xiuos/Ubiquitous/XiUOS/resources/ethernet/LwIP/arch/sys_arch.c

596 lines
15 KiB
C

/*
* Copyright (c) 2017 Simon Goldschmidt
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Simon Goldschmidt
*
*/
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file sys_arch.c
* @brief In order to adapt to XiUOS, some changes have been made to implement the LwIP interface.
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-05-29
*/
#include "debug.h"
#include <lwip/opt.h>
#include <lwip/arch.h>
#include "tcpip.h"
#include "lwip/init.h"
#include "lwip/netif.h"
#include "lwip/sio.h"
#include <lwip/stats.h>
#include <lwip/debug.h>
#include <lwip/sys.h>
#include "lwip/dhcp.h"
#include "tcpip_priv.h"
#if !NO_SYS
#include "sys_arch.h"
#endif
#include <string.h>
#include <xs_ktask.h>
#include <xs_ktick.h>
#include <xs_assign.h>
#include <xs_sem.h>
#include <xs_mutex.h>
#include <xs_ktask.h>
#include <xs_msg.h>
#include "board.h"
#include "ethernet.h"
#include "enet_ethernetif.h"
#include <transform.h>
/* MAC address configuration. */
#define configMAC_ADDR { 0x02, 0x12, 0x13, 0x10, 0x15, 0x11}
char lwip_ipaddr[] = {192, 168, 250, 253};
char lwip_netmask[] = {255, 255, 255, 0};
char lwip_gwaddr[] = {192, 168, 250, 252};
int errno;
int is_lwip_test = 0; //for lwip input thread
x_ticks_t lwip_sys_now;
static int lwip_init_flag = 0;
struct sys_timeouts {
struct sys_timeo *next;
};
struct timeoutlist
{
struct sys_timeouts timeouts;
int32 pid;
};
#define SYS_THREAD_MAX 4
static struct timeoutlist s_timeoutlist[SYS_THREAD_MAX];
static u16_t s_nextthread = 0;
u32_t
sys_jiffies(void)
{
lwip_sys_now = CurrentTicksGain();
return lwip_sys_now;
}
u32_t
sys_now(void)
{
lwip_sys_now = CurrentTicksGain();
return lwip_sys_now;
}
void
sys_init(void)
{
int i;
for(i = 0; i < SYS_THREAD_MAX; i++)
{
s_timeoutlist[i].pid = 0;
s_timeoutlist[i].timeouts.next = NULL;
}
s_nextthread = 0;
}
struct sys_timeouts *sys_arch_timeouts(void)
{
int i;
int32 pid;
struct timeoutlist *tl;
pid = (int32)GetKTaskDescriptor()->id.id;
for(i = 0; i < s_nextthread; i++)
{
tl = &(s_timeoutlist[i]);
if(tl->pid == pid)
{
return &(tl->timeouts);
}
}
return NULL;
}
sys_prot_t sys_arch_protect(void)
{
return CriticalAreaLock();
}
void sys_arch_unprotect(sys_prot_t pval)
{
CriticalAreaUnLock(pval);
}
#if !NO_SYS
err_t
sys_sem_new(sys_sem_t *sem, u8_t count)
{
*sem = KSemaphoreCreate((uint16)count);
#if SYS_STATS
++lwip_stats.sys.sem.used;
if (lwip_stats.sys.sem.max < lwip_stats.sys.sem.used) {
lwip_stats.sys.sem.max = lwip_stats.sys.sem.used;
}
#endif /* SYS_STATS */
if(*sem >= 0)
return ERR_OK;
else
{
#if SYS_STATS
++lwip_stats.sys.sem.err;
#endif /* SYS_STATS */
KPrintf("[sys_arch]:new sem fail!\n");
return ERR_MEM;
}
}
void
sys_sem_free(sys_sem_t *sem)
{
#if SYS_STATS
--lwip_stats.sys.sem.used;
#endif /* SYS_STATS */
KSemaphoreDelete(*sem);
*sem = SYS_SEM_NULL;
}
int sys_sem_valid(sys_sem_t *sem)
{
return (*sem >= SYS_SEM_NULL);
}
void
sys_sem_set_invalid(sys_sem_t *sem)
{
*sem = SYS_SEM_NULL;
}
u32_t sys_arch_sem_wait(sys_sem_t *sem, u32_t timeout)
{
x_ticks_t start_tick = 0 ;
int32 wait_time = 0;
