||
*> columns ILO through INFO of the final, output
|
||||
*> value of H.
|
||||
*>
|
||||
*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
|
||||
*> If INFO > 0 and WANTT is .TRUE., then on exit
|
||||
*>
|
||||
*> (*) (initial value of H)*U = U*(final value of H)
|
||||
*>
|
||||
|
@ -217,7 +217,7 @@
|
|||
*> value of H is upper Hessenberg and triangular in
|
||||
*> rows and columns INFO+1 through IHI.
|
||||
*>
|
||||
*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
|
||||
*> If INFO > 0 and WANTZ is .TRUE., then on exit
|
||||
*>
|
||||
*> (final value of Z(ILO:IHI,ILOZ:IHIZ)
|
||||
*> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
|
||||
|
@ -225,7 +225,7 @@
|
|||
*> where U is the orthogonal matrix in (*) (regard-
|
||||
*> less of the value of WANTT.)
|
||||
*>
|
||||
*> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
|
||||
*> If INFO > 0 and WANTZ is .FALSE., then Z is not
|
||||
*> accessed.
|
||||
*> \endverbatim
|
||||
*
|
||||
|
@ -677,7 +677,7 @@
|
|||
END IF
|
||||
END IF
|
||||
*
|
||||
* ==== Use up to NS of the the smallest magnatiude
|
||||
* ==== Use up to NS of the the smallest magnitude
|
||||
* . shifts. If there aren't NS shifts available,
|
||||
* . then use them all, possibly dropping one to
|
||||
* . make the number of shifts even. ====
|
||||
|
|
|
@ -133,7 +133,7 @@
|
|||
*> \verbatim
|
||||
*> LDH is INTEGER
|
||||
*> LDH is the leading dimension of H just as declared in the
|
||||
*> calling procedure. LDH.GE.MAX(1,N).
|
||||
*> calling procedure. LDH >= MAX(1,N).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ILOZ
|
||||
|
@ -145,7 +145,7 @@
|
|||
*> \verbatim
|
||||
*> IHIZ is INTEGER
|
||||
*> Specify the rows of Z to which transformations must be
|
||||
*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
|
||||
*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] Z
|
||||
|
@ -161,7 +161,7 @@
|
|||
*> \verbatim
|
||||
*> LDZ is INTEGER
|
||||
*> LDA is the leading dimension of Z just as declared in
|
||||
*> the calling procedure. LDZ.GE.N.
|
||||
*> the calling procedure. LDZ >= N.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] V
|
||||
|
@ -173,7 +173,7 @@
|
|||
*> \verbatim
|
||||
*> LDV is INTEGER
|
||||
*> LDV is the leading dimension of V as declared in the
|
||||
*> calling procedure. LDV.GE.3.
|
||||
*> calling procedure. LDV >= 3.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] U
|
||||
|
@ -185,33 +185,14 @@
|
|||
*> \verbatim
|
||||
*> LDU is INTEGER
|
||||
*> LDU is the leading dimension of U just as declared in the
|
||||
*> in the calling subroutine. LDU.GE.3*NSHFTS-3.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] NH
|
||||
*> \verbatim
|
||||
*> NH is INTEGER
|
||||
*> NH is the number of columns in array WH available for
|
||||
*> workspace. NH.GE.1.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WH
|
||||
*> \verbatim
|
||||
*> WH is DOUBLE PRECISION array, dimension (LDWH,NH)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDWH
|
||||
*> \verbatim
|
||||
*> LDWH is INTEGER
|
||||
*> Leading dimension of WH just as declared in the
|
||||
*> calling procedure. LDWH.GE.3*NSHFTS-3.
|
||||
*> in the calling subroutine. LDU >= 3*NSHFTS-3.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] NV
|
||||
*> \verbatim
|
||||
*> NV is INTEGER
|
||||
*> NV is the number of rows in WV agailable for workspace.
|
||||
*> NV.GE.1.
|
||||
*> NV >= 1.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WV
|
||||
|
@ -223,9 +204,28 @@
|
|||
*> \verbatim
|
||||
*> LDWV is INTEGER
|
||||
*> LDWV is the leading dimension of WV as declared in the
|
||||
*> in the calling subroutine. LDWV.GE.NV.
|
||||
*> in the calling subroutine. LDWV >= NV.
|
||||
*> \endverbatim
|
||||
*
|
||||
*> \param[in] NH
|
||||
*> \verbatim
|
||||
*> NH is INTEGER
|
||||
*> NH is the number of columns in array WH available for
|
||||
*> workspace. NH >= 1.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WH
|
||||
*> \verbatim
|
||||
*> WH is DOUBLE PRECISION array, dimension (LDWH,NH)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDWH
|
||||
*> \verbatim
|
||||
*> LDWH is INTEGER
|
||||
*> Leading dimension of WH just as declared in the
|
||||
*> calling procedure. LDWH >= 3*NSHFTS-3.
