diff --git a/lapack-netlib/SRC/cgesvj.f b/lapack-netlib/SRC/cgesvj.f
index 2a5ced225..81e40efef 100644
--- a/lapack-netlib/SRC/cgesvj.f
+++ b/lapack-netlib/SRC/cgesvj.f
@@ -89,12 +89,12 @@
*> Specifies whether to compute the right singular vectors, that
*> is, the matrix V:
*> = 'V' or 'J': the matrix V is computed and returned in the array V
-*> = 'A' : the Jacobi rotations are applied to the MV-by-N
+*> = 'A': the Jacobi rotations are applied to the MV-by-N
*> array V. In other words, the right singular vector
*> matrix V is not computed explicitly; instead it is
*> applied to an MV-by-N matrix initially stored in the
*> first MV rows of V.
-*> = 'N' : the matrix V is not computed and the array V is not
+*> = 'N': the matrix V is not computed and the array V is not
*> referenced
*> \endverbatim
*>
@@ -116,8 +116,8 @@
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit,
-*> If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C':
-*> If INFO .EQ. 0 :
+*> If JOBU = 'U' .OR. JOBU = 'C':
+*> If INFO = 0 :
*> RANKA orthonormal columns of U are returned in the
*> leading RANKA columns of the array A. Here RANKA <= N
*> is the number of computed singular values of A that are
@@ -127,9 +127,9 @@
*> in the array RWORK as RANKA=NINT(RWORK(2)). Also see the
*> descriptions of SVA and RWORK. The computed columns of U
*> are mutually numerically orthogonal up to approximately
-*> TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'),
+*> TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU = 'C'),
*> see the description of JOBU.
-*> If INFO .GT. 0,
+*> If INFO > 0,
*> the procedure CGESVJ did not converge in the given number
*> of iterations (sweeps). In that case, the computed
*> columns of U may not be orthogonal up to TOL. The output
@@ -137,8 +137,8 @@
*> values in SVA(1:N)) and V is still a decomposition of the
*> input matrix A in the sense that the residual
*> || A - SCALE * U * SIGMA * V^* ||_2 / ||A||_2 is small.
-*> If JOBU .EQ. 'N':
-*> If INFO .EQ. 0 :
+*> If JOBU = 'N':
+*> If INFO = 0 :
*> Note that the left singular vectors are 'for free' in the
*> one-sided Jacobi SVD algorithm. However, if only the
*> singular values are needed, the level of numerical
@@ -147,7 +147,7 @@
*> numerically orthogonal up to approximately M*EPS. Thus,
*> on exit, A contains the columns of U scaled with the
*> corresponding singular values.
-*> If INFO .GT. 0 :
+*> If INFO > 0 :
*> the procedure CGESVJ did not converge in the given number
*> of iterations (sweeps).
*> \endverbatim
@@ -162,9 +162,9 @@
*> \verbatim
*> SVA is REAL array, dimension (N)
*> On exit,
-*> If INFO .EQ. 0 :
+*> If INFO = 0 :
*> depending on the value SCALE = RWORK(1), we have:
-*> If SCALE .EQ. ONE:
+*> If SCALE = ONE:
*> SVA(1:N) contains the computed singular values of A.
*> During the computation SVA contains the Euclidean column
*> norms of the iterated matrices in the array A.
@@ -173,7 +173,7 @@
*> factored representation is due to the fact that some of the
*> singular values of A might underflow or overflow.
*>
-*> If INFO .GT. 0 :
+*> If INFO > 0 :
*> the procedure CGESVJ did not converge in the given number of
*> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
*> \endverbatim
@@ -181,7 +181,7 @@
*> \param[in] MV
*> \verbatim
*> MV is INTEGER
-*> If JOBV .EQ. 'A', then the product of Jacobi rotations in CGESVJ
+*> If JOBV = 'A', then the product of Jacobi rotations in CGESVJ
*> is applied to the first MV rows of V. See the description of JOBV.
*> \endverbatim
*>
@@ -199,16 +199,16 @@
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
-*> The leading dimension of the array V, LDV .GE. 1.
-*> If JOBV .EQ. 'V', then LDV .GE. max(1,N).
-*> If JOBV .EQ. 'A', then LDV .GE. max(1,MV) .
+*> The leading dimension of the array V, LDV >= 1.
+*> If JOBV = 'V', then LDV >= max(1,N).
+*> If JOBV = 'A', then LDV >= max(1,MV) .
*> \endverbatim
*>
*> \param[in,out] CWORK
*> \verbatim
*> CWORK is COMPLEX array, dimension (max(1,LWORK))
*> Used as workspace.
-*> If on entry LWORK .EQ. -1, then a workspace query is assumed and
+*> If on entry LWORK = -1, then a workspace query is assumed and
*> no computation is done; CWORK(1) is set to the minial (and optimal)
*> length of CWORK.
*> \endverbatim
@@ -223,7 +223,7 @@
*> \verbatim
*> RWORK is REAL array, dimension (max(6,LRWORK))
*> On entry,
-*> If JOBU .EQ. 'C' :
+*> If JOBU = 'C' :
*> RWORK(1) = CTOL, where CTOL defines the threshold for convergence.
*> The process stops if all columns of A are mutually
*> orthogonal up to CTOL*EPS, EPS=SLAMCH('E').
@@ -243,11 +243,11 @@
*> RWORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep.
*> This is useful information in cases when CGESVJ did
*> not converge, as it can be used to estimate whether
-*> the output is stil useful and for post festum analysis.
+*> the output is still useful and for post festum analysis.
*> RWORK(6) = the largest absolute value over all sines of the
*> Jacobi rotation angles in the last sweep. It can be
*> useful for a post festum analysis.
-*> If on entry LRWORK .EQ. -1, then a workspace query is assumed and
+*> If on entry LRWORK = -1, then a workspace query is assumed and
*> no computation is done; RWORK(1) is set to the minial (and optimal)
*> length of RWORK.
*> \endverbatim
@@ -261,9 +261,9 @@
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0 : successful exit.
-*> < 0 : if INFO = -i, then the i-th argument had an illegal value
-*> > 0 : CGESVJ did not converge in the maximal allowed number
+*> = 0: successful exit.
+*> < 0: if INFO = -i, then the i-th argument had an illegal value
+*> > 0: CGESVJ did not converge in the maximal allowed number
*> (NSWEEP=30) of sweeps. The output may still be useful.
*> See the description of RWORK.
*> \endverbatim
diff --git a/lapack-netlib/SRC/cgesvxx.f b/lapack-netlib/SRC/cgesvxx.f
index 30d1beb33..383e4d011 100644
--- a/lapack-netlib/SRC/cgesvxx.f
+++ b/lapack-netlib/SRC/cgesvxx.f
@@ -411,7 +411,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -447,14 +447,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is REAL array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -462,9 +462,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the double-precision refinement algorithm,
+*> = 1.0: Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
diff --git a/lapack-netlib/SRC/cgetsls.f b/lapack-netlib/SRC/cgetsls.f
index e7c5d8120..3d783be66 100644
--- a/lapack-netlib/SRC/cgetsls.f
+++ b/lapack-netlib/SRC/cgetsls.f
@@ -1,3 +1,5 @@
+*> \brief \b CGETSLS
+*
* Definition:
* ===========
*
diff --git a/lapack-netlib/SRC/cggesx.f b/lapack-netlib/SRC/cggesx.f
index 74169ff80..acc4eda36 100644
--- a/lapack-netlib/SRC/cggesx.f
+++ b/lapack-netlib/SRC/cggesx.f
@@ -120,10 +120,10 @@
*> \verbatim
*> SENSE is CHARACTER*1
*> Determines which reciprocal condition numbers are computed.
-*> = 'N' : None are computed;
-*> = 'E' : Computed for average of selected eigenvalues only;
-*> = 'V' : Computed for selected deflating subspaces only;
-*> = 'B' : Computed for both.
+*> = 'N': None are computed;
+*> = 'E': Computed for average of selected eigenvalues only;
+*> = 'V': Computed for selected deflating subspaces only;
+*> = 'B': Computed for both.
