Update LAPACK to 3.9.0
This commit is contained in:
parent
90f316e888
commit
252b075870
|
@ -89,12 +89,12 @@
|
||||||
*> Specifies whether to compute the right singular vectors, that
|
*> Specifies whether to compute the right singular vectors, that
|
||||||
*> is, the matrix V:
|
*> is, the matrix V:
|
||||||
*> = 'V' or 'J': the matrix V is computed and returned in the array V
|
*> = 'V' or 'J': the matrix V is computed and returned in the array V
|
||||||
*> = 'A' : the Jacobi rotations are applied to the MV-by-N
|
*> = 'A': the Jacobi rotations are applied to the MV-by-N
|
||||||
*> array V. In other words, the right singular vector
|
*> array V. In other words, the right singular vector
|
||||||
*> matrix V is not computed explicitly; instead it is
|
*> matrix V is not computed explicitly; instead it is
|
||||||
*> applied to an MV-by-N matrix initially stored in the
|
*> applied to an MV-by-N matrix initially stored in the
|
||||||
*> first MV rows of V.
|
*> first MV rows of V.
|
||||||
*> = 'N' : the matrix V is not computed and the array V is not
|
*> = 'N': the matrix V is not computed and the array V is not
|
||||||
*> referenced
|
*> referenced
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
@ -116,8 +116,8 @@
|
||||||
*> A is COMPLEX array, dimension (LDA,N)
|
*> A is COMPLEX array, dimension (LDA,N)
|
||||||
*> On entry, the M-by-N matrix A.
|
*> On entry, the M-by-N matrix A.
|
||||||
*> On exit,
|
*> On exit,
|
||||||
*> If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C':
|
*> If JOBU = 'U' .OR. JOBU = 'C':
|
||||||
*> If INFO .EQ. 0 :
|
*> If INFO = 0 :
|
||||||
*> RANKA orthonormal columns of U are returned in the
|
*> RANKA orthonormal columns of U are returned in the
|
||||||
*> leading RANKA columns of the array A. Here RANKA <= N
|
*> leading RANKA columns of the array A. Here RANKA <= N
|
||||||
*> is the number of computed singular values of A that are
|
*> is the number of computed singular values of A that are
|
||||||
|
@ -127,9 +127,9 @@
|
||||||
*> in the array RWORK as RANKA=NINT(RWORK(2)). Also see the
|
*> in the array RWORK as RANKA=NINT(RWORK(2)). Also see the
|
||||||
*> descriptions of SVA and RWORK. The computed columns of U
|
*> descriptions of SVA and RWORK. The computed columns of U
|
||||||
*> are mutually numerically orthogonal up to approximately
|
*> are mutually numerically orthogonal up to approximately
|
||||||
*> TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'),
|
*> TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU = 'C'),
|
||||||
*> see the description of JOBU.
|
*> see the description of JOBU.
|
||||||
*> If INFO .GT. 0,
|
*> If INFO > 0,
|
||||||
*> the procedure CGESVJ did not converge in the given number
|
*> the procedure CGESVJ did not converge in the given number
|
||||||
*> of iterations (sweeps). In that case, the computed
|
*> of iterations (sweeps). In that case, the computed
|
||||||
*> columns of U may not be orthogonal up to TOL. The output
|
*> columns of U may not be orthogonal up to TOL. The output
|
||||||
|
@ -137,8 +137,8 @@
|
||||||
*> values in SVA(1:N)) and V is still a decomposition of the
|
*> values in SVA(1:N)) and V is still a decomposition of the
|
||||||
*> input matrix A in the sense that the residual
|
*> input matrix A in the sense that the residual
|
||||||
*> || A - SCALE * U * SIGMA * V^* ||_2 / ||A||_2 is small.
|
*> || A - SCALE * U * SIGMA * V^* ||_2 / ||A||_2 is small.
|
||||||
*> If JOBU .EQ. 'N':
|
*> If JOBU = 'N':
|
||||||
*> If INFO .EQ. 0 :
|
*> If INFO = 0 :
|
||||||
*> Note that the left singular vectors are 'for free' in the
|
*> Note that the left singular vectors are 'for free' in the
|
||||||
*> one-sided Jacobi SVD algorithm. However, if only the
|
*> one-sided Jacobi SVD algorithm. However, if only the
|
||||||
*> singular values are needed, the level of numerical
|
*> singular values are needed, the level of numerical
|
||||||
|
@ -147,7 +147,7 @@
|
||||||
*> numerically orthogonal up to approximately M*EPS. Thus,
|
*> numerically orthogonal up to approximately M*EPS. Thus,
|
||||||
*> on exit, A contains the columns of U scaled with the
|
*> on exit, A contains the columns of U scaled with the
|
||||||
*> corresponding singular values.
|
*> corresponding singular values.
|
||||||
*> If INFO .GT. 0 :
|
*> If INFO > 0 :
|
||||||
*> the procedure CGESVJ did not converge in the given number
|
*> the procedure CGESVJ did not converge in the given number
|
||||||
*> of iterations (sweeps).
|
*> of iterations (sweeps).
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
@ -162,9 +162,9 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> SVA is REAL array, dimension (N)
|
*> SVA is REAL array, dimension (N)
|
||||||
*> On exit,
|
*> On exit,
|
||||||
*> If INFO .EQ. 0 :
|
*> If INFO = 0 :
|
||||||
*> depending on the value SCALE = RWORK(1), we have:
|
*> depending on the value SCALE = RWORK(1), we have:
|
||||||
*> If SCALE .EQ. ONE:
|
*> If SCALE = ONE:
|
||||||
*> SVA(1:N) contains the computed singular values of A.
|
*> SVA(1:N) contains the computed singular values of A.
|
||||||
*> During the computation SVA contains the Euclidean column
|
*> During the computation SVA contains the Euclidean column
|
||||||
*> norms of the iterated matrices in the array A.
|
*> norms of the iterated matrices in the array A.
|
||||||
|
@ -173,7 +173,7 @@
|
||||||
*> factored representation is due to the fact that some of the
|
*> factored representation is due to the fact that some of the
|
||||||
*> singular values of A might underflow or overflow.
|
*> singular values of A might underflow or overflow.
|
||||||
*>
|
*>
|
||||||
*> If INFO .GT. 0 :
|
*> If INFO > 0 :
|
||||||
*> the procedure CGESVJ did not converge in the given number of
|
*> the procedure CGESVJ did not converge in the given number of
|
||||||
*> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
|
*> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
@ -181,7 +181,7 @@
|
||||||
*> \param[in] MV
|
*> \param[in] MV
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> MV is INTEGER
|
*> MV is INTEGER
|
||||||
*> If JOBV .EQ. 'A', then the product of Jacobi rotations in CGESVJ
|
*> If JOBV = 'A', then the product of Jacobi rotations in CGESVJ
|
||||||
*> is applied to the first MV rows of V. See the description of JOBV.
|
*> is applied to the first MV rows of V. See the description of JOBV.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
@ -199,16 +199,16 @@
|
||||||
*> \param[in] LDV
|
*> \param[in] LDV
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> LDV is INTEGER
|
*> LDV is INTEGER
|
||||||
*> The leading dimension of the array V, LDV .GE. 1.
|
*> The leading dimension of the array V, LDV >= 1.
|
||||||
*> If JOBV .EQ. 'V', then LDV .GE. max(1,N).
|
*> If JOBV = 'V', then LDV >= max(1,N).
|
||||||
*> If JOBV .EQ. 'A', then LDV .GE. max(1,MV) .
|
*> If JOBV = 'A', then LDV >= max(1,MV) .
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in,out] CWORK
|
*> \param[in,out] CWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> CWORK is COMPLEX array, dimension (max(1,LWORK))
|
*> CWORK is COMPLEX array, dimension (max(1,LWORK))
|
||||||
*> Used as workspace.
|
*> Used as workspace.
|
||||||
*> If on entry LWORK .EQ. -1, then a workspace query is assumed and
|
*> If on entry LWORK = -1, then a workspace query is assumed and
|
||||||
*> no computation is done; CWORK(1) is set to the minial (and optimal)
|
*> no computation is done; CWORK(1) is set to the minial (and optimal)
|
||||||
*> length of CWORK.
|
*> length of CWORK.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
@ -223,7 +223,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> RWORK is REAL array, dimension (max(6,LRWORK))
|
*> RWORK is REAL array, dimension (max(6,LRWORK))
|
||||||
*> On entry,
|
*> On entry,
|
||||||
*> If JOBU .EQ. 'C' :
|
*> If JOBU = 'C' :
|
||||||
*> RWORK(1) = CTOL, where CTOL defines the threshold for convergence.
|
*> RWORK(1) = CTOL, where CTOL defines the threshold for convergence.
|
||||||
*> The process stops if all columns of A are mutually
|
*> The process stops if all columns of A are mutually
|
||||||
*> orthogonal up to CTOL*EPS, EPS=SLAMCH('E').
|
*> orthogonal up to CTOL*EPS, EPS=SLAMCH('E').
|
||||||
|
@ -243,11 +243,11 @@
|
||||||
*> RWORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep.
|
*> RWORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep.
|
||||||
*> This is useful information in cases when CGESVJ did
|
*> This is useful information in cases when CGESVJ did
|
||||||
*> not converge, as it can be used to estimate whether
|
*> not converge, as it can be used to estimate whether
|
||||||
*> the output is stil useful and for post festum analysis.
|
*> the output is still useful and for post festum analysis.
|
||||||
*> RWORK(6) = the largest absolute value over all sines of the
|
*> RWORK(6) = the largest absolute value over all sines of the
|
||||||
*> Jacobi rotation angles in the last sweep. It can be
|
*> Jacobi rotation angles in the last sweep. It can be
|
||||||
*> useful for a post festum analysis.
|
*> useful for a post festum analysis.
|
||||||
*> If on entry LRWORK .EQ. -1, then a workspace query is assumed and
|
*> If on entry LRWORK = -1, then a workspace query is assumed and
|
||||||
*> no computation is done; RWORK(1) is set to the minial (and optimal)
|
*> no computation is done; RWORK(1) is set to the minial (and optimal)
|
||||||
*> length of RWORK.
|
*> length of RWORK.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
@ -261,9 +261,9 @@
|
||||||
*> \param[out] INFO
|
*> \param[out] INFO
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> INFO is INTEGER
|
*> INFO is INTEGER
|
||||||
*> = 0 : successful exit.
|
*> = 0: successful exit.
|
||||||
*> < 0 : if INFO = -i, then the i-th argument had an illegal value
|
*> < 0: if INFO = -i, then the i-th argument had an illegal value
|
||||||
*> > 0 : CGESVJ did not converge in the maximal allowed number
|
*> > 0: CGESVJ did not converge in the maximal allowed number
|
||||||
*> (NSWEEP=30) of sweeps. The output may still be useful.
|
*> (NSWEEP=30) of sweeps. The output may still be useful.
|
||||||
*> See the description of RWORK.
