diff --git a/lapack-netlib/SRC/dlaed4.f b/lapack-netlib/SRC/dlaed4.f
index e7dc839df..033438d73 100644
--- a/lapack-netlib/SRC/dlaed4.f
+++ b/lapack-netlib/SRC/dlaed4.f
@@ -82,7 +82,7 @@
*> \param[out] DELTA
*> \verbatim
*> DELTA is DOUBLE PRECISION array, dimension (N)
-*> If N .GT. 2, DELTA contains (D(j) - lambda_I) in its j-th
+*> If N > 2, DELTA contains (D(j) - lambda_I) in its j-th
*> component. If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5
*> for detail. The vector DELTA contains the information necessary
*> to construct the eigenvectors by DLAED3 and DLAED9.
diff --git a/lapack-netlib/SRC/dlaed8.f b/lapack-netlib/SRC/dlaed8.f
index c053347b1..f64679dc0 100644
--- a/lapack-netlib/SRC/dlaed8.f
+++ b/lapack-netlib/SRC/dlaed8.f
@@ -353,7 +353,7 @@
Z( I ) = W( INDX( I ) )
40 CONTINUE
*
-* Calculate the allowable deflation tolerence
+* Calculate the allowable deflation tolerance
*
IMAX = IDAMAX( N, Z, 1 )
JMAX = IDAMAX( N, D, 1 )
diff --git a/lapack-netlib/SRC/dlagtf.f b/lapack-netlib/SRC/dlagtf.f
index 4b257c64f..b92c84f39 100644
--- a/lapack-netlib/SRC/dlagtf.f
+++ b/lapack-netlib/SRC/dlagtf.f
@@ -125,7 +125,7 @@
*> then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
*> returns the smallest positive integer j such that
*>
-*> abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
+*> abs( u(j,j) ) <= norm( (T - lambda*I)(j) )*TOL,
*>
*> where norm( A(j) ) denotes the sum of the absolute values of
*> the jth row of the matrix A. If no such j exists then IN(n)
@@ -137,8 +137,8 @@
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0 : successful exit
-*> .lt. 0: if INFO = -k, the kth argument had an illegal value
+*> = 0: successful exit
+*> < 0: if INFO = -k, the kth argument had an illegal value
*> \endverbatim
*
* Authors:
diff --git a/lapack-netlib/SRC/dlagts.f b/lapack-netlib/SRC/dlagts.f
index 926075827..cbd35ae14 100644
--- a/lapack-netlib/SRC/dlagts.f
+++ b/lapack-netlib/SRC/dlagts.f
@@ -122,12 +122,12 @@
*> \param[in,out] TOL
*> \verbatim
*> TOL is DOUBLE PRECISION
-*> On entry, with JOB .lt. 0, TOL should be the minimum
+*> On entry, with JOB < 0, TOL should be the minimum
*> perturbation to be made to very small diagonal elements of U.
*> TOL should normally be chosen as about eps*norm(U), where eps
*> is the relative machine precision, but if TOL is supplied as
*> non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
-*> If JOB .gt. 0 then TOL is not referenced.
+*> If JOB > 0 then TOL is not referenced.
*>
*> On exit, TOL is changed as described above, only if TOL is
*> non-positive on entry. Otherwise TOL is unchanged.
@@ -136,14 +136,14 @@
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0 : successful exit
-*> .lt. 0: if INFO = -i, the i-th argument had an illegal value
-*> .gt. 0: overflow would occur when computing the INFO(th)
-*> element of the solution vector x. This can only occur
-*> when JOB is supplied as positive and either means
-*> that a diagonal element of U is very small, or that
-*> the elements of the right-hand side vector y are very
-*> large.
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: overflow would occur when computing the INFO(th)
+*> element of the solution vector x. This can only occur
+*> when JOB is supplied as positive and either means
+*> that a diagonal element of U is very small, or that
+*> the elements of the right-hand side vector y are very
+*> large.
*> \endverbatim
*
* Authors:
diff --git a/lapack-netlib/SRC/dlahqr.f b/lapack-netlib/SRC/dlahqr.f
index f7365d21e..e863829ec 100644
--- a/lapack-netlib/SRC/dlahqr.f
+++ b/lapack-netlib/SRC/dlahqr.f
@@ -150,26 +150,26 @@
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0: successful exit
-*> .GT. 0: If INFO = i, DLAHQR failed to compute all the
+*> = 0: successful exit
+*> > 0: If INFO = i, DLAHQR failed to compute all the
*> eigenvalues ILO to IHI in a total of 30 iterations
*> per eigenvalue; elements i+1:ihi of WR and WI
*> contain those eigenvalues which have been
*> successfully computed.
*>
-*> If INFO .GT. 0 and WANTT is .FALSE., then on exit,
+*> If INFO > 0 and WANTT is .FALSE., then on exit,
*> the remaining unconverged eigenvalues are the
*> eigenvalues of the upper Hessenberg matrix rows
-*> and columns ILO thorugh INFO of the final, output
+*> and columns ILO through INFO of the final, output
*> value of H.
*>
-*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
+*> If INFO > 0 and WANTT is .TRUE., then on exit
*> (*) (initial value of H)*U = U*(final value of H)
-*> where U is an orthognal matrix. The final
+*> where U is an orthogonal matrix. The final
*> value of H is upper Hessenberg and triangular in
*> rows and columns INFO+1 through IHI.
*>
-*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
+*> If INFO > 0 and WANTZ is .TRUE., then on exit
*> (final value of Z) = (initial value of Z)*U
*> where U is the orthogonal matrix in (*)
*> (regardless of the value of WANTT.)
diff --git a/lapack-netlib/SRC/dlaln2.f b/lapack-netlib/SRC/dlaln2.f
index a094b737b..0c94ea308 100644
--- a/lapack-netlib/SRC/dlaln2.f
+++ b/lapack-netlib/SRC/dlaln2.f
@@ -49,7 +49,7 @@
*> the first column of each being the real part and the second
*> being the imaginary part.
*>
-*> "s" is a scaling factor (.LE. 1), computed by DLALN2, which is
+*> "s" is a scaling factor (<= 1), computed by DLALN2, which is
*> so chosen that X can be computed without overflow. X is further
*> scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
*> than overflow.
diff --git a/lapack-netlib/SRC/dlamswlq.f b/lapack-netlib/SRC/dlamswlq.f
index 19e32f888..306c3d3de 100644
--- a/lapack-netlib/SRC/dlamswlq.f
+++ b/lapack-netlib/SRC/dlamswlq.f
@@ -1,3 +1,4 @@
+*> \brief \b DLAMSWLQ
*
* Definition:
* ===========
diff --git a/lapack-netlib/SRC/dlamtsqr.f b/lapack-netlib/SRC/dlamtsqr.f
index 6af89d28e..41a067780 100644
--- a/lapack-netlib/SRC/dlamtsqr.f
+++ b/lapack-netlib/SRC/dlamtsqr.f
@@ -1,3 +1,4 @@
+*> \brief \b DLAMTSQR
*
* Definition:
* ===========
diff --git a/lapack-netlib/SRC/dlangb.f b/lapack-netlib/SRC/dlangb.f
index 078573b87..0c4f938f7 100644
--- a/lapack-netlib/SRC/dlangb.f
+++ b/lapack-netlib/SRC/dlangb.f
@@ -129,6 +129,7 @@
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
+ IMPLICIT NONE
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER KL, KU, LDAB, N
@@ -139,22 +140,24 @@
*
* =====================================================================
*
-*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K, L
- DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
+ DOUBLE PRECISION SUM, VALUE, TEMP
* ..
-* .. External Subroutines ..
- EXTERNAL DLASSQ
+* .. Local Arrays ..
+ DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ, DCOMBSSQ
+* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
@@ -206,15 +209,22 @@
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
+* SSQ(1) is scale
+* SSQ(2) is sum-of-squares
+* For better accuracy, sum each column separately.
*
- SCALE = ZERO
- SUM = ONE
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
DO 90 J = 1, N
L = MAX( 1, J-KU )
K = KU + 1 - J + L
- CALL DLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
90 CONTINUE
- VALUE = SCALE*SQRT( SUM )
+ VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
END IF
*
DLANGB = VALUE
diff --git a/lapack-netlib/SRC/dlange.f b/lapack-netlib/SRC/dlange.f
index 9dbf45e81..6b32fbefd 100644
--- a/lapack-netlib/SRC/dlange.f
+++ b/lapack-netlib/SRC/dlange.f
@@ -119,6 +119,7 @@
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
+ IMPLICIT NONE
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER LDA, M, N
@@ -135,10 +136,13 @@
* ..
* .. Local Scalars ..
INTEGER I, J
- DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
+ DOUBLE PRECISION SUM, VALUE, TEMP
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Subroutines ..
- EXTERNAL DLASSQ
+ EXTERNAL DLASSQ, DCOMBSSQ
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
@@ -194,13 +198,19 @@
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
+* SSQ(1) is scale
+* SSQ(2) is sum-of-squares
+* For better accuracy, sum each column separately.
*
- SCALE = ZERO
- SUM = ONE
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
DO 90 J = 1, N
- CALL DLASSQ( M, A( 1, J ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( M, A( 1, J ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
90 CONTINUE
- VALUE = SCALE*SQRT( SUM )
+ VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
END IF
*
DLANGE = VALUE
diff --git a/lapack-netlib/SRC/dlanhs.f b/lapack-netlib/SRC/dlanhs.f
index 691dbc21e..a859d2216 100644
--- a/lapack-netlib/SRC/dlanhs.f
+++ b/lapack-netlib/SRC/dlanhs.f
@@ -113,6 +113,7 @@
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
+ IMPLICIT NONE
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER LDA, N
@@ -129,15 +130,18 @@
* ..
* .. Local Scalars ..
INTEGER I, J
- DOUBLE PRECISION SCALE, SUM, VALUE
+ DOUBLE PRECISION SUM, VALUE
* ..
-* .. External Subroutines ..
- EXTERNAL DLASSQ
+* .. Local Arrays ..
+ DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ, DCOMBSSQ
+* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN, SQRT
* ..
@@ -188,13 +192,20 @@
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
+* SSQ(1) is scale
+* SSQ(2) is sum-of-squares
+* For better accuracy, sum each column separately.
*
- SCALE = ZERO
- SUM = ONE
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
DO 90 J = 1, N
- CALL DLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( MIN( N, J+1 ), A( 1, J ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
90 CONTINUE
- VALUE = SCALE*SQRT( SUM )
+ VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
END IF
*
DLANHS = VALUE
diff --git a/lapack-netlib/SRC/dlansb.f b/lapack-netlib/SRC/dlansb.f
index 4ccf5f27e..a82dc41b1 100644
--- a/lapack-netlib/SRC/dlansb.f
+++ b/lapack-netlib/SRC/dlansb.f
@@ -134,6 +134,7 @@
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
+ IMPLICIT NONE
* .. Scalar Arguments ..