*> If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
*> \endverbatim
*>
diff --git a/lapack-netlib/SRC/cgsvj0.f b/lapack-netlib/SRC/cgsvj0.f
index 80e67a06e..810df3367 100644
--- a/lapack-netlib/SRC/cgsvj0.f
+++ b/lapack-netlib/SRC/cgsvj0.f
@@ -117,7 +117,7 @@
*> \param[in] MV
*> \verbatim
*> MV is INTEGER
-*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
+*> If JOBV = 'A', then MV rows of V are post-multipled by a
*> sequence of Jacobi rotations.
*> If JOBV = 'N', then MV is not referenced.
*> \endverbatim
@@ -125,9 +125,9 @@
*> \param[in,out] V
*> \verbatim
*> V is COMPLEX array, dimension (LDV,N)
-*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a
+*> If JOBV = 'V' then N rows of V are post-multipled by a
*> sequence of Jacobi rotations.
-*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
+*> If JOBV = 'A' then MV rows of V are post-multipled by a
*> sequence of Jacobi rotations.
*> If JOBV = 'N', then V is not referenced.
*> \endverbatim
@@ -136,8 +136,8 @@
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V, LDV >= 1.
-*> If JOBV = 'V', LDV .GE. N.
-*> If JOBV = 'A', LDV .GE. MV.
+*> If JOBV = 'V', LDV >= N.
+*> If JOBV = 'A', LDV >= MV.
*> \endverbatim
*>
*> \param[in] EPS
@@ -157,7 +157,7 @@
*> TOL is REAL
*> TOL is the threshold for Jacobi rotations. For a pair
*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
-*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
+*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.
*> \endverbatim
*>
*> \param[in] NSWEEP
@@ -175,14 +175,14 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
-*> LWORK is the dimension of WORK. LWORK .GE. M.
+*> LWORK is the dimension of WORK. LWORK >= M.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0 : successful exit.
-*> < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> = 0: successful exit.
+*> < 0: if INFO = -i, then the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
diff --git a/lapack-netlib/SRC/cgsvj1.f b/lapack-netlib/SRC/cgsvj1.f
index bebcd5c45..06b417cf2 100644
--- a/lapack-netlib/SRC/cgsvj1.f
+++ b/lapack-netlib/SRC/cgsvj1.f
@@ -61,7 +61,7 @@
*> In terms of the columns of A, the first N1 columns are rotated 'against'
*> the remaining N-N1 columns, trying to increase the angle between the
*> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
-*> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter.
+*> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parameter.
*> The number of sweeps is given in NSWEEP and the orthogonality threshold
*> is given in TOL.
*> \endverbatim
@@ -147,7 +147,7 @@
*> \param[in] MV
*> \verbatim
*> MV is INTEGER
-*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
+*> If JOBV = 'A', then MV rows of V are post-multipled by a
*> sequence of Jacobi rotations.
*> If JOBV = 'N', then MV is not referenced.
*> \endverbatim
@@ -155,9 +155,9 @@
*> \param[in,out] V
*> \verbatim
*> V is COMPLEX array, dimension (LDV,N)
-*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a
+*> If JOBV = 'V' then N rows of V are post-multipled by a
*> sequence of Jacobi rotations.
-*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
+*> If JOBV = 'A' then MV rows of V are post-multipled by a
*> sequence of Jacobi rotations.
*> If JOBV = 'N', then V is not referenced.
*> \endverbatim
@@ -166,8 +166,8 @@
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V, LDV >= 1.
-*> If JOBV = 'V', LDV .GE. N.
-*> If JOBV = 'A', LDV .GE. MV.
+*> If JOBV = 'V', LDV >= N.
+*> If JOBV = 'A', LDV >= MV.
*> \endverbatim
*>
*> \param[in] EPS
@@ -187,7 +187,7 @@
*> TOL is REAL
*> TOL is the threshold for Jacobi rotations. For a pair
*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
-*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
+*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.
*> \endverbatim
*>
*> \param[in] NSWEEP
@@ -205,14 +205,14 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
-*> LWORK is the dimension of WORK. LWORK .GE. M.
+*> LWORK is the dimension of WORK. LWORK >= M.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0 : successful exit.
-*> < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> = 0: successful exit.
+*> < 0: if INFO = -i, then the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
diff --git a/lapack-netlib/SRC/chb2st_kernels.f b/lapack-netlib/SRC/chb2st_kernels.f
index 25c9ab717..01ea217bb 100644
--- a/lapack-netlib/SRC/chb2st_kernels.f
+++ b/lapack-netlib/SRC/chb2st_kernels.f
@@ -1,26 +1,26 @@
*> \brief \b CHB2ST_KERNELS
*
* @generated from zhb2st_kernels.f, fortran z -> c, Wed Dec 7 08:22:40 2016
-*
+*
* =========== DOCUMENTATION ===========
*
-* Online html documentation available at
-* http://www.netlib.org/lapack/explore-html/
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
-*> Download CHB2ST_KERNELS + dependencies
-*>
-*> [TGZ]
-*>
-*> [ZIP]
-*>
+*> Download CHB2ST_KERNELS + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
*> [TXT]
-*> \endhtmlonly
+*> \endhtmlonly
*
* Definition:
* ===========
*
-* SUBROUTINE CHB2ST_KERNELS( UPLO, WANTZ, TTYPE,
+* SUBROUTINE CHB2ST_KERNELS( UPLO, WANTZ, TTYPE,
* ST, ED, SWEEP, N, NB, IB,
* A, LDA, V, TAU, LDVT, WORK)
*
@@ -32,9 +32,9 @@
* INTEGER TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
* ..
* .. Array Arguments ..
-* COMPLEX A( LDA, * ), V( * ),
+* COMPLEX A( LDA, * ), V( * ),
* TAU( * ), WORK( * )
-*
+*
*> \par Purpose:
* =============
*>
@@ -124,7 +124,7 @@
*> LDVT is INTEGER.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array. Workspace of size nb.
*> \endverbatim
@@ -147,7 +147,7 @@
*> http://doi.acm.org/10.1145/2063384.2063394
*>
*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
-*> An improved parallel singular value algorithm and its implementation
+*> An improved parallel singular value algorithm and its implementation
*> for multicore hardware, In Proceedings of 2013 International Conference
*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
*> Denver, Colorado, USA, 2013.
@@ -155,16 +155,16 @@
*> http://doi.acm.org/10.1145/2503210.2503292
*>
*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
-*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
+*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
*> calculations based on fine-grained memory aware tasks.
*> International Journal of High Performance Computing Applications.
*> Volume 28 Issue 2, Pages 196-209, May 2014.
-*> http://hpc.sagepub.com/content/28/2/196
+*> http://hpc.sagepub.com/content/28/2/196
*>
*> \endverbatim
*>
* =====================================================================
- SUBROUTINE CHB2ST_KERNELS( UPLO, WANTZ, TTYPE,
+ SUBROUTINE CHB2ST_KERNELS( UPLO, WANTZ, TTYPE,
$ ST, ED, SWEEP, N, NB, IB,
$ A, LDA, V, TAU, LDVT, WORK)
*
@@ -181,7 +181,7 @@
INTEGER TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
* ..
* .. Array Arguments ..
- COMPLEX A( LDA, * ), V( * ),
+ COMPLEX A( LDA, * ), V( * ),
$ TAU( * ), WORK( * )
* ..
*
@@ -195,8 +195,8 @@
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, J1, J2, LM, LN, VPOS, TAUPOS,
- $ DPOS, OFDPOS, AJETER
- COMPLEX CTMP
+ $ DPOS, OFDPOS, AJETER
+ COMPLEX CTMP
* ..
* .. External Subroutines ..
EXTERNAL CLARFG, CLARFX, CLARFY
@@ -209,7 +209,7 @@
* ..
* ..
* .. Executable Statements ..