|
*> See the description of RWORK.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
|
|
@ -411,7 +411,7 @@
|
||||||
*> information as described below. There currently are up to three
|
*> information as described below. There currently are up to three
|
||||||
*> pieces of information returned for each right-hand side. If
|
*> pieces of information returned for each right-hand side. If
|
||||||
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
||||||
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
|
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
|
||||||
*> the first (:,N_ERR_BNDS) entries are returned.
|
*> the first (:,N_ERR_BNDS) entries are returned.
|
||||||
*>
|
*>
|
||||||
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
||||||
|
@ -447,14 +447,14 @@
|
||||||
*> \param[in] NPARAMS
|
*> \param[in] NPARAMS
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> NPARAMS is INTEGER
|
*> NPARAMS is INTEGER
|
||||||
*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
|
*> Specifies the number of parameters set in PARAMS. If <= 0, the
|
||||||
*> PARAMS array is never referenced and default values are used.
|
*> PARAMS array is never referenced and default values are used.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in,out] PARAMS
|
*> \param[in,out] PARAMS
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> PARAMS is REAL array, dimension NPARAMS
|
*> PARAMS is REAL array, dimension NPARAMS
|
||||||
*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
|
*> Specifies algorithm parameters. If an entry is < 0.0, then
|
||||||
*> that entry will be filled with default value used for that
|
*> that entry will be filled with default value used for that
|
||||||
*> parameter. Only positions up to NPARAMS are accessed; defaults
|
*> parameter. Only positions up to NPARAMS are accessed; defaults
|
||||||
*> are used for higher-numbered parameters.
|
*> are used for higher-numbered parameters.
|
||||||
|
@ -462,9 +462,9 @@
|
||||||
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
|
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
|
||||||
*> refinement or not.
|
*> refinement or not.
|
||||||
*> Default: 1.0
|
*> Default: 1.0
|
||||||
*> = 0.0 : No refinement is performed, and no error bounds are
|
*> = 0.0: No refinement is performed, and no error bounds are
|
||||||
*> computed.
|
*> computed.
|
||||||
*> = 1.0 : Use the double-precision refinement algorithm,
|
*> = 1.0: Use the double-precision refinement algorithm,
|
||||||
*> possibly with doubled-single computations if the
|
*> possibly with doubled-single computations if the
|
||||||
*> compilation environment does not support DOUBLE
|
*> compilation environment does not support DOUBLE
|
||||||
*> PRECISION.
|
*> PRECISION.
|
||||||
|
|
|
@ -1,3 +1,5 @@
|
||||||
|
*> \brief \b CGETSLS
|
||||||
|
*
|
||||||
* Definition:
|
* Definition:
|
||||||
* ===========
|
* ===========
|
||||||
*
|
*
|
||||||
|
|
|
@ -120,10 +120,10 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> SENSE is CHARACTER*1
|
*> SENSE is CHARACTER*1
|
||||||
*> Determines which reciprocal condition numbers are computed.
|
*> Determines which reciprocal condition numbers are computed.
|
||||||
*> = 'N' : None are computed;
|
*> = 'N': None are computed;
|
||||||
*> = 'E' : Computed for average of selected eigenvalues only;
|
*> = 'E': Computed for average of selected eigenvalues only;
|
||||||
*> = 'V' : Computed for selected deflating subspaces only;
|
*> = 'V': Computed for selected deflating subspaces only;
|
||||||
*> = 'B' : Computed for both.
|
*> = 'B': Computed for both.
|
||||||
*> If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
|
*> If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -117,7 +117,7 @@
|
||||||
*> \param[in] MV
|
*> \param[in] MV
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> MV is INTEGER
|
*> MV is INTEGER
|
||||||
*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
|
*> If JOBV = 'A', then MV rows of V are post-multipled by a
|
||||||
*> sequence of Jacobi rotations.
|
*> sequence of Jacobi rotations.
|
||||||
*> If JOBV = 'N', then MV is not referenced.
|
*> If JOBV = 'N', then MV is not referenced.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
@ -125,9 +125,9 @@
|
||||||
*> \param[in,out] V
|
*> \param[in,out] V
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> V is COMPLEX array, dimension (LDV,N)
|
*> V is COMPLEX array, dimension (LDV,N)
|
||||||
*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a
|
*> If JOBV = 'V' then N rows of V are post-multipled by a
|
||||||
*> sequence of Jacobi rotations.
|
*> sequence of Jacobi rotations.
|
||||||
*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
|
*> If JOBV = 'A' then MV rows of V are post-multipled by a
|
||||||
*> sequence of Jacobi rotations.
|
*> sequence of Jacobi rotations.
|
||||||
*> If JOBV = 'N', then V is not referenced.
|
*> If JOBV = 'N', then V is not referenced.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
@ -136,8 +136,8 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> LDV is INTEGER
|
*> LDV is INTEGER
|
||||||
*> The leading dimension of the array V, LDV >= 1.
|
*> The leading dimension of the array V, LDV >= 1.
|
||||||
*> If JOBV = 'V', LDV .GE. N.
|
*> If JOBV = 'V', LDV >= N.
|
||||||
*> If JOBV = 'A', LDV .GE. MV.
|
*> If JOBV = 'A', LDV >= MV.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] EPS
|
*> \param[in] EPS
|
||||||
|
@ -157,7 +157,7 @@
|
||||||
*> TOL is REAL
|
*> TOL is REAL
|
||||||
*> TOL is the threshold for Jacobi rotations. For a pair
|
*> TOL is the threshold for Jacobi rotations. For a pair
|
||||||
*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
|
*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
|
||||||
*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
|
*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] NSWEEP
|
*> \param[in] NSWEEP
|
||||||
|
@ -175,14 +175,14 @@
|
||||||
*> \param[in] LWORK
|
*> \param[in] LWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> LWORK is INTEGER
|
*> LWORK is INTEGER
|
||||||
*> LWORK is the dimension of WORK. LWORK .GE. M.
|
*> LWORK is the dimension of WORK. LWORK >= M.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[out] INFO
|
*> \param[out] INFO
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> INFO is INTEGER
|
*> INFO is INTEGER
|
||||||
*> = 0 : successful exit.
|
*> = 0: successful exit.
|
||||||
*> < 0 : if INFO = -i, then the i-th argument had an illegal value
|
*> < 0: if INFO = -i, then the i-th argument had an illegal value
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*
|
*
|
||||||
* Authors:
|
* Authors:
|
||||||
|
|
|
@ -61,7 +61,7 @@
|
||||||
*> In terms of the columns of A, the first N1 columns are rotated 'against'
|
*> In terms of the columns of A, the first N1 columns are rotated 'against'
|
||||||
*> the remaining N-N1 columns, trying to increase the angle between the
|
*> the remaining N-N1 columns, trying to increase the angle between the
|
||||||
*> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
|
*> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
|
||||||
*> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter.
|
*> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parameter.
|
||||||
*> The number of sweeps is given in NSWEEP and the orthogonality threshold
|
*> The number of sweeps is given in NSWEEP and the orthogonality threshold
|
||||||
*> is given in TOL.
|
*> is given in TOL.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
@ -147,7 +147,7 @@
|
||||||
*> \param[in] MV
|
*> \param[in] MV
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> MV is INTEGER
|
*> MV is INTEGER
|
||||||
*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
|
*> If JOBV = 'A', then MV rows of V are post-multipled by a
|
||||||
*> sequence of Jacobi rotations.
|
*> sequence of Jacobi rotations.
|
||||||
*> If JOBV = 'N', then MV is not referenced.
|
*> If JOBV = 'N', then MV is not referenced.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
@ -155,9 +155,9 @@
|
||||||
*> \param[in,out] V
|
*> \param[in,out] V
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> V is COMPLEX array, dimension (LDV,N)
|
*> V is COMPLEX array, dimension (LDV,N)
|
||||||
*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a
|
*> If JOBV = 'V' then N rows of V are post-multipled by a
|
||||||
*> sequence of Jacobi rotations.
|
*> sequence of Jacobi rotations.
|
||||||
*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
|
*> If JOBV = 'A' then MV rows of V are post-multipled by a
|
||||||
*> sequence of Jacobi rotations.
|
*> sequence of Jacobi rotations.
|
||||||
*> If JOBV = 'N', then V is not referenced.
|
*> If JOBV = 'N', then V is not referenced.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
@ -166,8 +166,8 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> LDV is INTEGER
|
*> LDV is INTEGER
|
||||||
*> The leading dimension of the array V, LDV >= 1.
|
*> The leading dimension of the array V, LDV >= 1.
|
||||||
*> If JOBV = 'V', LDV .GE. N.
|
*> If JOBV = 'V', LDV >= N.
|
||||||
*> If JOBV = 'A', LDV .GE. MV.
|
*> If JOBV = 'A', LDV >= MV.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] EPS
|
*> \param[in] EPS
|
||||||
|
@ -187,7 +187,7 @@
|
||||||
*> TOL is REAL
|
*> TOL is REAL
|
||||||
*> TOL is the threshold for Jacobi rotations. For a pair
|
*> TOL is the threshold for Jacobi rotations. For a pair
|
||||||
*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
|
*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
|
||||||
*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
|
*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] NSWEEP
|
*> \param[in] NSWEEP
|
||||||
|
@ -205,14 +205,14 @@
|
||||||
*> \param[in] LWORK
|
*> \param[in] LWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> LWORK is INTEGER
|
*> LWORK is INTEGER
|
||||||
*> LWORK is the dimension of WORK. LWORK .GE. M.
|
*> LWORK is the dimension of WORK. LWORK >= M.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[out] INFO
|
*> \param[out] INFO
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> INFO is INTEGER
|
*> INFO is INTEGER
|
||||||
*> = 0 : successful exit.
|
*> = 0: successful exit.
|
||||||
*> < 0 : if INFO = -i, then the i-th argument had an illegal value
|
*> < 0: if INFO = -i, then the i-th argument had an illegal value
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*
|
*
|
||||||
* Authors:
|
* Authors:
|
||||||
|
|
|
@ -124,7 +124,7 @@
|
||||||
*> LDVT is INTEGER.
|
*> LDVT is INTEGER.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is COMPLEX array. Workspace of size nb.
|
*> WORK is COMPLEX array. Workspace of size nb.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
|
|
@ -19,7 +19,7 @@
|
||||||
* ===========
|
* ===========
|
||||||
*
|
*
|
||||||
* SUBROUTINE CHECON_3( UPLO, N, A, LDA, E, IPIV, ANORM, RCOND,
|
* SUBROUTINE CHECON_3( UPLO, N, A, LDA, E, IPIV, ANORM, RCOND,
|
||||||
* WORK, IWORK, INFO )
|
* WORK, INFO )
|
||||||
*
|
*
|
||||||
* .. Scalar Arguments ..
|
* .. Scalar Arguments ..
|
||||||
* CHARACTER UPLO
|
* CHARACTER UPLO
|
||||||
|
@ -27,7 +27,7 @@
|
||||||
* REAL ANORM, RCOND
|
* REAL ANORM, RCOND
|
||||||
* ..
|
* ..
|
||||||
* .. Array Arguments ..
|
* .. Array Arguments ..