CHARACTER NORM, UPLO
INTEGER K, LDAB, N
@@ -150,15 +151,18 @@
* ..
* .. Local Scalars ..
INTEGER I, J, L
- DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
+ DOUBLE PRECISION ABSA, SUM, VALUE
* ..
-* .. External Subroutines ..
- EXTERNAL DLASSQ
+* .. Local Arrays ..
+ DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ, DCOMBSSQ
+* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
@@ -225,29 +229,47 @@
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
+* SSQ(1) is scale
+* SSQ(2) is sum-of-squares
+* For better accuracy, sum each column separately.
+*
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
+*
+* Sum off-diagonals
*
- SCALE = ZERO
- SUM = ONE
IF( K.GT.0 ) THEN
IF( LSAME( UPLO, 'U' ) ) THEN
DO 110 J = 2, N
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
CALL DLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
- $ 1, SCALE, SUM )
+ $ 1, COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
110 CONTINUE
L = K + 1
ELSE
DO 120 J = 1, N - 1
- CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
- $ SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
120 CONTINUE
L = 1
END IF
- SUM = 2*SUM
+ SSQ( 2 ) = 2*SSQ( 2 )
ELSE
L = 1
END IF
- CALL DLASSQ( N, AB( L, 1 ), LDAB, SCALE, SUM )
- VALUE = SCALE*SQRT( SUM )
+*
+* Sum diagonal
+*
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( N, AB( L, 1 ), LDAB, COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
+ VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
END IF
*
DLANSB = VALUE
diff --git a/lapack-netlib/SRC/dlansp.f b/lapack-netlib/SRC/dlansp.f
index a1829db75..b6ad1ffcf 100644
--- a/lapack-netlib/SRC/dlansp.f
+++ b/lapack-netlib/SRC/dlansp.f
@@ -119,6 +119,7 @@
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
+ IMPLICIT NONE
* .. Scalar Arguments ..
CHARACTER NORM, UPLO
INTEGER N
@@ -135,15 +136,18 @@
* ..
* .. Local Scalars ..
INTEGER I, J, K
- DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
+ DOUBLE PRECISION ABSA, SUM, VALUE
* ..
-* .. External Subroutines ..
- EXTERNAL DLASSQ
+* .. Local Arrays ..
+ DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ, DCOMBSSQ
+* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
@@ -217,31 +221,48 @@
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
+* SSQ(1) is scale
+* SSQ(2) is sum-of-squares
+* For better accuracy, sum each column separately.
+*
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
+*
+* Sum off-diagonals
*
- SCALE = ZERO
- SUM = ONE
K = 2
IF( LSAME( UPLO, 'U' ) ) THEN
DO 110 J = 2, N
- CALL DLASSQ( J-1, AP( K ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( J-1, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
K = K + J
110 CONTINUE
ELSE
DO 120 J = 1, N - 1
- CALL DLASSQ( N-J, AP( K ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( N-J, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
K = K + N - J + 1
120 CONTINUE
END IF
- SUM = 2*SUM
+ SSQ( 2 ) = 2*SSQ( 2 )
+*
+* Sum diagonal
+*
K = 1
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
DO 130 I = 1, N
IF( AP( K ).NE.ZERO ) THEN
ABSA = ABS( AP( K ) )
- IF( SCALE.LT.ABSA ) THEN
- SUM = ONE + SUM*( SCALE / ABSA )**2
- SCALE = ABSA
+ IF( COLSSQ( 1 ).LT.ABSA ) THEN
+ COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2
+ COLSSQ( 1 ) = ABSA
ELSE
- SUM = SUM + ( ABSA / SCALE )**2
+ COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2
END IF
END IF
IF( LSAME( UPLO, 'U' ) ) THEN
@@ -250,7 +271,8 @@
K = K + N - I + 1
END IF
130 CONTINUE
- VALUE = SCALE*SQRT( SUM )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
+ VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
END IF
*
DLANSP = VALUE
diff --git a/lapack-netlib/SRC/dlansy.f b/lapack-netlib/SRC/dlansy.f
index 2372fce0a..87d514c11 100644
--- a/lapack-netlib/SRC/dlansy.f
+++ b/lapack-netlib/SRC/dlansy.f
@@ -127,6 +127,7 @@
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
+ IMPLICIT NONE
* .. Scalar Arguments ..
CHARACTER NORM, UPLO
INTEGER LDA, N
@@ -143,15 +144,18 @@
* ..
* .. Local Scalars ..
INTEGER I, J
- DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
+ DOUBLE PRECISION ABSA, SUM, VALUE
* ..
-* .. External Subroutines ..
- EXTERNAL DLASSQ
+* .. Local Arrays ..
+ DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ, DCOMBSSQ
+* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
@@ -216,21 +220,39 @@
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
+* SSQ(1) is scale
+* SSQ(2) is sum-of-squares
+* For better accuracy, sum each column separately.
+*
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
+*
+* Sum off-diagonals
*
- SCALE = ZERO
- SUM = ONE
IF( LSAME( UPLO, 'U' ) ) THEN
DO 110 J = 2, N
- CALL DLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( J-1, A( 1, J ), 1, COLSSQ(1), COLSSQ(2) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
110 CONTINUE
ELSE
DO 120 J = 1, N - 1
- CALL DLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( N-J, A( J+1, J ), 1, COLSSQ(1), COLSSQ(2) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
120 CONTINUE
END IF
- SUM = 2*SUM
- CALL DLASSQ( N, A, LDA+1, SCALE, SUM )
- VALUE = SCALE*SQRT( SUM )
+ SSQ( 2 ) = 2*SSQ( 2 )
+*
+* Sum diagonal
+*
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( N, A, LDA+1, COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
+ VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
END IF
*
DLANSY = VALUE
diff --git a/lapack-netlib/SRC/dlantb.f b/lapack-netlib/SRC/dlantb.f
index 3d2bfe7e4..0d46f6cc8 100644
--- a/lapack-netlib/SRC/dlantb.f
+++ b/lapack-netlib/SRC/dlantb.f
@@ -145,6 +145,7 @@
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
+ IMPLICIT NONE
* .. Scalar Arguments ..
CHARACTER DIAG, NORM, UPLO
INTEGER K, LDAB, N
@@ -162,15 +163,18 @@
* .. Local Scalars ..
LOGICAL UDIAG
INTEGER I, J, L
- DOUBLE PRECISION SCALE, SUM, VALUE
+ DOUBLE PRECISION SUM, VALUE
* ..
-* .. External Subroutines ..
- EXTERNAL DLASSQ
+* .. Local Arrays ..
+ DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ, DCOMBSSQ
+* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
@@ -311,46 +315,61 @@
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
+* SSQ(1) is scale
+* SSQ(2) is sum-of-squares
+* For better accuracy, sum each column separately.
*
IF( LSAME( UPLO, 'U' ) ) THEN
IF( LSAME( DIAG, 'U' ) ) THEN
- SCALE = ONE
- SUM = N
+ SSQ( 1 ) = ONE
+ SSQ( 2 ) = N
IF( K.GT.0 ) THEN
DO 280 J = 2, N
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
CALL DLASSQ( MIN( J-1, K ),
- $ AB( MAX( K+2-J, 1 ), J ), 1, SCALE,
- $ SUM )
+ $ AB( MAX( K+2-J, 1 ), J ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
280 CONTINUE
END IF
ELSE
- SCALE = ZERO
- SUM = ONE
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
DO 290 J = 1, N
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
CALL DLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
- $ 1, SCALE, SUM )
+ $ 1, COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
290 CONTINUE
END IF
ELSE
IF( LSAME( DIAG, 'U' ) ) THEN
- SCALE = ONE
- SUM = N
+ SSQ( 1 ) = ONE
+ SSQ( 2 ) = N
IF( K.GT.0 ) THEN
DO 300 J = 1, N - 1
- CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
- $ SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
300 CONTINUE
END IF
ELSE
- SCALE = ZERO
- SUM = ONE
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
DO 310 J = 1, N
- CALL DLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1, SCALE,
- $ SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
310 CONTINUE
END IF
END IF
- VALUE = SCALE*SQRT( SUM )
+ VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
END IF
*
DLANTB = VALUE
diff --git a/lapack-netlib/SRC/dlantp.f b/lapack-netlib/SRC/dlantp.f
index f84a9e9d7..a7b89dec7 100644
--- a/lapack-netlib/SRC/dlantp.f
+++ b/lapack-netlib/SRC/dlantp.f
@@ -129,6 +129,7 @@
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
+ IMPLICIT NONE
* .. Scalar Arguments ..
CHARACTER DIAG, NORM, UPLO
INTEGER N
@@ -146,15 +147,18 @@
* .. Local Scalars ..
LOGICAL UDIAG
INTEGER I, J, K
- DOUBLE PRECISION SCALE, SUM, VALUE
+ DOUBLE PRECISION SUM, VALUE
* ..
-* .. External Subroutines ..
- EXTERNAL DLASSQ
+* .. Local Arrays ..
+ DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ, DCOMBSSQ
+* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
@@ -306,45 +310,64 @@
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
+* SSQ(1) is scale
+* SSQ(2) is sum-of-squares
+* For better accuracy, sum each column separately.
*
IF( LSAME( UPLO, 'U' ) ) THEN
IF( LSAME( DIAG, 'U' ) ) THEN
- SCALE = ONE
- SUM = N
+ SSQ( 1 ) = ONE
+ SSQ( 2 ) = N
K = 2
DO 280 J = 2, N
- CALL DLASSQ( J-1, AP( K ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( J-1, AP( K ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
K = K + J
280 CONTINUE
ELSE
- SCALE = ZERO
- SUM = ONE
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
K = 1
DO 290 J = 1, N
- CALL DLASSQ( J, AP( K ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( J, AP( K ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
K = K + J
290 CONTINUE
END IF
ELSE
IF( LSAME( DIAG, 'U' ) ) THEN
- SCALE = ONE
- SUM = N
+ SSQ( 1 ) = ONE
+ SSQ( 2 ) = N
K = 2
DO 300 J = 1, N - 1
- CALL DLASSQ( N-J, AP( K ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( N-J, AP( K ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
K = K + N - J + 1
300 CONTINUE
ELSE
- SCALE = ZERO
- SUM = ONE
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
K = 1
DO 310 J = 1, N
- CALL DLASSQ( N-J+1, AP( K ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( N-J+1, AP( K ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
K = K + N - J + 1
310 CONTINUE
END IF
END IF
- VALUE = SCALE*SQRT( SUM )
+ VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
END IF
*
DLANTP = VALUE
diff --git a/lapack-netlib/SRC/dlantr.f b/lapack-netlib/SRC/dlantr.f
index 8585b2f68..adc7da4c4 100644
--- a/lapack-netlib/SRC/dlantr.f
+++ b/lapack-netlib/SRC/dlantr.f
@@ -146,6 +146,7 @@
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
+ IMPLICIT NONE
* .. Scalar Arguments ..