if(*sem == SYS_SEM_NULL)
return SYS_ARCH_TIMEOUT;
start_tick = CurrentTicksGain();
if (0 == timeout)
wait_time = WAITING_FOREVER;
else
wait_time = timeout;
if(KSemaphoreObtain(*sem, wait_time) == EOK)
return ((CurrentTicksGain()-start_tick)*MS_PER_SYSTICK_F407);
else
return SYS_ARCH_TIMEOUT;
}
void sys_sem_signal(sys_sem_t *sem)
{
if(KSemaphoreAbandon( *sem ) != EOK)
KPrintf("[sys_arch]:sem signal fail!\n");
}
err_t sys_mutex_new(sys_mutex_t *mutex)
{
*mutex = KMutexCreate();
if(*mutex >= 0)
return ERR_OK;
else
{
KPrintf("[sys_arch]:new mutex fail!\n");
return ERR_MEM;
}
}
void sys_mutex_free(sys_mutex_t *mutex)
{
KMutexDelete(*mutex);
}
void sys_mutex_set_invalid(sys_mutex_t *mutex)
{
*mutex = SYS_MRTEX_NULL;
}
void sys_mutex_lock(sys_mutex_t *mutex)
{
KMutexObtain(*mutex,
WAITING_FOREVER);
}
void sys_mutex_unlock(sys_mutex_t *mutex)
{
KMutexAbandon( *mutex );
}
sys_thread_t sys_thread_new(const char *name, lwip_thread_fn function, void *arg, int stacksize, int prio)
{
sys_thread_t handle = -1;
handle = KTaskCreate(name,
function,
arg,
(uint32)stacksize,
(uint8)prio);
if (handle >= 0)
{
StartupKTask(handle);
lw_print("lw: [%s] create %s handle %x\n", __func__, name, handle);
return handle;
}
lw_print("lw: [%s] create %s failed\n", __func__, name);
return -ERROR;
}
err_t sys_mbox_new(sys_mbox_t *mbox, int size)
{
*mbox = KCreateMsgQueue(sizeof(void *), size);
#if SYS_STATS
++lwip_stats.sys.mbox.used;
if (lwip_stats.sys.mbox.max < lwip_stats.sys.mbox.used) {
lwip_stats.sys.mbox.max = lwip_stats.sys.mbox.used;
}
#endif /* SYS_STATS */
if(*mbox < 0)
{
lw_print("lw: [%s] alloc %d mbox %p failed\n", __func__, size, mbox);
return ERR_MEM;
}
lw_print("lw: [%s] alloc %d mbox %p ok!\n", __func__, size, mbox);
return ERR_OK;
}
void sys_mbox_free(sys_mbox_t *mbox)
{
KDeleteMsgQueue(*mbox);
}
int sys_mbox_valid(sys_mbox_t *mbox)
{
if (*mbox <= SYS_MBOX_NULL)
return 0;
else
return 1;
}
void sys_mbox_set_invalid(sys_mbox_t *mbox)
{
*mbox = SYS_MBOX_NULL;
}
void sys_mbox_post(sys_mbox_t *q, void *msg)
{
while(KMsgQueueSendwait( *q, &msg, sizeof(void *), WAITING_FOREVER) != EOK);
}
err_t sys_mbox_trypost(sys_mbox_t *q, void *msg)
{
if(KMsgQueueSend(*q, &msg, sizeof(void *)) == EOK)
return ERR_OK;
else
return ERR_MEM;
}
err_t sys_mbox_trypost_fromisr(sys_mbox_t *q, void *msg)
{
return sys_mbox_trypost(q, msg);
}
u32_t sys_arch_mbox_fetch(sys_mbox_t *q, void **msg, u32_t timeout)
{
x_ticks_t start_tick = 0 ;
int32 wait_time = 0;
start_tick = CurrentTicksGain();
if (0 == timeout)
wait_time = WAITING_FOREVER;
else
wait_time = timeout;
if(KMsgQueueRecv(*q, &(*msg), sizeof(void *), wait_time) == EOK)
return ((CurrentTicksGain()-start_tick)*MS_PER_SYSTICK_F407);
else{
*msg = NULL;
return SYS_ARCH_TIMEOUT;
}
}
u32_t sys_arch_mbox_tryfetch(sys_mbox_t *q, void **msg)
{
if(KMsgQueueRecv(*q, &(*msg), sizeof(void *), 0) == EOK)
return ERR_OK;
else
return SYS_MBOX_EMPTY;
}
#if LWIP_NETCONN_SEM_PER_THREAD
#error LWIP_NETCONN_SEM_PER_THREAD==1 not supported
#endif /* LWIP_NETCONN_SEM_PER_THREAD */
#endif /* !NO_SYS */
/* Variables Initialization */
struct netif gnetif;