|
||||||
* INTEGER IPIV( * ), IWORK( * )
|
* INTEGER IPIV( * )
|
||||||
* COMPLEX A( LDA, * ), E ( * ), WORK( * )
|
* COMPLEX A( LDA, * ), E ( * ), WORK( * )
|
||||||
* ..
|
* ..
|
||||||
*
|
*
|
||||||
|
@ -129,11 +129,6 @@
|
||||||
*> WORK is COMPLEX array, dimension (2*N)
|
*> WORK is COMPLEX array, dimension (2*N)
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[out] IWORK
|
|
||||||
*> \verbatim
|
|
||||||
*> IWORK is INTEGER array, dimension (N)
|
|
||||||
*> \endverbatim
|
|
||||||
*>
|
|
||||||
*> \param[out] INFO
|
*> \param[out] INFO
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> INFO is INTEGER
|
*> INFO is INTEGER
|
||||||
|
|
|
@ -210,7 +210,7 @@
|
||||||
*> eigenvalues are computed to high relative accuracy when
|
*> eigenvalues are computed to high relative accuracy when
|
||||||
*> possible in future releases. The current code does not
|
*> possible in future releases. The current code does not
|
||||||
*> make any guarantees about high relative accuracy, but
|
*> make any guarantees about high relative accuracy, but
|
||||||
*> furutre releases will. See J. Barlow and J. Demmel,
|
*> future releases will. See J. Barlow and J. Demmel,
|
||||||
*> "Computing Accurate Eigensystems of Scaled Diagonally
|
*> "Computing Accurate Eigensystems of Scaled Diagonally
|
||||||
*> Dominant Matrices", LAPACK Working Note #7, for a discussion
|
*> Dominant Matrices", LAPACK Working Note #7, for a discussion
|
||||||
*> of which matrices define their eigenvalues to high relative
|
*> of which matrices define their eigenvalues to high relative
|
||||||
|
|
|
@ -217,7 +217,7 @@
|
||||||
*> eigenvalues are computed to high relative accuracy when
|
*> eigenvalues are computed to high relative accuracy when
|
||||||
*> possible in future releases. The current code does not
|
*> possible in future releases. The current code does not
|
||||||
*> make any guarantees about high relative accuracy, but
|
*> make any guarantees about high relative accuracy, but
|
||||||
*> furutre releases will. See J. Barlow and J. Demmel,
|
*> future releases will. See J. Barlow and J. Demmel,
|
||||||
*> "Computing Accurate Eigensystems of Scaled Diagonally
|
*> "Computing Accurate Eigensystems of Scaled Diagonally
|
||||||
*> Dominant Matrices", LAPACK Working Note #7, for a discussion
|
*> Dominant Matrices", LAPACK Working Note #7, for a discussion
|
||||||
*> of which matrices define their eigenvalues to high relative
|
*> of which matrices define their eigenvalues to high relative
|
||||||
|
|
|
@ -97,6 +97,7 @@
|
||||||
*> B is COMPLEX array, dimension (LDB,N)
|
*> B is COMPLEX array, dimension (LDB,N)
|
||||||
*> The triangular factor from the Cholesky factorization of B,
|
*> The triangular factor from the Cholesky factorization of B,
|
||||||
*> as returned by CPOTRF.
|
*> as returned by CPOTRF.
|
||||||
|
*> B is modified by the routine but restored on exit.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] LDB
|
*> \param[in] LDB
|
||||||
|
|
|
@ -97,6 +97,7 @@
|
||||||
*> B is COMPLEX array, dimension (LDB,N)
|
*> B is COMPLEX array, dimension (LDB,N)
|
||||||
*> The triangular factor from the Cholesky factorization of B,
|
*> The triangular factor from the Cholesky factorization of B,
|
||||||
*> as returned by CPOTRF.
|
*> as returned by CPOTRF.
|
||||||
|
*> B is modified by the routine but restored on exit.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] LDB
|
*> \param[in] LDB
|
||||||
|
|
|
@ -102,7 +102,7 @@
|
||||||
*> \param[in] A
|
*> \param[in] A
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> A is COMPLEX array, dimension (LDA,N)
|
*> A is COMPLEX array, dimension (LDA,N)
|
||||||
*> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
|
*> The Hermitian matrix A. If UPLO = 'U', the leading N-by-N
|
||||||
*> upper triangular part of A contains the upper triangular
|
*> upper triangular part of A contains the upper triangular
|
||||||
*> part of the matrix A, and the strictly lower triangular
|
*> part of the matrix A, and the strictly lower triangular
|
||||||
*> part of A is not referenced. If UPLO = 'L', the leading
|
*> part of A is not referenced. If UPLO = 'L', the leading
|
||||||
|
@ -270,7 +270,7 @@
|
||||||
*> information as described below. There currently are up to three
|
*> information as described below. There currently are up to three
|
||||||
*> pieces of information returned for each right-hand side. If
|
*> pieces of information returned for each right-hand side. If
|
||||||
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
||||||
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
|
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
|
||||||
*> the first (:,N_ERR_BNDS) entries are returned.
|
*> the first (:,N_ERR_BNDS) entries are returned.
|
||||||
*>
|
*>
|
||||||
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
||||||
|
@ -306,14 +306,14 @@
|
||||||
*> \param[in] NPARAMS
|
*> \param[in] NPARAMS
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> NPARAMS is INTEGER
|
*> NPARAMS is INTEGER
|
||||||
*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
|
*> Specifies the number of parameters set in PARAMS. If <= 0, the
|
||||||
*> PARAMS array is never referenced and default values are used.
|
*> PARAMS array is never referenced and default values are used.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in,out] PARAMS
|
*> \param[in,out] PARAMS
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> PARAMS is REAL array, dimension NPARAMS
|
*> PARAMS is REAL array, dimension NPARAMS
|
||||||
*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
|
*> Specifies algorithm parameters. If an entry is < 0.0, then
|
||||||
*> that entry will be filled with default value used for that
|
*> that entry will be filled with default value used for that
|
||||||
*> parameter. Only positions up to NPARAMS are accessed; defaults
|
*> parameter. Only positions up to NPARAMS are accessed; defaults
|
||||||
*> are used for higher-numbered parameters.
|
*> are used for higher-numbered parameters.
|
||||||
|
@ -321,9 +321,9 @@
|
||||||
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
|
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
|
||||||
*> refinement or not.
|
*> refinement or not.
|
||||||
*> Default: 1.0
|
*> Default: 1.0
|
||||||
*> = 0.0 : No refinement is performed, and no error bounds are
|
*> = 0.0: No refinement is performed, and no error bounds are
|
||||||
*> computed.
|
*> computed.
|
||||||
*> = 1.0 : Use the double-precision refinement algorithm,
|
*> = 1.0: Use the double-precision refinement algorithm,
|
||||||
*> possibly with doubled-single computations if the
|
*> possibly with doubled-single computations if the
|
||||||
*> compilation environment does not support DOUBLE
|
*> compilation environment does not support DOUBLE
|
||||||
*> PRECISION.
|
*> PRECISION.
|
||||||
|
|
|
@ -42,7 +42,7 @@
|
||||||
*> matrices.
|
*> matrices.
|
||||||
*>
|
*>
|
||||||
*> Aasen's algorithm is used to factor A as
|
*> Aasen's algorithm is used to factor A as
|
||||||
*> A = U * T * U**H, if UPLO = 'U', or
|
*> A = U**H * T * U, if UPLO = 'U', or
|
||||||
*> A = L * T * L**H, if UPLO = 'L',
|
*> A = L * T * L**H, if UPLO = 'L',
|
||||||
*> where U (or L) is a product of permutation and unit upper (lower)
|
*> where U (or L) is a product of permutation and unit upper (lower)
|
||||||
*> triangular matrices, and T is Hermitian and tridiagonal. The factored form
|
*> triangular matrices, and T is Hermitian and tridiagonal. The factored form
|
||||||
|
@ -86,7 +86,7 @@
|
||||||
*>
|
*>
|
||||||
*> On exit, if INFO = 0, the tridiagonal matrix T and the
|
*> On exit, if INFO = 0, the tridiagonal matrix T and the
|
||||||
*> multipliers used to obtain the factor U or L from the
|
*> multipliers used to obtain the factor U or L from the
|
||||||
*> factorization A = U*T*U**H or A = L*T*L**H as computed by
|
*> factorization A = U**H*T*U or A = L*T*L**H as computed by
|
||||||
*> CHETRF_AA.
|
*> CHETRF_AA.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
@ -230,7 +230,7 @@
|
||||||
RETURN
|
RETURN
|
||||||
END IF
|
END IF
|
||||||
*
|
*
|
||||||
* Compute the factorization A = U*T*U**H or A = L*T*L**H.
|
* Compute the factorization A = U**H*T*U or A = L*T*L**H.
|
||||||
*
|
*
|
||||||
CALL CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
|
CALL CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
|
||||||
IF( INFO.EQ.0 ) THEN
|
IF( INFO.EQ.0 ) THEN
|
||||||
|
|
|
@ -43,7 +43,7 @@
|
||||||
*> matrices.
|
*> matrices.
|
||||||
*>
|
*>
|
||||||
*> Aasen's 2-stage algorithm is used to factor A as
|
*> Aasen's 2-stage algorithm is used to factor A as
|
||||||
*> A = U * T * U**H, if UPLO = 'U', or
|
*> A = U**H * T * U, if UPLO = 'U', or
|
||||||
*> A = L * T * L**H, if UPLO = 'L',
|
*> A = L * T * L**H, if UPLO = 'L',
|
||||||
*> where U (or L) is a product of permutation and unit upper (lower)
|
*> where U (or L) is a product of permutation and unit upper (lower)
|
||||||
*> triangular matrices, and T is Hermitian and band. The matrix T is
|
*> triangular matrices, and T is Hermitian and band. The matrix T is
|
||||||
|
@ -257,7 +257,7 @@
|
||||||
END IF
|
END IF
|
||||||
*
|
*
|
||||||
*
|
*
|
||||||
* Compute the factorization A = U*T*U**H or A = L*T*L**H.
|
* Compute the factorization A = U**H*T*U or A = L*T*L**H.
|
||||||
*
|
*
|
||||||
CALL CHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2,
|
CALL CHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2,
|
||||||
$ WORK, LWORK, INFO )
|
$ WORK, LWORK, INFO )
|
||||||
|
|
|
@ -46,7 +46,7 @@
|
||||||
*>
|
*>
|
||||||
*> CHESVXX uses the diagonal pivoting factorization to compute the
|
*> CHESVXX uses the diagonal pivoting factorization to compute the
|
||||||
*> solution to a complex system of linear equations A * X = B, where
|
*> solution to a complex system of linear equations A * X = B, where
|
||||||
*> A is an N-by-N symmetric matrix and X and B are N-by-NRHS
|
*> A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
|
||||||
*> matrices.
|
*> matrices.