CHARACTER DIAG, NORM, UPLO
INTEGER LDA, M, N
@@ -163,15 +164,18 @@
* .. Local Scalars ..
LOGICAL UDIAG
INTEGER I, J
- DOUBLE PRECISION SCALE, SUM, VALUE
+ DOUBLE PRECISION SUM, VALUE
* ..
-* .. External Subroutines ..
- EXTERNAL DLASSQ
+* .. Local Arrays ..
+ DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ, DCOMBSSQ
+* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN, SQRT
* ..
@@ -281,7 +285,7 @@
END IF
ELSE
IF( LSAME( DIAG, 'U' ) ) THEN
- DO 210 I = 1, N
+ DO 210 I = 1, MIN( M, N )
WORK( I ) = ONE
210 CONTINUE
DO 220 I = N + 1, M
@@ -311,38 +315,56 @@
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
+* SSQ(1) is scale
+* SSQ(2) is sum-of-squares
+* For better accuracy, sum each column separately.
*
IF( LSAME( UPLO, 'U' ) ) THEN
IF( LSAME( DIAG, 'U' ) ) THEN
- SCALE = ONE
- SUM = MIN( M, N )
+ SSQ( 1 ) = ONE
+ SSQ( 2 ) = MIN( M, N )
DO 290 J = 2, N
- CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
290 CONTINUE
ELSE
- SCALE = ZERO
- SUM = ONE
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
DO 300 J = 1, N
- CALL DLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( MIN( M, J ), A( 1, J ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
300 CONTINUE
END IF
ELSE
IF( LSAME( DIAG, 'U' ) ) THEN
- SCALE = ONE
- SUM = MIN( M, N )
+ SSQ( 1 ) = ONE
+ SSQ( 2 ) = MIN( M, N )
DO 310 J = 1, N
- CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
- $ SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
310 CONTINUE
ELSE
- SCALE = ZERO
- SUM = ONE
+ SSQ( 1 ) = ZERO
+ SSQ( 2 ) = ONE
DO 320 J = 1, N
- CALL DLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
+ COLSSQ( 1 ) = ZERO
+ COLSSQ( 2 ) = ONE
+ CALL DLASSQ( M-J+1, A( J, J ), 1,
+ $ COLSSQ( 1 ), COLSSQ( 2 ) )
+ CALL DCOMBSSQ( SSQ, COLSSQ )
320 CONTINUE
END IF
END IF
- VALUE = SCALE*SQRT( SUM )
+ VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
END IF
*
DLANTR = VALUE
diff --git a/lapack-netlib/SRC/dlanv2.f b/lapack-netlib/SRC/dlanv2.f
index 91fa14ff2..d68481f7e 100644
--- a/lapack-netlib/SRC/dlanv2.f
+++ b/lapack-netlib/SRC/dlanv2.f
@@ -161,7 +161,6 @@
IF( C.EQ.ZERO ) THEN
CS = ONE
SN = ZERO
- GO TO 10
*
ELSE IF( B.EQ.ZERO ) THEN
*
@@ -174,12 +173,12 @@
A = TEMP
B = -C
C = ZERO
- GO TO 10
+*
ELSE IF( ( A-D ).EQ.ZERO .AND. SIGN( ONE, B ).NE.SIGN( ONE, C ) )
$ THEN
CS = ONE
SN = ZERO
- GO TO 10
+*
ELSE
*
TEMP = A - D
@@ -207,6 +206,7 @@
SN = C / TAU
B = B - C
C = ZERO
+*
ELSE
*
* Complex eigenvalues, or real (almost) equal eigenvalues.
@@ -268,8 +268,6 @@
END IF
*
END IF
-*
- 10 CONTINUE
*
* Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
*
diff --git a/lapack-netlib/SRC/dlaorhr_col_getrfnp.f b/lapack-netlib/SRC/dlaorhr_col_getrfnp.f
new file mode 100644
index 000000000..6a7c629e8
--- /dev/null
+++ b/lapack-netlib/SRC/dlaorhr_col_getrfnp.f
@@ -0,0 +1,248 @@
+*> \brief \b DLAORHR_COL_GETRFNP
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DLAORHR_COL_GETRFNP + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, M, N
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION A( LDA, * ), D( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DLAORHR_COL_GETRFNP computes the modified LU factorization without
+*> pivoting of a real general M-by-N matrix A. The factorization has
+*> the form:
+*>
+*> A - S = L * U,
+*>
+*> where:
+*> S is a m-by-n diagonal sign matrix with the diagonal D, so that
+*> D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
+*> as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
+*> i-1 steps of Gaussian elimination. This means that the diagonal
+*> element at each step of "modified" Gaussian elimination is
+*> at least one in absolute value (so that division-by-zero not
+*> not possible during the division by the diagonal element);
+*>
+*> L is a M-by-N lower triangular matrix with unit diagonal elements
+*> (lower trapezoidal if M > N);
+*>
+*> and U is a M-by-N upper triangular matrix
+*> (upper trapezoidal if M < N).
+*>
+*> This routine is an auxiliary routine used in the Householder
+*> reconstruction routine DORHR_COL. In DORHR_COL, this routine is
+*> applied to an M-by-N matrix A with orthonormal columns, where each
+*> element is bounded by one in absolute value. With the choice of
+*> the matrix S above, one can show that the diagonal element at each
+*> step of Gaussian elimination is the largest (in absolute value) in
+*> the column on or below the diagonal, so that no pivoting is required
+*> for numerical stability [1].
+*>
+*> For more details on the Householder reconstruction algorithm,
+*> including the modified LU factorization, see [1].
+*>
+*> This is the blocked right-looking version of the algorithm,
+*> calling Level 3 BLAS to update the submatrix. To factorize a block,
+*> this routine calls the recursive routine DLAORHR_COL_GETRFNP2.
+*>
+*> [1] "Reconstructing Householder vectors from tall-skinny QR",
+*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
+*> E. Solomonik, J. Parallel Distrib. Comput.,
+*> vol. 85, pp. 3-31, 2015.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*> On entry, the M-by-N matrix to be factored.
+*> On exit, the factors L and U from the factorization
+*> A-S=L*U; the unit diagonal elements of L are not stored.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] D
+*> \verbatim
+*> D is DOUBLE PRECISION array, dimension min(M,N)
+*> The diagonal elements of the diagonal M-by-N sign matrix S,
+*> D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can
+*> be only plus or minus one.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2019
+*
+*> \ingroup doubleGEcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2019, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE DLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine (version 3.9.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2019
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), D( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE
+ PARAMETER ( ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER IINFO, J, JB, NB
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEMM, DLAORHR_COL_GETRFNP2, DTRSM, XERBLA
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ EXTERNAL ILAENV
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DLAORHR_COL_GETRFNP', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 )
+ $ RETURN
+*
+* Determine the block size for this environment.
+*
+
+ NB = ILAENV( 1, 'DLAORHR_COL_GETRFNP', ' ', M, N, -1, -1 )
+
+ IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
+*
+* Use unblocked code.
+*
+ CALL DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
+ ELSE
+*
+* Use blocked code.
+*
+ DO J = 1, MIN( M, N ), NB
+ JB = MIN( MIN( M, N )-J+1, NB )
+*
+* Factor diagonal and subdiagonal blocks.
+*
+ CALL DLAORHR_COL_GETRFNP2( M-J+1, JB, A( J, J ), LDA,
+ $ D( J ), IINFO )
+*
+ IF( J+JB.LE.N ) THEN
+*
+* Compute block row of U.
+*
+ CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
+ $ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
+ $ LDA )
+ IF( J+JB.LE.M ) THEN
+*
+* Update trailing submatrix.
+*
+ CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,
+ $ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
+ $ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
+ $ LDA )
+ END IF
+ END IF
+ END DO
+ END IF
+ RETURN
+*
+* End of DLAORHR_COL_GETRFNP
+*
+ END
diff --git a/lapack-netlib/SRC/dlaorhr_col_getrfnp2.f b/lapack-netlib/SRC/dlaorhr_col_getrfnp2.f
new file mode 100644
index 000000000..f7781f2e5
--- /dev/null
+++ b/lapack-netlib/SRC/dlaorhr_col_getrfnp2.f
@@ -0,0 +1,305 @@
+*> \brief \b DLAORHR_COL_GETRFNP2
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DLAORHR_GETRF2NP + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* RECURSIVE SUBROUTINE DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, M, N
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION A( LDA, * ), D( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DLAORHR_COL_GETRFNP2 computes the modified LU factorization without
+*> pivoting of a real general M-by-N matrix A. The factorization has
+*> the form:
+*>
+*> A - S = L * U,
+*>
+*> where:
+*> S is a m-by-n diagonal sign matrix with the diagonal D, so that
+*> D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
+*> as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
+*> i-1 steps of Gaussian elimination. This means that the diagonal
+*> element at each step of "modified" Gaussian elimination is at
+*> least one in absolute value (so that division-by-zero not
+*> possible during the division by the diagonal element);
+*>
+*> L is a M-by-N lower triangular matrix with unit diagonal elements
+*> (lower trapezoidal if M > N);
+*>
+*> and U is a M-by-N upper triangular matrix
+*> (upper trapezoidal if M < N).
+*>
+*> This routine is an auxiliary routine used in the Householder
+*> reconstruction routine DORHR_COL. In DORHR_COL, this routine is
+*> applied to an M-by-N matrix A with orthonormal columns, where each
+*> element is bounded by one in absolute value. With the choice of
+*> the matrix S above, one can show that the diagonal element at each
+*> step of Gaussian elimination is the largest (in absolute value) in
+*> the column on or below the diagonal, so that no pivoting is required
+*> for numerical stability [1].
+*>
+*> For more details on the Householder reconstruction algorithm,
+*> including the modified LU factorization, see [1].
+*>
+*> This is the recursive version of the LU factorization algorithm.
+*> Denote A - S by B. The algorithm divides the matrix B into four
+*> submatrices:
+*>
+*> [ B11 | B12 ] where B11 is n1 by n1,
+*> B = [ -----|----- ] B21 is (m-n1) by n1,
+*> [ B21 | B22 ] B12 is n1 by n2,
+*> B22 is (m-n1) by n2,
+*> with n1 = min(m,n)/2, n2 = n-n1.
+*>
+*>
+*> The subroutine calls itself to factor B11, solves for B21,
+*> solves for B12, updates B22, then calls itself to factor B22.
+*>
+*> For more details on the recursive LU algorithm, see [2].
+*>
+*> DLAORHR_COL_GETRFNP2 is called to factorize a block by the blocked
+*> routine DLAORHR_COL_GETRFNP, which uses blocked code calling
+*. Level 3 BLAS to update the submatrix. However, DLAORHR_COL_GETRFNP2
+*> is self-sufficient and can be used without DLAORHR_COL_GETRFNP.