-*
+*
AJETER = IB + LDVT
UPPER = LSAME( UPLO, 'U' )
@@ -240,10 +240,10 @@
V( VPOS ) = ONE
DO 10 I = 1, LM-1
V( VPOS+I ) = CONJG( A( OFDPOS-I, ST+I ) )
- A( OFDPOS-I, ST+I ) = ZERO
+ A( OFDPOS-I, ST+I ) = ZERO
10 CONTINUE
CTMP = CONJG( A( OFDPOS, ST ) )
- CALL CLARFG( LM, CTMP, V( VPOS+1 ), 1,
+ CALL CLARFG( LM, CTMP, V( VPOS+1 ), 1,
$ TAU( TAUPOS ) )
A( OFDPOS, ST ) = CTMP
*
@@ -281,14 +281,14 @@
*
V( VPOS ) = ONE
DO 30 I = 1, LM-1
- V( VPOS+I ) =
+ V( VPOS+I ) =
$ CONJG( A( DPOS-NB-I, J1+I ) )
A( DPOS-NB-I, J1+I ) = ZERO
30 CONTINUE
CTMP = CONJG( A( DPOS-NB, J1 ) )
CALL CLARFG( LM, CTMP, V( VPOS+1 ), 1, TAU( TAUPOS ) )
A( DPOS-NB, J1 ) = CTMP
-*
+*
CALL CLARFX( 'Right', LN-1, LM, V( VPOS ),
$ TAU( TAUPOS ),
$ A( DPOS-NB+1, J1 ), LDA-1, WORK)
@@ -296,9 +296,9 @@
ENDIF
*
* Lower case
-*
+*
ELSE
-*
+*
IF( WANTZ ) THEN
VPOS = MOD( SWEEP-1, 2 ) * N + ST
TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
@@ -313,9 +313,9 @@
V( VPOS ) = ONE
DO 20 I = 1, LM-1
V( VPOS+I ) = A( OFDPOS+I, ST-1 )
- A( OFDPOS+I, ST-1 ) = ZERO
+ A( OFDPOS+I, ST-1 ) = ZERO
20 CONTINUE
- CALL CLARFG( LM, A( OFDPOS, ST-1 ), V( VPOS+1 ), 1,
+ CALL CLARFG( LM, A( OFDPOS, ST-1 ), V( VPOS+1 ), 1,
$ TAU( TAUPOS ) )
*
LM = ED - ST + 1
@@ -342,7 +342,7 @@
LM = J2-J1+1
*
IF( LM.GT.0) THEN
- CALL CLARFX( 'Right', LM, LN, V( VPOS ),
+ CALL CLARFX( 'Right', LM, LN, V( VPOS ),
$ TAU( TAUPOS ), A( DPOS+NB, ST ),
$ LDA-1, WORK)
*
@@ -359,13 +359,13 @@
V( VPOS+I ) = A( DPOS+NB+I, ST )
A( DPOS+NB+I, ST ) = ZERO
40 CONTINUE
- CALL CLARFG( LM, A( DPOS+NB, ST ), V( VPOS+1 ), 1,
+ CALL CLARFG( LM, A( DPOS+NB, ST ), V( VPOS+1 ), 1,
$ TAU( TAUPOS ) )
*
- CALL CLARFX( 'Left', LM, LN-1, V( VPOS ),
+ CALL CLARFX( 'Left', LM, LN-1, V( VPOS ),
$ CONJG( TAU( TAUPOS ) ),
$ A( DPOS+NB-1, ST+1 ), LDA-1, WORK)
-
+
ENDIF
ENDIF
ENDIF
@@ -374,4 +374,4 @@
*
* END OF CHB2ST_KERNELS
*
- END
+ END
diff --git a/lapack-netlib/SRC/checon_3.f b/lapack-netlib/SRC/checon_3.f
index 6427dd594..5d9ed97e9 100644
--- a/lapack-netlib/SRC/checon_3.f
+++ b/lapack-netlib/SRC/checon_3.f
@@ -19,7 +19,7 @@
* ===========
*
* SUBROUTINE CHECON_3( UPLO, N, A, LDA, E, IPIV, ANORM, RCOND,
-* WORK, IWORK, INFO )
+* WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
@@ -27,7 +27,7 @@
* REAL ANORM, RCOND
* ..
* .. Array Arguments ..
-* INTEGER IPIV( * ), IWORK( * )
+* INTEGER IPIV( * )
* COMPLEX A( LDA, * ), E ( * ), WORK( * )
* ..
*
@@ -129,11 +129,6 @@
*> WORK is COMPLEX array, dimension (2*N)
*> \endverbatim
*>
-*> \param[out] IWORK
-*> \verbatim
-*> IWORK is INTEGER array, dimension (N)
-*> \endverbatim
-*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
diff --git a/lapack-netlib/SRC/cheevr.f b/lapack-netlib/SRC/cheevr.f
index 0b055baf6..c5deb1166 100644
--- a/lapack-netlib/SRC/cheevr.f
+++ b/lapack-netlib/SRC/cheevr.f
@@ -210,7 +210,7 @@
*> eigenvalues are computed to high relative accuracy when
*> possible in future releases. The current code does not
*> make any guarantees about high relative accuracy, but
-*> furutre releases will. See J. Barlow and J. Demmel,
+*> future releases will. See J. Barlow and J. Demmel,
*> "Computing Accurate Eigensystems of Scaled Diagonally
*> Dominant Matrices", LAPACK Working Note #7, for a discussion
*> of which matrices define their eigenvalues to high relative
diff --git a/lapack-netlib/SRC/cheevr_2stage.f b/lapack-netlib/SRC/cheevr_2stage.f
index 20a1cb3f3..1489a322e 100644
--- a/lapack-netlib/SRC/cheevr_2stage.f
+++ b/lapack-netlib/SRC/cheevr_2stage.f
@@ -217,7 +217,7 @@
*> eigenvalues are computed to high relative accuracy when
*> possible in future releases. The current code does not
*> make any guarantees about high relative accuracy, but
-*> furutre releases will. See J. Barlow and J. Demmel,
+*> future releases will. See J. Barlow and J. Demmel,
*> "Computing Accurate Eigensystems of Scaled Diagonally
*> Dominant Matrices", LAPACK Working Note #7, for a discussion
*> of which matrices define their eigenvalues to high relative
diff --git a/lapack-netlib/SRC/chegs2.f b/lapack-netlib/SRC/chegs2.f
index 68d2f6625..55a895fc3 100644
--- a/lapack-netlib/SRC/chegs2.f
+++ b/lapack-netlib/SRC/chegs2.f
@@ -97,6 +97,7 @@
*> B is COMPLEX array, dimension (LDB,N)
*> The triangular factor from the Cholesky factorization of B,
*> as returned by CPOTRF.
+*> B is modified by the routine but restored on exit.
*> \endverbatim
*>
*> \param[in] LDB
diff --git a/lapack-netlib/SRC/chegst.f b/lapack-netlib/SRC/chegst.f
index 2f933729c..b3fdff2d5 100644
--- a/lapack-netlib/SRC/chegst.f
+++ b/lapack-netlib/SRC/chegst.f
@@ -97,6 +97,7 @@
*> B is COMPLEX array, dimension (LDB,N)
*> The triangular factor from the Cholesky factorization of B,
*> as returned by CPOTRF.
+*> B is modified by the routine but restored on exit.
*> \endverbatim
*>
*> \param[in] LDB
diff --git a/lapack-netlib/SRC/cherfsx.f b/lapack-netlib/SRC/cherfsx.f
index 4ed2c99f7..76cef7cd1 100644
--- a/lapack-netlib/SRC/cherfsx.f
+++ b/lapack-netlib/SRC/cherfsx.f
@@ -102,7 +102,7 @@
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
-*> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
+*> The Hermitian matrix A. If UPLO = 'U', the leading N-by-N
*> upper triangular part of A contains the upper triangular
*> part of the matrix A, and the strictly lower triangular
*> part of A is not referenced. If UPLO = 'L', the leading
@@ -270,7 +270,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -306,14 +306,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is REAL array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -321,9 +321,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the double-precision refinement algorithm,
+*> = 1.0: Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
diff --git a/lapack-netlib/SRC/chesv_aa.f b/lapack-netlib/SRC/chesv_aa.f
index 470f910bc..b934e624b 100644
--- a/lapack-netlib/SRC/chesv_aa.f
+++ b/lapack-netlib/SRC/chesv_aa.f
@@ -42,7 +42,7 @@
*> matrices.