|
||||||
*>
|
*>
|
||||||
*> If requested, both normwise and maximum componentwise error bounds
|
*> If requested, both normwise and maximum componentwise error bounds
|
||||||
|
@ -88,7 +88,7 @@
|
||||||
*> A = L * D * L**T, if UPLO = 'L',
|
*> A = L * D * L**T, if UPLO = 'L',
|
||||||
*>
|
*>
|
||||||
*> where U (or L) is a product of permutation and unit upper (lower)
|
*> where U (or L) is a product of permutation and unit upper (lower)
|
||||||
*> triangular matrices, and D is symmetric and block diagonal with
|
*> triangular matrices, and D is Hermitian and block diagonal with
|
||||||
*> 1-by-1 and 2-by-2 diagonal blocks.
|
*> 1-by-1 and 2-by-2 diagonal blocks.
|
||||||
*>
|
*>
|
||||||
*> 3. If some D(i,i)=0, so that D is exactly singular, then the
|
*> 3. If some D(i,i)=0, so that D is exactly singular, then the
|
||||||
|
@ -161,7 +161,7 @@
|
||||||
*> \param[in,out] A
|
*> \param[in,out] A
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> A is COMPLEX array, dimension (LDA,N)
|
*> A is COMPLEX array, dimension (LDA,N)
|
||||||
*> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
|
*> The Hermitian matrix A. If UPLO = 'U', the leading N-by-N
|
||||||
*> upper triangular part of A contains the upper triangular
|
*> upper triangular part of A contains the upper triangular
|
||||||
*> part of the matrix A, and the strictly lower triangular
|
*> part of the matrix A, and the strictly lower triangular
|
||||||
*> part of A is not referenced. If UPLO = 'L', the leading
|
*> part of A is not referenced. If UPLO = 'L', the leading
|
||||||
|
@ -378,7 +378,7 @@
|
||||||
*> information as described below. There currently are up to three
|
*> information as described below. There currently are up to three
|
||||||
*> pieces of information returned for each right-hand side. If
|
*> pieces of information returned for each right-hand side. If
|
||||||
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
||||||
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
|
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
|
||||||
*> the first (:,N_ERR_BNDS) entries are returned.
|
*> the first (:,N_ERR_BNDS) entries are returned.
|
||||||
*>
|
*>
|
||||||
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
||||||
|
@ -414,14 +414,14 @@
|
||||||
*> \param[in] NPARAMS
|
*> \param[in] NPARAMS
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> NPARAMS is INTEGER
|
*> NPARAMS is INTEGER
|
||||||
*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
|
*> Specifies the number of parameters set in PARAMS. If <= 0, the
|
||||||
*> PARAMS array is never referenced and default values are used.
|
*> PARAMS array is never referenced and default values are used.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in,out] PARAMS
|
*> \param[in,out] PARAMS
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> PARAMS is REAL array, dimension NPARAMS
|
*> PARAMS is REAL array, dimension NPARAMS
|
||||||
*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
|
*> Specifies algorithm parameters. If an entry is < 0.0, then
|
||||||
*> that entry will be filled with default value used for that
|
*> that entry will be filled with default value used for that
|
||||||
*> parameter. Only positions up to NPARAMS are accessed; defaults
|
*> parameter. Only positions up to NPARAMS are accessed; defaults
|
||||||
*> are used for higher-numbered parameters.
|
*> are used for higher-numbered parameters.
|
||||||
|
@ -429,9 +429,9 @@
|
||||||
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
|
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
|
||||||
*> refinement or not.
|
*> refinement or not.
|
||||||
*> Default: 1.0
|
*> Default: 1.0
|
||||||
*> = 0.0 : No refinement is performed, and no error bounds are
|
*> = 0.0: No refinement is performed, and no error bounds are
|
||||||
*> computed.
|
*> computed.
|
||||||
*> = 1.0 : Use the double-precision refinement algorithm,
|
*> = 1.0: Use the double-precision refinement algorithm,
|
||||||
*> possibly with doubled-single computations if the
|
*> possibly with doubled-single computations if the
|
||||||
*> compilation environment does not support DOUBLE
|
*> compilation environment does not support DOUBLE
|
||||||
*> PRECISION.
|
*> PRECISION.
|
||||||
|
|
|
@ -322,7 +322,7 @@
|
||||||
*
|
*
|
||||||
* Factorize A as U*D*U**H using the upper triangle of A
|
* Factorize A as U*D*U**H using the upper triangle of A
|
||||||
*
|
*
|
||||||
* Initilize the first entry of array E, where superdiagonal
|
* Initialize the first entry of array E, where superdiagonal
|
||||||
* elements of D are stored
|
* elements of D are stored
|
||||||
*
|
*
|
||||||
E( 1 ) = CZERO
|
E( 1 ) = CZERO
|
||||||
|
@ -676,7 +676,7 @@
|
||||||
*
|
*
|
||||||
* Factorize A as L*D*L**H using the lower triangle of A
|
* Factorize A as L*D*L**H using the lower triangle of A
|
||||||
*
|
*
|
||||||
* Initilize the unused last entry of the subdiagonal array E.
|
* Initialize the unused last entry of the subdiagonal array E.
|
||||||
*
|
*
|
||||||
E( N ) = CZERO
|
E( N ) = CZERO
|
||||||
*
|
*
|
||||||
|
|
|
@ -123,23 +123,22 @@
|
||||||
*>
|
*>
|
||||||
*> \param[out] HOUS2
|
*> \param[out] HOUS2
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> HOUS2 is COMPLEX array, dimension LHOUS2, that
|
*> HOUS2 is COMPLEX array, dimension (LHOUS2)
|
||||||
*> store the Householder representation of the stage2
|
*> Stores the Householder representation of the stage2
|
||||||
*> band to tridiagonal.
|
*> band to tridiagonal.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] LHOUS2
|
*> \param[in] LHOUS2
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> LHOUS2 is INTEGER
|
*> LHOUS2 is INTEGER
|
||||||
*> The dimension of the array HOUS2. LHOUS2 = MAX(1, dimension)
|
*> The dimension of the array HOUS2.
|
||||||
*> If LWORK = -1, or LHOUS2=-1,
|
*> If LWORK = -1, or LHOUS2=-1,
|
||||||
*> then a query is assumed; the routine
|
*> then a query is assumed; the routine
|
||||||
*> only calculates the optimal size of the HOUS2 array, returns
|
*> only calculates the optimal size of the HOUS2 array, returns
|
||||||
*> this value as the first entry of the HOUS2 array, and no error
|
*> this value as the first entry of the HOUS2 array, and no error
|
||||||
*> message related to LHOUS2 is issued by XERBLA.
|
*> message related to LHOUS2 is issued by XERBLA.
|
||||||
*> LHOUS2 = MAX(1, dimension) where
|
*> If VECT='N', LHOUS2 = max(1, 4*n);
|
||||||
*> dimension = 4*N if VECT='N'
|
*> if VECT='V', option not yet available.
|
||||||
*> not available now if VECT='H'
|
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[out] WORK
|
*> \param[out] WORK
|
||||||
|
@ -151,7 +150,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> LWORK is INTEGER
|
*> LWORK is INTEGER
|
||||||
*> The dimension of the array WORK. LWORK = MAX(1, dimension)
|
*> The dimension of the array WORK. LWORK = MAX(1, dimension)
|
||||||
*> If LWORK = -1, or LHOUS2=-1,
|
*> If LWORK = -1, or LHOUS2 = -1,
|
||||||
*> then a workspace query is assumed; the routine
|
*> then a workspace query is assumed; the routine
|
||||||
*> only calculates the optimal size of the WORK array, returns
|
*> only calculates the optimal size of the WORK array, returns
|
||||||
*> this value as the first entry of the WORK array, and no error
|
*> this value as the first entry of the WORK array, and no error
|
||||||
|
|
|
@ -50,9 +50,9 @@
|
||||||
* Arguments:
|
* Arguments:
|
||||||
* ==========
|
* ==========
|
||||||
*
|
*
|
||||||
*> \param[in] STAGE
|
*> \param[in] STAGE1
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> STAGE is CHARACTER*1
|
*> STAGE1 is CHARACTER*1
|
||||||
*> = 'N': "No": to mention that the stage 1 of the reduction
|
*> = 'N': "No": to mention that the stage 1 of the reduction
|
||||||
*> from dense to band using the chetrd_he2hb routine
|
*> from dense to band using the chetrd_he2hb routine
|
||||||
*> was not called before this routine to reproduce AB.
|
*> was not called before this routine to reproduce AB.
|
||||||
|
@ -512,7 +512,7 @@ C END IF
|
||||||
*
|
*
|
||||||
* Call the kernel
|
* Call the kernel
|
||||||
*
|
*
|
||||||
#if defined(_OPENMP) && _OPENMP >= 201307
|
#if defined(_OPENMP)
|
||||||
IF( TTYPE.NE.1 ) THEN
|
IF( TTYPE.NE.1 ) THEN
|
||||||
!$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1))
|
!$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1))
|
||||||
!$OMP$ DEPEND(in:WORK(MYID-1))
|
!$OMP$ DEPEND(in:WORK(MYID-1))
|
||||||
|
|
|
@ -363,7 +363,7 @@
|
||||||
*
|
*
|
||||||
*
|
*
|
||||||
* Set the workspace of the triangular matrix T to zero once such a
|
* Set the workspace of the triangular matrix T to zero once such a
|
||||||
* way everytime T is generated the upper/lower portion will be always zero
|
* way every time T is generated the upper/lower portion will be always zero
|
||||||
*
|
*
|
||||||
CALL CLASET( "A", LDT, KD, ZERO, ZERO, WORK( TPOS ), LDT )
|
CALL CLASET( "A", LDT, KD, ZERO, ZERO, WORK( TPOS ), LDT )
|
||||||
*
|
*
|
||||||
|
|
|
@ -37,7 +37,7 @@
|
||||||
*> CHETRF_AA computes the factorization of a complex hermitian matrix A
|
*> CHETRF_AA computes the factorization of a complex hermitian matrix A
|
||||||
*> using the Aasen's algorithm. The form of the factorization is
|
*> using the Aasen's algorithm. The form of the factorization is
|
||||||
*>
|
*>
|
||||||
*> A = U*T*U**H or A = L*T*L**H
|
*> A = U**H*T*U or A = L*T*L**H
|
||||||
*>
|
*>
|
||||||
*> where U (or L) is a product of permutation and unit upper (lower)
|
*> where U (or L) is a product of permutation and unit upper (lower)
|
||||||
*> triangular matrices, and T is a hermitian tridiagonal matrix.
|
*> triangular matrices, and T is a hermitian tridiagonal matrix.
|
||||||
|
@ -223,7 +223,7 @@
|
||||||
IF( UPPER ) THEN
|
IF( UPPER ) THEN
|
||||||
*
|
*
|
||||||
* .....................................................
|
* .....................................................
|
||||||
* Factorize A as L*D*L**H using the upper triangle of A
|
* Factorize A as U**H*D*U using the upper triangle of A
|
||||||
* .....................................................
|
* .....................................................