+*>
+*> [1] "Reconstructing Householder vectors from tall-skinny QR",
+*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
+*> E. Solomonik, J. Parallel Distrib. Comput.,
+*> vol. 85, pp. 3-31, 2015.
+*>
+*> [2] "Recursion leads to automatic variable blocking for dense linear
+*> algebra algorithms", F. Gustavson, IBM J. of Res. and Dev.,
+*> vol. 41, no. 6, pp. 737-755, 1997.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*> On entry, the M-by-N matrix to be factored.
+*> On exit, the factors L and U from the factorization
+*> A-S=L*U; the unit diagonal elements of L are not stored.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] D
+*> \verbatim
+*> D is DOUBLE PRECISION array, dimension min(M,N)
+*> The diagonal elements of the diagonal M-by-N sign matrix S,
+*> D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can
+*> be only plus or minus one.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2019
+*
+*> \ingroup doubleGEcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2019, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*
+* =====================================================================
+ RECURSIVE SUBROUTINE DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine (version 3.9.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2019
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), D( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE
+ PARAMETER ( ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION SFMIN
+ INTEGER I, IINFO, N1, N2
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEMM, DSCAL, DTRSM, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DSIGN, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DLAORHR_COL_GETRFNP2', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 )
+ $ RETURN
+
+ IF ( M.EQ.1 ) THEN
+*
+* One row case, (also recursion termination case),
+* use unblocked code
+*
+* Transfer the sign
+*
+ D( 1 ) = -DSIGN( ONE, A( 1, 1 ) )
+*
+* Construct the row of U
+*
+ A( 1, 1 ) = A( 1, 1 ) - D( 1 )
+*
+ ELSE IF( N.EQ.1 ) THEN
+*
+* One column case, (also recursion termination case),
+* use unblocked code
+*
+* Transfer the sign
+*
+ D( 1 ) = -DSIGN( ONE, A( 1, 1 ) )
+*
+* Construct the row of U
+*
+ A( 1, 1 ) = A( 1, 1 ) - D( 1 )
+*
+* Scale the elements 2:M of the column
+*
+* Determine machine safe minimum
+*
+ SFMIN = DLAMCH('S')
+*
+* Construct the subdiagonal elements of L
+*
+ IF( ABS( A( 1, 1 ) ) .GE. SFMIN ) THEN
+ CALL DSCAL( M-1, ONE / A( 1, 1 ), A( 2, 1 ), 1 )
+ ELSE
+ DO I = 2, M
+ A( I, 1 ) = A( I, 1 ) / A( 1, 1 )
+ END DO
+ END IF
+*
+ ELSE
+*
+* Divide the matrix B into four submatrices
+*
+ N1 = MIN( M, N ) / 2
+ N2 = N-N1
+
+*
+* Factor B11, recursive call
+*
+ CALL DLAORHR_COL_GETRFNP2( N1, N1, A, LDA, D, IINFO )
+*
+* Solve for B21
+*
+ CALL DTRSM( 'R', 'U', 'N', 'N', M-N1, N1, ONE, A, LDA,
+ $ A( N1+1, 1 ), LDA )
+*
+* Solve for B12
+*
+ CALL DTRSM( 'L', 'L', 'N', 'U', N1, N2, ONE, A, LDA,
+ $ A( 1, N1+1 ), LDA )
+*
+* Update B22, i.e. compute the Schur complement
+* B22 := B22 - B21*B12
+*
+ CALL DGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( N1+1, 1 ), LDA,
+ $ A( 1, N1+1 ), LDA, ONE, A( N1+1, N1+1 ), LDA )
+*
+* Factor B22, recursive call
+*
+ CALL DLAORHR_COL_GETRFNP2( M-N1, N2, A( N1+1, N1+1 ), LDA,
+ $ D( N1+1 ), IINFO )
+*
+ END IF
+ RETURN
+*
+* End of DLAORHR_COL_GETRFNP2
+*
+ END
diff --git a/lapack-netlib/SRC/dlaqps.f b/lapack-netlib/SRC/dlaqps.f
index 395d8e0b1..0009de951 100644
--- a/lapack-netlib/SRC/dlaqps.f
+++ b/lapack-netlib/SRC/dlaqps.f
@@ -127,7 +127,7 @@
*> \param[in,out] AUXV
*> \verbatim
*> AUXV is DOUBLE PRECISION array, dimension (NB)
-*> Auxiliar vector.
+*> Auxiliary vector.
*> \endverbatim
*>
*> \param[in,out] F
diff --git a/lapack-netlib/SRC/dlaqr0.f b/lapack-netlib/SRC/dlaqr0.f
index 247d4ef30..f362c096c 100644
--- a/lapack-netlib/SRC/dlaqr0.f
+++ b/lapack-netlib/SRC/dlaqr0.f
@@ -67,7 +67,7 @@
*> \param[in] N
*> \verbatim
*> N is INTEGER
-*> The order of the matrix H. N .GE. 0.
+*> The order of the matrix H. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
@@ -79,12 +79,12 @@
*> \verbatim
*> IHI is INTEGER
*> It is assumed that H is already upper triangular in rows
-*> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
+*> and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
*> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
*> previous call to DGEBAL, and then passed to DGEHRD when the
*> matrix output by DGEBAL is reduced to Hessenberg form.
*> Otherwise, ILO and IHI should be set to 1 and N,
-*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
+*> respectively. If N > 0, then 1 <= ILO <= IHI <= N.
*> If N = 0, then ILO = 1 and IHI = 0.
*> \endverbatim
*>
@@ -97,19 +97,19 @@
*> decomposition (the Schur form); 2-by-2 diagonal blocks
*> (corresponding to complex conjugate pairs of eigenvalues)
*> are returned in standard form, with H(i,i) = H(i+1,i+1)
-*> and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
+*> and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
*> .FALSE., then the contents of H are unspecified on exit.
-*> (The output value of H when INFO.GT.0 is given under the
+*> (The output value of H when INFO > 0 is given under the
*> description of INFO below.)
*>
-*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
+*> This subroutine may explicitly set H(i,j) = 0 for i > j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*> LDH is INTEGER
-*> The leading dimension of the array H. LDH .GE. max(1,N).
+*> The leading dimension of the array H. LDH >= max(1,N).
*> \endverbatim
*>
*> \param[out] WR
@@ -125,7 +125,7 @@
*> and WI(ILO:IHI). If two eigenvalues are computed as a
*> complex conjugate pair, they are stored in consecutive
*> elements of WR and WI, say the i-th and (i+1)th, with
-*> WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
+*> WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
*> the eigenvalues are stored in the same order as on the
*> diagonal of the Schur form returned in H, with
*> WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
@@ -143,7 +143,7 @@
*> IHIZ is INTEGER
*> Specify the rows of Z to which transformations must be
*> applied if WANTZ is .TRUE..
-*> 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
+*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*> \endverbatim
*>
*> \param[in,out] Z
@@ -153,7 +153,7 @@
*> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
*> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
*> orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
-*> (The output value of Z when INFO.GT.0 is given under
+*> (The output value of Z when INFO > 0 is given under
*> the description of INFO below.)
*> \endverbatim
*>
@@ -161,7 +161,7 @@
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. if WANTZ is .TRUE.
-*> then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
+*> then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1.
*> \endverbatim
*>
*> \param[out] WORK
@@ -174,7 +174,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
-*> The dimension of the array WORK. LWORK .GE. max(1,N)
+*> The dimension of the array WORK. LWORK >= max(1,N)
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
@@ -190,19 +190,19 @@
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0: successful exit
-*> .GT. 0: if INFO = i, DLAQR0 failed to compute all of
+*> = 0: successful exit
+*> > 0: if INFO = i, DLAQR0 failed to compute all of
*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
*> and WI contain those eigenvalues which have been
*> successfully computed. (Failures are rare.)
*>
-*> If INFO .GT. 0 and WANT is .FALSE., then on exit,
+*> If INFO > 0 and WANT is .FALSE., then on exit,
*> the remaining unconverged eigenvalues are the eigen-
*> values of the upper Hessenberg matrix rows and
*> columns ILO through INFO of the final, output
*> value of H.
*>
-*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
+*> If INFO > 0 and WANTT is .TRUE., then on exit
*>
*> (*) (initial value of H)*U = U*(final value of H)
*>
@@ -210,7 +210,7 @@
*> value of H is upper Hessenberg and quasi-triangular
*> in rows and columns INFO+1 through IHI.
*>
-*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
+*> If INFO > 0 and WANTZ is .TRUE., then on exit
*>
*> (final value of Z(ILO:IHI,ILOZ:IHIZ)
*> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
@@ -218,7 +218,7 @@
*> where U is the orthogonal matrix in (*) (regard-
*> less of the value of WANTT.)
*>
-*> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
+*> If INFO > 0 and WANTZ is .FALSE., then Z is not
*> accessed.
*> \endverbatim
*
@@ -678,7 +678,7 @@
END IF
END IF
*
-* ==== Use up to NS of the the smallest magnatiude
+* ==== Use up to NS of the the smallest magnitude
* . shifts. If there aren't NS shifts available,
* . then use them all, possibly dropping one to
* . make the number of shifts even. ====
diff --git a/lapack-netlib/SRC/dlaqr1.f b/lapack-netlib/SRC/dlaqr1.f
index 795b072ab..4ccf997e7 100644
--- a/lapack-netlib/SRC/dlaqr1.f
+++ b/lapack-netlib/SRC/dlaqr1.f
@@ -69,7 +69,7 @@
*> \verbatim
*> LDH is INTEGER
*> The leading dimension of H as declared in
-*> the calling procedure. LDH.GE.N
+*> the calling procedure. LDH >= N
*> \endverbatim
*>
*> \param[in] SR1
diff --git a/lapack-netlib/SRC/dlaqr2.f b/lapack-netlib/SRC/dlaqr2.f
index 431b3f123..01fdf3046 100644
--- a/lapack-netlib/SRC/dlaqr2.f
+++ b/lapack-netlib/SRC/dlaqr2.f
@@ -103,7 +103,7 @@
*> \param[in] NW
*> \verbatim
*> NW is INTEGER
-*> Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
+*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
*> \endverbatim
*>
*> \param[in,out] H
@@ -121,7 +121,7 @@
*> \verbatim
*> LDH is INTEGER
*> Leading dimension of H just as declared in the calling
-*> subroutine. N .LE. LDH
+*> subroutine. N <= LDH
*> \endverbatim
*>
*> \param[in] ILOZ
@@ -133,7 +133,7 @@
*> \verbatim
*> IHIZ is INTEGER
*> Specify the rows of Z to which transformations must be
-*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
+*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
*> \endverbatim
*>
*> \param[in,out] Z
@@ -149,7 +149,7 @@
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of Z just as declared in the
-*> calling subroutine. 1 .LE. LDZ.