*>
*> Aasen's algorithm is used to factor A as
-*> A = U * T * U**H, if UPLO = 'U', or
+*> A = U**H * T * U, if UPLO = 'U', or
*> A = L * T * L**H, if UPLO = 'L',
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is Hermitian and tridiagonal. The factored form
@@ -86,7 +86,7 @@
*>
*> On exit, if INFO = 0, the tridiagonal matrix T and the
*> multipliers used to obtain the factor U or L from the
-*> factorization A = U*T*U**H or A = L*T*L**H as computed by
+*> factorization A = U**H*T*U or A = L*T*L**H as computed by
*> CHETRF_AA.
*> \endverbatim
*>
@@ -230,7 +230,7 @@
RETURN
END IF
*
-* Compute the factorization A = U*T*U**H or A = L*T*L**H.
+* Compute the factorization A = U**H*T*U or A = L*T*L**H.
*
CALL CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
IF( INFO.EQ.0 ) THEN
diff --git a/lapack-netlib/SRC/chesv_aa_2stage.f b/lapack-netlib/SRC/chesv_aa_2stage.f
index 05f6b7bb7..ab5786d57 100644
--- a/lapack-netlib/SRC/chesv_aa_2stage.f
+++ b/lapack-netlib/SRC/chesv_aa_2stage.f
@@ -43,7 +43,7 @@
*> matrices.
*>
*> Aasen's 2-stage algorithm is used to factor A as
-*> A = U * T * U**H, if UPLO = 'U', or
+*> A = U**H * T * U, if UPLO = 'U', or
*> A = L * T * L**H, if UPLO = 'L',
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is Hermitian and band. The matrix T is
@@ -257,7 +257,7 @@
END IF
*
*
-* Compute the factorization A = U*T*U**H or A = L*T*L**H.
+* Compute the factorization A = U**H*T*U or A = L*T*L**H.
*
CALL CHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2,
$ WORK, LWORK, INFO )
diff --git a/lapack-netlib/SRC/chesvxx.f b/lapack-netlib/SRC/chesvxx.f
index 3f4466d41..c59e72bbf 100644
--- a/lapack-netlib/SRC/chesvxx.f
+++ b/lapack-netlib/SRC/chesvxx.f
@@ -46,7 +46,7 @@
*>
*> CHESVXX uses the diagonal pivoting factorization to compute the
*> solution to a complex system of linear equations A * X = B, where
-*> A is an N-by-N symmetric matrix and X and B are N-by-NRHS
+*> A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
*> matrices.
*>
*> If requested, both normwise and maximum componentwise error bounds
@@ -88,7 +88,7 @@
*> A = L * D * L**T, if UPLO = 'L',
*>
*> where U (or L) is a product of permutation and unit upper (lower)
-*> triangular matrices, and D is symmetric and block diagonal with
+*> triangular matrices, and D is Hermitian and block diagonal with
*> 1-by-1 and 2-by-2 diagonal blocks.
*>
*> 3. If some D(i,i)=0, so that D is exactly singular, then the
@@ -161,7 +161,7 @@
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
-*> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
+*> The Hermitian matrix A. If UPLO = 'U', the leading N-by-N
*> upper triangular part of A contains the upper triangular
*> part of the matrix A, and the strictly lower triangular
*> part of A is not referenced. If UPLO = 'L', the leading
@@ -378,7 +378,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
@@ -414,14 +414,14 @@
*> \param[in] NPARAMS
*> \verbatim
*> NPARAMS is INTEGER
-*> Specifies the number of parameters set in PARAMS. If .LE. 0, the
+*> Specifies the number of parameters set in PARAMS. If <= 0, the
*> PARAMS array is never referenced and default values are used.
*> \endverbatim
*>
*> \param[in,out] PARAMS
*> \verbatim
*> PARAMS is REAL array, dimension NPARAMS
-*> Specifies algorithm parameters. If an entry is .LT. 0.0, then
+*> Specifies algorithm parameters. If an entry is < 0.0, then
*> that entry will be filled with default value used for that
*> parameter. Only positions up to NPARAMS are accessed; defaults
*> are used for higher-numbered parameters.
@@ -429,9 +429,9 @@
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*> refinement or not.
*> Default: 1.0
-*> = 0.0 : No refinement is performed, and no error bounds are
+*> = 0.0: No refinement is performed, and no error bounds are
*> computed.
-*> = 1.0 : Use the double-precision refinement algorithm,
+*> = 1.0: Use the double-precision refinement algorithm,
*> possibly with doubled-single computations if the
*> compilation environment does not support DOUBLE
*> PRECISION.
diff --git a/lapack-netlib/SRC/chetf2_rk.f b/lapack-netlib/SRC/chetf2_rk.f
index 38a0ce373..80e2f61b7 100644
--- a/lapack-netlib/SRC/chetf2_rk.f
+++ b/lapack-netlib/SRC/chetf2_rk.f
@@ -322,7 +322,7 @@
*
* Factorize A as U*D*U**H using the upper triangle of A
*
-* Initilize the first entry of array E, where superdiagonal
+* Initialize the first entry of array E, where superdiagonal
* elements of D are stored
*
E( 1 ) = CZERO
@@ -676,7 +676,7 @@
*
* Factorize A as L*D*L**H using the lower triangle of A
*
-* Initilize the unused last entry of the subdiagonal array E.
+* Initialize the unused last entry of the subdiagonal array E.
*
E( N ) = CZERO
*
diff --git a/lapack-netlib/SRC/chetrd_2stage.f b/lapack-netlib/SRC/chetrd_2stage.f
index e7370a4dd..4575a5e90 100644
--- a/lapack-netlib/SRC/chetrd_2stage.f
+++ b/lapack-netlib/SRC/chetrd_2stage.f
@@ -123,23 +123,22 @@
*>
*> \param[out] HOUS2
*> \verbatim
-*> HOUS2 is COMPLEX array, dimension LHOUS2, that
-*> store the Householder representation of the stage2
+*> HOUS2 is COMPLEX array, dimension (LHOUS2)
+*> Stores the Householder representation of the stage2
*> band to tridiagonal.
*> \endverbatim
*>
*> \param[in] LHOUS2
*> \verbatim
*> LHOUS2 is INTEGER
-*> The dimension of the array HOUS2. LHOUS2 = MAX(1, dimension)
+*> The dimension of the array HOUS2.
*> If LWORK = -1, or LHOUS2=-1,
*> then a query is assumed; the routine
*> only calculates the optimal size of the HOUS2 array, returns
*> this value as the first entry of the HOUS2 array, and no error
*> message related to LHOUS2 is issued by XERBLA.
-*> LHOUS2 = MAX(1, dimension) where
-*> dimension = 4*N if VECT='N'
-*> not available now if VECT='H'
+*> If VECT='N', LHOUS2 = max(1, 4*n);
+*> if VECT='V', option not yet available.
*> \endverbatim
*>
*> \param[out] WORK
@@ -151,7 +150,7 @@
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK = MAX(1, dimension)
-*> If LWORK = -1, or LHOUS2=-1,
+*> If LWORK = -1, or LHOUS2 = -1,
*> then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
diff --git a/lapack-netlib/SRC/chetrd_hb2st.F b/lapack-netlib/SRC/chetrd_hb2st.F
index 43da45640..330e4f8ca 100644
--- a/lapack-netlib/SRC/chetrd_hb2st.F
+++ b/lapack-netlib/SRC/chetrd_hb2st.F
@@ -50,9 +50,9 @@
* Arguments:
* ==========
*
-*> \param[in] STAGE
+*> \param[in] STAGE1
*> \verbatim
-*> STAGE is CHARACTER*1
+*> STAGE1 is CHARACTER*1
*> = 'N': "No": to mention that the stage 1 of the reduction
*> from dense to band using the chetrd_he2hb routine
*> was not called before this routine to reproduce AB.