|
||||
*> \endverbatim
|
||||
*>
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
|
|
|
@ -92,6 +92,8 @@
|
|||
*> K is INTEGER
|
||||
*> The order of the matrix T (= the number of elementary
|
||||
*> reflectors whose product defines the block reflector).
|
||||
*> If SIDE = 'L', M >= K >= 0;
|
||||
*> if SIDE = 'R', N >= K >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] V
|
||||
|
|
|
@ -94,7 +94,7 @@
|
|||
*> \param[in] LDC
|
||||
*> \verbatim
|
||||
*> LDC is INTEGER
|
||||
*> The leading dimension of the array C. LDA >= (1,M).
|
||||
*> The leading dimension of the array C. LDC >= (1,M).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
|
|
|
@ -103,7 +103,7 @@
|
|||
*
|
||||
*> \date December 2016
|
||||
*
|
||||
*> \ingroup double_eig
|
||||
*> \ingroup doubleOTHERauxiliary
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK )
|
||||
|
|
|
@ -91,7 +91,7 @@
|
|||
*> RTOL2 is DOUBLE PRECISION
|
||||
*> Tolerance for the convergence of the bisection intervals.
|
||||
*> An interval [LEFT,RIGHT] has converged if
|
||||
*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
|
||||
*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
|
||||
*> where GAP is the (estimated) distance to the nearest
|
||||
*> eigenvalue.
|
||||
*> \endverbatim
|
||||
|
@ -117,7 +117,7 @@
|
|||
*> WGAP is DOUBLE PRECISION array, dimension (N-1)
|
||||
*> On input, the (estimated) gaps between consecutive
|
||||
*> eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between
|
||||
*> eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST
|
||||
*> eigenvalues I and I+1. Note that if IFIRST = ILAST
|
||||
*> then WGAP(IFIRST-OFFSET) must be set to ZERO.
|
||||
*> On output, these gaps are refined.
|
||||
*> \endverbatim
|
||||
|
|
|
@ -150,7 +150,7 @@
|
|||
*> RTOL2 is DOUBLE PRECISION
|
||||
*> Parameters for bisection.
|
||||
*> An interval [LEFT,RIGHT] has converged if
|
||||
*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
|
||||
*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] SPLTOL
|
||||
|
|
|
@ -85,7 +85,7 @@
|
|||
*> RTOL is DOUBLE PRECISION
|
||||
*> Tolerance for the convergence of the bisection intervals.
|
||||
*> An interval [LEFT,RIGHT] has converged if
|
||||
*> RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|).
|
||||
*> RIGHT-LEFT < RTOL*MAX(|LEFT|,|RIGHT|).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] OFFSET
|
||||
|
|
|
@ -149,7 +149,7 @@
|
|||
*> RTOL2 is DOUBLE PRECISION
|
||||
*> Parameters for bisection.
|
||||
*> An interval [LEFT,RIGHT] has converged if
|
||||
*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
|
||||
*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] W
|
||||
|
|
|
@ -400,7 +400,7 @@
|
|||
VL( I ) = VLW( IDXI )
|
||||
50 CONTINUE
|
||||
*
|
||||
* Calculate the allowable deflation tolerence
|
||||
* Calculate the allowable deflation tolerance
|
||||
*
|
||||
EPS = DLAMCH( 'Epsilon' )
|
||||
TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
|
||||
|
|
|
@ -175,7 +175,7 @@
|
|||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> The M-by-N matrix A. On exit, A is overwritten by P*A if
|
||||
*> SIDE = 'R' or by A*P**T if SIDE = 'L'.
|
||||
*> SIDE = 'L' or by A*P**T if SIDE = 'R'.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
|
|
|
@ -60,7 +60,7 @@
|
|||
*>
|
||||
*> \param[in] X
|
||||
*> \verbatim
|
||||
*> X is DOUBLE PRECISION array, dimension (N)
|
||||
*> X is DOUBLE PRECISION array, dimension (1+(N-1)*INCX)
|
||||
*> The vector for which a scaled sum of squares is computed.
|
||||
*> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
|
||||
*> \endverbatim
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
*> \brief \b DLASWLQ
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
|
@ -18,9 +19,20 @@
|
|||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DLASWLQ computes a blocked Short-Wide LQ factorization of a
|
||||
*> M-by-N matrix A, where N >= M:
|
||||
*> A = L * Q
|
||||
*> DLASWLQ computes a blocked Tall-Skinny LQ factorization of
|
||||
*> a real M-by-N matrix A for M <= N:
|
||||
*>
|
||||
*> A = ( L 0 ) * Q,
|
||||
*>
|
||||
*> where:
|
||||
*>
|
||||
*> Q is a n-by-N orthogonal matrix, stored on exit in an implicit
|
||||
*> form in the elements above the digonal of the array A and in
|
||||
*> the elemenst of the array T;
|
||||
*> L is an lower-triangular M-by-M matrix stored on exit in
|
||||
*> the elements on and below the diagonal of the array A.