+*> calling subroutine. 1 <= LDZ.
*> \endverbatim
*>
*> \param[out] NS
@@ -194,13 +194,13 @@
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of V just as declared in the
-*> calling subroutine. NW .LE. LDV
+*> calling subroutine. NW <= LDV
*> \endverbatim
*>
*> \param[in] NH
*> \verbatim
*> NH is INTEGER
-*> The number of columns of T. NH.GE.NW.
+*> The number of columns of T. NH >= NW.
*> \endverbatim
*>
*> \param[out] T
@@ -212,14 +212,14 @@
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of T just as declared in the
-*> calling subroutine. NW .LE. LDT
+*> calling subroutine. NW <= LDT
*> \endverbatim
*>
*> \param[in] NV
*> \verbatim
*> NV is INTEGER
*> The number of rows of work array WV available for
-*> workspace. NV.GE.NW.
+*> workspace. NV >= NW.
*> \endverbatim
*>
*> \param[out] WV
@@ -231,7 +231,7 @@
*> \verbatim
*> LDWV is INTEGER
*> The leading dimension of W just as declared in the
-*> calling subroutine. NW .LE. LDV
+*> calling subroutine. NW <= LDV
*> \endverbatim
*>
*> \param[out] WORK
diff --git a/lapack-netlib/SRC/dlaqr3.f b/lapack-netlib/SRC/dlaqr3.f
index aa23617c3..1dbf55c9e 100644
--- a/lapack-netlib/SRC/dlaqr3.f
+++ b/lapack-netlib/SRC/dlaqr3.f
@@ -100,7 +100,7 @@
*> \param[in] NW
*> \verbatim
*> NW is INTEGER
-*> Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
+*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
*> \endverbatim
*>
*> \param[in,out] H
@@ -118,7 +118,7 @@
*> \verbatim
*> LDH is INTEGER
*> Leading dimension of H just as declared in the calling
-*> subroutine. N .LE. LDH
+*> subroutine. N <= LDH
*> \endverbatim
*>
*> \param[in] ILOZ
@@ -130,7 +130,7 @@
*> \verbatim
*> IHIZ is INTEGER
*> Specify the rows of Z to which transformations must be
-*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
+*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
*> \endverbatim
*>
*> \param[in,out] Z
@@ -146,7 +146,7 @@
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of Z just as declared in the
-*> calling subroutine. 1 .LE. LDZ.
+*> calling subroutine. 1 <= LDZ.
*> \endverbatim
*>
*> \param[out] NS
@@ -191,13 +191,13 @@
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of V just as declared in the
-*> calling subroutine. NW .LE. LDV
+*> calling subroutine. NW <= LDV
*> \endverbatim
*>
*> \param[in] NH
*> \verbatim
*> NH is INTEGER
-*> The number of columns of T. NH.GE.NW.
+*> The number of columns of T. NH >= NW.
*> \endverbatim
*>
*> \param[out] T
@@ -209,14 +209,14 @@
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of T just as declared in the
-*> calling subroutine. NW .LE. LDT
+*> calling subroutine. NW <= LDT
*> \endverbatim
*>
*> \param[in] NV
*> \verbatim
*> NV is INTEGER
*> The number of rows of work array WV available for
-*> workspace. NV.GE.NW.
+*> workspace. NV >= NW.
*> \endverbatim
*>
*> \param[out] WV
@@ -228,7 +228,7 @@
*> \verbatim
*> LDWV is INTEGER
*> The leading dimension of W just as declared in the
-*> calling subroutine. NW .LE. LDV
+*> calling subroutine. NW <= LDV
*> \endverbatim
*>
*> \param[out] WORK
diff --git a/lapack-netlib/SRC/dlaqr4.f b/lapack-netlib/SRC/dlaqr4.f
index 89b9b7f20..454bf9608 100644
--- a/lapack-netlib/SRC/dlaqr4.f
+++ b/lapack-netlib/SRC/dlaqr4.f
@@ -74,7 +74,7 @@
*> \param[in] N
*> \verbatim
*> N is INTEGER
-*> The order of the matrix H. N .GE. 0.
+*> The order of the matrix H. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
@@ -86,12 +86,12 @@
*> \verbatim
*> IHI is INTEGER
*> It is assumed that H is already upper triangular in rows
-*> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
+*> and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
*> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
*> previous call to DGEBAL, and then passed to DGEHRD when the
*> matrix output by DGEBAL is reduced to Hessenberg form.
*> Otherwise, ILO and IHI should be set to 1 and N,
-*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
+*> respectively. If N > 0, then 1 <= ILO <= IHI <= N.
*> If N = 0, then ILO = 1 and IHI = 0.
*> \endverbatim
*>
@@ -104,19 +104,19 @@
*> decomposition (the Schur form); 2-by-2 diagonal blocks
*> (corresponding to complex conjugate pairs of eigenvalues)
*> are returned in standard form, with H(i,i) = H(i+1,i+1)
-*> and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
+*> and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
*> .FALSE., then the contents of H are unspecified on exit.
-*> (The output value of H when INFO.GT.0 is given under the
+*> (The output value of H when INFO > 0 is given under the
*> description of INFO below.)
*>
-*> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
+*> This subroutine may explicitly set H(i,j) = 0 for i > j and
*> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*> LDH is INTEGER
-*> The leading dimension of the array H. LDH .GE. max(1,N).
+*> The leading dimension of the array H. LDH >= max(1,N).
*> \endverbatim
*>
*> \param[out] WR
@@ -132,7 +132,7 @@
*> and WI(ILO:IHI). If two eigenvalues are computed as a
*> complex conjugate pair, they are stored in consecutive
*> elements of WR and WI, say the i-th and (i+1)th, with
-*> WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
+*> WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
*> the eigenvalues are stored in the same order as on the
*> diagonal of the Schur form returned in H, with
*> WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
@@ -150,7 +150,7 @@
*> IHIZ is INTEGER
*> Specify the rows of Z to which transformations must be
*> applied if WANTZ is .TRUE..
-*> 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
+*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*> \endverbatim
*>
*> \param[in,out] Z
@@ -160,7 +160,7 @@
*> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
*> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
*> orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
-*> (The output value of Z when INFO.GT.0 is given under
+*> (The output value of Z when INFO > 0 is given under
*> the description of INFO below.)
*> \endverbatim
*>
@@ -168,7 +168,7 @@
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. if WANTZ is .TRUE.
-*> then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
+*> then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1.
*> \endverbatim
*>
*> \param[out] WORK
@@ -181,7 +181,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
-*> The dimension of the array WORK. LWORK .GE. max(1,N)
+*> The dimension of the array WORK. LWORK >= max(1,N)
*> is sufficient, but LWORK typically as large as 6*N may
*> be required for optimal performance. A workspace query
*> to determine the optimal workspace size is recommended.
@@ -197,19 +197,19 @@
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0: successful exit
-*> .GT. 0: if INFO = i, DLAQR4 failed to compute all of
+*> = 0: successful exit
+*> > 0: if INFO = i, DLAQR4 failed to compute all of
*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
*> and WI contain those eigenvalues which have been
*> successfully computed. (Failures are rare.)
*>
-*> If INFO .GT. 0 and WANT is .FALSE., then on exit,
+*> If INFO > 0 and WANT is .FALSE., then on exit,
*> the remaining unconverged eigenvalues are the eigen-
*> values of the upper Hessenberg matrix rows and
*> columns ILO through INFO of the final, output
*> value of H.
*>
-*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
+*> If INFO > 0 and WANTT is .TRUE., then on exit
*>
*> (*) (initial value of H)*U = U*(final value of H)
*>
@@ -217,7 +217,7 @@
*> value of H is upper Hessenberg and triangular in
*> rows and columns INFO+1 through IHI.
*>
-*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
+*> If INFO > 0 and WANTZ is .TRUE., then on exit
*>
*> (final value of Z(ILO:IHI,ILOZ:IHIZ)
*> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
@@ -225,7 +225,7 @@
*> where U is the orthogonal matrix in (*) (regard-
*> less of the value of WANTT.)
*>
-*> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
+*> If INFO > 0 and WANTZ is .FALSE., then Z is not
*> accessed.
*> \endverbatim
*
@@ -677,7 +677,7 @@
END IF
END IF
*
-* ==== Use up to NS of the the smallest magnatiude
+* ==== Use up to NS of the the smallest magnitude
* . shifts. If there aren't NS shifts available,
* . then use them all, possibly dropping one to
* . make the number of shifts even. ====
diff --git a/lapack-netlib/SRC/dlaqr5.f b/lapack-netlib/SRC/dlaqr5.f
index 5cc4eda1a..f58db9c89 100644
--- a/lapack-netlib/SRC/dlaqr5.f
+++ b/lapack-netlib/SRC/dlaqr5.f
@@ -133,7 +133,7 @@
*> \verbatim
*> LDH is INTEGER
*> LDH is the leading dimension of H just as declared in the
-*> calling procedure. LDH.GE.MAX(1,N).
+*> calling procedure. LDH >= MAX(1,N).
*> \endverbatim
*>
*> \param[in] ILOZ
@@ -145,7 +145,7 @@
*> \verbatim
*> IHIZ is INTEGER
*> Specify the rows of Z to which transformations must be
-*> applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
+*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N
*> \endverbatim
*>
*> \param[in,out] Z
@@ -161,7 +161,7 @@
*> \verbatim
*> LDZ is INTEGER
*> LDA is the leading dimension of Z just as declared in
-*> the calling procedure. LDZ.GE.N.
+*> the calling procedure. LDZ >= N.
*> \endverbatim
*>
*> \param[out] V
@@ -173,7 +173,7 @@
*> \verbatim
*> LDV is INTEGER
*> LDV is the leading dimension of V as declared in the
-*> calling procedure. LDV.GE.3.
+*> calling procedure. LDV >= 3.
*> \endverbatim
*>
*> \param[out] U
@@ -185,33 +185,14 @@
*> \verbatim
*> LDU is INTEGER
*> LDU is the leading dimension of U just as declared in the
-*> in the calling subroutine. LDU.GE.3*NSHFTS-3.
-*> \endverbatim
-*>
-*> \param[in] NH
-*> \verbatim
-*> NH is INTEGER
-*> NH is the number of columns in array WH available for
-*> workspace. NH.GE.1.
-*> \endverbatim
-*>
-*> \param[out] WH
-*> \verbatim
-*> WH is DOUBLE PRECISION array, dimension (LDWH,NH)
-*> \endverbatim
-*>
-*> \param[in] LDWH
-*> \verbatim
-*> LDWH is INTEGER
-*> Leading dimension of WH just as declared in the
-*> calling procedure. LDWH.GE.3*NSHFTS-3.
+*> in the calling subroutine. LDU >= 3*NSHFTS-3.