@@ -512,7 +512,7 @@ C END IF
*
* Call the kernel
*
-#if defined(_OPENMP) && _OPENMP >= 201307
+#if defined(_OPENMP)
IF( TTYPE.NE.1 ) THEN
!$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1))
!$OMP$ DEPEND(in:WORK(MYID-1))
diff --git a/lapack-netlib/SRC/chetrd_he2hb.f b/lapack-netlib/SRC/chetrd_he2hb.f
index e334532fe..e85c1fd01 100644
--- a/lapack-netlib/SRC/chetrd_he2hb.f
+++ b/lapack-netlib/SRC/chetrd_he2hb.f
@@ -363,7 +363,7 @@
*
*
* Set the workspace of the triangular matrix T to zero once such a
-* way everytime T is generated the upper/lower portion will be always zero
+* way every time T is generated the upper/lower portion will be always zero
*
CALL CLASET( "A", LDT, KD, ZERO, ZERO, WORK( TPOS ), LDT )
*
diff --git a/lapack-netlib/SRC/chetrf_aa.f b/lapack-netlib/SRC/chetrf_aa.f
index 2c5564893..c6f548d42 100644
--- a/lapack-netlib/SRC/chetrf_aa.f
+++ b/lapack-netlib/SRC/chetrf_aa.f
@@ -37,7 +37,7 @@
*> CHETRF_AA computes the factorization of a complex hermitian matrix A
*> using the Aasen's algorithm. The form of the factorization is
*>
-*> A = U*T*U**H or A = L*T*L**H
+*> A = U**H*T*U or A = L*T*L**H
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is a hermitian tridiagonal matrix.
@@ -223,7 +223,7 @@
IF( UPPER ) THEN
*
* .....................................................
-* Factorize A as L*D*L**H using the upper triangle of A
+* Factorize A as U**H*D*U using the upper triangle of A
* .....................................................
*
* copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
@@ -256,7 +256,7 @@
$ A( MAX(1, J), J+1 ), LDA,
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
*
-* Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
+* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
*
DO J2 = J+2, MIN(N, J+JB+1)
IPIV( J2 ) = IPIV( J2 ) + J
@@ -376,7 +376,7 @@
$ A( J+1, MAX(1, J) ), LDA,
$ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
*
-* Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
+* Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
*
DO J2 = J+2, MIN(N, J+JB+1)
IPIV( J2 ) = IPIV( J2 ) + J
diff --git a/lapack-netlib/SRC/chetrf_aa_2stage.f b/lapack-netlib/SRC/chetrf_aa_2stage.f
index ce34d73cc..d2e0e0023 100644
--- a/lapack-netlib/SRC/chetrf_aa_2stage.f
+++ b/lapack-netlib/SRC/chetrf_aa_2stage.f
@@ -38,7 +38,7 @@
*> CHETRF_AA_2STAGE computes the factorization of a real hermitian matrix A
*> using the Aasen's algorithm. The form of the factorization is
*>
-*> A = U*T*U**T or A = L*T*L**T
+*> A = U**T*T*U or A = L*T*L**T
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, and T is a hermitian band matrix with the
@@ -277,7 +277,7 @@
IF( UPPER ) THEN
*
* .....................................................
-* Factorize A as L*D*L**T using the upper triangle of A
+* Factorize A as U**T*D*U using the upper triangle of A
* .....................................................
*
DO J = 0, NT-1
@@ -453,14 +453,17 @@ c END IF
* > Apply pivots to previous columns of L
CALL CSWAP( K-1, A( (J+1)*NB+1, I1 ), 1,
$ A( (J+1)*NB+1, I2 ), 1 )
-* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
- CALL CSWAP( I2-I1-1, A( I1, I1+1 ), LDA,
- $ A( I1+1, I2 ), 1 )
+* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
+ IF( I2.GT.(I1+1) ) THEN
+ CALL CSWAP( I2-I1-1, A( I1, I1+1 ), LDA,
+ $ A( I1+1, I2 ), 1 )
+ CALL CLACGV( I2-I1-1, A( I1+1, I2 ), 1 )
+ END IF
CALL CLACGV( I2-I1, A( I1, I1+1 ), LDA )
- CALL CLACGV( I2-I1-1, A( I1+1, I2 ), 1 )
* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
- CALL CSWAP( N-I2, A( I1, I2+1 ), LDA,
- $ A( I2, I2+1 ), LDA )
+ IF( I2.LT.N )
+ $ CALL CSWAP( N-I2, A( I1, I2+1 ), LDA,
+ $ A( I2, I2+1 ), LDA )
* > Swap A(I1, I1) with A(I2, I2)
PIV = A( I1, I1 )
A( I1, I1 ) = A( I2, I2 )
@@ -630,14 +633,17 @@ c END IF
* > Apply pivots to previous columns of L
CALL CSWAP( K-1, A( I1, (J+1)*NB+1 ), LDA,
$ A( I2, (J+1)*NB+1 ), LDA )
-* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
- CALL CSWAP( I2-I1-1, A( I1+1, I1 ), 1,
- $ A( I2, I1+1 ), LDA )
+* > Swap A(I1+1:M, I1) with A(I2, I1+1:M)
+ IF( I2.GT.(I1+1) ) THEN
+ CALL CSWAP( I2-I1-1, A( I1+1, I1 ), 1,
+ $ A( I2, I1+1 ), LDA )
+ CALL CLACGV( I2-I1-1, A( I2, I1+1 ), LDA )
+ END IF
CALL CLACGV( I2-I1, A( I1+1, I1 ), 1 )
- CALL CLACGV( I2-I1-1, A( I2, I1+1 ), LDA )
* > Swap A(I2+1:M, I1) with A(I2+1:M, I2)
- CALL CSWAP( N-I2, A( I2+1, I1 ), 1,
- $ A( I2+1, I2 ), 1 )
+ IF( I2.LT.N )
+ $ CALL CSWAP( N-I2, A( I2+1, I1 ), 1,
+ $ A( I2+1, I2 ), 1 )
* > Swap A(I1, I1) with A(I2, I2)
PIV = A( I1, I1 )
A( I1, I1 ) = A( I2, I2 )
diff --git a/lapack-netlib/SRC/chetri2.f b/lapack-netlib/SRC/chetri2.f
index 722d13008..1e18202cf 100644
--- a/lapack-netlib/SRC/chetri2.f
+++ b/lapack-netlib/SRC/chetri2.f
@@ -62,7 +62,7 @@
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
-*> On entry, the NB diagonal matrix D and the multipliers
+*> On entry, the block diagonal matrix D and the multipliers
*> used to obtain the factor U or L as computed by CHETRF.
*>
*> On exit, if INFO = 0, the (symmetric) inverse of the original
@@ -82,7 +82,7 @@
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
-*> Details of the interchanges and the NB structure of D
+*> Details of the interchanges and the block structure of D
*> as determined by CHETRF.
*> \endverbatim
*>
diff --git a/lapack-netlib/SRC/chetrs_aa.f b/lapack-netlib/SRC/chetrs_aa.f
index 50e5692db..877517031 100644
--- a/lapack-netlib/SRC/chetrs_aa.f
+++ b/lapack-netlib/SRC/chetrs_aa.f
@@ -37,7 +37,7 @@
*> \verbatim
*>
*> CHETRS_AA solves a system of linear equations A*X = B with a complex
-*> hermitian matrix A using the factorization A = U*T*U**H or
+*> hermitian matrix A using the factorization A = U**H*T*U or
*> A = L*T*L**H computed by CHETRF_AA.
*> \endverbatim
*
@@ -49,7 +49,7 @@
*> UPLO is CHARACTER*1
*> Specifies whether the details of the factorization are stored
*> as an upper or lower triangular matrix.
-*> = 'U': Upper triangular, form is A = U*T*U**H;
+*> = 'U': Upper triangular, form is A = U**H*T*U;
*> = 'L': Lower triangular, form is A = L*T*L**H.
*> \endverbatim
*>
@@ -97,14 +97,16 @@
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
-*> WORK is DOUBLE array, dimension (MAX(1,LWORK))
+*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
-*> LWORK is INTEGER, LWORK >= MAX(1,3*N-2).
+*> LWORK is INTEGER
+*> The dimension of the array WORK. LWORK >= max(1,3*N-2).