|
||||
*> 0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
|
@ -150,7 +162,7 @@
|
|||
SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
|
||||
$ INFO)
|
||||
*
|
||||
* -- LAPACK computational routine (version 3.7.1) --
|
||||
* -- LAPACK computational routine (version 3.9.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
|
||||
* June 2017
|
||||
|
|
|
@ -284,7 +284,8 @@
|
|||
*
|
||||
* Swap A(I1, I2+1:M) with A(I2, I2+1:M)
|
||||
*
|
||||
CALL DSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA,
|
||||
IF( I2.LT.M )
|
||||
$ CALL DSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA,
|
||||
$ A( J1+I2-1, I2+1 ), LDA )
|
||||
*
|
||||
* Swap A(I1, I1) with A(I2,I2)
|
||||
|
@ -325,6 +326,7 @@
|
|||
* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1),
|
||||
* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1)
|
||||
*
|
||||
IF( J.LT.(M-1) ) THEN
|
||||
IF( A( K, J+1 ).NE.ZERO ) THEN
|
||||
ALPHA = ONE / A( K, J+1 )
|
||||
CALL DCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA )
|
||||
|
@ -334,6 +336,7 @@
|
|||
$ A( K, J+2 ), LDA)
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
J = J + 1
|
||||
GO TO 10
|
||||
20 CONTINUE
|
||||
|
@ -432,7 +435,8 @@
|
|||
*
|
||||
* Swap A(I2+1:M, I1) with A(I2+1:M, I2)
|
||||
*
|
||||
CALL DSWAP( M-I2, A( I2+1, J1+I1-1 ), 1,
|
||||
IF( I2.LT.M )
|
||||
$ CALL DSWAP( M-I2, A( I2+1, J1+I1-1 ), 1,
|
||||
$ A( I2+1, J1+I2-1 ), 1 )
|
||||
*
|
||||
* Swap A(I1, I1) with A(I2, I2)
|
||||
|
@ -473,6 +477,7 @@
|
|||
* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1),
|
||||
* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1)
|
||||
*
|
||||
IF( J.LT.(M-1) ) THEN
|
||||
IF( A( J+1, K ).NE.ZERO ) THEN
|
||||
ALPHA = ONE / A( J+1, K )
|
||||
CALL DCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 )
|
||||
|
@ -482,6 +487,7 @@
|
|||
$ A( J+2, K ), LDA )
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
J = J + 1
|
||||
GO TO 30
|
||||
40 CONTINUE
|
||||
|
|
|
@ -321,7 +321,7 @@
|
|||
* of A and working backwards, and compute the matrix W = U12*D
|
||||
* for use in updating A11
|
||||
*
|
||||
* Initilize the first entry of array E, where superdiagonal
|
||||
* Initialize the first entry of array E, where superdiagonal
|
||||
* elements of D are stored
|
||||
*
|
||||
E( 1 ) = ZERO
|
||||
|
@ -649,7 +649,7 @@
|
|||
* of A and working forwards, and compute the matrix W = L21*D
|
||||
* for use in updating A22
|
||||
*
|
||||
* Initilize the unused last entry of the subdiagonal array E.
|
||||
* Initialize the unused last entry of the subdiagonal array E.
|
||||
*
|
||||
E( N ) = ZERO
|
||||
*
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
* SUBROUTINE DLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* CHARADLATER UPLO
|
||||
* CHARACTER UPLO
|
||||
* INTEGER INFO, KB, LDA, LDW, N, NB
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
|
|
|
@ -85,7 +85,7 @@
|
|||
*> RHS is DOUBLE PRECISION array, dimension (N)
|
||||
*> On entry, RHS contains contributions from other subsystems.
|
||||
*> On exit, RHS contains the solution of the subsystem with
|
||||
*> entries acoording to the value of IJOB (see above).
|
||||
*> entries according to the value of IJOB (see above).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] RDSUM
|
||||
|
@ -260,7 +260,7 @@
|
|||
*
|
||||
* Solve for U-part, look-ahead for RHS(N) = +-1. This is not done
|
||||
* in BSOLVE and will hopefully give us a better estimate because
|
||||
* any ill-conditioning of the original matrix is transfered to U
|
||||
* any ill-conditioning of the original matrix is transferred to U
|
||||
* and not to L. U(N, N) is an approximation to sigma_min(LU).
|
||||
*
|
||||
CALL DCOPY( N-1, RHS, 1, XP, 1 )
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
*> \brief \b DLATSQR
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
|
@ -19,8 +20,22 @@
|
|||
*> \verbatim
|
||||
*>
|
||||
*> DLATSQR computes a blocked Tall-Skinny QR factorization of
|
||||
*> an M-by-N matrix A, where M >= N:
|
||||
*> A = Q * R .