*> \endverbatim
*>
*> \param[in] NV
*> \verbatim
*> NV is INTEGER
*> NV is the number of rows in WV agailable for workspace.
-*> NV.GE.1.
+*> NV >= 1.
*> \endverbatim
*>
*> \param[out] WV
@@ -223,9 +204,28 @@
*> \verbatim
*> LDWV is INTEGER
*> LDWV is the leading dimension of WV as declared in the
-*> in the calling subroutine. LDWV.GE.NV.
+*> in the calling subroutine. LDWV >= NV.
*> \endverbatim
*
+*> \param[in] NH
+*> \verbatim
+*> NH is INTEGER
+*> NH is the number of columns in array WH available for
+*> workspace. NH >= 1.
+*> \endverbatim
+*>
+*> \param[out] WH
+*> \verbatim
+*> WH is DOUBLE PRECISION array, dimension (LDWH,NH)
+*> \endverbatim
+*>
+*> \param[in] LDWH
+*> \verbatim
+*> LDWH is INTEGER
+*> Leading dimension of WH just as declared in the
+*> calling procedure. LDWH >= 3*NSHFTS-3.
+*> \endverbatim
+*>
* Authors:
* ========
*
diff --git a/lapack-netlib/SRC/dlarfb.f b/lapack-netlib/SRC/dlarfb.f
index 5b2cc2ba8..e63641213 100644
--- a/lapack-netlib/SRC/dlarfb.f
+++ b/lapack-netlib/SRC/dlarfb.f
@@ -92,6 +92,8 @@
*> K is INTEGER
*> The order of the matrix T (= the number of elementary
*> reflectors whose product defines the block reflector).
+*> If SIDE = 'L', M >= K >= 0;
+*> if SIDE = 'R', N >= K >= 0.
*> \endverbatim
*>
*> \param[in] V
diff --git a/lapack-netlib/SRC/dlarfx.f b/lapack-netlib/SRC/dlarfx.f
index 260d367d4..a9e4496f9 100644
--- a/lapack-netlib/SRC/dlarfx.f
+++ b/lapack-netlib/SRC/dlarfx.f
@@ -94,7 +94,7 @@
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
-*> The leading dimension of the array C. LDA >= (1,M).
+*> The leading dimension of the array C. LDC >= (1,M).
*> \endverbatim
*>
*> \param[out] WORK
diff --git a/lapack-netlib/SRC/dlarfy.f b/lapack-netlib/SRC/dlarfy.f
index a0b0ebb31..3000b38bc 100644
--- a/lapack-netlib/SRC/dlarfy.f
+++ b/lapack-netlib/SRC/dlarfy.f
@@ -103,7 +103,7 @@
*
*> \date December 2016
*
-*> \ingroup double_eig
+*> \ingroup doubleOTHERauxiliary
*
* =====================================================================
SUBROUTINE DLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK )
diff --git a/lapack-netlib/SRC/dlarrb.f b/lapack-netlib/SRC/dlarrb.f
index 2b6389e25..ddf3888b9 100644
--- a/lapack-netlib/SRC/dlarrb.f
+++ b/lapack-netlib/SRC/dlarrb.f
@@ -91,7 +91,7 @@
*> RTOL2 is DOUBLE PRECISION
*> Tolerance for the convergence of the bisection intervals.
*> An interval [LEFT,RIGHT] has converged if
-*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
+*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*> where GAP is the (estimated) distance to the nearest
*> eigenvalue.
*> \endverbatim
@@ -117,7 +117,7 @@
*> WGAP is DOUBLE PRECISION array, dimension (N-1)
*> On input, the (estimated) gaps between consecutive
*> eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between
-*> eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST
+*> eigenvalues I and I+1. Note that if IFIRST = ILAST
*> then WGAP(IFIRST-OFFSET) must be set to ZERO.
*> On output, these gaps are refined.
*> \endverbatim
diff --git a/lapack-netlib/SRC/dlarre.f b/lapack-netlib/SRC/dlarre.f
index 0613efbc3..ce55442e2 100644
--- a/lapack-netlib/SRC/dlarre.f
+++ b/lapack-netlib/SRC/dlarre.f
@@ -150,7 +150,7 @@
*> RTOL2 is DOUBLE PRECISION
*> Parameters for bisection.
*> An interval [LEFT,RIGHT] has converged if
-*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
+*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*> \endverbatim
*>
*> \param[in] SPLTOL
diff --git a/lapack-netlib/SRC/dlarrj.f b/lapack-netlib/SRC/dlarrj.f
index 097ba9f77..a4bfb210c 100644
--- a/lapack-netlib/SRC/dlarrj.f
+++ b/lapack-netlib/SRC/dlarrj.f
@@ -85,7 +85,7 @@
*> RTOL is DOUBLE PRECISION
*> Tolerance for the convergence of the bisection intervals.
*> An interval [LEFT,RIGHT] has converged if
-*> RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|).
+*> RIGHT-LEFT < RTOL*MAX(|LEFT|,|RIGHT|).
*> \endverbatim
*>
*> \param[in] OFFSET
diff --git a/lapack-netlib/SRC/dlarrv.f b/lapack-netlib/SRC/dlarrv.f
index cace17c0e..4a59a2bbf 100644
--- a/lapack-netlib/SRC/dlarrv.f
+++ b/lapack-netlib/SRC/dlarrv.f
@@ -149,7 +149,7 @@
*> RTOL2 is DOUBLE PRECISION
*> Parameters for bisection.
*> An interval [LEFT,RIGHT] has converged if
-*> RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
+*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*> \endverbatim
*>
*> \param[in,out] W
diff --git a/lapack-netlib/SRC/dlasd7.f b/lapack-netlib/SRC/dlasd7.f
index e0ddedeb5..66f665cf8 100644
--- a/lapack-netlib/SRC/dlasd7.f
+++ b/lapack-netlib/SRC/dlasd7.f
@@ -400,7 +400,7 @@
VL( I ) = VLW( IDXI )
50 CONTINUE
*
-* Calculate the allowable deflation tolerence
+* Calculate the allowable deflation tolerance
*
EPS = DLAMCH( 'Epsilon' )
TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
diff --git a/lapack-netlib/SRC/dlasr.f b/lapack-netlib/SRC/dlasr.f
index 6059c6293..f707970e4 100644
--- a/lapack-netlib/SRC/dlasr.f
+++ b/lapack-netlib/SRC/dlasr.f
@@ -175,7 +175,7 @@
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The M-by-N matrix A. On exit, A is overwritten by P*A if
-*> SIDE = 'R' or by A*P**T if SIDE = 'L'.
+*> SIDE = 'L' or by A*P**T if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] LDA
diff --git a/lapack-netlib/SRC/dlassq.f b/lapack-netlib/SRC/dlassq.f
index 885395e3c..5922360f9 100644
--- a/lapack-netlib/SRC/dlassq.f
+++ b/lapack-netlib/SRC/dlassq.f
@@ -60,7 +60,7 @@
*>
*> \param[in] X
*> \verbatim
-*> X is DOUBLE PRECISION array, dimension (N)
+*> X is DOUBLE PRECISION array, dimension (1+(N-1)*INCX)
*> The vector for which a scaled sum of squares is computed.
*> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
*> \endverbatim
diff --git a/lapack-netlib/SRC/dlaswlq.f b/lapack-netlib/SRC/dlaswlq.f
index 6e4ca20fd..619a1f1a2 100644
--- a/lapack-netlib/SRC/dlaswlq.f
+++ b/lapack-netlib/SRC/dlaswlq.f
@@ -1,3 +1,4 @@
+*> \brief \b DLASWLQ
*
* Definition:
* ===========
@@ -18,9 +19,20 @@
*>
*> \verbatim
*>
-*> DLASWLQ computes a blocked Short-Wide LQ factorization of a
-*> M-by-N matrix A, where N >= M:
-*> A = L * Q
+*> DLASWLQ computes a blocked Tall-Skinny LQ factorization of
+*> a real M-by-N matrix A for M <= N:
+*>
+*> A = ( L 0 ) * Q,
+*>
+*> where:
+*>
+*> Q is a n-by-N orthogonal matrix, stored on exit in an implicit
+*> form in the elements above the digonal of the array A and in
+*> the elemenst of the array T;
+*> L is an lower-triangular M-by-M matrix stored on exit in
+*> the elements on and below the diagonal of the array A.
+*> 0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
+*>
*> \endverbatim
*
* Arguments:
@@ -150,7 +162,7 @@
SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
$ INFO)
*
-* -- LAPACK computational routine (version 3.7.1) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
* June 2017
diff --git a/lapack-netlib/SRC/dlasyf_aa.f b/lapack-netlib/SRC/dlasyf_aa.f
index 6b75e46e0..793537e04 100644
--- a/lapack-netlib/SRC/dlasyf_aa.f
+++ b/lapack-netlib/SRC/dlasyf_aa.f
@@ -284,8 +284,9 @@
*
* Swap A(I1, I2+1:M) with A(I2, I2+1:M)
*
- CALL DSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA,
- $ A( J1+I2-1, I2+1 ), LDA )
+ IF( I2.LT.M )
+ $ CALL DSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA,
+ $ A( J1+I2-1, I2+1 ), LDA )
*
* Swap A(I1, I1) with A(I2,I2)
*
@@ -325,13 +326,15 @@
* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1),
* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1)
*
- IF( A( K, J+1 ).NE.ZERO ) THEN
- ALPHA = ONE / A( K, J+1 )
- CALL DCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA )
- CALL DSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA )
- ELSE
- CALL DLASET( 'Full', 1, M-J-1, ZERO, ZERO,
- $ A( K, J+2 ), LDA)
+ IF( J.LT.(M-1) ) THEN
+ IF( A( K, J+1 ).NE.ZERO ) THEN
+ ALPHA = ONE / A( K, J+1 )
+ CALL DCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA )
+ CALL DSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA )
+ ELSE
+ CALL DLASET( 'Full', 1, M-J-1, ZERO, ZERO,
+ $ A( K, J+2 ), LDA)
+ END IF
END IF
END IF
J = J + 1
@@ -432,8 +435,9 @@
*
* Swap A(I2+1:M, I1) with A(I2+1:M, I2)
*
- CALL DSWAP( M-I2, A( I2+1, J1+I1-1 ), 1,
- $ A( I2+1, J1+I2-1 ), 1 )
+ IF( I2.LT.M )
+ $ CALL DSWAP( M-I2, A( I2+1, J1+I1-1 ), 1,
+ $ A( I2+1, J1+I2-1 ), 1 )
*
* Swap A(I1, I1) with A(I2, I2)
*
@@ -473,13 +477,15 @@
* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1),
* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1)
*
- IF( A( J+1, K ).NE.ZERO ) THEN
- ALPHA = ONE / A( J+1, K )
- CALL DCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 )
- CALL DSCAL( M-J-1, ALPHA, A( J+2, K ), 1 )
- ELSE
- CALL DLASET( 'Full', M-J-1, 1, ZERO, ZERO,
- $ A( J+2, K ), LDA )
+ IF( J.LT.(M-1) ) THEN
+ IF( A( J+1, K ).NE.ZERO ) THEN
+ ALPHA = ONE / A( J+1, K )
+ CALL DCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 )
+ CALL DSCAL( M-J-1, ALPHA, A( J+2, K ), 1 )
+ ELSE
+ CALL DLASET( 'Full', M-J-1, 1, ZERO, ZERO,
+ $ A( J+2, K ), LDA )
+ END IF
END IF
END IF
J = J + 1
diff --git a/lapack-netlib/SRC/dlasyf_rk.f b/lapack-netlib/SRC/dlasyf_rk.f
index 209b4c89d..d581eeedc 100644
--- a/lapack-netlib/SRC/dlasyf_rk.f
+++ b/lapack-netlib/SRC/dlasyf_rk.f
@@ -321,7 +321,7 @@
* of A and working backwards, and compute the matrix W = U12*D
* for use in updating A11
*
-* Initilize the first entry of array E, where superdiagonal
+* Initialize the first entry of array E, where superdiagonal
* elements of D are stored
*
E( 1 ) = ZERO
@@ -649,7 +649,7 @@
* of A and working forwards, and compute the matrix W = L21*D
* for use in updating A22
*
-* Initilize the unused last entry of the subdiagonal array E.