|
||||||
*
|
*
|
||||||
* copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
|
* copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
|
||||||
|
@ -256,7 +256,7 @@
|
||||||
$ A( MAX(1, J), J+1 ), LDA,
|
$ A( MAX(1, J), J+1 ), LDA,
|
||||||
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
|
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
|
||||||
*
|
*
|
||||||
* Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
|
* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
|
||||||
*
|
*
|
||||||
DO J2 = J+2, MIN(N, J+JB+1)
|
DO J2 = J+2, MIN(N, J+JB+1)
|
||||||
IPIV( J2 ) = IPIV( J2 ) + J
|
IPIV( J2 ) = IPIV( J2 ) + J
|
||||||
|
@ -376,7 +376,7 @@
|
||||||
$ A( J+1, MAX(1, J) ), LDA,
|
$ A( J+1, MAX(1, J) ), LDA,
|
||||||
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
|
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
|
||||||
*
|
*
|
||||||
* Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
|
* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
|
||||||
*
|
*
|
||||||
DO J2 = J+2, MIN(N, J+JB+1)
|
DO J2 = J+2, MIN(N, J+JB+1)
|
||||||
IPIV( J2 ) = IPIV( J2 ) + J
|
IPIV( J2 ) = IPIV( J2 ) + J
|
||||||
|
|
|
@ -38,7 +38,7 @@
|
||||||
*> CHETRF_AA_2STAGE computes the factorization of a real hermitian matrix A
|
*> CHETRF_AA_2STAGE computes the factorization of a real hermitian matrix A
|
||||||
*> using the Aasen's algorithm. The form of the factorization is
|
*> using the Aasen's algorithm. The form of the factorization is
|
||||||
*>
|
*>
|
||||||
*> A = U*T*U**T or A = L*T*L**T
|
*> A = U**T*T*U or A = L*T*L**T
|
||||||
*>
|
*>
|
||||||
*> where U (or L) is a product of permutation and unit upper (lower)
|
*> where U (or L) is a product of permutation and unit upper (lower)
|
||||||
*> triangular matrices, and T is a hermitian band matrix with the
|
*> triangular matrices, and T is a hermitian band matrix with the
|
||||||
|
@ -277,7 +277,7 @@
|
||||||
IF( UPPER ) THEN
|
IF( UPPER ) THEN
|
||||||
*
|
*
|
||||||
* .....................................................
|
* .....................................................
|
||||||
* Factorize A as L*D*L**T using the upper triangle of A
|
* Factorize A as U**T*D*U using the upper triangle of A
|
||||||
* .....................................................
|
* .....................................................
|
||||||
*
|
*
|
||||||
DO J = 0, NT-1
|
DO J = 0, NT-1
|
||||||
|
@ -454,13 +454,16 @@ c END IF
|
||||||
CALL CSWAP( K-1, A( (J+1)*NB+1, I1 ), 1,
|
CALL CSWAP( K-1, A( (J+1)*NB+1, I1 ), 1,
|
||||||
$ A( (J+1)*NB+1, I2 ), 1 )
|
$ A( (J+1)*NB+1, I2 ), 1 )
|
||||||
* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
|
* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
|
||||||
CALL CSWAP( I2-I1-1, A( I1, I1+1 ), LDA,
|
IF( I2.GT.(I1+1) ) THEN
|
||||||
$ A( I1+1, I2 ), 1 )
|
CALL CSWAP( I2-I1-1, A( I1, I1+1 ), LDA,
|
||||||
|
$ A( I1+1, I2 ), 1 )
|
||||||
|
CALL CLACGV( I2-I1-1, A( I1+1, I2 ), 1 )
|
||||||
|
END IF
|
||||||
CALL CLACGV( I2-I1, A( I1, I1+1 ), LDA )
|
CALL CLACGV( I2-I1, A( I1, I1+1 ), LDA )
|
||||||
CALL CLACGV( I2-I1-1, A( I1+1, I2 ), 1 )
|
|
||||||
* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
|
* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
|
||||||
CALL CSWAP( N-I2, A( I1, I2+1 ), LDA,
|
IF( I2.LT.N )
|
||||||
$ A( I2, I2+1 ), LDA )
|
$ CALL CSWAP( N-I2, A( I1, I2+1 ), LDA,
|
||||||
|
$ A( I2, I2+1 ), LDA )
|
||||||
* > Swap A(I1, I1) with A(I2, I2)
|
* > Swap A(I1, I1) with A(I2, I2)
|
||||||
PIV = A( I1, I1 )
|
PIV = A( I1, I1 )
|
||||||
A( I1, I1 ) = A( I2, I2 )
|
A( I1, I1 ) = A( I2, I2 )
|
||||||
|
@ -631,13 +634,16 @@ c END IF
|
||||||
CALL CSWAP( K-1, A( I1, (J+1)*NB+1 ), LDA,
|
CALL CSWAP( K-1, A( I1, (J+1)*NB+1 ), LDA,
|
||||||
$ A( I2, (J+1)*NB+1 ), LDA )
|
$ A( I2, (J+1)*NB+1 ), LDA )
|
||||||
* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
|
* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
|
||||||
CALL CSWAP( I2-I1-1, A( I1+1, I1 ), 1,
|
IF( I2.GT.(I1+1) ) THEN
|
||||||
$ A( I2, I1+1 ), LDA )
|
CALL CSWAP( I2-I1-1, A( I1+1, I1 ), 1,
|
||||||
|
$ A( I2, I1+1 ), LDA )
|
||||||
|
CALL CLACGV( I2-I1-1, A( I2, I1+1 ), LDA )
|
||||||
|
END IF
|
||||||
CALL CLACGV( I2-I1, A( I1+1, I1 ), 1 )
|
CALL CLACGV( I2-I1, A( I1+1, I1 ), 1 )
|
||||||
CALL CLACGV( I2-I1-1, A( I2, I1+1 ), LDA )
|
|
||||||
* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
|
* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
|
||||||
CALL CSWAP( N-I2, A( I2+1, I1 ), 1,
|
IF( I2.LT.N )
|
||||||
$ A( I2+1, I2 ), 1 )
|
$ CALL CSWAP( N-I2, A( I2+1, I1 ), 1,
|
||||||
|
$ A( I2+1, I2 ), 1 )
|
||||||
* > Swap A(I1, I1) with A(I2, I2)
|
* > Swap A(I1, I1) with A(I2, I2)
|
||||||
PIV = A( I1, I1 )
|
PIV = A( I1, I1 )
|
||||||
A( I1, I1 ) = A( I2, I2 )
|
A( I1, I1 ) = A( I2, I2 )
|
||||||
|
|
|
@ -62,7 +62,7 @@
|
||||||
*> \param[in,out] A
|
*> \param[in,out] A
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> A is COMPLEX array, dimension (LDA,N)
|
*> A is COMPLEX array, dimension (LDA,N)
|
||||||
*> On entry, the NB diagonal matrix D and the multipliers
|
*> On entry, the block diagonal matrix D and the multipliers
|
||||||
*> used to obtain the factor U or L as computed by CHETRF.
|
*> used to obtain the factor U or L as computed by CHETRF.
|
||||||
*>
|
*>
|
||||||
*> On exit, if INFO = 0, the (symmetric) inverse of the original
|
*> On exit, if INFO = 0, the (symmetric) inverse of the original
|
||||||
|
@ -82,7 +82,7 @@
|
||||||
*> \param[in] IPIV
|
*> \param[in] IPIV
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> IPIV is INTEGER array, dimension (N)
|
*> IPIV is INTEGER array, dimension (N)
|
||||||
*> Details of the interchanges and the NB structure of D
|
*> Details of the interchanges and the block structure of D
|
||||||
*> as determined by CHETRF.
|
*> as determined by CHETRF.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
|
|
@ -37,7 +37,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> CHETRS_AA solves a system of linear equations A*X = B with a complex
|
*> CHETRS_AA solves a system of linear equations A*X = B with a complex
|
||||||
*> hermitian matrix A using the factorization A = U*T*U**H or
|
*> hermitian matrix A using the factorization A = U**H*T*U or
|
||||||
*> A = L*T*L**H computed by CHETRF_AA.
|
*> A = L*T*L**H computed by CHETRF_AA.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*
|
*
|
||||||
|
@ -49,7 +49,7 @@
|
||||||
*> UPLO is CHARACTER*1
|
*> UPLO is CHARACTER*1
|
||||||
*> Specifies whether the details of the factorization are stored
|
*> Specifies whether the details of the factorization are stored
|
||||||
*> as an upper or lower triangular matrix.
|
*> as an upper or lower triangular matrix.
|
||||||
*> = 'U': Upper triangular, form is A = U*T*U**H;
|
*> = 'U': Upper triangular, form is A = U**H*T*U;
|
||||||
*> = 'L': Lower triangular, form is A = L*T*L**H.
|
*> = 'L': Lower triangular, form is A = L*T*L**H.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
@ -97,14 +97,16 @@
|
||||||
*> The leading dimension of the array B. LDB >= max(1,N).
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is DOUBLE array, dimension (MAX(1,LWORK))
|
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] LWORK
|
*> \param[in] LWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> LWORK is INTEGER, LWORK >= MAX(1,3*N-2).
|
*> LWORK is INTEGER
|
||||||
|
*> The dimension of the array WORK. LWORK >= max(1,3*N-2).
|
||||||
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[out] INFO
|
*> \param[out] INFO
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
|
@ -198,24 +200,31 @@
|
||||||
*
|
*
|
||||||
IF( UPPER ) THEN
|
IF( UPPER ) THEN
|
||||||
*
|
*
|
||||||
* Solve A*X = B, where A = U*T*U**T.
|
* Solve A*X = B, where A = U**H*T*U.