|
||||
*> a real M-by-N matrix A for M >= N:
|
||||
*>
|
||||
*> A = Q * ( R ),
|
||||
*> ( 0 )
|
||||
*>
|
||||
*> where:
|
||||
*>
|
||||
*> Q is a M-by-M orthogonal matrix, stored on exit in an implicit
|
||||
*> form in the elements below the digonal of the array A and in
|
||||
*> the elemenst of the array T;
|
||||
*>
|
||||
*> R is an upper-triangular N-by-N matrix, stored on exit in
|
||||
*> the elements on and above the diagonal of the array A.
|
||||
*>
|
||||
*> 0 is a (M-N)-by-N zero matrix, and is not stored.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
|
@ -149,10 +164,10 @@
|
|||
SUBROUTINE DLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
|
||||
$ LWORK, INFO)
|
||||
*
|
||||
* -- LAPACK computational routine (version 3.7.0) --
|
||||
* -- LAPACK computational routine (version 3.9.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
|
||||
* December 2016
|
||||
* November 2019
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
|
||||
|
|
|
@ -0,0 +1,306 @@
|
|||
*> \brief \b DORGTSQR
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DORGTSQR + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgtsqr.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgtsqr.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgtsqr.f">
|
||||
*> [TXT]</a>
|
||||
*>
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
|
||||
* $ INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
|
||||
*> which are the first N columns of a product of real orthogonal
|
||||
*> matrices of order M which are returned by DLATSQR
|
||||
*>
|
||||
*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
|
||||
*>
|
||||
*> See the documentation for DLATSQR.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> The number of rows of the matrix A. M >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of columns of the matrix A. M >= N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] MB
|
||||
*> \verbatim
|
||||
*> MB is INTEGER
|
||||
*> The row block size used by DLATSQR to return
|
||||
*> arrays A and T. MB > N.
|
||||
*> (Note that if MB > M, then M is used instead of MB
|
||||
*> as the row block size).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] NB
|
||||
*> \verbatim
|
||||
*> NB is INTEGER
|
||||
*> The column block size used by DLATSQR to return
|
||||
*> arrays A and T. NB >= 1.
|
||||
*> (Note that if NB > N, then N is used instead of NB
|
||||
*> as the column block size).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*>
|
||||
*> On entry:
|
||||
*>
|
||||
*> The elements on and above the diagonal are not accessed.
|
||||
*> The elements below the diagonal represent the unit
|
||||
*> lower-trapezoidal blocked matrix V computed by DLATSQR
|
||||
*> that defines the input matrices Q_in(k) (ones on the
|
||||
*> diagonal are not stored) (same format as the output A
|
||||
*> below the diagonal in DLATSQR).
|
||||
*>
|
||||
*> On exit:
|
||||
*>
|
||||
*> The array A contains an M-by-N orthonormal matrix Q_out,
|
||||
*> i.e the columns of A are orthogonal unit vectors.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(1,M).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] T
|
||||
*> \verbatim
|
||||
*> T is DOUBLE PRECISION array,
|
||||
*> dimension (LDT, N * NIRB)
|
||||
*> where NIRB = Number_of_input_row_blocks
|
||||
*> = MAX( 1, CEIL((M-N)/(MB-N)) )
|
||||
*> Let NICB = Number_of_input_col_blocks
|
||||
*> = CEIL(N/NB)
|
||||
*>
|
||||
*> The upper-triangular block reflectors used to define the
|
||||
*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
|
||||
*> reflectors are stored in compact form in NIRB block
|
||||
*> reflector sequences. Each of NIRB block reflector sequences
|
||||
*> is stored in a larger NB-by-N column block of T and consists
|
||||
*> of NICB smaller NB-by-NB upper-triangular column blocks.
|
||||
*> (same format as the output T in DLATSQR).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDT
|
||||
*> \verbatim
|
||||
*> LDT is INTEGER
|
||||
*> The leading dimension of the array T.
|
||||
*> LDT >= max(1,min(NB1,N)).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] WORK
|
||||
*> \verbatim
|
||||
*> (workspace) DOUBLE PRECISION array, dimension (MAX(2,LWORK))
|
||||
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LWORK
|
||||
*> \verbatim
|
||||
*> The dimension of the array WORK. LWORK >= (M+NB)*N.
|
||||
*> If LWORK = -1, then a workspace query is assumed.
|
||||
*> The routine only calculates the optimal size of the WORK
|
||||
*> array, returns this value as the first entry of the WORK
|
||||
*> array, and no error message related to LWORK is issued
|
||||
*> by XERBLA.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*> \endverbatim
|
||||
*>
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2019
|
||||
*
|
||||
*> \ingroup doubleOTHERcomputational
|
||||
*
|
||||
*> \par Contributors:
|
||||
* ==================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> November 2019, Igor Kozachenko,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
|
||||
$ INFO )
|
||||
IMPLICIT NONE
|
||||
*
|
||||
* -- LAPACK computational routine (version 3.9.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2019
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
|
||||
* ..