ip4_addr_t ipaddr;
ip4_addr_t netmask;
ip4_addr_t gw;
void TcpIpInit(void)
{
tcpip_init(NULL, NULL);
/* IP addresses initialization */
/* USER CODE BEGIN 0 */
#if LWIP_DHCP
ip_addr_set_zero_ip4(&ipaddr);
ip_addr_set_zero_ip4(&netmask);
ip_addr_set_zero_ip4(&gw);
#else
#ifdef SET_AS_SERVER
IP4_ADDR(&ipaddr,IP_ADDR0_SERVER,IP_ADDR1_SERVER,IP_ADDR2_SERVER,IP_ADDR3_SERVER);
#else
IP4_ADDR(&ipaddr,IP_ADDR0_ClIENT,IP_ADDR1_ClIENT,IP_ADDR2_ClIENT,IP_ADDR3_ClIENT);
#endif
IP4_ADDR(&netmask,NETMASK_ADDR0,NETMASK_ADDR1,NETMASK_ADDR2,NETMASK_ADDR3);
IP4_ADDR(&gw,GW_ADDR0,GW_ADDR1,GW_ADDR2,GW_ADDR3);
#endif /* USE_DHCP */
/* USER CODE END 0 */
/* Initilialize the LwIP stack without RTOS */
/* add the network interface (IPv4/IPv6) without RTOS */
netif_add(&gnetif, &ipaddr, &netmask, &gw, NULL, &ethernetif0_init, &tcpip_input);
/* Registers the default network interface */
netif_set_default(&gnetif);
if (netif_is_link_up(&gnetif))
{
/* When the netif is fully configured this function must be called */
KPrintf("TcpIpInit : netif_set_up\n");
netif_set_up(&gnetif);
}
else
{
/* When the netif link is down this function must be called */
KPrintf("TcpIpInit : netif_set_down\n");
netif_set_down(&gnetif);
}
#if LWIP_DHCP
int err;
/* Creates a new DHCP client for this interface on the first call.
Note: you must call dhcp_fine_tmr() and dhcp_coarse_tmr() at
the predefined regular intervals after starting the client.
You can peek in the netif->dhcp struct for the actual DHCP status.*/
err = dhcp_start(&gnetif);
if(err == ERR_OK)
KPrintf("lwip dhcp init success...\n\n");
else
KPrintf("lwip dhcp init fail...\n\n");
while(ip_addr_cmp(&(gnetif.ip_addr),&ipaddr))
{
DelayKTask(1);
}
#endif
KPrintf("\n\nIP:%d.%d.%d.%d\n\n", \
((gnetif.ip_addr.addr)&0x000000ff), \
(((gnetif.ip_addr.addr)&0x0000ff00)>>8), \
(((gnetif.ip_addr.addr)&0x00ff0000)>>16), \
((gnetif.ip_addr.addr)&0xff000000)>>24);
}
// lwip input thread to get network packet
void lwip_input_thread(void *param)
{
struct netif *net = param;
while (1)
{
/* Poll the driver, get any outstanding frames */
ethernetif_input(net);
sys_check_timeouts(); /* Handle all system timeouts for all core protocols */
// DelayKTask(1);
}
}
void lwip_config_input(struct netif *net)
{
pthread_t th_id = 0;
th_id = sys_thread_new("eth_input", lwip_input_thread, net, 4096, 15);
if (th_id >= 0) {
lw_print("%s %d successfully!\n", __func__, th_id);
} else {
lw_print("%s failed!\n", __func__);
}
}
void lwip_config_net(char *ip, char *mask, char *gw)
{
#if defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
mem_range_t non_dma_memory[] = NON_DMA_MEMORY_ARRAY;
#endif /* FSL_FEATURE_SOC_LPC_ENET_COUNT */
ip4_addr_t net_ipaddr, net_netmask, net_gw;
ethernetif_config_t cfg = {
.phyAddress = BOARD_ENET0_PHY_ADDRESS,
.clockName = kCLOCK_CoreSysClk,
.macAddress = configMAC_ADDR,
#if defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
.non_dma_memory = non_dma_memory,
#endif /* FSL_FEATURE_SOC_LPC_ENET_COUNT */
};
if(lwip_init_flag)
{
lw_print("lw: [%s] already ...\n", __func__);
IP4_ADDR(&net_ipaddr, ip[0], ip[1], ip[2], ip[3]);