+*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
@@ -198,24 +200,31 @@
*
IF( UPPER ) THEN
*
-* Solve A*X = B, where A = U*T*U**T.
+* Solve A*X = B, where A = U**H*T*U.
*
-* P**T * B
+* 1) Forward substitution with U**H
*
- K = 1
- DO WHILE ( K.LE.N )
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K = K + 1
- END DO
+ IF( N.GT.1 ) THEN
*
-* Compute (U \P**T * B) -> B [ (U \P**T * B) ]
+* Pivot, P**T * B -> B
*
- CALL CTRSM('L', 'U', 'C', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA,
- $ B( 2, 1 ), LDB)
+ K = 1
+ DO WHILE ( K.LE.N )
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K = K + 1
+ END DO
*
-* Compute T \ B -> B [ T \ (U \P**T * B) ]
+* Compute U**H \ B -> B [ (U**H \P**T * B) ]
+*
+ CALL CTRSM( 'L', 'U', 'C', 'U', N-1, NRHS, ONE, A( 1, 2 ),
+ $ LDA, B( 2, 1 ), LDB)
+ END IF
+*
+* 2) Solve with triangular matrix T
+*
+* Compute T \ B -> B [ T \ (U**H \P**T * B) ]
*
CALL CLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
IF( N.GT.1 ) THEN
@@ -226,65 +235,82 @@
CALL CGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
$ INFO)
*
-* Compute (U**T \ B) -> B [ U**T \ (T \ (U \P**T * B) ) ]
+* 3) Backward substitution with U
*
- CALL CTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ), LDA,
- $ B(2, 1), LDB)
+ IF( N.GT.1 ) THEN
*
-* Pivot, P * B [ P * (U**T \ (T \ (U \P**T * B) )) ]
+* Compute U \ B -> B [ U \ (T \ (U**H \P**T * B) ) ]
*
- K = N
- DO WHILE ( K.GE.1 )
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K = K - 1
- END DO
+ CALL CTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
+ $ LDA, B(2, 1), LDB)
+*
+* Pivot, P * B -> B [ P * (U \ (T \ (U**H \P**T * B) )) ]
+*
+ K = N
+ DO WHILE ( K.GE.1 )
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K = K - 1
+ END DO
+ END IF
*
ELSE
*
-* Solve A*X = B, where A = L*T*L**T.
+* Solve A*X = B, where A = L*T*L**H.
*
-* Pivot, P**T * B
+* 1) Forward substitution with L
*
- K = 1
- DO WHILE ( K.LE.N )
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K = K + 1
- END DO
+ IF( N.GT.1 ) THEN
*
-* Compute (L \P**T * B) -> B [ (L \P**T * B) ]
+* Pivot, P**T * B -> B
*
- CALL CTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1), LDA,
- $ B(2, 1), LDB)
+ K = 1
+ DO WHILE ( K.LE.N )
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K = K + 1
+ END DO
+*
+* Compute L \ B -> B [ (L \P**T * B) ]
+*
+ CALL CTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1),
+ $ LDA, B(2, 1), LDB )
+ END IF
+*
+* 2) Solve with triangular matrix T
*
* Compute T \ B -> B [ T \ (L \P**T * B) ]
*
CALL CLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
IF( N.GT.1 ) THEN
- CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1)
+ CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1 )
CALL CLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1)
CALL CLACGV( N-1, WORK( 2*N ), 1 )
END IF
CALL CGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
$ INFO)
*
-* Compute (L**T \ B) -> B [ L**T \ (T \ (L \P**T * B) ) ]
+* 3) Backward substitution with L**H
*
- CALL CTRSM( 'L', 'L', 'C', 'U', N-1, NRHS, ONE, A( 2, 1 ), LDA,
- $ B( 2, 1 ), LDB)
+ IF( N.GT.1 ) THEN
*
-* Pivot, P * B [ P * (L**T \ (T \ (L \P**T * B) )) ]
+* Compute (L**H \ B) -> B [ L**H \ (T \ (L \P**T * B) ) ]
*
- K = N
- DO WHILE ( K.GE.1 )
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- K = K - 1
- END DO
+ CALL CTRSM( 'L', 'L', 'C', 'U', N-1, NRHS, ONE, A( 2, 1 ),
+ $ LDA, B( 2, 1 ), LDB )
+*
+* Pivot, P * B -> B [ P * (L**H \ (T \ (L \P**T * B) )) ]
+*
+ K = N
+ DO WHILE ( K.GE.1 )
+ KP = IPIV( K )
+ IF( KP.NE.K )
+ $ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
+ K = K - 1
+ END DO
+ END IF
*
END IF
*
diff --git a/lapack-netlib/SRC/chetrs_aa_2stage.f b/lapack-netlib/SRC/chetrs_aa_2stage.f
index 05d09275b..979d80a7c 100644
--- a/lapack-netlib/SRC/chetrs_aa_2stage.f
+++ b/lapack-netlib/SRC/chetrs_aa_2stage.f
@@ -38,7 +38,7 @@
*> \verbatim
*>
*> CHETRS_AA_2STAGE solves a system of linear equations A*X = B with a real
-*> hermitian matrix A using the factorization A = U*T*U**T or
+*> hermitian matrix A using the factorization A = U**T*T*U or
*> A = L*T*L**T computed by CHETRF_AA_2STAGE.
*> \endverbatim
*
@@ -50,7 +50,7 @@
*> UPLO is CHARACTER*1
*> Specifies whether the details of the factorization are stored
*> as an upper or lower triangular matrix.
-*> = 'U': Upper triangular, form is A = U*T*U**T;
+*> = 'U': Upper triangular, form is A = U**T*T*U;
*> = 'L': Lower triangular, form is A = L*T*L**T.
*> \endverbatim
*>
@@ -210,15 +210,15 @@
*
IF( UPPER ) THEN
*
-* Solve A*X = B, where A = U*T*U**T.
+* Solve A*X = B, where A = U**T*T*U.
*
IF( N.GT.NB ) THEN
*
-* Pivot, P**T * B
+* Pivot, P**T * B -> B
*
CALL CLASWP( NRHS, B, LDB, NB+1, N, IPIV, 1 )
*
-* Compute (U**T \P**T * B) -> B [ (U**T \P**T * B) ]
+* Compute (U**T \ B) -> B [ (U**T \P**T * B) ]
*
CALL CTRSM( 'L', 'U', 'C', 'U', N-NB, NRHS, ONE, A(1, NB+1),
$ LDA, B(NB+1, 1), LDB)
diff --git a/lapack-netlib/SRC/chseqr.f b/lapack-netlib/SRC/chseqr.f
index 34bf49249..cfcf725b2 100644
--- a/lapack-netlib/SRC/chseqr.f
+++ b/lapack-netlib/SRC/chseqr.f
@@ -69,7 +69,7 @@
*> \param[in] N
*> \verbatim
*> N is INTEGER
-*> The order of the matrix H. N .GE. 0.
+*> The order of the matrix H. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
@@ -86,7 +86,7 @@
*> set by a previous call to CGEBAL, and then passed to ZGEHRD
*> when the matrix output by CGEBAL is reduced to Hessenberg
*> form. Otherwise ILO and IHI should be set to 1 and N
-*> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
+*> respectively. If N > 0, then 1 <= ILO <= IHI <= N.
*> If N = 0, then ILO = 1 and IHI = 0.
*> \endverbatim
*>
@@ -98,17 +98,17 @@
*> triangular matrix T from the Schur decomposition (the
*> Schur form). If INFO = 0 and JOB = 'E', the contents of
*> H are unspecified on exit. (The output value of H when
-*> INFO.GT.0 is given under the description of INFO below.)
+*> INFO > 0 is given under the description of INFO below.)
*>
*> Unlike earlier versions of CHSEQR, this subroutine may
-*> explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
+*> explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1
*> or j = IHI+1, IHI+2, ... N.
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*> LDH is INTEGER
-*> The leading dimension of the array H. LDH .GE. max(1,N).
+*> The leading dimension of the array H. LDH >= max(1,N).
