openharmony_kernel_liteos_m/arch/xtensa/lx6/gcc/los_interrupt.c

555 lines
16 KiB
C

/*
* Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved.
* Copyright (c) 2020-2021 Huawei Device Co., Ltd. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "los_interrupt.h"
#include <stdarg.h>
#include "securec.h"
#include "los_context.h"
#include "los_arch_interrupt.h"
#include "los_debug.h"
#include "los_hook.h"
#include "los_task.h"
#include "los_sched.h"
#include "los_memory.h"
#include "los_membox.h"
#include "los_arch_regs.h"
UINT32 g_intCount = FALSE;
/* *
* @ingroup los_hwi
* Hardware interrupt form mapping handling function array.
*/
STATIC HWI_PROC_FUNC __attribute__((aligned(0x100))) g_hwiForm[OS_VECTOR_CNT] = {0};
#if (OS_HWI_WITH_ARG == 1)
typedef struct {
HWI_PROC_FUNC pfnHandler;
VOID *pParm;
} HWI_HANDLER_FUNC;
/* *
* @ingroup los_hwi
* Hardware interrupt handler form mapping handling function array.
*/
STATIC HWI_HANDLER_FUNC g_hwiHandlerForm[OS_VECTOR_CNT] = {{ (HWI_PROC_FUNC)0, (HWI_ARG_T)0 }};
/* *
* @ingroup los_hwi
* Set interrupt vector table.
*/
VOID OsSetVector(UINT32 num, HWI_PROC_FUNC vector, VOID *arg)
{
if ((num + OS_SYS_VECTOR_CNT) < OS_VECTOR_CNT) {
g_hwiForm[num + OS_SYS_VECTOR_CNT] = (HWI_PROC_FUNC)HalInterrupt;
g_hwiHandlerForm[num + OS_SYS_VECTOR_CNT].pfnHandler = vector;
g_hwiHandlerForm[num + OS_SYS_VECTOR_CNT].pParm = arg;
}
}
#else
/* *
* @ingroup los_hwi
* Hardware interrupt handler form mapping handling function array.
*/
STATIC HWI_PROC_FUNC g_hwiHandlerForm[OS_VECTOR_CNT] = {0};
/* *
* @ingroup los_hwi
* Set interrupt vector table.
*/
VOID OsSetVector(UINT32 num, HWI_PROC_FUNC vector)
{
if ((num + OS_SYS_VECTOR_CNT) < OS_VECTOR_CNT) {
g_hwiForm[num + OS_SYS_VECTOR_CNT] = HalInterrupt;
g_hwiHandlerForm[num + OS_SYS_VECTOR_CNT] = vector;
}
}
#endif
UINT32 HwiNumValid(UINT32 num)
{
return (num >= OS_SYS_VECTOR_CNT) && (num <= OS_VECTOR_CNT);
}
/* *
* @ingroup los_hwi
* Lock all interrupt.
*/
UINT32 HalIntLock(VOID)
{
UINT32 ret;
__asm__ volatile("rsil %0, %1" : "=r"(ret) : "i"(INT_MASK) : "memory");
return ret;
}
/* *
* @ingroup los_hwi
* Restore interrupt status.
*/
VOID HalIntRestore(UINT32 intSave)
{
__asm__ volatile("wsr.ps %0; rsync" : : "r"(intSave) : "memory");
}
/* *
* @ingroup los_hwi
* Unlock interrupt.