IP4_ADDR(&net_netmask, mask[0], mask[1], mask[2], mask[3]);
IP4_ADDR(&net_gw, gw[0], gw[1], gw[2], gw[3]);
netif_set_down(&gnetif);
netif_set_gw(&gnetif, &net_gw);
netif_set_netmask(&gnetif, &net_netmask);
netif_set_ipaddr(&gnetif, &net_ipaddr);
netif_set_up(&gnetif);
return;
}
lwip_init_flag = 1;
lw_print("lw: [%s] start ...\n", __func__);
IP4_ADDR(&net_ipaddr, ip[0], ip[1], ip[2], ip[3]);
IP4_ADDR(&net_netmask, mask[0], mask[1], mask[2], mask[3]);
IP4_ADDR(&net_gw, gw[0], gw[1], gw[2], gw[3]);
lwip_init();
netif_add(&gnetif, &net_ipaddr, &net_netmask, &net_gw, &cfg, ethernetif0_init,
ethernet_input);
netif_set_default(&gnetif);
netif_set_up(&gnetif);
if(is_lwip_test)
{
lw_pr_info("\r\n************************************************\r\n");
lw_pr_info(" Network Configuration\r\n");
lw_pr_info("************************************************\r\n");
lw_pr_info(" IPv4 Address : %u.%u.%u.%u\r\n", ((u8_t *)&net_ipaddr)[0], ((u8_t *)&net_ipaddr)[1],
((u8_t *)&net_ipaddr)[2], ((u8_t *)&net_ipaddr)[3]);
lw_pr_info(" IPv4 Subnet mask : %u.%u.%u.%u\r\n", ((u8_t *)&net_netmask)[0], ((u8_t *)&net_netmask)[1],
((u8_t *)&net_netmask)[2], ((u8_t *)&net_netmask)[3]);
lw_pr_info(" IPv4 Gateway : %u.%u.%u.%u\r\n", ((u8_t *)&net_gw)[0], ((u8_t *)&net_gw)[1],
((u8_t *)&net_gw)[2], ((u8_t *)&net_gw)[3]);
lw_pr_info("************************************************\r\n");
}
lwip_config_input(&gnetif);
}
void lwip_config_tcp(char *ip, char *mask, char *gw)
{
#if defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
mem_range_t non_dma_memory[] = NON_DMA_MEMORY_ARRAY;
#endif /* FSL_FEATURE_SOC_LPC_ENET_COUNT */
ip4_addr_t net_ipaddr, net_netmask, net_gw;
ethernetif_config_t cfg = {
.phyAddress = BOARD_ENET0_PHY_ADDRESS,
.clockName = kCLOCK_CoreSysClk,
.macAddress = configMAC_ADDR,
#if defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0)
.non_dma_memory = non_dma_memory,
#endif /* FSL_FEATURE_SOC_LPC_ENET_COUNT */
};
if(lwip_init_flag)
{
lw_print("lw: [%s] already ...\n", __func__);
return;
}
lwip_init_flag = 1;
tcpip_init(NULL, NULL);
lw_print("lw: [%s] start ...\n", __func__);
IP4_ADDR(&net_ipaddr, ip[0], ip[1], ip[2], ip[3]);
IP4_ADDR(&net_netmask, mask[0], mask[1], mask[2], mask[3]);
IP4_ADDR(&net_gw, gw[0], gw[1], gw[2], gw[3]);
netif_add(&gnetif, &net_ipaddr, &net_netmask, &net_gw, &cfg, ethernetif0_init,
tcpip_input);
netif_set_default(&gnetif);
netif_set_up(&gnetif);
lw_print("\r\n************************************************\r\n");
lw_print(" Network Configuration\r\n");
lw_print("************************************************\r\n");
lw_print(" IPv4 Address : %u.%u.%u.%u\r\n", ((u8_t *)&net_ipaddr)[0], ((u8_t *)&net_ipaddr)[1],
((u8_t *)&net_ipaddr)[2], ((u8_t *)&net_ipaddr)[3]);
lw_print(" IPv4 Subnet mask : %u.%u.%u.%u\r\n", ((u8_t *)&net_netmask)[0], ((u8_t *)&net_netmask)[1],
((u8_t *)&net_netmask)[2], ((u8_t *)&net_netmask)[3]);
lw_print(" IPv4 Gateway : %u.%u.%u.%u\r\n", ((u8_t *)&net_gw)[0], ((u8_t *)&net_gw)[1],
((u8_t *)&net_gw)[2], ((u8_t *)&net_gw)[3]);
lw_print("************************************************\r\n");
lwip_config_input(&gnetif);
}