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ONE, ZERO
|
||||
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
LOGICAL LQUERY
|
||||
INTEGER IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DCOPY, DLAMTSQR, DLASET, XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC DBLE, MAX, MIN
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test the input parameters
|
||||
*
|
||||
LQUERY = LWORK.EQ.-1
|
||||
INFO = 0
|
||||
IF( M.LT.0 ) THEN
|
||||
INFO = -1
|
||||
ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
|
||||
INFO = -2
|
||||
ELSE IF( MB.LE.N ) THEN
|
||||
INFO = -3
|
||||
ELSE IF( NB.LT.1 ) THEN
|
||||
INFO = -4
|
||||
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||||
INFO = -6
|
||||
ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
|
||||
INFO = -8
|
||||
ELSE
|
||||
*
|
||||
* Test the input LWORK for the dimension of the array WORK.
|
||||
* This workspace is used to store array C(LDC, N) and WORK(LWORK)
|
||||
* in the call to DLAMTSQR. See the documentation for DLAMTSQR.
|
||||
*
|
||||
IF( LWORK.LT.2 .AND. (.NOT.LQUERY) ) THEN
|
||||
INFO = -10
|
||||
ELSE
|
||||
*
|
||||
* Set block size for column blocks
|
||||
*
|
||||
NBLOCAL = MIN( NB, N )
|
||||
*
|
||||
* LWORK = -1, then set the size for the array C(LDC,N)
|
||||
* in DLAMTSQR call and set the optimal size of the work array
|
||||
* WORK(LWORK) in DLAMTSQR call.
|
||||
*
|
||||
LDC = M
|
||||
LC = LDC*N
|
||||
LW = N * NBLOCAL
|
||||
*
|
||||
LWORKOPT = LC+LW
|
||||
*
|
||||
IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
|
||||
INFO = -10
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
END IF
|
||||
*
|
||||
* Handle error in the input parameters and return workspace query.
|
||||
*
|
||||
IF( INFO.NE.0 ) THEN
|
||||
CALL XERBLA( 'DORGTSQR', -INFO )
|
||||
RETURN
|
||||
ELSE IF ( LQUERY ) THEN
|
||||
WORK( 1 ) = DBLE( LWORKOPT )
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( MIN( M, N ).EQ.0 ) THEN
|
||||
WORK( 1 ) = DBLE( LWORKOPT )
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
|
||||
* of M-by-M orthogonal matrix Q_in, which is implicitly stored in
|
||||
* the subdiagonal part of input array A and in the input array T.
|
||||
* Perform by the following operation using the routine DLAMTSQR.
|
||||
*
|
||||
* Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
|
||||
* ( 0 ) 0 is a (M-N)-by-N zero matrix.
|
||||
*
|
||||
* (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
|
||||
* on the diagonal and zeros elsewhere.
|
||||
*
|
||||
CALL DLASET( 'F', M, N, ZERO, ONE, WORK, LDC )
|
||||
*
|
||||
* (1b) On input, WORK(1:LDC*N) stores ( I );
|
||||
* ( 0 )
|
||||
*
|
||||
* On output, WORK(1:LDC*N) stores Q1_in.
|
||||
*
|
||||
CALL DLAMTSQR( 'L', 'N', M, N, N, MB, NBLOCAL, A, LDA, T, LDT,
|
||||
$ WORK, LDC, WORK( LC+1 ), LW, IINFO )
|
||||
*
|
||||
* (2) Copy the result from the part of the work array (1:M,1:N)
|
||||
* with the leading dimension LDC that starts at WORK(1) into
|
||||
* the output array A(1:M,1:N) column-by-column.
|
||||
*
|
||||
DO J = 1, N
|
||||
CALL DCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 )
|
||||
END DO
|
||||
*
|
||||
WORK( 1 ) = DBLE( LWORKOPT )
|
||||
RETURN
|
||||
*
|
||||
* End of DORGTSQR
|
||||
*
|
||||
END
|
|
@ -0,0 +1,440 @@
|
|||
*> \brief \b DORHR_COL
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
*> \htmlonly
|
||||
*> Download DORHR_COL + dependencies
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorhr_col.f">
|
||||
*> [TGZ]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorhr_col.f">
|
||||
*> [ZIP]</a>
|
||||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorhr_col.f">
|
||||
*> [TXT]</a>
|
||||
*>
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INFO, LDA, LDT, M, N, NB
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A( LDA, * ), D( * ), T( LDT, * )
|
||||
* ..