*/
UINT32 HalIntUnLock(VOID)
{
UINT32 intSave;
__asm__ volatile("rsil %0, %1" : "=r"(intSave) : "i"(0) : "memory");
return intSave;
}
/* *
* @ingroup los_hwi
* Determine if the interrupt is locked
*/
STATIC INLINE UINT32 HalIntLocked(VOID)
{
UINT32 intSave;
__asm__ volatile("rsr %0, ps " : "=r"(intSave) : : "memory");
return (intSave & SPREG_PS_DI_MASK);
}
/* *
* @ingroup los_hwi
* Trigger the interrupt
*/
UINT32 HalIrqPending(HWI_HANDLE_T hwiNum)
{
if (!HwiNumValid(hwiNum)) {
return OS_ERRNO_HWI_NUM_INVALID;
}
__asm__ __volatile__("wsr %0, intset; rsync" : : "a"(0x1U << hwiNum));
return LOS_OK;
}
/* *
* @ingroup los_hwi
* Unmask the interrupt
*/
UINT32 HalIrqUnmask(HWI_HANDLE_T hwiNum)
{
UINT32 ier;
if (!HwiNumValid(hwiNum)) {
return OS_ERRNO_HWI_NUM_INVALID;
}
__asm__ __volatile__("rsr %0, intenable" : "=a"(ier) : : "memory");
__asm__ __volatile__("wsr %0, intenable; rsync" : : "a"(ier | ((UINT32)0x1U << hwiNum)));
return LOS_OK;
}
/* *
* @ingroup los_hwi
* Mask the interrupt
*/
UINT32 HalIrqMask(HWI_HANDLE_T hwiNum)
{
UINT32 ier;
if (!HwiNumValid(hwiNum)) {
return OS_ERRNO_HWI_NUM_INVALID;
}
__asm__ __volatile__("rsr %0, intenable" : "=a"(ier) : : "memory");
__asm__ __volatile__("wsr %0, intenable; rsync" : : "a"(ier & ~((UINT32)0x1U << hwiNum)));
return LOS_OK;
}
/* ****************************************************************************
Function : HalIntNumGet
Description : Get an interrupt number
Input : None
Output : None
Return : Interrupt Indexes number
**************************************************************************** */
UINT32 HalIntNumGet(VOID)
{
UINT32 ier;
UINT32 intenable;
UINT32 intSave;
__asm__ __volatile__("rsr %0, interrupt" : "=a"(ier) : : "memory");
__asm__ __volatile__("rsr %0, intenable" : "=a"(intenable) : : "memory");
intSave = ier & intenable;
return __builtin_ffs(intSave) - 1;
}
/* *
* @ingroup los_hwi
* Clear the interrupt
*/
UINT32 HalIrqClear(HWI_HANDLE_T vector)
{
if (!HwiNumValid(vector)) {
return OS_ERRNO_HWI_NUM_INVALID;
}
__asm__ __volatile__("wsr %0, intclear; rsync" : : "a"(0x1U << vector));
return LOS_OK;
}
INLINE UINT32 HalIsIntActive(VOID)
{
return (g_intCount == TRUE);
}
/* ****************************************************************************
Function : HalHwiDefaultHandler
Description : default handler of the hardware interrupt
Input : None
Output : None
Return : None
**************************************************************************** */
VOID HalHwiDefaultHandler(VOID)
{
UINT32 irqNum = HalIntNumGet();
PRINT_ERR("%s irqnum:%d\n", __FUNCTION__, irqNum);
while (1) {}
}
WEAK VOID HalPreInterruptHandler(UINT32 arg)
{
return;
}
WEAK VOID HalAftInterruptHandler(UINT32 arg)
{
return;
}
/* ****************************************************************************
Function : HalInterrupt
Description : Hardware interrupt entry function
Input : None
Output : None
Return : None
**************************************************************************** */
VOID HalInterrupt(VOID)
{
UINT32 hwiIndex;
UINT32 intSave;
intSave = LOS_IntLock();
g_intCount = TRUE;
LOS_IntRestore(intSave);
hwiIndex = HalIntNumGet();
HalIrqClear(hwiIndex);
OsHookCall(LOS_HOOK_TYPE_ISR_ENTER, hwiIndex);
HalPreInterruptHandler(hwiIndex);
#if (OS_HWI_WITH_ARG == 1)
if (g_hwiHandlerForm[hwiIndex].pfnHandler != 0) {
g_hwiHandlerForm[hwiIndex].pfnHandler((VOID *)g_hwiHandlerForm[hwiIndex].pParm);
}
#else
if (g_hwiHandlerForm[hwiIndex] != 0) {