|
||||||
*
|
*
|
||||||
* P**T * B
|
* 1) Forward substitution with U**H
|
||||||
*
|
*
|
||||||
K = 1
|
IF( N.GT.1 ) THEN
|
||||||
DO WHILE ( K.LE.N )
|
|
||||||
KP = IPIV( K )
|
|
||||||
IF( KP.NE.K )
|
|
||||||
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
|
||||||
K = K + 1
|
|
||||||
END DO
|
|
||||||
*
|
*
|
||||||
* Compute (U \P**T * B) -> B [ (U \P**T * B) ]
|
* Pivot, P**T * B -> B
|
||||||
*
|
*
|
||||||
CALL CTRSM('L', 'U', 'C', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA,
|
K = 1
|
||||||
$ B( 2, 1 ), LDB)
|
DO WHILE ( K.LE.N )
|
||||||
|
KP = IPIV( K )
|
||||||
|
IF( KP.NE.K )
|
||||||
|
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
||||||
|
K = K + 1
|
||||||
|
END DO
|
||||||
*
|
*
|
||||||
* Compute T \ B -> B [ T \ (U \P**T * B) ]
|
* Compute U**H \ B -> B [ (U**H \P**T * B) ]
|
||||||
|
*
|
||||||
|
CALL CTRSM( 'L', 'U', 'C', 'U', N-1, NRHS, ONE, A( 1, 2 ),
|
||||||
|
$ LDA, B( 2, 1 ), LDB)
|
||||||
|
END IF
|
||||||
|
*
|
||||||
|
* 2) Solve with triangular matrix T
|
||||||
|
*
|
||||||
|
* Compute T \ B -> B [ T \ (U**H \P**T * B) ]
|
||||||
*
|
*
|
||||||
CALL CLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
|
CALL CLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
|
||||||
IF( N.GT.1 ) THEN
|
IF( N.GT.1 ) THEN
|
||||||
|
@ -226,65 +235,82 @@
|
||||||
CALL CGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
|
CALL CGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
|
||||||
$ INFO)
|
$ INFO)
|
||||||
*
|
*
|
||||||
* Compute (U**T \ B) -> B [ U**T \ (T \ (U \P**T * B) ) ]
|
* 3) Backward substitution with U
|
||||||
*
|
*
|
||||||
CALL CTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA,
|
IF( N.GT.1 ) THEN
|
||||||
$ B(2, 1), LDB)
|
|
||||||
*
|
*
|
||||||
* Pivot, P * B [ P * (U**T \ (T \ (U \P**T * B) )) ]
|
* Compute U \ B -> B [ U \ (T \ (U**H \P**T * B) ) ]
|
||||||
*
|
*
|
||||||
K = N
|
CALL CTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
|
||||||
DO WHILE ( K.GE.1 )
|
$ LDA, B(2, 1), LDB)
|
||||||
KP = IPIV( K )
|
*
|
||||||
IF( KP.NE.K )
|
* Pivot, P * B -> B [ P * (U \ (T \ (U**H \P**T * B) )) ]
|
||||||
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
*
|
||||||
K = K - 1
|
K = N
|
||||||
END DO
|
DO WHILE ( K.GE.1 )
|
||||||
|
KP = IPIV( K )
|
||||||
|
IF( KP.NE.K )
|
||||||
|
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
||||||
|
K = K - 1
|
||||||
|
END DO
|
||||||
|
END IF
|
||||||
*
|
*
|
||||||
ELSE
|
ELSE
|
||||||
*
|
*
|
||||||
* Solve A*X = B, where A = L*T*L**T.
|
* Solve A*X = B, where A = L*T*L**H.
|
||||||
*
|
*
|
||||||
* Pivot, P**T * B
|
* 1) Forward substitution with L
|
||||||
*
|
*
|
||||||
K = 1
|
IF( N.GT.1 ) THEN
|
||||||
DO WHILE ( K.LE.N )
|
|
||||||
KP = IPIV( K )
|
|
||||||
IF( KP.NE.K )
|
|
||||||
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
|
||||||
K = K + 1
|
|
||||||
END DO
|
|
||||||
*
|
*
|
||||||
* Compute (L \P**T * B) -> B [ (L \P**T * B) ]
|
* Pivot, P**T * B -> B
|
||||||
*
|
*
|
||||||
CALL CTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1), LDA,
|
K = 1
|
||||||
$ B(2, 1), LDB)
|
DO WHILE ( K.LE.N )
|
||||||
|
KP = IPIV( K )
|
||||||
|
IF( KP.NE.K )
|
||||||
|
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
||||||
|
K = K + 1
|
||||||
|
END DO
|
||||||
|
*
|
||||||
|
* Compute L \ B -> B [ (L \P**T * B) ]
|
||||||
|
*
|
||||||
|
CALL CTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1),
|
||||||
|
$ LDA, B(2, 1), LDB )
|
||||||
|
END IF
|
||||||
|
*
|
||||||
|
* 2) Solve with triangular matrix T
|
||||||
*
|
*
|
||||||
* Compute T \ B -> B [ T \ (L \P**T * B) ]
|
* Compute T \ B -> B [ T \ (L \P**T * B) ]
|
||||||
*
|
*
|
||||||
CALL CLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
|
CALL CLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
|
||||||
IF( N.GT.1 ) THEN
|
IF( N.GT.1 ) THEN
|
||||||
CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1)
|
CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1 )
|
||||||
CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1)
|
CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1)
|
||||||
CALL CLACGV( N-1, WORK( 2*N ), 1 )
|
CALL CLACGV( N-1, WORK( 2*N ), 1 )
|
||||||
END IF
|
END IF
|
||||||
CALL CGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
|
CALL CGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
|
||||||
$ INFO)
|
$ INFO)
|
||||||
*
|
*
|
||||||
* Compute (L**T \ B) -> B [ L**T \ (T \ (L \P**T * B) ) ]
|
* 3) Backward substitution with L**H
|
||||||
*
|
*
|
||||||
CALL CTRSM( 'L', 'L', 'C', 'U', N-1, NRHS, ONE, A( 2, 1 ), LDA,
|
IF( N.GT.1 ) THEN
|
||||||
$ B( 2, 1 ), LDB)
|
|
||||||
*
|
*
|
||||||
* Pivot, P * B [ P * (L**T \ (T \ (L \P**T * B) )) ]
|
* Compute (L**H \ B) -> B [ L**H \ (T \ (L \P**T * B) ) ]
|
||||||
*
|
*
|
||||||
K = N
|
CALL CTRSM( 'L', 'L', 'C', 'U', N-1, NRHS, ONE, A( 2, 1 ),
|
||||||
DO WHILE ( K.GE.1 )
|
$ LDA, B( 2, 1 ), LDB )
|
||||||
KP = IPIV( K )
|
*
|
||||||
IF( KP.NE.K )
|
* Pivot, P * B -> B [ P * (L**H \ (T \ (L \P**T * B) )) ]
|
||||||
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
*
|
||||||
K = K - 1
|
K = N
|
||||||
END DO
|
DO WHILE ( K.GE.1 )
|
||||||
|
KP = IPIV( K )
|
||||||
|
IF( KP.NE.K )
|
||||||
|
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
||||||
|
K = K - 1
|
||||||
|
END DO
|
||||||
|
END IF
|
||||||
*
|
*
|
||||||
END IF
|
END IF
|
||||||
*
|
*
|
||||||
|
|
|
@ -38,7 +38,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*>
|
*>
|
||||||
*> CHETRS_AA_2STAGE solves a system of linear equations A*X = B with a real
|
*> CHETRS_AA_2STAGE solves a system of linear equations A*X = B with a real
|
||||||
*> hermitian matrix A using the factorization A = U*T*U**T or
|
*> hermitian matrix A using the factorization A = U**T*T*U or
|
||||||
*> A = L*T*L**T computed by CHETRF_AA_2STAGE.
|
*> A = L*T*L**T computed by CHETRF_AA_2STAGE.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*
|
*
|
||||||
|
@ -50,7 +50,7 @@
|
||||||
*> UPLO is CHARACTER*1
|
*> UPLO is CHARACTER*1
|
||||||
*> Specifies whether the details of the factorization are stored
|
*> Specifies whether the details of the factorization are stored
|
||||||
*> as an upper or lower triangular matrix.
|
*> as an upper or lower triangular matrix.
|
||||||
*> = 'U': Upper triangular, form is A = U*T*U**T;
|
*> = 'U': Upper triangular, form is A = U**T*T*U;
|
||||||
*> = 'L': Lower triangular, form is A = L*T*L**T.
|
*> = 'L': Lower triangular, form is A = L*T*L**T.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
@ -210,15 +210,15 @@
|
||||||
*
|
*
|
||||||
IF( UPPER ) THEN
|
IF( UPPER ) THEN
|
||||||
*
|
*
|
||||||
* Solve A*X = B, where A = U*T*U**T.
|
* Solve A*X = B, where A = U**T*T*U.
|
||||||
*
|
*
|
||||||
IF( N.GT.NB ) THEN
|
IF( N.GT.NB ) THEN
|
||||||
*
|
*
|
||||||
* Pivot, P**T * B
|
* Pivot, P**T * B -> B
|
||||||
*
|
*
|
||||||
CALL CLASWP( NRHS, B, LDB, NB+1, N, IPIV, 1 )
|
CALL CLASWP( NRHS, B, LDB, NB+1, N, IPIV, 1 )
|
||||||
*
|
*
|
||||||
* Compute (U**T \P**T * B) -> B [ (U**T \P**T * B) ]
|
* Compute (U**T \ B) -> B [ (U**T \P**T * B) ]
|
||||||
*
|
*
|
||||||
CALL CTRSM( 'L', 'U', 'C', 'U', N-NB, NRHS, ONE, A(1, NB+1),
|
CALL CTRSM( 'L', 'U', 'C', 'U', N-NB, NRHS, ONE, A(1, NB+1),
|
||||||
$ LDA, B(NB+1, 1), LDB)
|
$ LDA, B(NB+1, 1), LDB)
|
||||||
|
|
|
@ -69,7 +69,7 @@
|
||||||
*> \param[in] N
|
*> \param[in] N
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> N is INTEGER
|
*> N is INTEGER
|
||||||
*> The order of the matrix H. N .GE. 0.
|
*> The order of the matrix H. N >= 0.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] ILO
|
*> \param[in] ILO
|
||||||
|
@ -86,7 +86,7 @@
|
||||||
*> set by a previous call to CGEBAL, and then passed to ZGEHRD
|
*> set by a previous call to CGEBAL, and then passed to ZGEHRD
|
||||||
*> when the matrix output by CGEBAL is reduced to Hessenberg
|
*> when the matrix output by CGEBAL is reduced to Hessenberg
|
||||||
*> form. Otherwise ILO and IHI should be set to 1 and N
|
*> form. Otherwise ILO and IHI should be set to 1 and N
|
||||||
*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
|
*> respectively. If N > 0, then 1 <= ILO <= IHI <= N.
|
||||||
*> If N = 0, then ILO = 1 and IHI = 0.
|
*> If N = 0, then ILO = 1 and IHI = 0.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
@ -98,17 +98,17 @@
|
||||||
*> triangular matrix T from the Schur decomposition (the
|
*> triangular matrix T from the Schur decomposition (the
|
||||||
*> Schur form). If INFO = 0 and JOB = 'E', the contents of
|
*> Schur form). If INFO = 0 and JOB = 'E', the contents of
|
||||||
*> H are unspecified on exit. (The output value of H when
|
*> H are unspecified on exit. (The output value of H when
|
||||||
*> INFO.GT.0 is given under the description of INFO below.)
|
*> INFO > 0 is given under the description of INFO below.)
|
||||||
*>
|
*>
|
||||||
*> Unlike earlier versions of CHSEQR, this subroutine may
|
*> Unlike earlier versions of CHSEQR, this subroutine may
|
||||||
*> explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
|
*> explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1
|
||||||
*> or j = IHI+1, IHI+2, ... N.
|
*> or j = IHI+1, IHI+2, ... N.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] LDH
|
*> \param[in] LDH
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> LDH is INTEGER
|
*> LDH is INTEGER
|
||||||
*> The leading dimension of the array H. LDH .GE. max(1,N).
|
*> The leading dimension of the array H. LDH >= max(1,N).