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns
|
||||
*> as input, stored in A, and performs Householder Reconstruction (HR),
|
||||
*> i.e. reconstructs Householder vectors V(i) implicitly representing
|
||||
*> another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
|
||||
*> where S is an N-by-N diagonal matrix with diagonal entries
|
||||
*> equal to +1 or -1. The Householder vectors (columns V(i) of V) are
|
||||
*> stored in A on output, and the diagonal entries of S are stored in D.
|
||||
*> Block reflectors are also returned in T
|
||||
*> (same output format as DGEQRT).
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> The number of rows of the matrix A. M >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The number of columns of the matrix A. M >= N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] NB
|
||||
*> \verbatim
|
||||
*> NB is INTEGER
|
||||
*> The column block size to be used in the reconstruction
|
||||
*> of Householder column vector blocks in the array A and
|
||||
*> corresponding block reflectors in the array T. NB >= 1.
|
||||
*> (Note that if NB > N, then N is used instead of NB
|
||||
*> as the column block size.)
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*>
|
||||
*> On entry:
|
||||
*>
|
||||
*> The array A contains an M-by-N orthonormal matrix Q_in,
|
||||
*> i.e the columns of A are orthogonal unit vectors.
|
||||
*>
|
||||
*> On exit:
|
||||
*>
|
||||
*> The elements below the diagonal of A represent the unit
|
||||
*> lower-trapezoidal matrix V of Householder column vectors
|
||||
*> V(i). The unit diagonal entries of V are not stored
|
||||
*> (same format as the output below the diagonal in A from
|
||||
*> DGEQRT). The matrix T and the matrix V stored on output
|
||||
*> in A implicitly define Q_out.
|
||||
*>
|
||||
*> The elements above the diagonal contain the factor U
|
||||
*> of the "modified" LU-decomposition:
|
||||
*> Q_in - ( S ) = V * U
|
||||
*> ( 0 )
|
||||
*> where 0 is a (M-N)-by-(M-N) zero matrix.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(1,M).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] T
|
||||
*> \verbatim
|
||||
*> T is DOUBLE PRECISION array,
|
||||
*> dimension (LDT, N)
|
||||
*>
|
||||
*> Let NOCB = Number_of_output_col_blocks
|
||||
*> = CEIL(N/NB)
|
||||
*>
|
||||
*> On exit, T(1:NB, 1:N) contains NOCB upper-triangular
|
||||
*> block reflectors used to define Q_out stored in compact
|
||||
*> form as a sequence of upper-triangular NB-by-NB column
|
||||
*> blocks (same format as the output T in DGEQRT).
|
||||
*> The matrix T and the matrix V stored on output in A
|
||||
*> implicitly define Q_out. NOTE: The lower triangles
|
||||
*> below the upper-triangular blcoks will be filled with
|
||||
*> zeros. See Further Details.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDT
|
||||
*> \verbatim
|
||||
*> LDT is INTEGER
|
||||
*> The leading dimension of the array T.
|
||||
*> LDT >= max(1,min(NB,N)).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] D
|
||||
*> \verbatim
|
||||
*> D is DOUBLE PRECISION array, dimension min(M,N).
|
||||
*> The elements can be only plus or minus one.
|
||||
*>
|
||||
*> D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
|
||||
*> 1 <= i <= min(M,N), and Q_in_i is Q_in after performing
|
||||
*> i-1 steps of “modified” Gaussian elimination.
|
||||
*> See Further Details.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> The computed M-by-M orthogonal factor Q_out is defined implicitly as
|
||||
*> a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in
|
||||
*> the compact WY-representation format in the corresponding blocks of
|
||||
*> matrices V (stored in A) and T.
|
||||
*>
|
||||
*> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
|
||||
*> matrix A contains the column vectors V(i) in NB-size column
|
||||
*> blocks VB(j). For example, VB(1) contains the columns
|
||||
*> V(1), V(2), ... V(NB). NOTE: The unit entries on
|
||||
*> the diagonal of Y are not stored in A.
|
||||
*>
|
||||
*> The number of column blocks is
|
||||
*>
|
||||
*> NOCB = Number_of_output_col_blocks = CEIL(N/NB)
|
||||
*>
|
||||
*> where each block is of order NB except for the last block, which
|
||||
*> is of order LAST_NB = N - (NOCB-1)*NB.
|
||||
*>
|
||||
*> For example, if M=6, N=5 and NB=2, the matrix V is
|
||||
*>
|
||||
*>
|
||||
*> V = ( VB(1), VB(2), VB(3) ) =
|
||||
*>
|
||||
*> = ( 1 )
|
||||
*> ( v21 1 )
|
||||
*> ( v31 v32 1 )
|
||||
*> ( v41 v42 v43 1 )
|
||||
*> ( v51 v52 v53 v54 1 )
|
||||
*> ( v61 v62 v63 v54 v65 )
|
||||
*>
|
||||
*>
|
||||
*> For each of the column blocks VB(i), an upper-triangular block
|
||||
*> reflector TB(i) is computed. These blocks are stored as
|
||||
*> a sequence of upper-triangular column blocks in the NB-by-N
|
||||
*> matrix T. The size of each TB(i) block is NB-by-NB, except
|
||||
*> for the last block, whose size is LAST_NB-by-LAST_NB.
