firstcommit

This commit is contained in:
豪大大鸡排洞洞花园店 2023-09-23 23:18:53 +08:00
parent a1df906d16
commit 81aa9f5fcb
7 changed files with 346 additions and 436 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 75 KiB

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 102 KiB

After

Width:  |  Height:  |  Size: 130 KiB

View File

Binary file not shown.

Before

Width:  |  Height:  |  Size: 94 KiB

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 95 KiB

After

Width:  |  Height:  |  Size: 382 KiB

635
APP_Framework/Applications/app_test/test_hash/test_hash.c Normal file → Executable file
View File

@ -1,323 +1,328 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "test_hash.h" // 包含头文件
/**
* @file: test_hash.c
* @brief: a application of test hash function
* @version: 3.0
* @author: Yao wenying
* @date: 2023/05/26
*/
// 声明 resizeHashMap 函数
void resizeHashMap(struct hashMap* map, int newSize);
#include <transform.h>
#include"test_hash.h"
// 修改后的哈希函数,根据键的最后一位数字生成哈希码
unsigned int defaultHashCode(const void* key) {
unsigned int hash = 0;
const char* str = (const char*)key;
int defaultHashCode(HashMap hashMap, let key) {
char * k = (char *)key;
unsigned long h = 0;
while (*k) {
h = (h << 4) + *k++;
unsigned long g = h & 0xF0000000L;
if (g) {
h ^= g >> 24;
}
h &= ~g;
}
return h % hashMap->listSize;
}
Boolean defaultEqual(let key1, let key2) {
return strcmp((string)key1, (string)key2) ? False : True;
}
void resetHashMap(HashMap hashMap, int listSize) {
if (listSize < 8) return;
// 键值对临时存储空间
Entry tempList = newEntryList(hashMap->size);
HashMapIterator iterator = createHashMapIterator(hashMap);
int length = hashMap->size;
for (int index = 0; hasNextHashMapIterator(iterator); index++) {
// 迭代取出所有键值对
iterator = nextHashMapIterator(iterator);
tempList[index].key = iterator->entry->key;
tempList[index].value = iterator->entry->value;
tempList[index].next = NULL;
}
freeHashMapIterator(&iterator);
// 清除原有键值对数据
hashMap->size = 0;
for (int i = 0; i < hashMap->listSize; i++) {
Entry current = &hashMap->list[i];
current->key = NULL;
current->value = NULL;
if (current->next != NULL) {
while (current->next != NULL) {
Entry temp = current->next->next;
free(current->next);
current->next = temp;
}
}
}
// 更改内存大小
hashMap->listSize = listSize;
Entry relist = (Entry)realloc(hashMap->list, hashMap->listSize * sizeof(struct entry));
if (relist != NULL) {
hashMap->list = relist;
relist = NULL;
}
// 初始化数据
for (int i = 0; i < hashMap->listSize; i++) {
hashMap->list[i].key = NULL;
hashMap->list[i].value = NULL;
hashMap->list[i].next = NULL;
}
// 将所有键值对重新写入内存
for (int i = 0; i < length; i++) {
hashMap->put(hashMap, tempList[i].key, tempList[i].value);
}
free(tempList);
}
void defaultPut(HashMap hashMap, let key, let value) {
// 获取哈希值
int index = hashMap->hashCode(hashMap, key);
if (hashMap->list[index].key == NULL) {
hashMap->size++;
// 该地址为空时直接存储
hashMap->list[index].key = key;
hashMap->list[index].value = value;
}
else {
Entry current = &hashMap->list[index];
while (current != NULL) {
if (hashMap->equal(key, current->key)) {
// 对于键值已经存在的直接覆盖
current->value = value;
return;
}
current = current->next;
};
// 发生冲突则创建节点挂到相应位置的next上
Entry entry = newEntry();
entry->key = key;
entry->value = value;
entry->next = hashMap->list[index].next;
hashMap->list[index].next = entry;
hashMap->size++;
}
if (hashMap->autoAssign && hashMap->size >= hashMap->listSize) {
// 内存扩充至原来的两倍
// *注: 扩充时考虑的是当前存储元素数量与存储空间的大小关系,而不是存储空间是否已经存满,
// 例如: 存储空间为10存入了10个键值对但是全部冲突了所以存储空间空着9个其余的全部挂在一个上面
// 这样检索的时候和遍历查询没有什么区别了可以简单这样理解当我存入第11个键值对的时候一定会发生冲突
// 这是由哈希函数本身的特性(取模)决定的,冲突就会导致检索变慢,所以这时候扩充存储空间,对原有键值对进行
// 再次散列,会把冲突的数据再次分散开,加快索引定位速度。
resetHashMap(hashMap, hashMap->listSize * 2);
}
}
let defaultGet(HashMap hashMap, let key) {
if (hashMap->exists(hashMap, key)) {
int index = hashMap->hashCode(hashMap, key);
Entry entry = &hashMap->list[index];
while (entry != NULL) {
if (hashMap->equal(entry->key, key)) {
return entry->value;
}
entry = entry->next;
}
}
return NULL;
}
let defaultRemove(HashMap hashMap, let key) {
int index = hashMap->hashCode(hashMap, key);
Entry entry = &hashMap->list[index];
if (entry->key == NULL) {
return NULL;
}
let entryKey = entry->key;
Boolean result = False;
if (hashMap->equal(entry->key, key)) {
hashMap->size--;
if (entry->next != NULL) {
Entry temp = entry->next;
entry->key = temp->key;
entry->value = temp->value;
entry->next = temp->next;
free(temp);
}
else {
entry->key = NULL;
entry->value = NULL;
}
result = True;
}
else {
Entry p = entry;
entry = entry->next;
while (entry != NULL) {
if (hashMap->equal(entry->key, key)) {
hashMap->size--;
p->next = entry->next;
free(entry);
result = True;
break;
}
p = entry;
entry = entry->next;
};
}
// 如果空间占用不足一半,则释放多余内存
if (result && hashMap->autoAssign && hashMap->size < hashMap->listSize / 2) {
resetHashMap(hashMap, hashMap->listSize / 2);
}
return entryKey;
}
Boolean defaultExists(HashMap hashMap, let key) {
int index = hashMap->hashCode(hashMap, key);
Entry entry = &hashMap->list[index];
if (entry->key == NULL) {
return False;
}
else {
while (entry != NULL) {
if (hashMap->equal(entry->key, key)) {
return True;
}
entry = entry->next;
}
return False;
}
}
void defaultClear(HashMap hashMap) {
for (int i = 0; i < hashMap->listSize; i++) {
// 释放冲突值内存
Entry entry = hashMap->list[i].next;
while (entry != NULL) {
Entry next = entry->next;
free(entry);
entry = next;
}
hashMap->list[i].next = NULL;
}
// 释放存储空间
free(hashMap->list);
hashMap->list = NULL;
hashMap->size = -1;
hashMap->listSize = 0;
}
HashMap createHashMap(HashCode hashCode, Equal equal) {
HashMap hashMap = newHashMap();
if (hashMap == NULL) {
return NULL;
}
hashMap->size = 0;
hashMap->listSize = 8;
hashMap->hashCode = hashCode == NULL ? defaultHashCode : hashCode;
hashMap->equal = equal == NULL ? defaultEqual : equal;
hashMap->exists = defaultExists;
hashMap->get = defaultGet;
hashMap->put = defaultPut;
hashMap->remove = defaultRemove;
hashMap->clear = defaultClear;
hashMap->autoAssign = True;
// 起始分配8个内存空间溢出时会自动扩充
hashMap->list = newEntryList(hashMap->listSize);
if (hashMap->list == NULL) {
return NULL;
}
Entry p = hashMap->list;
for (int i = 0; i < hashMap->listSize; i++) {
p[i].key = p[i].value = p[i].next = NULL;
}
return hashMap;
}
HashMapIterator createHashMapIterator(HashMap hashMap) {
HashMapIterator iterator = newHashMapIterator();
if (iterator == NULL) {
return NULL;
}
iterator->hashMap = hashMap;
iterator->count = 0;
iterator->hashCode = -1;
iterator->entry = NULL;
return iterator;
}
Boolean hasNextHashMapIterator(HashMapIterator iterator) {
return iterator->count < iterator->hashMap->size ? True : False;
}
HashMapIterator nextHashMapIterator(HashMapIterator iterator) {
if (hasNextHashMapIterator(iterator)) {
if (iterator->entry != NULL && iterator->entry->next != NULL) {
iterator->count++;
iterator->entry = iterator->entry->next;
return iterator;
}
while (++iterator->hashCode < iterator->hashMap->listSize) {
Entry entry = &iterator->hashMap->list[iterator->hashCode];
if (entry->key != NULL) {
iterator->count++;
iterator->entry = entry;
break;
}
}
}
return iterator;
}
void freeHashMapIterator(HashMapIterator * iterator) {
free(*iterator);
*iterator = NULL;
}
#define Put(map, key, value) map->put(map, (void *)key, (void *)value);
#define Get(map, key) (char *)map->get(map, (void *)key)
#define Remove(map, key) map->remove(map, (void *)key)
#define Existe(map, key) map->exists(map, (void *)key)
void TestHash() {
HashMap map = createHashMap(NULL, NULL);
Put(map, "000123", "Annie");
Put(map, "000245", "Bob");
Put(map, "000284", "Daniel");
Put(map, "000281", "Luna");
Put(map, "000587", "Yao");
Put(map, "000985", "Li Ming");
Put(map, "000852", "Janne");
printf("print the key-values in hashmap:\n");
HashMapIterator iterator = createHashMapIterator(map);
while (hasNextHashMapIterator(iterator)) {
iterator = nextHashMapIterator(iterator);
printf("{ key: %s, key: %s, hashcode: %d }\n",
(char *)iterator->entry->key, (char *)iterator->entry->value, iterator->hashCode);
// 找到字符串的最后一个字符
while (*str) {
hash = *str - '0'; // 将最后一位数字转换为整数并赋予哈希码
str++;
}
printf("key: 000852, exists: %s\n", Existe(map, "000852") ? "true" : "false");
printf("000852: %s\n", Get(map, "000852"));
printf("remove 000852 %s\n", Remove(map, "000852") ? "true" : "false");
printf("key: 000852, exists: %s\n", Existe(map, "000852") ? "true" : "false");
map->clear(map);
freeHashMapIterator(&iterator);
return hash;
}
// 默认判等函数,适用于字符串键
int defaultEqual(const void* key1, const void* key2) {
return strcmp((const char*)key1, (const char*)key2) == 0;
}
// 默认清空Map函数
void defaultClear(HashMap map) {
if (map == NULL) {
return;
}
// 释放每个键值对链表
for (int i = 0; i < map->listSize; i++) {
Entry entry = map->list[i];
while (entry != NULL) {
Entry temp = entry;
entry = entry->next;
free(temp);
}
map->list[i] = NULL;
}
map->size = 0;
}
// 默认添加键值对函数
// 修改 defaultPut 函数来处理哈希冲突
void defaultPut(HashMap map, const void* key, const void* value) {
if (map == NULL || key == NULL) {
return;
}
// 计算哈希值
unsigned int index = map->hashCode(key) % map->listSize;
// 查找是否已经存在相同的键
Entry entry = map->list[index];
Entry prev = NULL;
while (entry != NULL) {
if (map->equal(entry->key, key)) {
// 如果找到相同的键,更新值并返回
entry->value = value;
return;
}
prev = entry;
entry = entry->next;
}
// 创建新的键值对
Entry newEntry = (Entry)malloc(sizeof(struct entry));
if (newEntry == NULL) {
fprintf(stderr, "内存分配失败\n");
exit(1);
}
newEntry->key = key;
newEntry->value = value;
newEntry->next = NULL;
// 如果链表为空,直接插入
if (prev == NULL) {
map->list[index] = newEntry;
}
else {
// 否则将新节点链接到链表末尾
prev->next = newEntry;
}
map->size++;
// 如果需要自动扩容
if (map->autoAssign && map->size >= map->listSize) {
resizeHashMap(map, map->listSize * 2);
}
}
// 默认获取键对应值函数
const void* defaultGet(HashMap map, const void* key) {
if (map == NULL || key == NULL) {
return NULL;
}
// 计算哈希值
unsigned int index = map->hashCode(key) % map->listSize;
// 查找键值对
Entry entry = map->list[index];
while (entry != NULL) {
if (map->equal(entry->key, key)) {
return entry->value;
}
entry = entry->next;
}
return NULL; // 键不存在
}
// 默认删除键值对函数
void defaultRemove(HashMap map, const void* key) {
if (map == NULL || key == NULL) {
return;
}
// 计算哈希值
unsigned int index = map->hashCode(key) % map->listSize;
// 查找并删除键值对
Entry entry = map->list[index];
Entry prev = NULL;
while (entry != NULL) {
if (map->equal(entry->key, key)) {
if (prev != NULL) {
prev->next = entry->next;
}
else {
map->list[index] = entry->next;
}
free(entry);
map->size--;
return;
}
prev = entry;
entry = entry->next;
}
}
// 默认判断键是否存在函数
int defaultExists(HashMap map, const void* key) {
if (map == NULL || key == NULL) {
return 0;
}
// 计算哈希值
unsigned int index = map->hashCode(key) % map->listSize;
// 查找键值对
Entry entry = map->list[index];
while (entry != NULL) {
if (map->equal(entry->key, key)) {
return 1; // 键存在
}
entry = entry->next;
}
return 0; // 键不存在
}
// 重新构建哈希表,用于动态扩容
void resizeHashMap(HashMap map, int newSize) {
if (map == NULL || newSize <= map->listSize) {
return;
}
Entry* newList = (Entry*)calloc(newSize, sizeof(Entry));
if (newList == NULL) {
fprintf(stderr, "内存分配失败\n");
exit(1);
}
// 将原有键值对重新哈希到新的存储区域
for (int i = 0; i < map->listSize; i++) {
Entry entry = map->list[i];
while (entry != NULL) {
Entry next = entry->next;
unsigned int newIndex = map->hashCode(entry->key) % newSize;
entry->next = newList[newIndex];
newList[newIndex] = entry;
entry = next;
}
}
free(map->list);
map->list = newList;
map->listSize = newSize;
}
// 创建一个哈希结构
HashMap createHashMap(int initialSize, HashCode hashCode, Equal equal, int autoAssign) {
HashMap map = (HashMap)malloc(sizeof(struct hashMap));
if (map == NULL) {
fprintf(stderr, "内存分配失败\n");
exit(1);
}
map->size = 0;
map->listSize = initialSize;
map->hashCode = (hashCode != NULL) ? hashCode : defaultHashCode;
map->equal = (equal != NULL) ? equal : defaultEqual;
map->list = (Entry*)calloc(initialSize, sizeof(Entry));
map->put = defaultPut; // 初始化为 defaultPut 函数
map->get = defaultGet; // 初始化为 defaultGet 函数
map->remove = defaultRemove; // 初始化为 defaultRemove 函数
map->clear = defaultClear; // 初始化为 defaultClear 函数
map->exists = defaultExists; // 初始化为 defaultExists 函数
map->autoAssign = autoAssign;
return map;
}
// 示例函数,用于测试链地址法解决哈希冲突
void TestHash() {
// 创建哈希结构
HashMap map = createHashMap(10, defaultHashCode, defaultEqual, 1);
printf("创建哈希结构\n");
// 添加键值对
const char* no1 = "20414";
const char* name1 = "Shi Tou";
printf("添加键值对 - Key: %s, Value: %s\n", no1, name1);
map->put(map, no1, name1);
const char* no2 = "20237";
const char* name2 = "Wang Le";
printf("添加键值对 - Key: %s, Value: %s\n", no2, name2);
map->put(map, no2, name2);
const char* no3 = "19385";
const char* name3 = "Zhong Jun";
printf("添加键值对 - Key: %s, Value: %s\n", no3, name3);
map->put(map, no3, name3);
const char* no4 = "24378";
const char* name4 = "fu rui";
printf("添加键值对 - Key: %s, Value: %s\n", no4, name4);
map->put(map, no4, name4);
printf("\n");
// 输出所有键值对和相应的 hashcode
printf("输出所有键值对和相应的 hashcode\n");
for (int i = 0; i < map->listSize; i++) {
Entry entry = map->list[i];
while (entry != NULL) {
printf("Key: %s, Value: %s, HashCode: %u\n", (const char*)entry->key, (const char*)entry->value, map->hashCode(entry->key));
entry = entry->next;
}
}
printf("\n");
// 获取键对应值
printf("获取键对应值 - Key: %s\n", no1);
const char* name = (const char*)map->get(map, no1);
if (name != NULL) {
printf("%s is %s\n", no1, name);
}
printf("\n");
// 判断键是否存在
printf("判断键是否存在 - Key: %s\n", no2);
if (map->exists(map, no2)) {
printf("%s 存在\n", no2);
}
else {
printf("%s 不存在\n", no2);
}
printf("\n");
// 删除键值对
printf("删除键值对 - Key: %s\n", no2);
map->remove(map, no2);
printf("\n");
// 判断键是否存在
printf("判断键是否存在 - Key: %s\n", no2);
if (map->exists(map, no2)) {
printf("%s 存在\n", no2);
}
else {
printf("%s 不存在\n", no2);
}
printf("\n");
// 添加具有相同哈希值的键值对,模拟哈希冲突
const char* no5 = "20425";
const char* name5 = "xiao chen";
printf("添加键值对 - Key: %s, Value: %s (哈希冲突)\n", no5, name5);
map->put(map, no5, name5);
printf("\n");
// 输出所有键值对和相应的 hashcode
printf("输出所有键值对和相应的 hashcode包括哈希冲突\n");
for (int i = 0; i < map->listSize; i++) {
Entry entry = map->list[i];
while (entry != NULL) {
printf("Key: %s, Value: %s, HashCode: %u\n", (const char*)entry->key, (const char*)entry->value, map->hashCode(entry->key));
entry = entry->next;
}
}
// 清空 Map
map->clear(map);
// 释放哈希结构
free(map->list);
free(map);
}
PRIV_SHELL_CMD_FUNCTION(TestHash, Implement hash_map, PRIV_SHELL_CMD_MAIN_ATTR);

147
APP_Framework/Applications/app_test/test_hash/test_hash.h Normal file → Executable file
View File

@ -1,129 +1,34 @@
#ifndef TEST_HASH_H
#define TEST_HASH_H
/**
* @file: test_hash.h
* @brief: a application of test hash function
* @version: 3.0
* @author: Yao wenying
* @date: 2023/05/26
*/
#ifndef __HASHMAP_H__
#define __HASHMAP_H__
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
// 实现数据的基本类型
// 字符串类型
#define string char *
#define newString(str) strcpy((char *)malloc(strlen(str) + 1), str)
#define NEW(type) (type *)malloc(sizeof(type))
// 布尔类型
enum _Boolean { True = 1, False = 0 };
typedef enum _Boolean Boolean;
#define let void *
// 键值对结构
typedef struct entry {
let key; // 键
let value; // 值
struct entry * next; // 冲突链表
}*Entry;
const void* key;
const void* value;
struct entry* next;
} *Entry;
#define newEntry() NEW(struct entry)
#define newEntryList(length) (Entry)malloc(length * sizeof(struct entry))
// 哈希函数的类型定义
typedef unsigned int (*HashCode)(const void* key);
// 判断两个键是否相等的函数类型定义
typedef int (*Equal)(const void* key1, const void* key2);
// 哈希结构
typedef struct hashMap *HashMap;
#define newHashMap() NEW(struct hashMap)
// 哈希函数类型
typedef int(*HashCode)(HashMap, let key);
// 判等函数类型
typedef Boolean(*Equal)(let key1, let key2);
// 添加键函数类型
typedef void(*Put)(HashMap hashMap, let key, let value);
// 获取键对应值的函数类型
typedef let(*Get)(HashMap hashMap, let key);
// 删除键的函数类型
typedef let(*Remove)(HashMap hashMap, let key);
// 清空Map的函数类型
typedef void(*Clear)(HashMap hashMap);
// 判断键值是否存在的函数类型
typedef Boolean(*Exists)(HashMap hashMap, let key);
typedef struct hashMap {
int size; // 当前大小
int listSize; // 有效空间大小
HashCode hashCode; // 哈希函数
Equal equal; // 判等函数
Entry list; // 存储区域
Put put; // 添加键的函数
Get get; // 获取键对应值的函数
Remove remove; // 删除键
Clear clear; // 清空Map
Exists exists; // 判断键是否存在
Boolean autoAssign; // 设定是否根据当前数据量动态调整内存大小,默认开启
}*HashMap;
int size; // 当前大小
int listSize; // 有效空间大小
HashCode hashCode; // 哈希函数
Equal equal; // 判等函数
Entry* list; // 存储区域
void (*put)(struct hashMap* map, const void* key, const void* value); // 添加键的函数
const void* (*get)(struct hashMap* map, const void* key); // 获取键对应值的函数
void (*remove)(struct hashMap* map, const void* key); // 删除键
void (*clear)(struct hashMap* map); // 清空Map
int (*exists)(struct hashMap* map, const void* key); // 判断键是否存在
int autoAssign; // 是否根据当前数据量动态调整内存大小,默认开启
} *HashMap;
// 迭代器结构
typedef struct hashMapIterator {
Entry entry; // 迭代器当前指向
int count; // 迭代次数
int hashCode; // 键值对的哈希值
HashMap hashMap;
}*HashMapIterator;
// 在此放置函数原型
#define newHashMapIterator() NEW(struct hashMapIterator)
// 默认哈希函数
static int defaultHashCode(HashMap hashMap, let key);
// 默认判断键值是否相等
static Boolean defaultEqual(let key1, let key2);
// 默认添加键值对
static void defaultPut(HashMap hashMap, let key, let value);
// 默认获取键对应值
static let defaultGet(HashMap hashMap, let key);
// 默认删除键
static let defaultRemove(HashMap hashMap, let key);
// 默认判断键是否存在
static Boolean defaultExists(HashMap hashMap, let key);
// 默认清空Map
static void defaultClear(HashMap hashMap);
// 重新构建
static void resetHashMap(HashMap hashMap, int listSize);
// 创建一个哈希结构
HashMap createHashMap(HashCode hashCode, Equal equal);
// 创建哈希结构迭代器
HashMapIterator createHashMapIterator(HashMap hashMap);
// 迭代器是否有下一个
Boolean hasNextHashMapIterator(HashMapIterator iterator);
// 迭代到下一次
HashMapIterator nextHashMapIterator(HashMapIterator iterator);
// 释放迭代器内存
void freeHashMapIterator(HashMapIterator * iterator);
#endif // !__HASHMAP_H__
#endif /* TEST_HASH_H */