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[out] W
|
*> \param[out] W
|
||||||
|
@ -131,7 +131,7 @@
|
||||||
*> if INFO = 0, Z contains Q*Z.
|
*> if INFO = 0, Z contains Q*Z.
|
||||||
*> Normally Q is the unitary matrix generated by CUNGHR
|
*> Normally Q is the unitary matrix generated by CUNGHR
|
||||||
*> after the call to CGEHRD which formed the Hessenberg matrix
|
*> after the call to CGEHRD which formed the Hessenberg matrix
|
||||||
*> H. (The output value of Z when INFO.GT.0 is given under
|
*> H. (The output value of Z when INFO > 0 is given under
|
||||||
*> the description of INFO below.)
|
*> the description of INFO below.)
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
|
@ -139,7 +139,7 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> LDZ is INTEGER
|
*> LDZ is INTEGER
|
||||||
*> The leading dimension of the array Z. if COMPZ = 'I' or
|
*> The leading dimension of the array Z. if COMPZ = 'I' or
|
||||||
*> COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1.
|
*> COMPZ = 'V', then LDZ >= MAX(1,N). Otherwise, LDZ >= 1.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[out] WORK
|
*> \param[out] WORK
|
||||||
|
@ -152,7 +152,7 @@
|
||||||
*> \param[in] LWORK
|
*> \param[in] LWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> LWORK is INTEGER
|
*> LWORK is INTEGER
|
||||||
*> The dimension of the array WORK. LWORK .GE. max(1,N)
|
*> The dimension of the array WORK. LWORK >= max(1,N)
|
||||||
*> is sufficient and delivers very good and sometimes
|
*> is sufficient and delivers very good and sometimes
|
||||||
*> optimal performance. However, LWORK as large as 11*N
|
*> optimal performance. However, LWORK as large as 11*N
|
||||||
*> may be required for optimal performance. A workspace
|
*> may be required for optimal performance. A workspace
|
||||||
|
@ -170,21 +170,21 @@
|
||||||
*> \param[out] INFO
|
*> \param[out] INFO
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> INFO is INTEGER
|
*> INFO is INTEGER
|
||||||
*> = 0: successful exit
|
*> = 0: successful exit
|
||||||
*> .LT. 0: if INFO = -i, the i-th argument had an illegal
|
*> < 0: if INFO = -i, the i-th argument had an illegal
|
||||||
*> value
|
*> value
|
||||||
*> .GT. 0: if INFO = i, CHSEQR failed to compute all of
|
*> > 0: if INFO = i, CHSEQR failed to compute all of
|
||||||
*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
|
*> the eigenvalues. Elements 1:ilo-1 and i+1:n of W
|
||||||
*> and WI contain those eigenvalues which have been
|
*> contain those eigenvalues which have been
|
||||||
*> successfully computed. (Failures are rare.)
|
*> successfully computed. (Failures are rare.)
|
||||||
*>
|
*>
|
||||||
*> If INFO .GT. 0 and JOB = 'E', then on exit, the
|
*> If INFO > 0 and JOB = 'E', then on exit, the
|
||||||
*> remaining unconverged eigenvalues are the eigen-
|
*> remaining unconverged eigenvalues are the eigen-
|
||||||
*> values of the upper Hessenberg matrix rows and
|
*> values of the upper Hessenberg matrix rows and
|
||||||
*> columns ILO through INFO of the final, output
|
*> columns ILO through INFO of the final, output
|
||||||
*> value of H.
|
*> value of H.
|
||||||
*>
|
*>
|
||||||
*> If INFO .GT. 0 and JOB = 'S', then on exit
|
*> If INFO > 0 and JOB = 'S', then on exit
|
||||||
*>
|
*>
|
||||||
*> (*) (initial value of H)*U = U*(final value of H)
|
*> (*) (initial value of H)*U = U*(final value of H)
|
||||||
*>
|
*>
|
||||||
|
@ -192,19 +192,19 @@
|
||||||
*> value of H is upper Hessenberg and triangular in
|
*> value of H is upper Hessenberg and triangular in
|
||||||
*> rows and columns INFO+1 through IHI.
|
*> rows and columns INFO+1 through IHI.
|
||||||
*>
|
*>
|
||||||
*> If INFO .GT. 0 and COMPZ = 'V', then on exit
|
*> If INFO > 0 and COMPZ = 'V', then on exit
|
||||||
*>
|
*>
|
||||||
*> (final value of Z) = (initial value of Z)*U
|
*> (final value of Z) = (initial value of Z)*U
|
||||||
*>
|
*>
|
||||||
*> where U is the unitary matrix in (*) (regard-
|
*> where U is the unitary matrix in (*) (regard-
|
||||||
*> less of the value of JOB.)
|
*> less of the value of JOB.)
|
||||||
*>
|
*>
|
||||||
*> If INFO .GT. 0 and COMPZ = 'I', then on exit
|
*> If INFO > 0 and COMPZ = 'I', then on exit
|
||||||
*> (final value of Z) = U
|
*> (final value of Z) = U
|
||||||
*> where U is the unitary matrix in (*) (regard-
|
*> where U is the unitary matrix in (*) (regard-
|
||||||
*> less of the value of JOB.)
|
*> less of the value of JOB.)
|
||||||
*>
|
*>
|
||||||
*> If INFO .GT. 0 and COMPZ = 'N', then Z is not
|
*> If INFO > 0 and COMPZ = 'N', then Z is not
|
||||||
*> accessed.
|
*> accessed.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*
|
*
|
||||||
|
@ -244,8 +244,8 @@
|
||||||
*> This depends on ILO, IHI and NS. NS is the
|
*> This depends on ILO, IHI and NS. NS is the
|
||||||
*> number of simultaneous shifts returned
|
*> number of simultaneous shifts returned
|
||||||
*> by ILAENV(ISPEC=15). (See ISPEC=15 below.)
|
*> by ILAENV(ISPEC=15). (See ISPEC=15 below.)
|
||||||
*> The default for (IHI-ILO+1).LE.500 is NS.
|
*> The default for (IHI-ILO+1) <= 500 is NS.
|
||||||
*> The default for (IHI-ILO+1).GT.500 is 3*NS/2.
|
*> The default for (IHI-ILO+1) > 500 is 3*NS/2.
|
||||||
*>
|
*>
|
||||||
*> ISPEC=14: Nibble crossover point. (See IPARMQ for
|
*> ISPEC=14: Nibble crossover point. (See IPARMQ for
|
||||||
*> details.) Default: 14% of deflation window
|
*> details.) Default: 14% of deflation window
|
||||||
|
@ -323,8 +323,8 @@
|
||||||
PARAMETER ( NTINY = 11 )
|
PARAMETER ( NTINY = 11 )
|
||||||
*
|
*
|
||||||
* ==== NL allocates some local workspace to help small matrices
|
* ==== NL allocates some local workspace to help small matrices
|
||||||
* . through a rare CLAHQR failure. NL .GT. NTINY = 11 is
|
* . through a rare CLAHQR failure. NL > NTINY = 11 is
|
||||||
* . required and NL .LE. NMIN = ILAENV(ISPEC=12,...) is recom-
|
* . required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom-
|
||||||
* . mended. (The default value of NMIN is 75.) Using NL = 49
|
* . mended. (The default value of NMIN is 75.) Using NL = 49
|
||||||
* . allows up to six simultaneous shifts and a 16-by-16
|
* . allows up to six simultaneous shifts and a 16-by-16
|
||||||
* . deflation window. ====
|
* . deflation window. ====
|
||||||
|
|
|
@ -132,13 +132,13 @@
|
||||||
*> i > 0: The ith argument is invalid.
|
*> i > 0: The ith argument is invalid.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is COMPLEX array, dimension (2*N).
|
*> WORK is COMPLEX array, dimension (2*N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] RWORK
|
*> \param[out] RWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> RWORK is REAL array, dimension (N).
|
*> RWORK is REAL array, dimension (N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
|
|
|
@ -125,13 +125,13 @@
|
||||||
*> i > 0: The ith argument is invalid.
|
*> i > 0: The ith argument is invalid.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is COMPLEX array, dimension (2*N).
|
*> WORK is COMPLEX array, dimension (2*N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] RWORK
|
*> \param[out] RWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> RWORK is REAL array, dimension (N).
|
*> RWORK is REAL array, dimension (N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
|
|
|
@ -65,19 +65,19 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> PREC_TYPE is INTEGER
|
*> PREC_TYPE is INTEGER
|
||||||
*> Specifies the intermediate precision to be used in refinement.
|
*> Specifies the intermediate precision to be used in refinement.
|
||||||
*> The value is defined by ILAPREC(P) where P is a CHARACTER and
|
*> The value is defined by ILAPREC(P) where P is a CHARACTER and P
|
||||||
*> P = 'S': Single
|
*> = 'S': Single
|
||||||
*> = 'D': Double
|
*> = 'D': Double
|
||||||
*> = 'I': Indigenous
|
*> = 'I': Indigenous
|
||||||
*> = 'X', 'E': Extra
|
*> = 'X' or 'E': Extra
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] TRANS_TYPE
|
*> \param[in] TRANS_TYPE
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> TRANS_TYPE is INTEGER
|
*> TRANS_TYPE is INTEGER
|
||||||
*> Specifies the transposition operation on A.
|
*> Specifies the transposition operation on A.
|
||||||
*> The value is defined by ILATRANS(T) where T is a CHARACTER and
|
*> The value is defined by ILATRANS(T) where T is a CHARACTER and T
|
||||||
*> T = 'N': No transpose
|
*> = 'N': No transpose
|
||||||
*> = 'T': Transpose
|
*> = 'T': Transpose
|
||||||
*> = 'C': Conjugate transpose
|
*> = 'C': Conjugate transpose
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
@ -269,7 +269,7 @@
|
||||||
*> information as described below. There currently are up to three
|
*> information as described below. There currently are up to three
|
||||||
*> pieces of information returned for each right-hand side. If
|
*> pieces of information returned for each right-hand side. If
|
||||||
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
||||||
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
|
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
|
||||||
*> the first (:,N_ERR_BNDS) entries are returned.
|
*> the first (:,N_ERR_BNDS) entries are returned.
|
||||||
*>
|
*>
|
||||||
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
||||||
|
|
|
@ -21,7 +21,7 @@
|
||||||
* REAL FUNCTION CLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV, C,
|
* REAL FUNCTION CLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV, C,
|
||||||
* CAPPLY, INFO, WORK, RWORK )
|
* CAPPLY, INFO, WORK, RWORK )
|
||||||
*
|
*
|
||||||
* .. Scalar Aguments ..
|
* .. Scalar Arguments ..
|
||||||
* CHARACTER TRANS
|
* CHARACTER TRANS
|
||||||
* LOGICAL CAPPLY
|
* LOGICAL CAPPLY
|
||||||
* INTEGER N, LDA, LDAF, INFO
|
* INTEGER N, LDA, LDAF, INFO
|
||||||
|
@ -114,13 +114,13 @@
|
||||||
*> i > 0: The ith argument is invalid.
|
*> i > 0: The ith argument is invalid.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is COMPLEX array, dimension (2*N).
|
*> WORK is COMPLEX array, dimension (2*N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] RWORK
|
*> \param[out] RWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> RWORK is REAL array, dimension (N).