g_hwiHandlerForm[hwiIndex]();
}
#endif
HalAftInterruptHandler(hwiIndex);
OsHookCall(LOS_HOOK_TYPE_ISR_EXIT, hwiIndex);
intSave = LOS_IntLock();
g_intCount = FALSE;
LOS_IntRestore(intSave);
HalIrqEndCheckNeedSched();
}
/* ****************************************************************************
Function : HalHwiCreate
Description : create hardware interrupt
Input : hwiNum --- hwi num to create
hwiPrio --- priority of the hwi
mode --- unused
handler --- hwi handler
arg --- param of the hwi handler
Output : None
Return : LOS_OK on success or error code on failure
**************************************************************************** */
UINT32 HalHwiCreate(HWI_HANDLE_T hwiNum,
HWI_PRIOR_T hwiPrio,
HWI_MODE_T mode,
HWI_PROC_FUNC handler,
HWI_ARG_T arg)
{
UINT32 intSave;
if (handler == NULL) {
return OS_ERRNO_HWI_PROC_FUNC_NULL;
}
if (hwiNum >= OS_HWI_MAX_NUM) {
return OS_ERRNO_HWI_NUM_INVALID;
}
if (g_hwiForm[hwiNum + OS_SYS_VECTOR_CNT] != (HWI_PROC_FUNC)HalHwiDefaultHandler) {
return OS_ERRNO_HWI_ALREADY_CREATED;
}
if (hwiPrio > OS_HWI_PRIO_LOWEST) {
return OS_ERRNO_HWI_PRIO_INVALID;
}
intSave = LOS_IntLock();
#if (OS_HWI_WITH_ARG == 1)
OsSetVector(hwiNum, handler, arg);
#else
OsSetVector(hwiNum, handler);
#endif
HalIrqUnmask(hwiNum);
LOS_IntRestore(intSave);
return LOS_OK;
}
/* ****************************************************************************
Function : HalHwiDelete
Description : Delete hardware interrupt
Input : hwiNum --- hwi num to delete
Output : None
Return : LOS_OK on success or error code on failure
**************************************************************************** */
LITE_OS_SEC_TEXT_INIT UINT32 HalHwiDelete(HWI_HANDLE_T hwiNum)
{
UINT32 intSave;
if (hwiNum >= OS_HWI_MAX_NUM) {
return OS_ERRNO_HWI_NUM_INVALID;
}
HalIrqMask(hwiNum);
intSave = LOS_IntLock();
g_hwiForm[hwiNum + OS_SYS_VECTOR_CNT] = (HWI_PROC_FUNC)HalHwiDefaultHandler;
LOS_IntRestore(intSave);
return LOS_OK;
}
ExcInfo g_excInfo = {0};
#if (LOSCFG_KERNEL_PRINTF != 0)
STATIC VOID OsExcTypeInfo(const ExcInfo *excInfo)
{
CHAR *phaseStr[] = {"exc in init", "exc in task", "exc in hwi"};
PRINTK("Type = %d\n", excInfo->type);
PRINTK("ThrdPid = %d\n", excInfo->thrdPid);
PRINTK("Phase = %s\n", phaseStr[excInfo->phase]);
PRINTK("FaultAddr = 0x%x\n", excInfo->faultAddr);
}
STATIC VOID OsExcCurTaskInfo(const ExcInfo *excInfo)
{
PRINTK("Current task info:\n");
if (excInfo->phase == OS_EXC_IN_TASK) {
LosTaskCB *taskCB = OS_TCB_FROM_TID(LOS_CurTaskIDGet());
PRINTK("Task name = %s\n", taskCB->taskName);
PRINTK("Task ID = %d\n", taskCB->taskID);
PRINTK("Task SP = 0x%x\n", (UINTPTR)taskCB->stackPointer);
PRINTK("Task ST = 0x%x\n", taskCB->topOfStack);
PRINTK("Task SS = 0x%x\n", taskCB->stackSize);
} else if (excInfo->phase == OS_EXC_IN_HWI) {
PRINTK("Exception occur in interrupt phase!\n");
} else {
PRINTK("Exception occur in system init phase!\n");
}
}
STATIC VOID OsExcRegInfo(const ExcInfo *excInfo)
{
INT32 index;
PRINTK("Exception reg dump:\n");
PRINTK("sar = 0x%x\n", excInfo->context->sar);
PRINTK("excCause = 0x%x\n", excInfo->context->excCause);
PRINTK("excVaddr = 0x%x\n", excInfo->context->excVaddr);
PRINTK("lbeg = 0x%x\n", excInfo->context->lbeg);
PRINTK("lend = 0x%x\n", excInfo->context->lend);
PRINTK("lcount = 0x%x\n", excInfo->context->lcount);
PRINTK("pc = 0x%x\n", excInfo->context->pc);
PRINTK("ps = 0x%x\n", excInfo->context->ps);
for (index = 0; index < XTENSA_LOGREG_NUM; index++) {