|
||||
*>
|
||||
*> For example, if M=6, N=5 and NB=2, the matrix T is
|
||||
*>
|
||||
*> T = ( TB(1), TB(2), TB(3) ) =
|
||||
*>
|
||||
*> = ( t11 t12 t13 t14 t15 )
|
||||
*> ( t22 t24 )
|
||||
*>
|
||||
*>
|
||||
*> The M-by-M factor Q_out is given as a product of NOCB
|
||||
*> orthogonal M-by-M matrices Q_out(i).
|
||||
*>
|
||||
*> Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
|
||||
*>
|
||||
*> where each matrix Q_out(i) is given by the WY-representation
|
||||
*> using corresponding blocks from the matrices V and T:
|
||||
*>
|
||||
*> Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
|
||||
*>
|
||||
*> where I is the identity matrix. Here is the formula with matrix
|
||||
*> dimensions:
|
||||
*>
|
||||
*> Q(i){M-by-M} = I{M-by-M} -
|
||||
*> VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
|
||||
*>
|
||||
*> where INB = NB, except for the last block NOCB
|
||||
*> for which INB=LAST_NB.
|
||||
*>
|
||||
*> =====
|
||||
*> NOTE:
|
||||
*> =====
|
||||
*>
|
||||
*> If Q_in is the result of doing a QR factorization
|
||||
*> B = Q_in * R_in, then:
|
||||
*>
|
||||
*> B = (Q_out*S) * R_in = Q_out * (S * R_in) = O_out * R_out.
|
||||
*>
|
||||
*> So if one wants to interpret Q_out as the result
|
||||
*> of the QR factorization of B, then corresponding R_out
|
||||
*> should be obtained by R_out = S * R_in, i.e. some rows of R_in
|
||||
*> should be multiplied by -1.
|
||||
*>
|
||||
*> For the details of the algorithm, see [1].
|
||||
*>
|
||||
*> [1] "Reconstructing Householder vectors from tall-skinny QR",
|
||||
*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
|
||||
*> E. Solomonik, J. Parallel Distrib. Comput.,
|
||||
*> vol. 85, pp. 3-31, 2015.
|
||||
*> \endverbatim
|
||||
*>
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2019
|
||||
*
|
||||
*> \ingroup doubleOTHERcomputational
|
||||
*
|
||||
*> \par Contributors:
|
||||
* ==================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> November 2019, Igor Kozachenko,
|
||||
*> Computer Science Division,
|
||||
*> University of California, Berkeley
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
* =====================================================================
|
||||
SUBROUTINE DORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
|
||||
IMPLICIT NONE
|
||||
*
|
||||
* -- LAPACK computational routine (version 3.9.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2019
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INFO, LDA, LDT, M, N, NB
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION A( LDA, * ), D( * ), T( LDT, * )
|
||||
* ..
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ONE, ZERO
|
||||
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
INTEGER I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB,
|
||||
$ NPLUSONE
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DCOPY, DLAORHR_COL_GETRFNP, DSCAL, DTRSM,
|
||||
$ XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX, MIN
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test the input parameters
|
||||
*
|
||||
INFO = 0
|
||||
IF( M.LT.0 ) THEN
|
||||
INFO = -1
|
||||
ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
|
||||
INFO = -2
|
||||
ELSE IF( NB.LT.1 ) THEN
|
||||
INFO = -3
|
||||
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||||
INFO = -5
|
||||
ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
|
||||
INFO = -7
|
||||
END IF
|
||||
*
|
||||
* Handle error in the input parameters.
|
||||
*
|
||||
IF( INFO.NE.0 ) THEN
|
||||
CALL XERBLA( 'DORHR_COL', -INFO )
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( MIN( M, N ).EQ.0 ) THEN
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* On input, the M-by-N matrix A contains the orthogonal
|
||||
* M-by-N matrix Q_in.
|
||||
*
|
||||
* (1) Compute the unit lower-trapezoidal V (ones on the diagonal
|
||||
* are not stored) by performing the "modified" LU-decomposition.
|
||||
*
|
||||
* Q_in - ( S ) = V * U = ( V1 ) * U,
|
||||
* ( 0 ) ( V2 )
|
||||
*
|
||||
* where 0 is an (M-N)-by-N zero matrix.
|
||||
*
|
||||
* (1-1) Factor V1 and U.
|
||||
|
||||
CALL DLAORHR_COL_GETRFNP( N, N, A, LDA, D, IINFO )
|
||||
*
|
||||
* (1-2) Solve for V2.