|
*> RWORK is REAL array, dimension (N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
|
@ -147,7 +147,7 @@
|
||||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||||
* December 2016
|
* December 2016
|
||||||
*
|
*
|
||||||
* .. Scalar Aguments ..
|
* .. Scalar Arguments ..
|
||||||
CHARACTER TRANS
|
CHARACTER TRANS
|
||||||
LOGICAL CAPPLY
|
LOGICAL CAPPLY
|
||||||
INTEGER N, LDA, LDAF, INFO
|
INTEGER N, LDA, LDAF, INFO
|
||||||
|
|
|
@ -107,13 +107,13 @@
|
||||||
*> i > 0: The ith argument is invalid.
|
*> i > 0: The ith argument is invalid.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is COMPLEX array, dimension (2*N).
|
*> WORK is COMPLEX array, dimension (2*N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] RWORK
|
*> \param[out] RWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> RWORK is REAL array, dimension (N).
|
*> RWORK is REAL array, dimension (N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
|
|
|
@ -65,19 +65,19 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> PREC_TYPE is INTEGER
|
*> PREC_TYPE is INTEGER
|
||||||
*> Specifies the intermediate precision to be used in refinement.
|
*> Specifies the intermediate precision to be used in refinement.
|
||||||
*> The value is defined by ILAPREC(P) where P is a CHARACTER and
|
*> The value is defined by ILAPREC(P) where P is a CHARACTER and P
|
||||||
*> P = 'S': Single
|
*> = 'S': Single
|
||||||
*> = 'D': Double
|
*> = 'D': Double
|
||||||
*> = 'I': Indigenous
|
*> = 'I': Indigenous
|
||||||
*> = 'X', 'E': Extra
|
*> = 'X' or 'E': Extra
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] TRANS_TYPE
|
*> \param[in] TRANS_TYPE
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> TRANS_TYPE is INTEGER
|
*> TRANS_TYPE is INTEGER
|
||||||
*> Specifies the transposition operation on A.
|
*> Specifies the transposition operation on A.
|
||||||
*> The value is defined by ILATRANS(T) where T is a CHARACTER and
|
*> The value is defined by ILATRANS(T) where T is a CHARACTER and T
|
||||||
*> T = 'N': No transpose
|
*> = 'N': No transpose
|
||||||
*> = 'T': Transpose
|
*> = 'T': Transpose
|
||||||
*> = 'C': Conjugate transpose
|
*> = 'C': Conjugate transpose
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
@ -257,7 +257,7 @@
|
||||||
*> information as described below. There currently are up to three
|
*> information as described below. There currently are up to three
|
||||||
*> pieces of information returned for each right-hand side. If
|
*> pieces of information returned for each right-hand side. If
|
||||||
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
||||||
*> ERRS_C is not accessed. If N_ERR_BNDS .LT. 3, then at most
|
*> ERRS_C is not accessed. If N_ERR_BNDS < 3, then at most
|
||||||
*> the first (:,N_ERR_BNDS) entries are returned.
|
*> the first (:,N_ERR_BNDS) entries are returned.
|
||||||
*>
|
*>
|
||||||
*> The first index in ERRS_C(i,:) corresponds to the ith
|
*> The first index in ERRS_C(i,:) corresponds to the ith
|
||||||
|
|
|
@ -110,13 +110,13 @@
|
||||||
*> i > 0: The ith argument is invalid.
|
*> i > 0: The ith argument is invalid.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is COMPLEX array, dimension (2*N).
|
*> WORK is COMPLEX array, dimension (2*N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] RWORK
|
*> \param[out] RWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> RWORK is REAL array, dimension (N).
|
*> RWORK is REAL array, dimension (N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
|
|
|
@ -103,13 +103,13 @@
|
||||||
*> i > 0: The ith argument is invalid.
|
*> i > 0: The ith argument is invalid.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is COMPLEX array, dimension (2*N).
|
*> WORK is COMPLEX array, dimension (2*N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] RWORK
|
*> \param[out] RWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> RWORK is REAL array, dimension (N).
|
*> RWORK is REAL array, dimension (N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
|
|
|
@ -66,11 +66,11 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> PREC_TYPE is INTEGER
|
*> PREC_TYPE is INTEGER
|
||||||
*> Specifies the intermediate precision to be used in refinement.
|
*> Specifies the intermediate precision to be used in refinement.
|
||||||
*> The value is defined by ILAPREC(P) where P is a CHARACTER and
|
*> The value is defined by ILAPREC(P) where P is a CHARACTER and P
|
||||||
*> P = 'S': Single
|
*> = 'S': Single
|
||||||
*> = 'D': Double
|
*> = 'D': Double
|
||||||
*> = 'I': Indigenous
|
*> = 'I': Indigenous
|
||||||
*> = 'X', 'E': Extra
|
*> = 'X' or 'E': Extra
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] UPLO
|
*> \param[in] UPLO
|
||||||
|
@ -254,7 +254,7 @@
|
||||||
*> information as described below. There currently are up to three
|
*> information as described below. There currently are up to three
|
||||||
*> pieces of information returned for each right-hand side. If
|
*> pieces of information returned for each right-hand side. If
|
||||||
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
||||||
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
|
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
|
||||||
*> the first (:,N_ERR_BNDS) entries are returned.
|
*> the first (:,N_ERR_BNDS) entries are returned.
|
||||||
*>
|
*>
|
||||||
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
||||||
|
|
|
@ -102,13 +102,13 @@
|
||||||
*> i > 0: The ith argument is invalid.
|
*> i > 0: The ith argument is invalid.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is COMPLEX array, dimension (2*N).
|
*> WORK is COMPLEX array, dimension (2*N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] RWORK
|
*> \param[out] RWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> RWORK is REAL array, dimension (N).
|
*> RWORK is REAL array, dimension (N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
|
|
|
@ -95,13 +95,13 @@
|
||||||
*> i > 0: The ith argument is invalid.
|
*> i > 0: The ith argument is invalid.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is COMPLEX array, dimension (2*N).
|
*> WORK is COMPLEX array, dimension (2*N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] RWORK
|
*> \param[out] RWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> RWORK is REAL array, dimension (N).
|
*> RWORK is REAL array, dimension (N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
|
|
|
@ -65,11 +65,11 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> PREC_TYPE is INTEGER
|
*> PREC_TYPE is INTEGER
|
||||||
*> Specifies the intermediate precision to be used in refinement.
|
*> Specifies the intermediate precision to be used in refinement.
|
||||||
*> The value is defined by ILAPREC(P) where P is a CHARACTER and
|
*> The value is defined by ILAPREC(P) where P is a CHARACTER and P
|
||||||
*> P = 'S': Single
|
*> = 'S': Single
|
||||||
*> = 'D': Double
|
*> = 'D': Double
|
||||||
*> = 'I': Indigenous
|
*> = 'I': Indigenous
|
||||||
*> = 'X', 'E': Extra
|
*> = 'X' or 'E': Extra
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] UPLO
|
*> \param[in] UPLO
|
||||||
|
@ -246,7 +246,7 @@
|
||||||
*> information as described below. There currently are up to three
|
*> information as described below. There currently are up to three
|
||||||
*> pieces of information returned for each right-hand side. If
|
*> pieces of information returned for each right-hand side. If
|
||||||
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
||||||
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
|
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
|
||||||
*> the first (:,N_ERR_BNDS) entries are returned.
|
*> the first (:,N_ERR_BNDS) entries are returned.
|
||||||
*>
|
*>
|
||||||
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
||||||
|
|
|
@ -85,7 +85,7 @@
|
||||||
*> The leading dimension of the array AF. LDAF >= max(1,N).
|
*> The leading dimension of the array AF. LDAF >= max(1,N).
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is REAL array, dimension (2*N)
|
*> WORK is REAL array, dimension (2*N)
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
|
|
@ -110,13 +110,13 @@
|
||||||
*> i > 0: The ith argument is invalid.
|
*> i > 0: The ith argument is invalid.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is COMPLEX array, dimension (2*N).
|
*> WORK is COMPLEX array, dimension (2*N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] RWORK
|
*> \param[out] RWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> RWORK is REAL array, dimension (N).
|
*> RWORK is REAL array, dimension (N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
|
|
|
@ -103,13 +103,13 @@
|
||||||
*> i > 0: The ith argument is invalid.
|
*> i > 0: The ith argument is invalid.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is COMPLEX array, dimension (2*N).
|
*> WORK is COMPLEX array, dimension (2*N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] RWORK
|
*> \param[out] RWORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> RWORK is REAL array, dimension (N).
|
*> RWORK is REAL array, dimension (N).
|
||||||
*> Workspace.
|
*> Workspace.
|
||||||
|
|
|
@ -66,11 +66,11 @@
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> PREC_TYPE is INTEGER
|
*> PREC_TYPE is INTEGER
|
||||||
*> Specifies the intermediate precision to be used in refinement.
|
*> Specifies the intermediate precision to be used in refinement.
|
||||||
*> The value is defined by ILAPREC(P) where P is a CHARACTER and
|
*> The value is defined by ILAPREC(P) where P is a CHARACTER and P
|
||||||
*> P = 'S': Single
|
*> = 'S': Single
|
||||||
*> = 'D': Double
|
*> = 'D': Double
|
||||||
*> = 'I': Indigenous
|
*> = 'I': Indigenous
|
||||||
*> = 'X', 'E': Extra
|
*> = 'X' or 'E': Extra
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] UPLO
|
*> \param[in] UPLO
|
||||||
|
@ -254,7 +254,7 @@
|
||||||
*> information as described below. There currently are up to three
|
*> information as described below. There currently are up to three
|
||||||
*> pieces of information returned for each right-hand side. If
|
*> pieces of information returned for each right-hand side. If
|
||||||
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
||||||
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
|
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
|
||||||
*> the first (:,N_ERR_BNDS) entries are returned.
|
*> the first (:,N_ERR_BNDS) entries are returned.
|
||||||
*>
|
*>
|
||||||
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
||||||
|
|
|
@ -102,7 +102,7 @@
|
||||||
*> as determined by CSYTRF.
|
*> as determined by CSYTRF.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*>
|
*>
|
||||||
*> \param[in] WORK
|
*> \param[out] WORK
|
||||||
*> \verbatim
|
*> \verbatim
|
||||||
*> WORK is REAL array, dimension (2*N)
|
*> WORK is REAL array, dimension (2*N)
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
|
|
|
@ -36,7 +36,7 @@
|
||||||
*> CLA_WWADDW adds a vector W into a doubled-single vector (X, Y).
|
*> CLA_WWADDW adds a vector W into a doubled-single vector (X, Y).
|
||||||
*>
|
*>
|
||||||
*> This works for all extant IBM's hex and binary floating point
|
*> This works for all extant IBM's hex and binary floating point
|
||||||
*> arithmetics, but not for decimal.
|
*> arithmetic, but not for decimal.
|
||||||
*> \endverbatim
|
*> \endverbatim
|
||||||
*
|
*
|
||||||
* Arguments:
|
* Arguments:
|
||||||
|
|
Loading…
Reference in New Issue