+* Initialize the unused last entry of the subdiagonal array E.
*
E( N ) = ZERO
*
diff --git a/lapack-netlib/SRC/dlasyf_rook.f b/lapack-netlib/SRC/dlasyf_rook.f
index 49ee7a6c9..557032104 100644
--- a/lapack-netlib/SRC/dlasyf_rook.f
+++ b/lapack-netlib/SRC/dlasyf_rook.f
@@ -21,7 +21,7 @@
* SUBROUTINE DLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
*
* .. Scalar Arguments ..
-* CHARADLATER UPLO
+* CHARACTER UPLO
* INTEGER INFO, KB, LDA, LDW, N, NB
* ..
* .. Array Arguments ..
diff --git a/lapack-netlib/SRC/dlatdf.f b/lapack-netlib/SRC/dlatdf.f
index fd05059b3..8001e0830 100644
--- a/lapack-netlib/SRC/dlatdf.f
+++ b/lapack-netlib/SRC/dlatdf.f
@@ -85,7 +85,7 @@
*> RHS is DOUBLE PRECISION array, dimension (N)
*> On entry, RHS contains contributions from other subsystems.
*> On exit, RHS contains the solution of the subsystem with
-*> entries acoording to the value of IJOB (see above).
+*> entries according to the value of IJOB (see above).
*> \endverbatim
*>
*> \param[in,out] RDSUM
@@ -260,7 +260,7 @@
*
* Solve for U-part, look-ahead for RHS(N) = +-1. This is not done
* in BSOLVE and will hopefully give us a better estimate because
-* any ill-conditioning of the original matrix is transfered to U
+* any ill-conditioning of the original matrix is transferred to U
* and not to L. U(N, N) is an approximation to sigma_min(LU).
*
CALL DCOPY( N-1, RHS, 1, XP, 1 )
diff --git a/lapack-netlib/SRC/dlatsqr.f b/lapack-netlib/SRC/dlatsqr.f
index 1ce7c4de0..598d2938e 100644
--- a/lapack-netlib/SRC/dlatsqr.f
+++ b/lapack-netlib/SRC/dlatsqr.f
@@ -1,3 +1,4 @@
+*> \brief \b DLATSQR
*
* Definition:
* ===========
@@ -19,8 +20,22 @@
*> \verbatim
*>
*> DLATSQR computes a blocked Tall-Skinny QR factorization of
-*> an M-by-N matrix A, where M >= N:
-*> A = Q * R .
+*> a real M-by-N matrix A for M >= N:
+*>
+*> A = Q * ( R ),
+*> ( 0 )
+*>
+*> where:
+*>
+*> Q is a M-by-M orthogonal matrix, stored on exit in an implicit
+*> form in the elements below the digonal of the array A and in
+*> the elemenst of the array T;
+*>
+*> R is an upper-triangular N-by-N matrix, stored on exit in
+*> the elements on and above the diagonal of the array A.
+*>
+*> 0 is a (M-N)-by-N zero matrix, and is not stored.
+*>
*> \endverbatim
*
* Arguments:
@@ -149,10 +164,10 @@
SUBROUTINE DLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
$ LWORK, INFO)
*
-* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK computational routine (version 3.9.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
-* December 2016
+* November 2019
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
diff --git a/lapack-netlib/SRC/dorgtsqr.f b/lapack-netlib/SRC/dorgtsqr.f
new file mode 100644
index 000000000..85b05b6b5
--- /dev/null
+++ b/lapack-netlib/SRC/dorgtsqr.f
@@ -0,0 +1,306 @@
+*> \brief \b DORGTSQR
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DORGTSQR + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*>
+* Definition:
+* ===========
+*
+* SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
+* $ INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
+*> which are the first N columns of a product of real orthogonal
+*> matrices of order M which are returned by DLATSQR
+*>
+*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
+*>
+*> See the documentation for DLATSQR.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] MB
+*> \verbatim
+*> MB is INTEGER
+*> The row block size used by DLATSQR to return
+*> arrays A and T. MB > N.
+*> (Note that if MB > M, then M is used instead of MB
+*> as the row block size).
+*> \endverbatim
+*>
+*> \param[in] NB
+*> \verbatim
+*> NB is INTEGER
+*> The column block size used by DLATSQR to return
+*> arrays A and T. NB >= 1.
+*> (Note that if NB > N, then N is used instead of NB
+*> as the column block size).
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*>
+*> On entry:
+*>
+*> The elements on and above the diagonal are not accessed.
+*> The elements below the diagonal represent the unit
+*> lower-trapezoidal blocked matrix V computed by DLATSQR
+*> that defines the input matrices Q_in(k) (ones on the
+*> diagonal are not stored) (same format as the output A
+*> below the diagonal in DLATSQR).
+*>
+*> On exit:
+*>
+*> The array A contains an M-by-N orthonormal matrix Q_out,
+*> i.e the columns of A are orthogonal unit vectors.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in] T
+*> \verbatim
+*> T is DOUBLE PRECISION array,
+*> dimension (LDT, N * NIRB)
+*> where NIRB = Number_of_input_row_blocks
+*> = MAX( 1, CEIL((M-N)/(MB-N)) )
+*> Let NICB = Number_of_input_col_blocks
+*> = CEIL(N/NB)
+*>
+*> The upper-triangular block reflectors used to define the
+*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
+*> reflectors are stored in compact form in NIRB block
+*> reflector sequences. Each of NIRB block reflector sequences
+*> is stored in a larger NB-by-N column block of T and consists
+*> of NICB smaller NB-by-NB upper-triangular column blocks.
+*> (same format as the output T in DLATSQR).
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T.
+*> LDT >= max(1,min(NB1,N)).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> (workspace) DOUBLE PRECISION array, dimension (MAX(2,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> The dimension of the array WORK. LWORK >= (M+NB)*N.
+*> If LWORK = -1, then a workspace query is assumed.
+*> The routine only calculates the optimal size of the WORK
+*> array, returns this value as the first entry of the WORK
+*> array, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2019
+*
+*> \ingroup doubleOTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2019, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
+ $ INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine (version 3.9.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2019
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DLAMTSQR, DLASET, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ LQUERY = LWORK.EQ.-1
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
+ INFO = -2
+ ELSE IF( MB.LE.N ) THEN
+ INFO = -3
+ ELSE IF( NB.LT.1 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
+ INFO = -8
+ ELSE
+*
+* Test the input LWORK for the dimension of the array WORK.
+* This workspace is used to store array C(LDC, N) and WORK(LWORK)
+* in the call to DLAMTSQR. See the documentation for DLAMTSQR.
+*
+ IF( LWORK.LT.2 .AND. (.NOT.LQUERY) ) THEN
+ INFO = -10
+ ELSE
+*
+* Set block size for column blocks
+*
+ NBLOCAL = MIN( NB, N )
+*
+* LWORK = -1, then set the size for the array C(LDC,N)
+* in DLAMTSQR call and set the optimal size of the work array
+* WORK(LWORK) in DLAMTSQR call.
+*
+ LDC = M
+ LC = LDC*N
+ LW = N * NBLOCAL
+*
+ LWORKOPT = LC+LW
+*
+ IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
+ INFO = -10
+ END IF
+ END IF
+*
+ END IF
+*
+* Handle error in the input parameters and return workspace query.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DORGTSQR', -INFO )
+ RETURN
+ ELSE IF ( LQUERY ) THEN
+ WORK( 1 ) = DBLE( LWORKOPT )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ WORK( 1 ) = DBLE( LWORKOPT )
+ RETURN
+ END IF
+*
+* (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
+* of M-by-M orthogonal matrix Q_in, which is implicitly stored in
+* the subdiagonal part of input array A and in the input array T.
+* Perform by the following operation using the routine DLAMTSQR.
+*
+* Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
+* ( 0 ) 0 is a (M-N)-by-N zero matrix.
+*
+* (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
+* on the diagonal and zeros elsewhere.
+*
+ CALL DLASET( 'F', M, N, ZERO, ONE, WORK, LDC )
+*
+* (1b) On input, WORK(1:LDC*N) stores ( I );
+* ( 0 )
+*
+* On output, WORK(1:LDC*N) stores Q1_in.
+*
+ CALL DLAMTSQR( 'L', 'N', M, N, N, MB, NBLOCAL, A, LDA, T, LDT,
+ $ WORK, LDC, WORK( LC+1 ), LW, IINFO )
+*
+* (2) Copy the result from the part of the work array (1:M,1:N)
+* with the leading dimension LDC that starts at WORK(1) into
+* the output array A(1:M,1:N) column-by-column.
+*
+ DO J = 1, N
+ CALL DCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 )
+ END DO
+*
+ WORK( 1 ) = DBLE( LWORKOPT )
+ RETURN
+*
+* End of DORGTSQR
+*
+ END
\ No newline at end of file
diff --git a/lapack-netlib/SRC/dorhr_col.f b/lapack-netlib/SRC/dorhr_col.f
new file mode 100644
index 000000000..b5a65973d
--- /dev/null
+++ b/lapack-netlib/SRC/dorhr_col.f
@@ -0,0 +1,440 @@
+*> \brief \b DORHR_COL
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DORHR_COL + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*>
+* Definition:
+* ===========
+*
+* SUBROUTINE DORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, M, N, NB
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION A( LDA, * ), D( * ), T( LDT, * )
+* ..