|
||||
*
|
||||
IF( M.GT.N ) THEN
|
||||
CALL DTRSM( 'R', 'U', 'N', 'N', M-N, N, ONE, A, LDA,
|
||||
$ A( N+1, 1 ), LDA )
|
||||
END IF
|
||||
*
|
||||
* (2) Reconstruct the block reflector T stored in T(1:NB, 1:N)
|
||||
* as a sequence of upper-triangular blocks with NB-size column
|
||||
* blocking.
|
||||
*
|
||||
* Loop over the column blocks of size NB of the array A(1:M,1:N)
|
||||
* and the array T(1:NB,1:N), JB is the column index of a column
|
||||
* block, JNB is the column block size at each step JB.
|
||||
*
|
||||
NPLUSONE = N + 1
|
||||
DO JB = 1, N, NB
|
||||
*
|
||||
* (2-0) Determine the column block size JNB.
|
||||
*
|
||||
JNB = MIN( NPLUSONE-JB, NB )
|
||||
*
|
||||
* (2-1) Copy the upper-triangular part of the current JNB-by-JNB
|
||||
* diagonal block U(JB) (of the N-by-N matrix U) stored
|
||||
* in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part
|
||||
* of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1)
|
||||
* column-by-column, total JNB*(JNB+1)/2 elements.
|
||||
*
|
||||
JBTEMP1 = JB - 1
|
||||
DO J = JB, JB+JNB-1
|
||||
CALL DCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 )
|
||||
END DO
|
||||
*
|
||||
* (2-2) Perform on the upper-triangular part of the current
|
||||
* JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored
|
||||
* in T(1:JNB,JB:JB+JNB-1) the following operation in place:
|
||||
* (-1)*U(JB)*S(JB), i.e the result will be stored in the upper-
|
||||
* triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication
|
||||
* of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB
|
||||
* diagonal block S(JB) of the N-by-N sign matrix S from the
|
||||
* right means changing the sign of each J-th column of the block
|
||||
* U(JB) according to the sign of the diagonal element of the block
|
||||
* S(JB), i.e. S(J,J) that is stored in the array element D(J).
|
||||
*
|
||||
DO J = JB, JB+JNB-1
|
||||
IF( D( J ).EQ.ONE ) THEN
|
||||
CALL DSCAL( J-JBTEMP1, -ONE, T( 1, J ), 1 )
|
||||
END IF
|
||||
END DO
|
||||
*
|
||||
* (2-3) Perform the triangular solve for the current block
|
||||
* matrix X(JB):
|
||||
*
|
||||
* X(JB) * (A(JB)**T) = B(JB), where:
|
||||
*
|
||||
* A(JB)**T is a JNB-by-JNB unit upper-triangular
|
||||
* coefficient block, and A(JB)=V1(JB), which
|
||||
* is a JNB-by-JNB unit lower-triangular block
|
||||
* stored in A(JB:JB+JNB-1,JB:JB+JNB-1).
|
||||
* The N-by-N matrix V1 is the upper part
|
||||
* of the M-by-N lower-trapezoidal matrix V
|
||||
* stored in A(1:M,1:N);
|
||||
*
|
||||
* B(JB) is a JNB-by-JNB upper-triangular right-hand
|
||||
* side block, B(JB) = (-1)*U(JB)*S(JB), and
|
||||
* B(JB) is stored in T(1:JNB,JB:JB+JNB-1);
|
||||
*
|
||||
* X(JB) is a JNB-by-JNB upper-triangular solution
|
||||
* block, X(JB) is the upper-triangular block
|
||||
* reflector T(JB), and X(JB) is stored
|
||||
* in T(1:JNB,JB:JB+JNB-1).
|
||||
*
|
||||
* In other words, we perform the triangular solve for the
|
||||
* upper-triangular block T(JB):
|
||||
*
|
||||
* T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB).
|
||||
*
|
||||
* Even though the blocks X(JB) and B(JB) are upper-
|
||||
* triangular, the routine DTRSM will access all JNB**2
|
||||
* elements of the square T(1:JNB,JB:JB+JNB-1). Therefore,
|
||||
* we need to set to zero the elements of the block
|
||||
* T(1:JNB,JB:JB+JNB-1) below the diagonal before the call
|
||||
* to DTRSM.
|
||||
*
|
||||
* (2-3a) Set the elements to zero.
|
||||
*
|
||||
JBTEMP2 = JB - 2
|
||||
DO J = JB, JB+JNB-2
|
||||
DO I = J-JBTEMP2, NB
|
||||
T( I, J ) = ZERO
|
||||
END DO
|
||||
END DO
|
||||
*
|
||||
* (2-3b) Perform the triangular solve.
|
||||
*
|
||||
CALL DTRSM( 'R', 'L', 'T', 'U', JNB, JNB, ONE,
|
||||
$ A( JB, JB ), LDA, T( 1, JB ), LDT )
|
||||
*
|
||||
END DO
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of DORHR_COL
|
||||
*
|
||||
END
|
Loading…
Reference in New Issue