*> \endverbatim
*>
*> \param[out] W
@@ -131,7 +131,7 @@
*> if INFO = 0, Z contains Q*Z.
*> Normally Q is the unitary matrix generated by CUNGHR
*> after the call to CGEHRD which formed the Hessenberg matrix
-*> H. (The output value of Z when INFO.GT.0 is given under
+*> H. (The output value of Z when INFO > 0 is given under
*> the description of INFO below.)
*> \endverbatim
*>
@@ -139,7 +139,7 @@
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. if COMPZ = 'I' or
-*> COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1.
+*> COMPZ = 'V', then LDZ >= MAX(1,N). Otherwise, LDZ >= 1.
*> \endverbatim
*>
*> \param[out] WORK
@@ -152,7 +152,7 @@
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
-*> The dimension of the array WORK. LWORK .GE. max(1,N)
+*> The dimension of the array WORK. LWORK >= max(1,N)
*> is sufficient and delivers very good and sometimes
*> optimal performance. However, LWORK as large as 11*N
*> may be required for optimal performance. A workspace
@@ -170,21 +170,21 @@
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
-*> = 0: successful exit
-*> .LT. 0: if INFO = -i, the i-th argument had an illegal
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal
*> value
-*> .GT. 0: if INFO = i, CHSEQR failed to compute all of
-*> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
-*> and WI contain those eigenvalues which have been
+*> > 0: if INFO = i, CHSEQR failed to compute all of
+*> the eigenvalues. Elements 1:ilo-1 and i+1:n of W
+*> contain those eigenvalues which have been
*> successfully computed. (Failures are rare.)
*>
-*> If INFO .GT. 0 and JOB = 'E', then on exit, the
+*> If INFO > 0 and JOB = 'E', then on exit, the
*> remaining unconverged eigenvalues are the eigen-
*> values of the upper Hessenberg matrix rows and
*> columns ILO through INFO of the final, output
*> value of H.
*>
-*> If INFO .GT. 0 and JOB = 'S', then on exit
+*> If INFO > 0 and JOB = 'S', then on exit
*>
*> (*) (initial value of H)*U = U*(final value of H)
*>
@@ -192,19 +192,19 @@
*> value of H is upper Hessenberg and triangular in
*> rows and columns INFO+1 through IHI.
*>
-*> If INFO .GT. 0 and COMPZ = 'V', then on exit
+*> If INFO > 0 and COMPZ = 'V', then on exit
*>
*> (final value of Z) = (initial value of Z)*U
*>
*> where U is the unitary matrix in (*) (regard-
*> less of the value of JOB.)
*>
-*> If INFO .GT. 0 and COMPZ = 'I', then on exit
+*> If INFO > 0 and COMPZ = 'I', then on exit
*> (final value of Z) = U
*> where U is the unitary matrix in (*) (regard-
*> less of the value of JOB.)
*>
-*> If INFO .GT. 0 and COMPZ = 'N', then Z is not
+*> If INFO > 0 and COMPZ = 'N', then Z is not
*> accessed.
*> \endverbatim
*
@@ -244,8 +244,8 @@
*> This depends on ILO, IHI and NS. NS is the
*> number of simultaneous shifts returned
*> by ILAENV(ISPEC=15). (See ISPEC=15 below.)
-*> The default for (IHI-ILO+1).LE.500 is NS.
-*> The default for (IHI-ILO+1).GT.500 is 3*NS/2.
+*> The default for (IHI-ILO+1) <= 500 is NS.
+*> The default for (IHI-ILO+1) > 500 is 3*NS/2.
*>
*> ISPEC=14: Nibble crossover point. (See IPARMQ for
*> details.) Default: 14% of deflation window
@@ -323,8 +323,8 @@
PARAMETER ( NTINY = 11 )
*
* ==== NL allocates some local workspace to help small matrices
-* . through a rare CLAHQR failure. NL .GT. NTINY = 11 is
-* . required and NL .LE. NMIN = ILAENV(ISPEC=12,...) is recom-
+* . through a rare CLAHQR failure. NL > NTINY = 11 is
+* . required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom-
* . mended. (The default value of NMIN is 75.) Using NL = 49
* . allows up to six simultaneous shifts and a 16-by-16
* . deflation window. ====
diff --git a/lapack-netlib/SRC/cla_gbrcond_c.f b/lapack-netlib/SRC/cla_gbrcond_c.f
index 123aee26e..c382ac210 100644
--- a/lapack-netlib/SRC/cla_gbrcond_c.f
+++ b/lapack-netlib/SRC/cla_gbrcond_c.f
@@ -132,13 +132,13 @@
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
-*> \param[in] RWORK
+*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
diff --git a/lapack-netlib/SRC/cla_gbrcond_x.f b/lapack-netlib/SRC/cla_gbrcond_x.f
index d04aa7fb8..46991ea14 100644
--- a/lapack-netlib/SRC/cla_gbrcond_x.f
+++ b/lapack-netlib/SRC/cla_gbrcond_x.f
@@ -125,13 +125,13 @@
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
-*> \param[in] RWORK
+*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
diff --git a/lapack-netlib/SRC/cla_gbrfsx_extended.f b/lapack-netlib/SRC/cla_gbrfsx_extended.f
index 888ecd4f7..9f066137b 100644
--- a/lapack-netlib/SRC/cla_gbrfsx_extended.f
+++ b/lapack-netlib/SRC/cla_gbrfsx_extended.f
@@ -65,19 +65,19 @@
*> \verbatim
*> PREC_TYPE is INTEGER
*> Specifies the intermediate precision to be used in refinement.
-*> The value is defined by ILAPREC(P) where P is a CHARACTER and
-*> P = 'S': Single
+*> The value is defined by ILAPREC(P) where P is a CHARACTER and P
+*> = 'S': Single
*> = 'D': Double
*> = 'I': Indigenous
-*> = 'X', 'E': Extra
+*> = 'X' or 'E': Extra
*> \endverbatim
*>
*> \param[in] TRANS_TYPE
*> \verbatim
*> TRANS_TYPE is INTEGER
*> Specifies the transposition operation on A.
-*> The value is defined by ILATRANS(T) where T is a CHARACTER and
-*> T = 'N': No transpose
+*> The value is defined by ILATRANS(T) where T is a CHARACTER and T
+*> = 'N': No transpose
*> = 'T': Transpose
*> = 'C': Conjugate transpose
*> \endverbatim
@@ -269,7 +269,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
diff --git a/lapack-netlib/SRC/cla_gercond_c.f b/lapack-netlib/SRC/cla_gercond_c.f
index aabdc0bb9..1a2e8230e 100644
--- a/lapack-netlib/SRC/cla_gercond_c.f
+++ b/lapack-netlib/SRC/cla_gercond_c.f
@@ -21,7 +21,7 @@
* REAL FUNCTION CLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV, C,
* CAPPLY, INFO, WORK, RWORK )
*
-* .. Scalar Aguments ..
+* .. Scalar Arguments ..
* CHARACTER TRANS
* LOGICAL CAPPLY
* INTEGER N, LDA, LDAF, INFO
@@ -114,13 +114,13 @@
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
-*> \param[in] RWORK
+*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
@@ -147,7 +147,7 @@
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
-* .. Scalar Aguments ..
+* .. Scalar Arguments ..
CHARACTER TRANS
LOGICAL CAPPLY
INTEGER N, LDA, LDAF, INFO
diff --git a/lapack-netlib/SRC/cla_gercond_x.f b/lapack-netlib/SRC/cla_gercond_x.f
index 6dce99f62..46e9b039f 100644
--- a/lapack-netlib/SRC/cla_gercond_x.f
+++ b/lapack-netlib/SRC/cla_gercond_x.f
@@ -107,13 +107,13 @@
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
-*> \param[in] RWORK
+*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
diff --git a/lapack-netlib/SRC/cla_gerfsx_extended.f b/lapack-netlib/SRC/cla_gerfsx_extended.f
index 2e0596334..d231733e6 100644
--- a/lapack-netlib/SRC/cla_gerfsx_extended.f
+++ b/lapack-netlib/SRC/cla_gerfsx_extended.f
@@ -65,19 +65,19 @@
*> \verbatim
*> PREC_TYPE is INTEGER
*> Specifies the intermediate precision to be used in refinement.