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns
+*> as input, stored in A, and performs Householder Reconstruction (HR),
+*> i.e. reconstructs Householder vectors V(i) implicitly representing
+*> another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
+*> where S is an N-by-N diagonal matrix with diagonal entries
+*> equal to +1 or -1. The Householder vectors (columns V(i) of V) are
+*> stored in A on output, and the diagonal entries of S are stored in D.
+*> Block reflectors are also returned in T
+*> (same output format as DGEQRT).
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NB
+*> \verbatim
+*> NB is INTEGER
+*> The column block size to be used in the reconstruction
+*> of Householder column vector blocks in the array A and
+*> corresponding block reflectors in the array T. NB >= 1.
+*> (Note that if NB > N, then N is used instead of NB
+*> as the column block size.)
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*>
+*> On entry:
+*>
+*> The array A contains an M-by-N orthonormal matrix Q_in,
+*> i.e the columns of A are orthogonal unit vectors.
+*>
+*> On exit:
+*>
+*> The elements below the diagonal of A represent the unit
+*> lower-trapezoidal matrix V of Householder column vectors
+*> V(i). The unit diagonal entries of V are not stored
+*> (same format as the output below the diagonal in A from
+*> DGEQRT). The matrix T and the matrix V stored on output
+*> in A implicitly define Q_out.
+*>
+*> The elements above the diagonal contain the factor U
+*> of the "modified" LU-decomposition:
+*> Q_in - ( S ) = V * U
+*> ( 0 )
+*> where 0 is a (M-N)-by-(M-N) zero matrix.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] T
+*> \verbatim
+*> T is DOUBLE PRECISION array,
+*> dimension (LDT, N)
+*>
+*> Let NOCB = Number_of_output_col_blocks
+*> = CEIL(N/NB)
+*>
+*> On exit, T(1:NB, 1:N) contains NOCB upper-triangular
+*> block reflectors used to define Q_out stored in compact
+*> form as a sequence of upper-triangular NB-by-NB column
+*> blocks (same format as the output T in DGEQRT).
+*> The matrix T and the matrix V stored on output in A
+*> implicitly define Q_out. NOTE: The lower triangles
+*> below the upper-triangular blcoks will be filled with
+*> zeros. See Further Details.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T.
+*> LDT >= max(1,min(NB,N)).
+*> \endverbatim
+*>
+*> \param[out] D
+*> \verbatim
+*> D is DOUBLE PRECISION array, dimension min(M,N).
+*> The elements can be only plus or minus one.
+*>
+*> D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
+*> 1 <= i <= min(M,N), and Q_in_i is Q_in after performing
+*> i-1 steps of “modified” Gaussian elimination.
+*> See Further Details.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> The computed M-by-M orthogonal factor Q_out is defined implicitly as
+*> a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in
+*> the compact WY-representation format in the corresponding blocks of
+*> matrices V (stored in A) and T.
+*>
+*> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
+*> matrix A contains the column vectors V(i) in NB-size column
+*> blocks VB(j). For example, VB(1) contains the columns
+*> V(1), V(2), ... V(NB). NOTE: The unit entries on
+*> the diagonal of Y are not stored in A.
+*>
+*> The number of column blocks is
+*>
+*> NOCB = Number_of_output_col_blocks = CEIL(N/NB)
+*>
+*> where each block is of order NB except for the last block, which
+*> is of order LAST_NB = N - (NOCB-1)*NB.
+*>
+*> For example, if M=6, N=5 and NB=2, the matrix V is
+*>
+*>
+*> V = ( VB(1), VB(2), VB(3) ) =
+*>
+*> = ( 1 )
+*> ( v21 1 )
+*> ( v31 v32 1 )
+*> ( v41 v42 v43 1 )
+*> ( v51 v52 v53 v54 1 )
+*> ( v61 v62 v63 v54 v65 )
+*>
+*>
+*> For each of the column blocks VB(i), an upper-triangular block
+*> reflector TB(i) is computed. These blocks are stored as
+*> a sequence of upper-triangular column blocks in the NB-by-N
+*> matrix T. The size of each TB(i) block is NB-by-NB, except
+*> for the last block, whose size is LAST_NB-by-LAST_NB.
+*>
+*> For example, if M=6, N=5 and NB=2, the matrix T is
+*>
+*> T = ( TB(1), TB(2), TB(3) ) =
+*>
+*> = ( t11 t12 t13 t14 t15 )
+*> ( t22 t24 )
+*>
+*>
+*> The M-by-M factor Q_out is given as a product of NOCB
+*> orthogonal M-by-M matrices Q_out(i).
+*>
+*> Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
+*>
+*> where each matrix Q_out(i) is given by the WY-representation
+*> using corresponding blocks from the matrices V and T:
+*>
+*> Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
+*>
+*> where I is the identity matrix. Here is the formula with matrix
+*> dimensions:
+*>
+*> Q(i){M-by-M} = I{M-by-M} -
+*> VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
+*>
+*> where INB = NB, except for the last block NOCB
+*> for which INB=LAST_NB.
+*>
+*> =====
+*> NOTE:
+*> =====
+*>
+*> If Q_in is the result of doing a QR factorization
+*> B = Q_in * R_in, then:
+*>
+*> B = (Q_out*S) * R_in = Q_out * (S * R_in) = O_out * R_out.
+*>
+*> So if one wants to interpret Q_out as the result
+*> of the QR factorization of B, then corresponding R_out
+*> should be obtained by R_out = S * R_in, i.e. some rows of R_in
+*> should be multiplied by -1.
+*>
+*> For the details of the algorithm, see [1].
+*>
+*> [1] "Reconstructing Householder vectors from tall-skinny QR",
+*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
+*> E. Solomonik, J. Parallel Distrib. Comput.,
+*> vol. 85, pp. 3-31, 2015.
+*> \endverbatim
+*>
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2019
+*
+*> \ingroup doubleOTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2019, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE DORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine (version 3.9.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2019
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, M, N, NB
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), D( * ), T( LDT, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB,
+ $ NPLUSONE
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DLAORHR_COL_GETRFNP, DSCAL, DTRSM,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
+ INFO = -2
+ ELSE IF( NB.LT.1 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -5
+ ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
+ INFO = -7
+ END IF
+*
+* Handle error in the input parameters.
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DORHR_COL', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ RETURN
+ END IF
+*
+* On input, the M-by-N matrix A contains the orthogonal
+* M-by-N matrix Q_in.
+*
+* (1) Compute the unit lower-trapezoidal V (ones on the diagonal
+* are not stored) by performing the "modified" LU-decomposition.
+*
+* Q_in - ( S ) = V * U = ( V1 ) * U,
+* ( 0 ) ( V2 )
+*
+* where 0 is an (M-N)-by-N zero matrix.
+*
+* (1-1) Factor V1 and U.
+
+ CALL DLAORHR_COL_GETRFNP( N, N, A, LDA, D, IINFO )
+*
+* (1-2) Solve for V2.
+*
+ IF( M.GT.N ) THEN
+ CALL DTRSM( 'R', 'U', 'N', 'N', M-N, N, ONE, A, LDA,
+ $ A( N+1, 1 ), LDA )
+ END IF
+*
+* (2) Reconstruct the block reflector T stored in T(1:NB, 1:N)
+* as a sequence of upper-triangular blocks with NB-size column
+* blocking.
+*
+* Loop over the column blocks of size NB of the array A(1:M,1:N)
+* and the array T(1:NB,1:N), JB is the column index of a column
+* block, JNB is the column block size at each step JB.
+*
+ NPLUSONE = N + 1
+ DO JB = 1, N, NB
+*
+* (2-0) Determine the column block size JNB.
+*
+ JNB = MIN( NPLUSONE-JB, NB )
+*
+* (2-1) Copy the upper-triangular part of the current JNB-by-JNB
+* diagonal block U(JB) (of the N-by-N matrix U) stored
+* in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part
+* of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1)
+* column-by-column, total JNB*(JNB+1)/2 elements.
+*
+ JBTEMP1 = JB - 1
+ DO J = JB, JB+JNB-1
+ CALL DCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 )
+ END DO
+*
+* (2-2) Perform on the upper-triangular part of the current
+* JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored
+* in T(1:JNB,JB:JB+JNB-1) the following operation in place:
+* (-1)*U(JB)*S(JB), i.e the result will be stored in the upper-
+* triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication
+* of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB
+* diagonal block S(JB) of the N-by-N sign matrix S from the
+* right means changing the sign of each J-th column of the block
+* U(JB) according to the sign of the diagonal element of the block
+* S(JB), i.e. S(J,J) that is stored in the array element D(J).
+*
+ DO J = JB, JB+JNB-1
+ IF( D( J ).EQ.ONE ) THEN
+ CALL DSCAL( J-JBTEMP1, -ONE, T( 1, J ), 1 )
+ END IF
+ END DO
+*
+* (2-3) Perform the triangular solve for the current block
+* matrix X(JB):
+*
+* X(JB) * (A(JB)**T) = B(JB), where:
+*
+* A(JB)**T is a JNB-by-JNB unit upper-triangular
+* coefficient block, and A(JB)=V1(JB), which
+* is a JNB-by-JNB unit lower-triangular block
+* stored in A(JB:JB+JNB-1,JB:JB+JNB-1).
+* The N-by-N matrix V1 is the upper part
+* of the M-by-N lower-trapezoidal matrix V
+* stored in A(1:M,1:N);
+*
+* B(JB) is a JNB-by-JNB upper-triangular right-hand
+* side block, B(JB) = (-1)*U(JB)*S(JB), and
+* B(JB) is stored in T(1:JNB,JB:JB+JNB-1);
+*
+* X(JB) is a JNB-by-JNB upper-triangular solution
+* block, X(JB) is the upper-triangular block
+* reflector T(JB), and X(JB) is stored
+* in T(1:JNB,JB:JB+JNB-1).
+*
+* In other words, we perform the triangular solve for the
+* upper-triangular block T(JB):
+*
+* T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB).
+*
+* Even though the blocks X(JB) and B(JB) are upper-
+* triangular, the routine DTRSM will access all JNB**2
+* elements of the square T(1:JNB,JB:JB+JNB-1). Therefore,
+* we need to set to zero the elements of the block
+* T(1:JNB,JB:JB+JNB-1) below the diagonal before the call
+* to DTRSM.
+*
+* (2-3a) Set the elements to zero.
+*
+ JBTEMP2 = JB - 2
+ DO J = JB, JB+JNB-2
+ DO I = J-JBTEMP2, NB
+ T( I, J ) = ZERO
+ END DO
+ END DO
+*
+* (2-3b) Perform the triangular solve.
+*
+ CALL DTRSM( 'R', 'L', 'T', 'U', JNB, JNB, ONE,
+ $ A( JB, JB ), LDA, T( 1, JB ), LDT )
+*
+ END DO
+*
+ RETURN
+*
+* End of DORHR_COL
+*
+ END
\ No newline at end of file