PRINTK("regA%d = 0x%x\n", index, excInfo->context->regA[index]);
}
}
STATIC VOID OsExcBackTraceInfo(const ExcInfo *excInfo)
{
UINTPTR LR[LOSCFG_BACKTRACE_DEPTH] = {0};
UINT32 index;
OsBackTraceHookCall(LR, LOSCFG_BACKTRACE_DEPTH, 0, excInfo->context->regA[1]);
PRINTK("----- backtrace start -----\n");
for (index = 0; index < LOSCFG_BACKTRACE_DEPTH; index++) {
if (LR[index] == 0) {
break;
}
PRINTK("backtrace %d -- lr = 0x%x\n", index, LR[index]);
}
PRINTK("----- backtrace end -----\n");
}
STATIC VOID OsExcMemPoolCheckInfo(VOID)
{
PRINTK("\r\nmemory pools check:\n");
#if (LOSCFG_PLATFORM_EXC == 1)
MemInfoCB memExcInfo[OS_SYS_MEM_NUM];
UINT32 errCnt;
UINT32 i;
(VOID)memset_s(memExcInfo, sizeof(memExcInfo), 0, sizeof(memExcInfo));
errCnt = OsMemExcInfoGet(OS_SYS_MEM_NUM, memExcInfo);
if (errCnt < OS_SYS_MEM_NUM) {
errCnt += OsMemboxExcInfoGet(OS_SYS_MEM_NUM - errCnt, memExcInfo + errCnt);
}
if (errCnt == 0) {
PRINTK("all memory pool check passed!\n");
return;
}
for (i = 0; i < errCnt; i++) {
PRINTK("pool num = %d\n", i);
PRINTK("pool type = %d\n", memExcInfo[i].type);
PRINTK("pool addr = 0x%x\n", memExcInfo[i].startAddr);
PRINTK("pool size = 0x%x\n", memExcInfo[i].size);
PRINTK("pool free = 0x%x\n", memExcInfo[i].free);
PRINTK("pool blkNum = %d\n", memExcInfo[i].blockSize);
PRINTK("pool error node addr = 0x%x\n", memExcInfo[i].errorAddr);
PRINTK("pool error node len = 0x%x\n", memExcInfo[i].errorLen);
PRINTK("pool error node owner = %d\n", memExcInfo[i].errorOwner);
}
#endif
UINT32 ret = LOS_MemIntegrityCheck(LOSCFG_SYS_HEAP_ADDR);
if (ret == LOS_OK) {
PRINTK("system heap memcheck over, all passed!\n");
}
PRINTK("memory pool check end!\n");
}
#endif
STATIC VOID OsExcInfoDisplay(const ExcInfo *excInfo)
{
#if (LOSCFG_KERNEL_PRINTF != 0)
PRINTK("*************Exception Information**************\n");
OsExcTypeInfo(excInfo);
OsExcCurTaskInfo(excInfo);
OsExcRegInfo(excInfo);
OsExcBackTraceInfo(excInfo);
OsGetAllTskInfo();
OsExcMemPoolCheckInfo();
#endif
}
VOID HalExcHandleEntry(UINTPTR faultAddr, EXC_CONTEXT_S *excBufAddr, UINT32 type)
{
g_excInfo.nestCnt++;
g_excInfo.faultAddr = faultAddr;
g_excInfo.type = type;
LosTaskCB *taskCB = g_losTask.runTask;
if ((taskCB == NULL) || (taskCB == OS_TCB_FROM_TID(g_taskMaxNum))) {
g_excInfo.phase = OS_EXC_IN_INIT;
g_excInfo.thrdPid = OS_NULL_INT;
} else if (HalIntNumGet() != OS_NULL_INT) {
g_excInfo.phase = OS_EXC_IN_HWI;
g_excInfo.thrdPid = HalIntNumGet();
} else {
g_excInfo.phase = OS_EXC_IN_TASK;
g_excInfo.thrdPid = g_losTask.runTask->taskID;
}
g_excInfo.context = excBufAddr;
OsDoExcHook(EXC_INTERRUPT);
OsExcInfoDisplay(&g_excInfo);
HalSysExit();
}
/* Stack protector */
WEAK UINT32 __stack_chk_guard = 0xd00a0dff;
WEAK VOID __stack_chk_fail(VOID)
{
/* __builtin_return_address is a builtin function, building in gcc */
LOS_Panic("stack-protector: Kernel stack is corrupted in: 0x%x\n",
__builtin_return_address(0));
}
/* ****************************************************************************
Function : HalHwiInit
Description : initialization of the hardware interrupt
Input : None
Output : None
Return : None
**************************************************************************** */
VOID HalHwiInit(VOID)
{
EnableExceptionInterface();
for (UINT32 i = 0; i < OS_HWI_MAX_NUM; i++) {
g_hwiForm[i + OS_SYS_VECTOR_CNT] = HalHwiDefaultHandler;
HalIrqMask(i);
}
asm volatile ("wsr %0, vecbase" : : "r"(INIT_VECTOR_START));
return;
}