-*> The value is defined by ILAPREC(P) where P is a CHARACTER and
-*> P = 'S': Single
+*> The value is defined by ILAPREC(P) where P is a CHARACTER and P
+*> = 'S': Single
*> = 'D': Double
*> = 'I': Indigenous
-*> = 'X', 'E': Extra
+*> = 'X' or 'E': Extra
*> \endverbatim
*>
*> \param[in] TRANS_TYPE
*> \verbatim
*> TRANS_TYPE is INTEGER
*> Specifies the transposition operation on A.
-*> The value is defined by ILATRANS(T) where T is a CHARACTER and
-*> T = 'N': No transpose
+*> The value is defined by ILATRANS(T) where T is a CHARACTER and T
+*> = 'N': No transpose
*> = 'T': Transpose
*> = 'C': Conjugate transpose
*> \endverbatim
@@ -257,7 +257,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERRS_C is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERRS_C is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERRS_C(i,:) corresponds to the ith
diff --git a/lapack-netlib/SRC/cla_hercond_c.f b/lapack-netlib/SRC/cla_hercond_c.f
index a5ebaf8a2..5f26822af 100644
--- a/lapack-netlib/SRC/cla_hercond_c.f
+++ b/lapack-netlib/SRC/cla_hercond_c.f
@@ -110,13 +110,13 @@
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
-*> \param[in] RWORK
+*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
diff --git a/lapack-netlib/SRC/cla_hercond_x.f b/lapack-netlib/SRC/cla_hercond_x.f
index f0004102f..91c80a668 100644
--- a/lapack-netlib/SRC/cla_hercond_x.f
+++ b/lapack-netlib/SRC/cla_hercond_x.f
@@ -103,13 +103,13 @@
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
-*> \param[in] RWORK
+*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
diff --git a/lapack-netlib/SRC/cla_herfsx_extended.f b/lapack-netlib/SRC/cla_herfsx_extended.f
index c69589dfa..d1aa8462c 100644
--- a/lapack-netlib/SRC/cla_herfsx_extended.f
+++ b/lapack-netlib/SRC/cla_herfsx_extended.f
@@ -66,11 +66,11 @@
*> \verbatim
*> PREC_TYPE is INTEGER
*> Specifies the intermediate precision to be used in refinement.
-*> The value is defined by ILAPREC(P) where P is a CHARACTER and
-*> P = 'S': Single
+*> The value is defined by ILAPREC(P) where P is a CHARACTER and P
+*> = 'S': Single
*> = 'D': Double
*> = 'I': Indigenous
-*> = 'X', 'E': Extra
+*> = 'X' or 'E': Extra
*> \endverbatim
*>
*> \param[in] UPLO
@@ -254,7 +254,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
diff --git a/lapack-netlib/SRC/cla_porcond_c.f b/lapack-netlib/SRC/cla_porcond_c.f
index 7a2bcfe63..c2356590f 100644
--- a/lapack-netlib/SRC/cla_porcond_c.f
+++ b/lapack-netlib/SRC/cla_porcond_c.f
@@ -102,13 +102,13 @@
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
-*> \param[in] RWORK
+*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
diff --git a/lapack-netlib/SRC/cla_porcond_x.f b/lapack-netlib/SRC/cla_porcond_x.f
index f0844ec89..a5ff3aa61 100644
--- a/lapack-netlib/SRC/cla_porcond_x.f
+++ b/lapack-netlib/SRC/cla_porcond_x.f
@@ -95,13 +95,13 @@
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
-*> \param[in] RWORK
+*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
diff --git a/lapack-netlib/SRC/cla_porfsx_extended.f b/lapack-netlib/SRC/cla_porfsx_extended.f
index 3a3409c9e..545bdc445 100644
--- a/lapack-netlib/SRC/cla_porfsx_extended.f
+++ b/lapack-netlib/SRC/cla_porfsx_extended.f
@@ -65,11 +65,11 @@
*> \verbatim
*> PREC_TYPE is INTEGER
*> Specifies the intermediate precision to be used in refinement.
-*> The value is defined by ILAPREC(P) where P is a CHARACTER and
-*> P = 'S': Single
+*> The value is defined by ILAPREC(P) where P is a CHARACTER and P
+*> = 'S': Single
*> = 'D': Double
*> = 'I': Indigenous
-*> = 'X', 'E': Extra
+*> = 'X' or 'E': Extra
*> \endverbatim
*>
*> \param[in] UPLO
@@ -246,7 +246,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
diff --git a/lapack-netlib/SRC/cla_porpvgrw.f b/lapack-netlib/SRC/cla_porpvgrw.f
index bd2e7af1c..f10299c5a 100644
--- a/lapack-netlib/SRC/cla_porpvgrw.f
+++ b/lapack-netlib/SRC/cla_porpvgrw.f
@@ -85,7 +85,7 @@
*> The leading dimension of the array AF. LDAF >= max(1,N).
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (2*N)
*> \endverbatim
diff --git a/lapack-netlib/SRC/cla_syrcond_c.f b/lapack-netlib/SRC/cla_syrcond_c.f
index fc52bf23b..e59e83aa6 100644
--- a/lapack-netlib/SRC/cla_syrcond_c.f
+++ b/lapack-netlib/SRC/cla_syrcond_c.f
@@ -110,13 +110,13 @@
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
-*> \param[in] RWORK
+*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
diff --git a/lapack-netlib/SRC/cla_syrcond_x.f b/lapack-netlib/SRC/cla_syrcond_x.f
index f8fb566e7..3edf58f83 100644
--- a/lapack-netlib/SRC/cla_syrcond_x.f
+++ b/lapack-netlib/SRC/cla_syrcond_x.f
@@ -103,13 +103,13 @@
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
-*> \param[in] RWORK
+*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
diff --git a/lapack-netlib/SRC/cla_syrfsx_extended.f b/lapack-netlib/SRC/cla_syrfsx_extended.f
index 5d2fa0cbb..92243abcb 100644
--- a/lapack-netlib/SRC/cla_syrfsx_extended.f
+++ b/lapack-netlib/SRC/cla_syrfsx_extended.f
@@ -66,11 +66,11 @@
*> \verbatim
*> PREC_TYPE is INTEGER
*> Specifies the intermediate precision to be used in refinement.
-*> The value is defined by ILAPREC(P) where P is a CHARACTER and
-*> P = 'S': Single
+*> The value is defined by ILAPREC(P) where P is a CHARACTER and P
+*> = 'S': Single
*> = 'D': Double
*> = 'I': Indigenous
-*> = 'X', 'E': Extra
+*> = 'X' or 'E': Extra
*> \endverbatim
*>
*> \param[in] UPLO
@@ -254,7 +254,7 @@
*> information as described below. There currently are up to three
*> pieces of information returned for each right-hand side. If
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
-*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
+*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
*> the first (:,N_ERR_BNDS) entries are returned.
*>
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
diff --git a/lapack-netlib/SRC/cla_syrpvgrw.f b/lapack-netlib/SRC/cla_syrpvgrw.f
index ccea462c7..15e55ea7d 100644
--- a/lapack-netlib/SRC/cla_syrpvgrw.f
+++ b/lapack-netlib/SRC/cla_syrpvgrw.f
@@ -102,7 +102,7 @@
*> as determined by CSYTRF.
*> \endverbatim
*>
-*> \param[in] WORK
+*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (2*N)
*> \endverbatim
diff --git a/lapack-netlib/SRC/cla_wwaddw.f b/lapack-netlib/SRC/cla_wwaddw.f
index 9267c6df2..08e45ac79 100644
--- a/lapack-netlib/SRC/cla_wwaddw.f
+++ b/lapack-netlib/SRC/cla_wwaddw.f
@@ -36,7 +36,7 @@
*> CLA_WWADDW adds a vector W into a doubled-single vector (X, Y).
*>
*> This works for all extant IBM's hex and binary floating point
-*> arithmetics, but not for decimal.
+*> arithmetic, but not for decimal.
*> \endverbatim
*
* Arguments: