openharmony_kernel_liteos_m/arch/csky/v2/gcc/los_interrupt.c

581 lines
17 KiB
C

/*
* Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved.
* Copyright (c) 2020-2021 Huawei Device Co., Ltd. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "los_interrupt.h"
#include <stdarg.h>
#include "securec.h"
#include "los_context.h"
#include "los_arch_context.h"
#include "los_arch_interrupt.h"
#include "los_debug.h"
#include "los_hook.h"
#include "los_task.h"
#include "los_sched.h"
#include "los_memory.h"
#include "los_membox.h"
#define INT_OFFSET 6
#define PRI_OFF_PER_INT 8
#define PRI_PER_REG 4
#define PRI_OFF_IN_REG 6
#define PRI_BITS 2
#define PRI_HI 0
#define PRI_LOW 7
#define MASK_8_BITS 0xFF
#define MASK_32_BITS 0xFFFFFFFF
#define BYTES_OF_128_INT 4
#define TIM_INT_NUM 1
#define OS_USER_HWI_MIN 0
#define OS_USER_HWI_MAX (LOSCFG_PLATFORM_HWI_LIMIT - 1)
#define HWI_ALIGNSIZE 0x400
UINT32 g_intCount = 0;
CHAR g_trapStackBase[OS_TRAP_STACK_SIZE];
VIC_TYPE *VIC_REG = (VIC_TYPE *)VIC_REG_BASE;
UINT32 HwiNumValid(UINT32 num)
{
return ((num) >= OS_USER_HWI_MIN) && ((num) <= OS_USER_HWI_MAX);
}
UINT32 HalGetPsr(VOID)
{
UINT32 intSave;
__asm__ volatile("mfcr %0, psr" : "=r" (intSave) : : "memory");
return intSave;
}
UINT32 HalSetVbr(UINT32 intSave)
{
__asm__ volatile("mtcr %0, vbr" : : "r"(intSave) : "memory");
return intSave;
}
UINT32 HalIntLock(VOID)
{
UINT32 intSave;
__asm__ __volatile__(
"mfcr %0, psr \n"
"psrclr ie"
: "=r"(intSave)
:
: "memory");
return intSave;
}
UINT32 HalIntUnLock(VOID)
{
UINT32 intSave;
__asm__ __volatile__(
"mfcr %0, psr \n"
"psrset ie"
: "=r"(intSave)
:
: "memory");
return intSave;
}
VOID HalIntRestore(UINT32 intSave)
{
__asm__ __volatile__("mtcr %0, psr" : : "r"(intSave));
}
UINT32 HalIntLocked(VOID)
{
UINT32 intSave;
__asm__ volatile("mfcr %0, psr" : "=r" (intSave) : : "memory");
return !(intSave & (1 << INT_OFFSET));
}
UINT32 HalIrqUnmask(UINT32 hwiNum)
{
UINT32 intSave;
if (!HwiNumValid(hwiNum)) {
return LOS_ERRNO_HWI_NUM_INVALID;
}
intSave = LOS_IntLock();
VIC_REG->ISER[hwiNum / OS_SYS_VECTOR_CNT] = (UINT32)(1UL << (hwiNum % OS_SYS_VECTOR_CNT));
VIC_REG->ISSR[hwiNum / OS_SYS_VECTOR_CNT] = (UINT32)(1UL << (hwiNum % OS_SYS_VECTOR_CNT));
LOS_IntRestore(intSave);
return LOS_OK;
}
UINT32 HalIrqSetPriority(UINT32 hwiNum, UINT8 priority)
{
UINT32 intSave;
if (!HwiNumValid(hwiNum)) {
return LOS_ERRNO_HWI_NUM_INVALID;
}
if (!HWI_PRI_VALID(priority)) {
return OS_ERRNO_HWI_PRIO_INVALID;
}
intSave = LOS_IntLock();
VIC_REG->IPR[hwiNum / PRI_PER_REG] |= (((priority << PRI_OFF_IN_REG) << (hwiNum % PRI_PER_REG)) * PRI_OFF_PER_INT);
LOS_IntRestore(intSave);
return LOS_OK;
}
UINT32 HalIrqMask(HWI_HANDLE_T hwiNum)
{
UINT32 intSave;
if (!HwiNumValid(hwiNum)) {
return LOS_ERRNO_HWI_NUM_INVALID;
}
intSave = LOS_IntLock();
VIC_REG->ICER[hwiNum / OS_SYS_VECTOR_CNT] = (UINT32)(1UL << (hwiNum % OS_SYS_VECTOR_CNT));
LOS_IntRestore(intSave);
return LOS_OK;
}
UINT32 HalIrqPending(UINT32 hwiNum)
{
UINT32 intSave;
if (!HwiNumValid(hwiNum)) {
return LOS_ERRNO_HWI_NUM_INVALID;
}
intSave = LOS_IntLock();
VIC_REG->ISPR[hwiNum / OS_SYS_VECTOR_CNT] = (UINT32)(1UL << (hwiNum % OS_SYS_VECTOR_CNT));
LOS_IntRestore(intSave);
return LOS_OK;
}
UINT32 HalIrqClear(UINT32 hwiNum)
{
if (!HwiNumValid(hwiNum)) {
return LOS_ERRNO_HWI_NUM_INVALID;
}
VIC_REG->ICPR[hwiNum / OS_SYS_VECTOR_CNT] = (UINT32)(1UL << (hwiNum % OS_SYS_VECTOR_CNT));
return LOS_OK;
}
/* *
* @ingroup los_hwi
* Hardware interrupt form mapping handling function array.
*/
STATIC HWI_PROC_FUNC __attribute__((aligned(HWI_ALIGNSIZE))) g_hwiForm[OS_VECTOR_CNT] = {0};
#if (OS_HWI_WITH_ARG == 1)
typedef struct {
HWI_PROC_FUNC pfnHandler;
VOID *pParm;
} HWI_HANDLER_FUNC;
/* *
* @ingroup los_hwi
* Hardware interrupt handler form mapping handling function array.
*/
STATIC HWI_HANDLER_FUNC g_hwiHandlerForm[OS_VECTOR_CNT] = {{ (HWI_PROC_FUNC)0, (HWI_ARG_T)0 }};
/* *
* @ingroup los_hwi
* Set interrupt vector table.
*/
VOID OsSetVector(UINT32 num, HWI_PROC_FUNC vector, VOID *arg)
{
if ((num + OS_SYS_VECTOR_CNT) < OS_VECTOR_CNT) {
g_hwiForm[num + OS_SYS_VECTOR_CNT] = (HWI_PROC_FUNC)IrqEntry;
g_hwiHandlerForm[num + OS_SYS_VECTOR_CNT].pfnHandler = vector;
g_hwiHandlerForm[num + OS_SYS_VECTOR_CNT].pParm = arg;
HalIrqUnmask(num);
}
}
#else
/* *
* @ingroup los_hwi
* Hardware interrupt handler form mapping handling function array.
*/
STATIC HWI_PROC_FUNC g_hwiHandlerForm[OS_VECTOR_CNT] = {0};
/* *
* @ingroup los_hwi
* Set interrupt vector table.
*/
VOID OsSetVector(UINT32 num, HWI_PROC_FUNC vector)
{
if ((num + OS_SYS_VECTOR_CNT) < OS_VECTOR_CNT) {
g_hwiForm[num + OS_SYS_VECTOR_CNT] = IrqEntry;
g_hwiHandlerForm[num + OS_SYS_VECTOR_CNT] = vector;
HalIrqUnmask(num);
}
}
#endif
/* ****************************************************************************
Function : HalIntNumGet
Description : Get an interrupt number
Input : None
Output : None
Return : Interrupt Indexes number
**************************************************************************** */
LITE_OS_SEC_TEXT_MINOR UINT32 HalIntNumGet(VOID)
{
return HalGetPsr();
}
inline UINT32 HalIsIntActive(VOID)
{
return (g_intCount > 0);
}
/* ****************************************************************************
Function : HalHwiDefaultHandler
Description : default handler of the hardware interrupt
Input : None
Output : None
Return : None
**************************************************************************** */
LITE_OS_SEC_TEXT_MINOR VOID HalHwiDefaultHandler(VOID)
{
UINT32 irqNum = HalIntNumGet();
irqNum = (irqNum >> PSR_VEC_OFFSET) & MASK_8_BITS;
PRINT_ERR("%s irqnum:%x\n", __FUNCTION__, irqNum);
while (1) {}
}
WEAK VOID HalPreInterruptHandler(UINT32 arg)
{
return;
}
WEAK VOID HalAftInterruptHandler(UINT32 arg)
{
return;
}
/* ****************************************************************************
Function : HalInterrupt
Description : Hardware interrupt entry function
Input : None
Output : None
Return : None
**************************************************************************** */
LITE_OS_SEC_TEXT VOID HalInterrupt(VOID)
{
UINT32 hwiIndex;
UINT32 intSave;
intSave = LOS_IntLock();
g_intCount++;
LOS_IntRestore(intSave);
hwiIndex = HalIntNumGet();
hwiIndex = (hwiIndex >> PSR_VEC_OFFSET) & MASK_8_BITS;
OsHookCall(LOS_HOOK_TYPE_ISR_ENTER, hwiIndex);
HalPreInterruptHandler(hwiIndex);
#if (OS_HWI_WITH_ARG == 1)
if (g_hwiHandlerForm[hwiIndex].pfnHandler != 0) {
g_hwiHandlerForm[hwiIndex].pfnHandler((VOID *)g_hwiHandlerForm[hwiIndex].pParm);
}
#else
if (g_hwiHandlerForm[hwiIndex] != 0) {
g_hwiHandlerForm[hwiIndex]();
}
#endif
HalAftInterruptHandler(hwiIndex);
OsHookCall(LOS_HOOK_TYPE_ISR_EXIT, hwiIndex);
intSave = LOS_IntLock();
g_intCount--;
HalIrqEndCheckNeedSched();
LOS_IntRestore(intSave);
}
/* ****************************************************************************
Function : HalHwiCreate
Description : create hardware interrupt
Input : hwiNum --- hwi num to create
hwiPrio --- priority of the hwi
mode --- unused
handler --- hwi handler
arg --- param of the hwi handler
Output : None
Return : LOS_OK on success or error code on failure
**************************************************************************** */
LITE_OS_SEC_TEXT_INIT UINT32 HalHwiCreate(HWI_HANDLE_T hwiNum,
HWI_PRIOR_T hwiPrio,
HWI_MODE_T mode,
HWI_PROC_FUNC handler,
HWI_ARG_T arg)
{
UINT32 intSave;
if (handler == NULL) {
return OS_ERRNO_HWI_PROC_FUNC_NULL;
}
if (hwiNum >= OS_HWI_MAX_NUM) {
return OS_ERRNO_HWI_NUM_INVALID;
}
if (g_hwiHandlerForm[hwiNum + OS_SYS_VECTOR_CNT] != 0) {
return OS_ERRNO_HWI_ALREADY_CREATED;
}
if (g_hwiHandlerForm[hwiNum + OS_SYS_VECTOR_CNT] != 0) {
return OS_ERRNO_HWI_ALREADY_CREATED;
}
if (hwiPrio > OS_HWI_PRIO_LOWEST) {
return OS_ERRNO_HWI_PRIO_INVALID;
}
intSave = LOS_IntLock();
#if (OS_HWI_WITH_ARG == 1)
OsSetVector(hwiNum, handler, arg);
#else
OsSetVector(hwiNum, handler);
#endif
HalIrqUnmask(hwiNum);
(VOID)HalIrqSetPriority(hwiNum, (UINT8)hwiPrio);
LOS_IntRestore(intSave);
return LOS_OK;
}
/* ****************************************************************************
Function : HalHwiDelete
Description : Delete hardware interrupt
Input : hwiNum --- hwi num to delete
Output : None
Return : LOS_OK on success or error code on failure
**************************************************************************** */
LITE_OS_SEC_TEXT_INIT UINT32 HalHwiDelete(HWI_HANDLE_T hwiNum)
{
UINT32 intSave;
if (hwiNum >= OS_HWI_MAX_NUM) {
return OS_ERRNO_HWI_NUM_INVALID;
}
HalIrqMask(hwiNum);
intSave = LOS_IntLock();
g_hwiHandlerForm[hwiNum + OS_SYS_VECTOR_CNT] = 0;
LOS_IntRestore(intSave);
return LOS_OK;
}
ExcInfo g_excInfo = {0};
#if (LOSCFG_KERNEL_PRINTF != 0)
STATIC VOID OsExcTypeInfo(const ExcInfo *excInfo)
{
CHAR *phaseStr[] = {"exc in init", "exc in task", "exc in hwi"};
PRINTK("Type = %d\n", excInfo->type);
PRINTK("ThrdPid = %d\n", excInfo->thrdPid);
PRINTK("Phase = %s\n", phaseStr[excInfo->phase]);
PRINTK("FaultAddr = 0x%x\n", excInfo->faultAddr);
}
STATIC VOID OsExcCurTaskInfo(const ExcInfo *excInfo)
{
PRINTK("Current task info:\n");
if (excInfo->phase == OS_EXC_IN_TASK) {
LosTaskCB *taskCB = OS_TCB_FROM_TID(LOS_CurTaskIDGet());
PRINTK("Task name = %s\n", taskCB->taskName);
PRINTK("Task ID = %d\n", taskCB->taskID);
PRINTK("Task SP = 0x%x\n", (UINTPTR)taskCB->stackPointer);
PRINTK("Task ST = 0x%x\n", taskCB->topOfStack);
PRINTK("Task SS = 0x%x\n", taskCB->stackSize);
} else if (excInfo->phase == OS_EXC_IN_HWI) {
PRINTK("Exception occur in interrupt phase!\n");
} else {
PRINTK("Exception occur in system init phase!\n");
}
}
STATIC VOID OsExcRegInfo(const ExcInfo *excInfo)
{
EXC_CONTEXT_S *excContext = excInfo->context;
PRINTK("Exception reg dump:\n");
PRINTK("R0 = 0x%x\n"
"R1 = 0x%x\n"
"R2 = 0x%x\n"
"R3 = 0x%x\n"
"R4 = 0x%x\n"
"R5 = 0x%x\n"
"R6 = 0x%x\n"
"R7 = 0x%x\n"
"R8 = 0x%x\n"
"R9 = 0x%x\n"
"R10 = 0x%x\n"
"R11 = 0x%x\n"
"R12 = 0x%x\n"
"R13 = 0x%x\n"
"R14 = 0x%x\n"
"R15 = 0x%x\n"
"EPSR = 0x%x\n"
"EPC = 0x%x\n",
excContext->R0, excContext->R1, excContext->R2, excContext->R3, excContext->R4, excContext->R5,
excContext->R6, excContext->R7, excContext->R8, excContext->R9, excContext->R10, excContext->R11,
excContext->R12, excContext->R13, excContext->R14, excContext->R15, excContext->EPSR,
excContext->EPC);
}
STATIC VOID OsExcBackTraceInfo(const ExcInfo *excInfo)
{
UINTPTR LR[LOSCFG_BACKTRACE_DEPTH] = {0};
UINT32 index;
OsBackTraceHookCall(LR, LOSCFG_BACKTRACE_DEPTH, 0, excInfo->context->R14);
PRINTK("----- backtrace start -----\n");
for (index = 0; index < LOSCFG_BACKTRACE_DEPTH; index++) {
if (LR[index] == 0) {
break;
}
PRINTK("backtrace %d -- lr = 0x%x\n", index, LR[index]);
}
PRINTK("----- backtrace end -----\n");
}
STATIC VOID OsExcMemPoolCheckInfo(VOID)
{
PRINTK("\r\nmemory pools check:\n");
#if (LOSCFG_PLATFORM_EXC == 1)
MemInfoCB memExcInfo[OS_SYS_MEM_NUM];
UINT32 errCnt;
UINT32 i;
(VOID)memset_s(memExcInfo, sizeof(memExcInfo), 0, sizeof(memExcInfo));
errCnt = OsMemExcInfoGet(OS_SYS_MEM_NUM, memExcInfo);
if (errCnt < OS_SYS_MEM_NUM) {
errCnt += OsMemboxExcInfoGet(OS_SYS_MEM_NUM - errCnt, memExcInfo + errCnt);
}
if (errCnt == 0) {
PRINTK("all memory pool check passed!\n");
return;
}
for (i = 0; i < errCnt; i++) {
PRINTK("pool num = %d\n", i);
PRINTK("pool type = %d\n", memExcInfo[i].type);
PRINTK("pool addr = 0x%x\n", memExcInfo[i].startAddr);
PRINTK("pool size = 0x%x\n", memExcInfo[i].size);
PRINTK("pool free = 0x%x\n", memExcInfo[i].free);
PRINTK("pool blkNum = %d\n", memExcInfo[i].blockSize);
PRINTK("pool error node addr = 0x%x\n", memExcInfo[i].errorAddr);
PRINTK("pool error node len = 0x%x\n", memExcInfo[i].errorLen);
PRINTK("pool error node owner = %d\n", memExcInfo[i].errorOwner);
}
#endif
UINT32 ret = LOS_MemIntegrityCheck(LOSCFG_SYS_HEAP_ADDR);
if (ret == LOS_OK) {
PRINTK("system heap memcheck over, all passed!\n");
}
PRINTK("memory pool check end!\n");
}
#endif
STATIC VOID OsExcInfoDisplay(const ExcInfo *excInfo)
{
#if (LOSCFG_KERNEL_PRINTF != 0)
PRINTK("*************Exception Information**************\n");
OsExcTypeInfo(excInfo);
OsExcCurTaskInfo(excInfo);
OsExcRegInfo(excInfo);
OsExcBackTraceInfo(excInfo);
OsGetAllTskInfo();
OsExcMemPoolCheckInfo();
#endif
}
LITE_OS_SEC_TEXT_INIT VOID HalExcHandleEntry(EXC_CONTEXT_S *excBufAddr, UINT32 faultAddr)
{
UINT16 tmpFlag = ((excBufAddr->EPSR >> PSR_VEC_OFFSET) & MASK_8_BITS);
g_excInfo.nestCnt++;
UINT32 excType = (HalGetPsr() >> PSR_VEC_OFFSET) & MASK_8_BITS;
g_excInfo.type = excType;
g_excInfo.faultAddr = faultAddr;
if (g_losTask.runTask != NULL) {
if (tmpFlag > 0) {
g_excInfo.phase = OS_EXC_IN_HWI;
g_excInfo.thrdPid = tmpFlag;
} else {
g_excInfo.phase = OS_EXC_IN_TASK;
g_excInfo.thrdPid = g_losTask.runTask->taskID;
}
} else {
g_excInfo.phase = OS_EXC_IN_INIT;
g_excInfo.thrdPid = OS_NULL_INT;
}
g_excInfo.context = excBufAddr;
OsDoExcHook(EXC_INTERRUPT);
OsExcInfoDisplay(&g_excInfo);
HalSysExit();
}
/* stack protector */
WEAK UINT32 __stack_chk_guard = 0xd00a0dff;
WEAK VOID __stack_chk_fail(VOID)
{
/* __builtin_return_address is a builtin function, building in gcc */
LOS_Panic("stack-protector: Kernel stack is corrupted in: %x\n",
__builtin_return_address(0));
}
/* ****************************************************************************
Function : HalHwiInit
Description : initialization of the hardware interrupt
Input : None
Output : None
Return : None
**************************************************************************** */
LITE_OS_SEC_TEXT_INIT VOID HalHwiInit(VOID)
{
UINT32 i;
for (i = 1; i < OS_SYS_VECTOR_CNT; i++) {
g_hwiForm[i] = (HWI_PROC_FUNC)HandleEntry;
}
for (i = OS_SYS_VECTOR_CNT; i < (LOSCFG_PLATFORM_HWI_LIMIT + OS_SYS_VECTOR_CNT); i++) {
g_hwiForm[i] = (HWI_PROC_FUNC)IrqEntry;
}
HalSetVbr((UINT32)&g_hwiForm);
for (int i = 0; i < BYTES_OF_128_INT; i++) {
VIC_REG->IABR[i] = 0x0;
VIC_REG->ICPR[i] = MASK_32_BITS;
}
return;
}