openharmony_kernel_liteos_m/kernel/src/mm/los_memory.c

2363 lines
78 KiB
C

/*
* Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved.
* Copyright (c) 2020-2022 Huawei Device Co., Ltd. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "los_memory.h"
#include "securec.h"
#include "los_arch.h"
#include "los_config.h"
#include "los_debug.h"
#include "los_hook.h"
#include "los_interrupt.h"
#include "los_task.h"
#ifdef LOSCFG_KERNEL_LMS
#include "los_lms_pri.h"
#endif
#if (LOSCFG_KERNEL_LMK == 1)
#include "los_lmk.h"
#endif
/* Used to cut non-essential functions. */
#define OS_MEM_EXPAND_ENABLE 0
UINT8 *m_aucSysMem0 = NULL;
#if (LOSCFG_SYS_EXTERNAL_HEAP == 0)
STATIC UINT8 g_memStart[LOSCFG_SYS_HEAP_SIZE];
#endif
#if (LOSCFG_MEM_MUL_POOL == 1)
VOID *g_poolHead = NULL;
#endif
/* The following is the macro definition and interface implementation related to the TLSF. */
/* Supposing a Second Level Index: SLI = 3. */
#define OS_MEM_SLI 3
/* Giving 1 free list for each small bucket: 4, 8, 12, up to 124. */
#define OS_MEM_SMALL_BUCKET_COUNT 31
#define OS_MEM_SMALL_BUCKET_MAX_SIZE 128
/* Giving 2^OS_MEM_SLI free lists for each large bucket. */
#define OS_MEM_LARGE_BUCKET_COUNT 24
/* OS_MEM_SMALL_BUCKET_MAX_SIZE to the power of 2 is 7. */
#define OS_MEM_LARGE_START_BUCKET 7
/* The count of free list. */
#define OS_MEM_FREE_LIST_COUNT (OS_MEM_SMALL_BUCKET_COUNT + (OS_MEM_LARGE_BUCKET_COUNT << OS_MEM_SLI))
/* The bitmap is used to indicate whether the free list is empty, 1: not empty, 0: empty. */
#define OS_MEM_BITMAP_WORDS ((OS_MEM_FREE_LIST_COUNT >> 5) + 1)
#define OS_MEM_BITMAP_MASK 0x1FU
/* Used to find the first bit of 1 in bitmap. */
STATIC INLINE UINT16 OsMemFFS(UINT32 bitmap)
{
bitmap &= ~bitmap + 1;
return (OS_MEM_BITMAP_MASK - CLZ(bitmap));
}
/* Used to find the last bit of 1 in bitmap. */
STATIC INLINE UINT16 OsMemFLS(UINT32 bitmap)
{
return (OS_MEM_BITMAP_MASK - CLZ(bitmap));
}
STATIC INLINE UINT32 OsMemLog2(UINT32 size)
{
return (size > 0) ? OsMemFLS(size) : 0;
}
/* Get the first level: f = log2(size). */
STATIC INLINE UINT32 OsMemFlGet(UINT32 size)
{
if (size < OS_MEM_SMALL_BUCKET_MAX_SIZE) {
return ((size >> 2) - 1); /* 2: The small bucket setup is 4. */
}
return (OsMemLog2(size) - OS_MEM_LARGE_START_BUCKET + OS_MEM_SMALL_BUCKET_COUNT);
}
/* Get the second level: s = (size - 2^f) * 2^SLI / 2^f. */
STATIC INLINE UINT32 OsMemSlGet(UINT32 size, UINT32 fl)
{
if ((fl < OS_MEM_SMALL_BUCKET_COUNT) || (size < OS_MEM_SMALL_BUCKET_MAX_SIZE)) {
PRINT_ERR("fl or size is too small, fl = %u, size = %u\n", fl, size);
return 0;
}
UINT32 sl = (size << OS_MEM_SLI) >> (fl - OS_MEM_SMALL_BUCKET_COUNT + OS_MEM_LARGE_START_BUCKET);
return (sl - (1 << OS_MEM_SLI));
}
/* The following is the memory algorithm related macro definition and interface implementation. */
#if (LOSCFG_TASK_MEM_USED != 1 && LOSCFG_MEM_FREE_BY_TASKID == 1 && (LOSCFG_BASE_CORE_TSK_LIMIT + 1) > 64)
#error "When enter here, LOSCFG_BASE_CORE_TSK_LIMIT larger than 63 is not support"
#endif
struct OsMemNodeHead {
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
UINT32 magic;
#endif
#if (LOSCFG_MEM_LEAKCHECK == 1)
UINTPTR linkReg[LOSCFG_MEM_RECORD_LR_CNT];
#endif
union {
struct OsMemNodeHead *prev; /* The prev is used for current node points to the previous node */
struct OsMemNodeHead *next; /* The next is used for sentinel node points to the expand node */
} ptr;
#if (LOSCFG_TASK_MEM_USED == 1)
UINT32 taskID;
UINT32 sizeAndFlag;
#elif (LOSCFG_MEM_FREE_BY_TASKID == 1)
UINT32 taskID : 6;
UINT32 sizeAndFlag : 26;
#else
UINT32 sizeAndFlag;
#endif
};
struct OsMemUsedNodeHead {
struct OsMemNodeHead header;
};
struct OsMemFreeNodeHead {
struct OsMemNodeHead header;
struct OsMemFreeNodeHead *prev;
struct OsMemFreeNodeHead *next;
};
struct OsMemPoolInfo {
VOID *pool;
UINT32 totalSize;
UINT32 attr;
#if (LOSCFG_MEM_WATERLINE == 1)
UINT32 waterLine; /* Maximum usage size in a memory pool */
UINT32 curUsedSize; /* Current usage size in a memory pool */
#endif
#if (LOSCFG_MEM_MUL_REGIONS == 1)
UINT32 totalGapSize;
#endif
};
struct OsMemPoolHead {
struct OsMemPoolInfo info;
UINT32 freeListBitmap[OS_MEM_BITMAP_WORDS];
struct OsMemFreeNodeHead *freeList[OS_MEM_FREE_LIST_COUNT];
#if (LOSCFG_MEM_MUL_POOL == 1)
VOID *nextPool;
#endif
};
/* The memory pool support expand. */
#define OS_MEM_POOL_EXPAND_ENABLE 0x01
/* The memory pool support no lock. */
#define OS_MEM_POOL_UNLOCK_ENABLE 0x02
#define MEM_LOCK(pool, state) do { \
if (!((pool)->info.attr & OS_MEM_POOL_UNLOCK_ENABLE)) { \
(state) = LOS_IntLock(); \
} \
} while (0);
#define MEM_UNLOCK(pool, state) do { \
if (!((pool)->info.attr & OS_MEM_POOL_UNLOCK_ENABLE)) { \
LOS_IntRestore(state); \
} \
} while (0);
#define OS_MEM_NODE_MAGIC 0xABCDDCBA
#if (LOSCFG_TASK_MEM_USED != 1 && LOSCFG_MEM_FREE_BY_TASKID == 1)
#define OS_MEM_NODE_USED_FLAG (1U << 25)
#define OS_MEM_NODE_ALIGNED_FLAG (1U << 24)
#if (LOSCFG_MEM_LEAKCHECK == 1)
#define OS_MEM_NODE_LEAK_FLAG (1U << 23)
#else
#define OS_MEM_NODE_LEAK_FLAG 0
#endif
#if (OS_MEM_EXPAND_ENABLE == 1)
#define OS_MEM_NODE_LAST_FLAG (1U << 22) /* Sentinel Node */
#else
#define OS_MEM_NODE_LAST_FLAG 0
#endif
#else
#define OS_MEM_NODE_USED_FLAG (1U << 31)
#define OS_MEM_NODE_ALIGNED_FLAG (1U << 30)
#if (LOSCFG_MEM_LEAKCHECK == 1)
#define OS_MEM_NODE_LEAK_FLAG (1U << 29)
#else
#define OS_MEM_NODE_LEAK_FLAG 0
#endif
#if (OS_MEM_EXPAND_ENABLE == 1)
#define OS_MEM_NODE_LAST_FLAG (1U << 28) /* Sentinel Node */
#else
#define OS_MEM_NODE_LAST_FLAG 0
#endif
#endif
#define OS_MEM_NODE_ALIGNED_AND_USED_FLAG \
(OS_MEM_NODE_USED_FLAG | OS_MEM_NODE_ALIGNED_FLAG | OS_MEM_NODE_LEAK_FLAG | OS_MEM_NODE_LAST_FLAG)
#define OS_MEM_NODE_GET_ALIGNED_FLAG(sizeAndFlag) \
((sizeAndFlag) & OS_MEM_NODE_ALIGNED_FLAG)
#define OS_MEM_NODE_SET_ALIGNED_FLAG(sizeAndFlag) \
(sizeAndFlag) = ((sizeAndFlag) | OS_MEM_NODE_ALIGNED_FLAG)
#define OS_MEM_NODE_GET_USED_FLAG(sizeAndFlag) \
((sizeAndFlag) & OS_MEM_NODE_USED_FLAG)
#define OS_MEM_NODE_SET_USED_FLAG(sizeAndFlag) \
(sizeAndFlag) = ((sizeAndFlag) | OS_MEM_NODE_USED_FLAG)
#define OS_MEM_NODE_GET_SIZE(sizeAndFlag) \
((sizeAndFlag) & ~OS_MEM_NODE_ALIGNED_AND_USED_FLAG)
#define OS_MEM_GAPSIZE_USED_FLAG 0x80000000U
#define OS_MEM_GAPSIZE_ALIGNED_FLAG 0x40000000U
#define OS_MEM_GET_ALIGNED_GAPSIZE(gapsize) \
((gapsize) & ~OS_MEM_GAPSIZE_ALIGNED_FLAG)
#define OS_MEM_GET_GAPSIZE_ALIGNED_FLAG(gapsize) \
((gapsize) & OS_MEM_GAPSIZE_ALIGNED_FLAG)
#define OS_MEM_SET_GAPSIZE_ALIGNED_FLAG(gapsize) \
(gapsize) = ((gapsize) | OS_MEM_GAPSIZE_ALIGNED_FLAG)
#define OS_MEM_GET_GAPSIZE_USED_FLAG(gapsize) \
((gapsize) & OS_MEM_GAPSIZE_USED_FLAG)
#define OS_MEM_GAPSIZE_CHECK(gapsize) \
(OS_MEM_GET_GAPSIZE_ALIGNED_FLAG(gapsize) && \
OS_MEM_GET_GAPSIZE_USED_FLAG(gapsize))
#define OS_MEM_NODE_SET_LAST_FLAG(sizeAndFlag) \
(sizeAndFlag) = ((sizeAndFlag) | OS_MEM_NODE_LAST_FLAG)
#define OS_MEM_NODE_GET_LAST_FLAG(sizeAndFlag) \
((sizeAndFlag) & OS_MEM_NODE_LAST_FLAG)
#define OS_MEM_NODE_GET_LEAK_FLAG(sizeAndFlag) \
((sizeAndFlag) & OS_MEM_NODE_LEAK_FLAG)
#define OS_MEM_NODE_SET_LEAK_FLAG(sizeAndFlag) \
(sizeAndFlag) = ((sizeAndFlag) | OS_MEM_NODE_LEAK_FLAG)
#define OS_MEM_ALIGN_SIZE sizeof(UINTPTR)
#define OS_MEM_IS_POW_TWO(value) ((((UINTPTR)(value)) & ((UINTPTR)(value) - 1)) == 0)
#define OS_MEM_ALIGN(p, alignSize) (((UINTPTR)(p) + (alignSize) - 1) & ~((UINTPTR)((alignSize) - 1)))
#define OS_MEM_IS_ALIGNED(a, b) (!(((UINTPTR)(a)) & (((UINTPTR)(b)) - 1)))
#define OS_MEM_NODE_HEAD_SIZE sizeof(struct OsMemUsedNodeHead)
#define OS_MEM_MIN_POOL_SIZE (OS_MEM_NODE_HEAD_SIZE + sizeof(struct OsMemPoolHead))
#define OS_MEM_MIN_LEFT_SIZE sizeof(struct OsMemFreeNodeHead)
#define OS_MEM_MIN_ALLOC_SIZE 8
#define OS_MEM_NEXT_NODE(node) \
((struct OsMemNodeHead *)(VOID *)((UINT8 *)(node) + OS_MEM_NODE_GET_SIZE((node)->sizeAndFlag)))
#define OS_MEM_FIRST_NODE(pool) \
(struct OsMemNodeHead *)((UINT8 *)(pool) + sizeof(struct OsMemPoolHead))
#define OS_MEM_END_NODE(pool, size) \
(struct OsMemNodeHead *)((UINT8 *)(pool) + (size) - OS_MEM_NODE_HEAD_SIZE)
#define OS_MEM_MIDDLE_ADDR_OPEN_END(startAddr, middleAddr, endAddr) \
(((UINT8 *)(startAddr) <= (UINT8 *)(middleAddr)) && ((UINT8 *)(middleAddr) < (UINT8 *)(endAddr)))
#define OS_MEM_MIDDLE_ADDR(startAddr, middleAddr, endAddr) \
(((UINT8 *)(startAddr) <= (UINT8 *)(middleAddr)) && ((UINT8 *)(middleAddr) <= (UINT8 *)(endAddr)))
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
STATIC INLINE UINT32 OsMemAllocCheck(struct OsMemPoolHead *pool, UINT32 intSave);
#define OS_MEM_SET_MAGIC(node) ((node)->magic = OS_MEM_NODE_MAGIC)
#define OS_MEM_MAGIC_VALID(node) ((node)->magic == OS_MEM_NODE_MAGIC)
#else
#define OS_MEM_SET_MAGIC(node)
#define OS_MEM_MAGIC_VALID(node) TRUE
#endif
#if (LOSCFG_MEM_MUL_REGIONS == 1)
/**
* When LOSCFG_MEM_MUL_REGIONS is enabled to support multiple non-continuous memory regions,
* the gap between two memory regions is marked as a used OsMemNodeHead node. The gap node
* couldn't be freed, and would also be skipped in some DFX functions. The 'ptr.prev' pointer
* of this node is set to OS_MEM_GAP_NODE_MAGIC to identify that this is a gap node.
*/
#define OS_MEM_GAP_NODE_MAGIC 0xDCBAABCD
#define OS_MEM_MARK_GAP_NODE(node) \
(((struct OsMemNodeHead *)(node))->ptr.prev = (struct OsMemNodeHead *)OS_MEM_GAP_NODE_MAGIC)
#define OS_MEM_IS_GAP_NODE(node) \
(((struct OsMemNodeHead *)(node))->ptr.prev == (struct OsMemNodeHead *)OS_MEM_GAP_NODE_MAGIC)
#else
#define OS_MEM_MARK_GAP_NODE(node)
#define OS_MEM_IS_GAP_NODE(node) FALSE
#endif
STATIC INLINE VOID OsMemFreeNodeAdd(VOID *pool, struct OsMemFreeNodeHead *node);
STATIC INLINE UINT32 OsMemFree(struct OsMemPoolHead *pool, struct OsMemNodeHead *node);
STATIC VOID OsMemInfoPrint(VOID *pool);
#if (LOSCFG_MEM_FREE_BY_TASKID == 1 || LOSCFG_TASK_MEM_USED == 1)
STATIC INLINE VOID OsMemNodeSetTaskID(struct OsMemUsedNodeHead *node)
{
node->header.taskID = LOS_CurTaskIDGet();
}
#endif
STATIC VOID OsAllMemNodeDoHandle(VOID *pool, VOID (*handle)(struct OsMemNodeHead *curNode, VOID *arg), VOID *arg)
{
struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *tmpNode = NULL;
struct OsMemNodeHead *endNode = NULL;
UINT32 intSave = 0;
if (pool == NULL) {
PRINTK("input param is NULL\n");
return;
}
if (LOS_MemIntegrityCheck(pool)) {
PRINTK("LOS_MemIntegrityCheck error\n");
return;
}
MEM_LOCK(poolInfo, intSave);
endNode = OS_MEM_END_NODE(pool, poolInfo->info.totalSize);
for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode <= endNode; tmpNode = OS_MEM_NEXT_NODE(tmpNode)) {
if (tmpNode == endNode) {
#if OS_MEM_EXPAND_ENABLE
UINT32 size;
if (OsMemIsLastSentinelNode(endNode) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag);
tmpNode = OsMemSentinelNodeGet(endNode);
endNode = OS_MEM_END_NODE(tmpNode, size);
continue;
}
#endif
break;
}
handle(tmpNode, arg);
}
MEM_UNLOCK(poolInfo, intSave);
}
#if (LOSCFG_TASK_MEM_USED == 1)
STATIC VOID GetTaskMemUsedHandle(struct OsMemNodeHead *curNode, VOID *arg)
{
UINT32 *args = (UINT32 *)arg;
UINT32 *tskMemInfoBuf = (UINT32 *)(UINTPTR)*args;
UINT32 tskMemInfoCnt = *(args + 1);
#ifndef LOSCFG_MEM_MUL_REGIONS
if (OS_MEM_NODE_GET_USED_FLAG(curNode->sizeAndFlag)) {
#else
if (OS_MEM_NODE_GET_USED_FLAG(curNode->sizeAndFlag) && !OS_MEM_IS_GAP_NODE(curNode)) {
#endif
if (curNode->taskID < tskMemInfoCnt) {
tskMemInfoBuf[curNode->taskID] += OS_MEM_NODE_GET_SIZE(curNode->sizeAndFlag);
}
}
return;
}
VOID OsTaskMemUsed(VOID *pool, UINT32 *tskMemInfoBuf, UINT32 tskMemInfoCnt)
{
UINT32 args[2] = {(UINT32)(UINTPTR)tskMemInfoBuf, tskMemInfoCnt};
OsAllMemNodeDoHandle(pool, GetTaskMemUsedHandle, (VOID *)args);
return;
}
#endif
#if (LOSCFG_MEM_WATERLINE == 1)
STATIC INLINE VOID OsMemWaterUsedRecord(struct OsMemPoolHead *pool, UINT32 size)
{
pool->info.curUsedSize += size;
if (pool->info.curUsedSize > pool->info.waterLine) {
pool->info.waterLine = pool->info.curUsedSize;
}
}
#else
STATIC INLINE VOID OsMemWaterUsedRecord(struct OsMemPoolHead *pool, UINT32 size)
{
(VOID)pool;
(VOID)size;
}
#endif
#if OS_MEM_EXPAND_ENABLE
STATIC INLINE struct OsMemNodeHead *OsMemLastSentinelNodeGet(const struct OsMemNodeHead *sentinelNode)
{
struct OsMemNodeHead *node = NULL;
VOID *ptr = sentinelNode->ptr.next;
UINT32 size = OS_MEM_NODE_GET_SIZE(sentinelNode->sizeAndFlag);
while ((ptr != NULL) && (size != 0)) {
node = OS_MEM_END_NODE(ptr, size);
ptr = node->ptr.next;
size = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
}
return node;
}
STATIC INLINE BOOL OsMemSentinelNodeCheck(struct OsMemNodeHead *sentinelNode)
{
if (!OS_MEM_NODE_GET_USED_FLAG(sentinelNode->sizeAndFlag)) {
return FALSE;
}
if (!OS_MEM_MAGIC_VALID(sentinelNode)) {
return FALSE;
}
return TRUE;
}
STATIC INLINE BOOL OsMemIsLastSentinelNode(struct OsMemNodeHead *sentinelNode)
{
if (OsMemSentinelNodeCheck(sentinelNode) == FALSE) {
PRINT_ERR("%s %d, The current sentinel node is invalid\n", __FUNCTION__, __LINE__);
return TRUE;
}
if ((OS_MEM_NODE_GET_SIZE(sentinelNode->sizeAndFlag) == 0) ||
(sentinelNode->ptr.next == NULL)) {
return TRUE;
}
return FALSE;
}
STATIC INLINE VOID OsMemSentinelNodeSet(struct OsMemNodeHead *sentinelNode, VOID *newNode, UINT32 size)
{
if (sentinelNode->ptr.next != NULL) {
sentinelNode = OsMemLastSentinelNodeGet(sentinelNode);
}
sentinelNode->sizeAndFlag = size;
sentinelNode->ptr.next = newNode;
OS_MEM_NODE_SET_USED_FLAG(sentinelNode->sizeAndFlag);
OS_MEM_NODE_SET_LAST_FLAG(sentinelNode->sizeAndFlag);
}
STATIC INLINE VOID *OsMemSentinelNodeGet(struct OsMemNodeHead *node)
{
if (OsMemSentinelNodeCheck(node) == FALSE) {
return NULL;
}
return node->ptr.next;
}
STATIC INLINE struct OsMemNodeHead *PreSentinelNodeGet(const VOID *pool, const struct OsMemNodeHead *node)
{
UINT32 nextSize;
struct OsMemNodeHead *nextNode = NULL;
struct OsMemNodeHead *sentinelNode = NULL;
sentinelNode = OS_MEM_END_NODE(pool, ((struct OsMemPoolHead *)pool)->info.totalSize);
while (sentinelNode != NULL) {
if (OsMemIsLastSentinelNode(sentinelNode)) {
PRINT_ERR("PreSentinelNodeGet can not find node 0x%x\n", node);
return NULL;
}
nextNode = OsMemSentinelNodeGet(sentinelNode);
if (nextNode == node) {
return sentinelNode;
}
nextSize = OS_MEM_NODE_GET_SIZE(sentinelNode->sizeAndFlag);
sentinelNode = OS_MEM_END_NODE(nextNode, nextSize);
}
return NULL;
}
STATIC INLINE BOOL TryShrinkPool(const VOID *pool, const struct OsMemNodeHead *node)
{
struct OsMemNodeHead *mySentinel = NULL;
struct OsMemNodeHead *preSentinel = NULL;
size_t totalSize = (UINTPTR)node->ptr.prev - (UINTPTR)node;
size_t nodeSize = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
if (nodeSize != totalSize) {
return FALSE;
}
preSentinel = PreSentinelNodeGet(pool, node);
if (preSentinel == NULL) {
return FALSE;
}
mySentinel = node->ptr.prev;
if (OsMemIsLastSentinelNode(mySentinel)) { /* prev node becomes sentinel node */
preSentinel->ptr.next = NULL;
OsMemSentinelNodeSet(preSentinel, NULL, 0);
} else {
preSentinel->sizeAndFlag = mySentinel->sizeAndFlag;
preSentinel->ptr.next = mySentinel->ptr.next;
}
if (OsMemLargeNodeFree(node) != LOS_OK) {
PRINT_ERR("TryShrinkPool free 0x%x failed!\n", node);
return FALSE;
}
return TRUE;
}
STATIC INLINE INT32 OsMemPoolExpand(VOID *pool, UINT32 size, UINT32 intSave)
{
UINT32 tryCount = MAX_SHRINK_PAGECACHE_TRY;
struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *newNode = NULL;
struct OsMemNodeHead *endNode = NULL;
size = ROUNDUP(size + OS_MEM_NODE_HEAD_SIZE, PAGE_SIZE);
endNode = OS_MEM_END_NODE(pool, poolInfo->info.totalSize);
RETRY:
newNode = (struct OsMemNodeHead *)LOS_PhysPagesAllocContiguous(size >> PAGE_SHIFT);
if (newNode == NULL) {
if (tryCount > 0) {
tryCount--;
MEM_UNLOCK(poolInfo, intSave);
OsTryShrinkMemory(size >> PAGE_SHIFT);
MEM_LOCK(poolInfo, intSave);
goto RETRY;
}
PRINT_ERR("OsMemPoolExpand alloc failed size = %u\n", size);
return -1;
}
newNode->sizeAndFlag = (size - OS_MEM_NODE_HEAD_SIZE);
newNode->ptr.prev = OS_MEM_END_NODE(newNode, size);
OsMemSentinelNodeSet(endNode, newNode, size);
OsMemFreeNodeAdd(pool, (struct OsMemFreeNodeHead *)newNode);
endNode = OS_MEM_END_NODE(newNode, size);
(VOID)memset(endNode, 0, sizeof(*endNode));
endNode->ptr.next = NULL;
OS_MEM_SET_MAGIC(endNode);
OsMemSentinelNodeSet(endNode, NULL, 0);
OsMemWaterUsedRecord(poolInfo, OS_MEM_NODE_HEAD_SIZE);
return 0;
}
VOID LOS_MemExpandEnable(VOID *pool)
{
if (pool == NULL) {
return;
}
((struct OsMemPoolHead *)pool)->info.attr |= OS_MEM_POOL_EXPAND_ENABLE;
}
#endif
#ifdef LOSCFG_KERNEL_LMS
STATIC INLINE VOID OsLmsFirstNodeMark(VOID *pool, struct OsMemNodeHead *node)
{
if (g_lms == NULL) {
return;
}
g_lms->simpleMark((UINTPTR)pool, (UINTPTR)node, LMS_SHADOW_PAINT_U8);
g_lms->simpleMark((UINTPTR)node, (UINTPTR)node + OS_MEM_NODE_HEAD_SIZE, LMS_SHADOW_REDZONE_U8);
g_lms->simpleMark((UINTPTR)OS_MEM_NEXT_NODE(node), (UINTPTR)OS_MEM_NEXT_NODE(node) + OS_MEM_NODE_HEAD_SIZE,
LMS_SHADOW_REDZONE_U8);
g_lms->simpleMark((UINTPTR)node + OS_MEM_NODE_HEAD_SIZE, (UINTPTR)OS_MEM_NEXT_NODE(node),
LMS_SHADOW_AFTERFREE_U8);
}
STATIC INLINE VOID OsLmsAllocAlignMark(VOID *ptr, VOID *alignedPtr, UINT32 size)
{
struct OsMemNodeHead *allocNode = NULL;
if ((g_lms == NULL) || (ptr == NULL)) {
return;
}
allocNode = (struct OsMemNodeHead *)((struct OsMemUsedNodeHead *)ptr - 1);
if (ptr != alignedPtr) {
g_lms->simpleMark((UINTPTR)ptr, (UINTPTR)ptr + sizeof(UINT32), LMS_SHADOW_PAINT_U8);
g_lms->simpleMark((UINTPTR)ptr + sizeof(UINT32), (UINTPTR)alignedPtr, LMS_SHADOW_REDZONE_U8);
}
/* mark remining as redzone */
g_lms->simpleMark(LMS_ADDR_ALIGN((UINTPTR)alignedPtr + size), (UINTPTR)OS_MEM_NEXT_NODE(allocNode),
LMS_SHADOW_REDZONE_U8);
}
STATIC INLINE VOID OsLmsReallocMergeNodeMark(struct OsMemNodeHead *node)
{
if (g_lms == NULL) {
return;
}
g_lms->simpleMark((UINTPTR)node + OS_MEM_NODE_HEAD_SIZE, (UINTPTR)OS_MEM_NEXT_NODE(node),
LMS_SHADOW_ACCESSABLE_U8);
}
STATIC INLINE VOID OsLmsReallocSplitNodeMark(struct OsMemNodeHead *node)
{
if (g_lms == NULL) {
return;
}
/* mark next node */
g_lms->simpleMark((UINTPTR)OS_MEM_NEXT_NODE(node),
(UINTPTR)OS_MEM_NEXT_NODE(node) + OS_MEM_NODE_HEAD_SIZE, LMS_SHADOW_REDZONE_U8);
g_lms->simpleMark((UINTPTR)OS_MEM_NEXT_NODE(node) + OS_MEM_NODE_HEAD_SIZE,
(UINTPTR)OS_MEM_NEXT_NODE(OS_MEM_NEXT_NODE(node)), LMS_SHADOW_AFTERFREE_U8);
}
STATIC INLINE VOID OsLmsReallocResizeMark(struct OsMemNodeHead *node, UINT32 resize)
{
if (g_lms == NULL) {
return;
}
/* mark remaining as redzone */
g_lms->simpleMark((UINTPTR)node + resize, (UINTPTR)OS_MEM_NEXT_NODE(node), LMS_SHADOW_REDZONE_U8);
}
#endif
#if (LOSCFG_MEM_LEAKCHECK == 1)
struct OsMemLeakCheckInfo {
struct OsMemNodeHead *node;
UINTPTR linkReg[LOSCFG_MEM_RECORD_LR_CNT];
};
struct OsMemLeakCheckInfo g_leakCheckRecord[LOSCFG_MEM_LEAKCHECK_RECORD_MAX_NUM] = {0};
STATIC UINT32 g_leakCheckRecordCnt = 0;
STATIC INLINE VOID OsMemLeakCheckInfoRecord(struct OsMemNodeHead *node)
{
struct OsMemLeakCheckInfo *info = &g_leakCheckRecord[g_leakCheckRecordCnt];
if (!OS_MEM_NODE_GET_LEAK_FLAG(node->sizeAndFlag)) {
info->node = node;
(VOID)memcpy(info->linkReg, node->linkReg, sizeof(node->linkReg));
OS_MEM_NODE_SET_LEAK_FLAG(node->sizeAndFlag);
g_leakCheckRecordCnt++;
if (g_leakCheckRecordCnt >= LOSCFG_MEM_LEAKCHECK_RECORD_MAX_NUM) {
g_leakCheckRecordCnt = 0;
}
}
}
STATIC INLINE VOID OsMemLeakCheckInit(VOID)
{
(VOID)memset(g_leakCheckRecord, 0, sizeof(struct OsMemLeakCheckInfo) * LOSCFG_MEM_LEAKCHECK_RECORD_MAX_NUM);
g_leakCheckRecordCnt = 0;
}
STATIC INLINE VOID OsMemLinkRegisterRecord(struct OsMemNodeHead *node)
{
(VOID)memset(node->linkReg, 0, sizeof(node->linkReg));
OsBackTraceHookCall(node->linkReg, LOSCFG_MEM_RECORD_LR_CNT, LOSCFG_MEM_OMIT_LR_CNT, 0);
}
STATIC INLINE VOID OsMemUsedNodePrint(struct OsMemNodeHead *node)
{
UINT32 count;
if (OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag) && !OS_MEM_IS_GAP_NODE(node)) {
PRINTK("0x%x: 0x%x ", (UINTPTR)node, OS_MEM_NODE_GET_SIZE(node->sizeAndFlag));
for (count = 0; count < LOSCFG_MEM_RECORD_LR_CNT; count++) {
PRINTK(" 0x%x ", node->linkReg[count]);
}
PRINTK("\n");
OsMemLeakCheckInfoRecord(node);
}
}
STATIC VOID OsMemUsedNodePrintHandle(struct OsMemNodeHead *node, VOID *arg)
{
UNUSED(arg);
OsMemUsedNodePrint(node);
return;
}
VOID LOS_MemUsedNodeShow(VOID *pool)
{
UINT32 count;
PRINTK("\n\rnode size ");
for (count = 0; count < LOSCFG_MEM_RECORD_LR_CNT; count++) {
PRINTK(" LR[%u] ", count);
}
PRINTK("\n");
OsMemLeakCheckInit();
OsAllMemNodeDoHandle(pool, OsMemUsedNodePrintHandle, NULL);
return;
}
#if (LOSCFG_KERNEL_PRINTF != 0)
STATIC VOID OsMemNodeBacktraceInfo(const struct OsMemNodeHead *tmpNode,
const struct OsMemNodeHead *preNode)
{
int i;
PRINTK("\n broken node head LR info: \n");
for (i = 0; i < LOSCFG_MEM_RECORD_LR_CNT; i++) {
PRINTK(" LR[%d]:0x%x\n", i, tmpNode->linkReg[i]);
}
PRINTK("\n pre node head LR info: \n");
for (i = 0; i < LOSCFG_MEM_RECORD_LR_CNT; i++) {
PRINTK(" LR[%d]:0x%x\n", i, preNode->linkReg[i]);
}
}
#endif
#endif
STATIC INLINE UINT32 OsMemFreeListIndexGet(UINT32 size)
{
UINT32 fl = OsMemFlGet(size);
if (fl < OS_MEM_SMALL_BUCKET_COUNT) {
return fl;
}
UINT32 sl = OsMemSlGet(size, fl);
return (OS_MEM_SMALL_BUCKET_COUNT + ((fl - OS_MEM_SMALL_BUCKET_COUNT) << OS_MEM_SLI) + sl);
}
STATIC INLINE struct OsMemFreeNodeHead *OsMemFindCurSuitableBlock(struct OsMemPoolHead *poolHead,
UINT32 index, UINT32 size)
{
struct OsMemFreeNodeHead *node = NULL;
for (node = poolHead->freeList[index]; node != NULL; node = node->next) {
if (node->header.sizeAndFlag >= size) {
return node;
}
}
return NULL;
}
STATIC INLINE UINT32 OsMemNotEmptyIndexGet(struct OsMemPoolHead *poolHead, UINT32 index)
{
/* 5: Divide by 32 to calculate the index of the bitmap array. */
UINT32 mask = poolHead->freeListBitmap[index >> 5];
mask &= ~((1 << (index & OS_MEM_BITMAP_MASK)) - 1);
if (mask != 0) {
index = OsMemFFS(mask) + (index & ~OS_MEM_BITMAP_MASK);
return index;
}
return OS_MEM_FREE_LIST_COUNT;
}
STATIC INLINE struct OsMemFreeNodeHead *OsMemFindNextSuitableBlock(VOID *pool, UINT32 size, UINT32 *outIndex)
{
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
UINT32 fl = OsMemFlGet(size);
UINT32 sl;
UINT32 index, tmp;
UINT32 curIndex = OS_MEM_FREE_LIST_COUNT;
UINT32 mask;
do {
if (fl < OS_MEM_SMALL_BUCKET_COUNT) {
index = fl;
} else {
sl = OsMemSlGet(size, fl);
curIndex = ((fl - OS_MEM_SMALL_BUCKET_COUNT) << OS_MEM_SLI) + sl + OS_MEM_SMALL_BUCKET_COUNT;
index = curIndex + 1;
}
tmp = OsMemNotEmptyIndexGet(poolHead, index);
if (tmp != OS_MEM_FREE_LIST_COUNT) {
index = tmp;
goto DONE;
}
for (index = LOS_Align(index + 1, 32); index < OS_MEM_FREE_LIST_COUNT; index += 32) {
/* 5: Divide by 32 to calculate the index of the bitmap array. */
mask = poolHead->freeListBitmap[index >> 5];
if (mask != 0) {
index = OsMemFFS(mask) + index;
goto DONE;
}
}
} while (0);
if (curIndex == OS_MEM_FREE_LIST_COUNT) {
return NULL;
}
*outIndex = curIndex;
return OsMemFindCurSuitableBlock(poolHead, curIndex, size);
DONE:
*outIndex = index;
return poolHead->freeList[index];
}
STATIC INLINE VOID OsMemSetFreeListBit(struct OsMemPoolHead *head, UINT32 index)
{
/* 5: Divide by 32 to calculate the index of the bitmap array. */
head->freeListBitmap[index >> 5] |= 1U << (index & 0x1f);
}
STATIC INLINE VOID OsMemClearFreeListBit(struct OsMemPoolHead *head, UINT32 index)
{
/* 5: Divide by 32 to calculate the index of the bitmap array. */
head->freeListBitmap[index >> 5] &= ~(1U << (index & 0x1f));
}
STATIC INLINE VOID OsMemListAdd(struct OsMemPoolHead *pool, UINT32 listIndex, struct OsMemFreeNodeHead *node)
{
struct OsMemFreeNodeHead *firstNode = pool->freeList[listIndex];
if (firstNode != NULL) {
firstNode->prev = node;
}
node->prev = NULL;
node->next = firstNode;
pool->freeList[listIndex] = node;
OsMemSetFreeListBit(pool, listIndex);
OS_MEM_SET_MAGIC(&node->header);
}
STATIC INLINE VOID OsMemListDelete(struct OsMemPoolHead *pool, UINT32 listIndex, struct OsMemFreeNodeHead *node)
{
if (node == pool->freeList[listIndex]) {
pool->freeList[listIndex] = node->next;
if (node->next == NULL) {
OsMemClearFreeListBit(pool, listIndex);
} else {
node->next->prev = NULL;
}
} else {
node->prev->next = node->next;
if (node->next != NULL) {
node->next->prev = node->prev;
}
}
OS_MEM_SET_MAGIC(&node->header);
}
STATIC INLINE VOID OsMemFreeNodeAdd(VOID *pool, struct OsMemFreeNodeHead *node)
{
UINT32 index = OsMemFreeListIndexGet(node->header.sizeAndFlag);
if (index >= OS_MEM_FREE_LIST_COUNT) {
LOS_Panic("The index of free lists is error, index = %u\n", index);
}
OsMemListAdd(pool, index, node);
}
STATIC INLINE VOID OsMemFreeNodeDelete(VOID *pool, struct OsMemFreeNodeHead *node)
{
UINT32 index = OsMemFreeListIndexGet(node->header.sizeAndFlag);
OsMemListDelete(pool, index, node);
}
STATIC INLINE struct OsMemNodeHead *OsMemFreeNodeGet(VOID *pool, UINT32 size)
{
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
UINT32 index;
struct OsMemFreeNodeHead *firstNode = OsMemFindNextSuitableBlock(pool, size, &index);
if (firstNode == NULL) {
return NULL;
}
OsMemListDelete(poolHead, index, firstNode);
return &firstNode->header;
}
STATIC INLINE VOID OsMemMergeNode(struct OsMemNodeHead *node)
{
struct OsMemNodeHead *nextNode = NULL;
node->ptr.prev->sizeAndFlag += node->sizeAndFlag;
nextNode = (struct OsMemNodeHead *)((UINTPTR)node + node->sizeAndFlag);
if (!OS_MEM_NODE_GET_LAST_FLAG(nextNode->sizeAndFlag) && !OS_MEM_IS_GAP_NODE(nextNode)) {
nextNode->ptr.prev = node->ptr.prev;
}
}
STATIC INLINE VOID OsMemSplitNode(VOID *pool, struct OsMemNodeHead *allocNode, UINT32 allocSize)
{
struct OsMemFreeNodeHead *newFreeNode = NULL;
struct OsMemNodeHead *nextNode = NULL;
newFreeNode = (struct OsMemFreeNodeHead *)(VOID *)((UINT8 *)allocNode + allocSize);
newFreeNode->header.ptr.prev = allocNode;
newFreeNode->header.sizeAndFlag = allocNode->sizeAndFlag - allocSize;
allocNode->sizeAndFlag = allocSize;
nextNode = OS_MEM_NEXT_NODE(&newFreeNode->header);
if (!OS_MEM_NODE_GET_LAST_FLAG(nextNode->sizeAndFlag) && !OS_MEM_IS_GAP_NODE(nextNode)) {
nextNode->ptr.prev = &newFreeNode->header;
if (!OS_MEM_NODE_GET_USED_FLAG(nextNode->sizeAndFlag)) {
OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)nextNode);
OsMemMergeNode(nextNode);
}
}
OsMemFreeNodeAdd(pool, newFreeNode);
}
STATIC INLINE VOID *OsMemCreateUsedNode(VOID *addr)
{
struct OsMemUsedNodeHead *node = (struct OsMemUsedNodeHead *)addr;
#if (LOSCFG_MEM_FREE_BY_TASKID == 1 || LOSCFG_TASK_MEM_USED == 1)
OsMemNodeSetTaskID(node);
#endif
#ifdef LOSCFG_KERNEL_LMS
struct OsMemNodeHead *newNode = (struct OsMemNodeHead *)node;
if (g_lms != NULL) {
g_lms->mallocMark(newNode, OS_MEM_NEXT_NODE(newNode), OS_MEM_NODE_HEAD_SIZE);
}
#endif
return node + 1;
}
STATIC UINT32 OsMemPoolInit(VOID *pool, UINT32 size)
{
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *newNode = NULL;
struct OsMemNodeHead *endNode = NULL;
#ifdef LOSCFG_KERNEL_LMS
UINT32 resize = 0;
if (g_lms != NULL) {
/*
* resize == 0, shadow memory init failed, no shadow memory for this pool, set poolSize as original size.
* resize != 0, shadow memory init successful, set poolSize as resize.
*/
resize = g_lms->init(pool, size);
size = (resize == 0) ? size : resize;
}
#endif
(VOID)memset(poolHead, 0, sizeof(struct OsMemPoolHead));
poolHead->info.pool = pool;
poolHead->info.totalSize = size;
/* default attr: lock, not expand. */
poolHead->info.attr &= ~(OS_MEM_POOL_UNLOCK_ENABLE | OS_MEM_POOL_EXPAND_ENABLE);
newNode = OS_MEM_FIRST_NODE(pool);
newNode->sizeAndFlag = (size - sizeof(struct OsMemPoolHead) - OS_MEM_NODE_HEAD_SIZE);
newNode->ptr.prev = OS_MEM_END_NODE(pool, size);
OS_MEM_SET_MAGIC(newNode);
OsMemFreeNodeAdd(pool, (struct OsMemFreeNodeHead *)newNode);
/* The last mem node */
endNode = OS_MEM_END_NODE(pool, size);
OS_MEM_SET_MAGIC(endNode);
#if OS_MEM_EXPAND_ENABLE
endNode->ptr.next = NULL;
OsMemSentinelNodeSet(endNode, NULL, 0);
#else
endNode->sizeAndFlag = 0;
endNode->ptr.prev = newNode;
OS_MEM_NODE_SET_USED_FLAG(endNode->sizeAndFlag);
#endif
#if (LOSCFG_MEM_WATERLINE == 1)
poolHead->info.curUsedSize = sizeof(struct OsMemPoolHead) + OS_MEM_NODE_HEAD_SIZE;
poolHead->info.waterLine = poolHead->info.curUsedSize;
#endif
#ifdef LOSCFG_KERNEL_LMS
if (resize != 0) {
OsLmsFirstNodeMark(pool, newNode);
}
#endif
return LOS_OK;
}
#if (LOSCFG_MEM_MUL_POOL == 1)
STATIC VOID OsMemPoolDeinit(VOID *pool)
{
(VOID)memset(pool, 0, sizeof(struct OsMemPoolHead));
}
STATIC UINT32 OsMemPoolAdd(VOID *pool, UINT32 size)
{
VOID *nextPool = g_poolHead;
VOID *curPool = g_poolHead;
UINTPTR poolEnd;
while (nextPool != NULL) {
poolEnd = (UINTPTR)nextPool + LOS_MemPoolSizeGet(nextPool);
if (((pool <= nextPool) && (((UINTPTR)pool + size) > (UINTPTR)nextPool)) ||
(((UINTPTR)pool < poolEnd) && (((UINTPTR)pool + size) >= poolEnd))) {
PRINT_ERR("pool [0x%x, 0x%x) conflict with pool [0x%x, 0x%x)\n", (UINTPTR)pool,
(UINTPTR)pool + size, (UINTPTR)nextPool, (UINTPTR)nextPool + LOS_MemPoolSizeGet(nextPool));
return LOS_NOK;
}
curPool = nextPool;
nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
}
if (g_poolHead == NULL) {
g_poolHead = pool;
} else {
((struct OsMemPoolHead *)curPool)->nextPool = pool;
}
((struct OsMemPoolHead *)pool)->nextPool = NULL;
return LOS_OK;
}
STATIC UINT32 OsMemPoolDelete(VOID *pool)
{
UINT32 ret = LOS_NOK;
VOID *nextPool = NULL;
VOID *curPool = NULL;
do {
if (pool == g_poolHead) {
g_poolHead = ((struct OsMemPoolHead *)g_poolHead)->nextPool;
ret = LOS_OK;
break;
}
curPool = g_poolHead;
nextPool = g_poolHead;
while (nextPool != NULL) {
if (pool == nextPool) {
((struct OsMemPoolHead *)curPool)->nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
ret = LOS_OK;
break;
}
curPool = nextPool;
nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
}
} while (0);
return ret;
}
#endif
UINT32 LOS_MemInit(VOID *pool, UINT32 size)
{
if ((pool == NULL) || (size <= OS_MEM_MIN_POOL_SIZE)) {
return LOS_NOK;
}
if (((UINTPTR)pool & (OS_MEM_ALIGN_SIZE - 1)) || \
(size & (OS_MEM_ALIGN_SIZE - 1))) {
PRINT_ERR("LiteOS heap memory address or size configured not aligned:address:0x%x,size:0x%x, alignsize:%d\n", \
(UINTPTR)pool, size, OS_MEM_ALIGN_SIZE);
return LOS_NOK;
}
if (OsMemPoolInit(pool, size)) {
return LOS_NOK;
}
#if (LOSCFG_MEM_MUL_POOL == 1)
if (OsMemPoolAdd(pool, size)) {
(VOID)OsMemPoolDeinit(pool);
return LOS_NOK;
}
#endif
OsHookCall(LOS_HOOK_TYPE_MEM_INIT, pool, size);
return LOS_OK;
}
#if (LOSCFG_MEM_MUL_POOL == 1)
UINT32 LOS_MemDeInit(VOID *pool)
{
if (pool == NULL) {
return LOS_NOK;
}
if (OsMemPoolDelete(pool)) {
return LOS_NOK;
}
OsMemPoolDeinit(pool);
OsHookCall(LOS_HOOK_TYPE_MEM_DEINIT, pool);
return LOS_OK;
}
UINT32 LOS_MemPoolList(VOID)
{
VOID *nextPool = g_poolHead;
UINT32 index = 0;
while (nextPool != NULL) {
PRINTK("pool%u :\n", index);
index++;
OsMemInfoPrint(nextPool);
nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
}
return index;
}
#endif
STATIC INLINE VOID *OsMemAlloc(struct OsMemPoolHead *pool, UINT32 size, UINT32 intSave)
{
struct OsMemNodeHead *allocNode = NULL;
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
if (OsMemAllocCheck(pool, intSave) == LOS_NOK) {
return NULL;
}
#endif
UINT32 allocSize = OS_MEM_ALIGN(size + OS_MEM_NODE_HEAD_SIZE, OS_MEM_ALIGN_SIZE);
#if OS_MEM_EXPAND_ENABLE || (LOSCFG_KERNEL_LMK == 1)
retry:
#endif
allocNode = OsMemFreeNodeGet(pool, allocSize);
if (allocNode == NULL) {
#if OS_MEM_EXPAND_ENABLE
if (pool->info.attr & OS_MEM_POOL_EXPAND_ENABLE) {
INT32 ret = OsMemPoolExpand(pool, allocSize, intSave);
if (ret == 0) {
goto retry;
}
}
#endif
#if (LOSCFG_KERNEL_LMK == 1)
UINT32 killRet = LOS_LmkTasksKill();
if (killRet == LOS_OK) {
goto retry;
}
#endif
PRINT_ERR("---------------------------------------------------"
"--------------------------------------------------------\n");
MEM_UNLOCK(pool, intSave);
OsMemInfoPrint(pool);
MEM_LOCK(pool, intSave);
PRINT_ERR("[%s] No suitable free block, require free node size: 0x%x\n", __FUNCTION__, allocSize);
PRINT_ERR("----------------------------------------------------"
"-------------------------------------------------------\n");
return NULL;
}
if ((allocSize + OS_MEM_MIN_LEFT_SIZE) <= allocNode->sizeAndFlag) {
OsMemSplitNode(pool, allocNode, allocSize);
}
OS_MEM_NODE_SET_USED_FLAG(allocNode->sizeAndFlag);
OsMemWaterUsedRecord(pool, OS_MEM_NODE_GET_SIZE(allocNode->sizeAndFlag));
#if (LOSCFG_MEM_LEAKCHECK == 1)
OsMemLinkRegisterRecord(allocNode);
#endif
return OsMemCreateUsedNode((VOID *)allocNode);
}
VOID *LOS_MemAlloc(VOID *pool, UINT32 size)
{
if ((pool == NULL) || (size == 0)) {
return NULL;
}
if (size < OS_MEM_MIN_ALLOC_SIZE) {
size = OS_MEM_MIN_ALLOC_SIZE;
}
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
VOID *ptr = NULL;
UINT32 intSave = 0;
MEM_LOCK(poolHead, intSave);
do {
if (OS_MEM_NODE_GET_USED_FLAG(size) || OS_MEM_NODE_GET_ALIGNED_FLAG(size)) {
break;
}
ptr = OsMemAlloc(poolHead, size, intSave);
} while (0);
MEM_UNLOCK(poolHead, intSave);
OsHookCall(LOS_HOOK_TYPE_MEM_ALLOC, pool, ptr, size);
return ptr;
}
VOID *LOS_MemAllocAlign(VOID *pool, UINT32 size, UINT32 boundary)
{
UINT32 gapSize;
if ((pool == NULL) || (size == 0) || (boundary == 0) || !OS_MEM_IS_POW_TWO(boundary) ||
!OS_MEM_IS_ALIGNED(boundary, sizeof(VOID *))) {
return NULL;
}
if (size < OS_MEM_MIN_ALLOC_SIZE) {
size = OS_MEM_MIN_ALLOC_SIZE;
}
/*
* sizeof(gapSize) bytes stores offset between alignedPtr and ptr,
* the ptr has been OS_MEM_ALIGN_SIZE(4 or 8) aligned, so maximum
* offset between alignedPtr and ptr is boundary - OS_MEM_ALIGN_SIZE
*/
if ((boundary - sizeof(gapSize)) > ((UINT32)(-1) - size)) {
return NULL;
}
UINT32 useSize = (size + boundary) - sizeof(gapSize);
if (OS_MEM_NODE_GET_USED_FLAG(useSize) || OS_MEM_NODE_GET_ALIGNED_FLAG(useSize)) {
return NULL;
}
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
UINT32 intSave = 0;
VOID *ptr = NULL;
VOID *alignedPtr = NULL;
MEM_LOCK(poolHead, intSave);
do {
ptr = OsMemAlloc(pool, useSize, intSave);
alignedPtr = (VOID *)OS_MEM_ALIGN(ptr, boundary);
if (ptr == alignedPtr) {
#ifdef LOSCFG_KERNEL_LMS
OsLmsAllocAlignMark(ptr, alignedPtr, size);
#endif
break;
}
/* store gapSize in address (ptr - 4), it will be checked while free */
gapSize = (UINT32)((UINTPTR)alignedPtr - (UINTPTR)ptr);
struct OsMemUsedNodeHead *allocNode = (struct OsMemUsedNodeHead *)ptr - 1;
OS_MEM_NODE_SET_ALIGNED_FLAG(allocNode->header.sizeAndFlag);
OS_MEM_SET_GAPSIZE_ALIGNED_FLAG(gapSize);
*(UINT32 *)((UINTPTR)alignedPtr - sizeof(gapSize)) = gapSize;
#ifdef LOSCFG_KERNEL_LMS
OsLmsAllocAlignMark(ptr, alignedPtr, size);
#endif
ptr = alignedPtr;
} while (0);
MEM_UNLOCK(poolHead, intSave);
OsHookCall(LOS_HOOK_TYPE_MEM_ALLOCALIGN, pool, ptr, size, boundary);
return ptr;
}
STATIC INLINE BOOL OsMemAddrValidCheck(const struct OsMemPoolHead *pool, const VOID *addr)
{
UINT32 size;
size = pool->info.totalSize;
if (OS_MEM_MIDDLE_ADDR_OPEN_END(pool + 1, addr, (UINTPTR)pool + size)) {
return TRUE;
}
#if OS_MEM_EXPAND_ENABLE
struct OsMemNodeHead *node = NULL;
struct OsMemNodeHead *sentinel = OS_MEM_END_NODE(pool, size);
while (OsMemIsLastSentinelNode(sentinel) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(sentinel->sizeAndFlag);
node = OsMemSentinelNodeGet(sentinel);
sentinel = OS_MEM_END_NODE(node, size);
if (OS_MEM_MIDDLE_ADDR_OPEN_END(node, addr, (UINTPTR)node + size)) {
return TRUE;
}
}
#endif
return FALSE;
}
STATIC INLINE BOOL OsMemIsNodeValid(const struct OsMemNodeHead *node, const struct OsMemNodeHead *startNode,
const struct OsMemNodeHead *endNode,
const struct OsMemPoolHead *poolInfo)
{
if (!OS_MEM_MIDDLE_ADDR(startNode, node, endNode)) {
return FALSE;
}
if (OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag)) {
if (!OS_MEM_MAGIC_VALID(node)) {
return FALSE;
}
return TRUE;
}
if (!OsMemAddrValidCheck(poolInfo, node->ptr.prev)) {
return FALSE;
}
return TRUE;
}
STATIC UINT32 OsMemCheckUsedNode(const struct OsMemPoolHead *pool, const struct OsMemNodeHead *node)
{
struct OsMemNodeHead *startNode = (struct OsMemNodeHead *)OS_MEM_FIRST_NODE(pool);
struct OsMemNodeHead *endNode = (struct OsMemNodeHead *)OS_MEM_END_NODE(pool, pool->info.totalSize);
struct OsMemNodeHead *nextNode = NULL;
BOOL doneFlag = FALSE;
do {
do {
if (OS_MEM_IS_GAP_NODE(node)) {
break;
}
if (!OsMemIsNodeValid(node, startNode, endNode, pool)) {
break;
}
if (!OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag)) {
break;
}
nextNode = OS_MEM_NEXT_NODE(node);
if (!OsMemIsNodeValid(nextNode, startNode, endNode, pool)) {
break;
}
if (!OS_MEM_NODE_GET_LAST_FLAG(nextNode->sizeAndFlag) && !OS_MEM_IS_GAP_NODE(nextNode)) {
if (nextNode->ptr.prev != node) {
break;
}
}
if ((node != startNode) &&
((!OsMemIsNodeValid(node->ptr.prev, startNode, endNode, pool)) ||
(OS_MEM_NEXT_NODE(node->ptr.prev) != node))) {
break;
}
doneFlag = TRUE;
} while (0);
if (!doneFlag) {
#if OS_MEM_EXPAND_ENABLE
if (OsMemIsLastSentinelNode(endNode) == FALSE) {
startNode = OsMemSentinelNodeGet(endNode);
endNode = OS_MEM_END_NODE(startNode, OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag));
continue;
}
#endif
return LOS_NOK;
}
} while (!doneFlag);
return LOS_OK;
}
STATIC INLINE UINT32 OsMemFree(struct OsMemPoolHead *pool, struct OsMemNodeHead *node)
{
UINT32 ret = OsMemCheckUsedNode(pool, node);
if (ret != LOS_OK) {
PRINT_ERR("OsMemFree check error!\n");
return ret;
}
#if (LOSCFG_MEM_WATERLINE == 1)
pool->info.curUsedSize -= OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
#endif
node->sizeAndFlag = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
#if (LOSCFG_MEM_LEAKCHECK == 1)
OsMemLinkRegisterRecord(node);
#endif
#ifdef LOSCFG_KERNEL_LMS
struct OsMemNodeHead *nextNodeBackup = OS_MEM_NEXT_NODE(node);
struct OsMemNodeHead *curNodeBackup = node;
if (g_lms != NULL) {
g_lms->check((UINTPTR)node + OS_MEM_NODE_HEAD_SIZE, TRUE);
}
#endif
struct OsMemNodeHead *preNode = node->ptr.prev; /* merage preNode */
if ((preNode != NULL) && !OS_MEM_NODE_GET_USED_FLAG(preNode->sizeAndFlag)) {
OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)preNode);
OsMemMergeNode(node);
node = preNode;
}
struct OsMemNodeHead *nextNode = OS_MEM_NEXT_NODE(node); /* merage nextNode */
if ((nextNode != NULL) && !OS_MEM_NODE_GET_USED_FLAG(nextNode->sizeAndFlag)) {
OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)nextNode);
OsMemMergeNode(nextNode);
}
#if OS_MEM_EXPAND_ENABLE
if (pool->info.attr & OS_MEM_POOL_EXPAND_ENABLE) {
struct OsMemNodeHead *firstNode = OS_MEM_FIRST_NODE(pool);
/* if this is a expand head node, and all unused, free it to pmm */
if ((node->prev > node) && (node != firstNode)) {
if (TryShrinkPool(pool, node)) {
return LOS_OK;
}
}
}
#endif
OsMemFreeNodeAdd(pool, (struct OsMemFreeNodeHead *)node);
#ifdef LOSCFG_KERNEL_LMS
if (g_lms != NULL) {
g_lms->freeMark(curNodeBackup, nextNodeBackup, OS_MEM_NODE_HEAD_SIZE);
}
#endif
return ret;
}
STATIC INLINE VOID *OsGetRealPtr(const VOID *pool, VOID *ptr)
{
VOID *realPtr = ptr;
UINT32 gapSize = *((UINT32 *)((UINTPTR)ptr - sizeof(UINT32)));
if (OS_MEM_GAPSIZE_CHECK(gapSize)) {
PRINT_ERR("[%s:%d]gapSize:0x%x error\n", __FUNCTION__, __LINE__, gapSize);
return NULL;
}
if (OS_MEM_GET_GAPSIZE_ALIGNED_FLAG(gapSize)) {
gapSize = OS_MEM_GET_ALIGNED_GAPSIZE(gapSize);
if ((gapSize & (OS_MEM_ALIGN_SIZE - 1)) ||
(gapSize > ((UINTPTR)ptr - OS_MEM_NODE_HEAD_SIZE - (UINTPTR)pool))) {
PRINT_ERR("[%s:%d]gapSize:0x%x error\n", __FUNCTION__, __LINE__, gapSize);
return NULL;
}
realPtr = (VOID *)((UINTPTR)ptr - (UINTPTR)gapSize);
}
return realPtr;
}
UINT32 LOS_MemFree(VOID *pool, VOID *ptr)
{
if ((pool == NULL) || (ptr == NULL) || !OS_MEM_IS_ALIGNED(pool, sizeof(VOID *)) ||
!OS_MEM_IS_ALIGNED(ptr, sizeof(VOID *))) {
return LOS_NOK;
}
OsHookCall(LOS_HOOK_TYPE_MEM_FREE, pool, ptr);
UINT32 ret = LOS_NOK;
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *node = NULL;
UINT32 intSave = 0;
MEM_LOCK(poolHead, intSave);
do {
ptr = OsGetRealPtr(pool, ptr);
if (ptr == NULL) {
break;
}
node = (struct OsMemNodeHead *)((UINTPTR)ptr - OS_MEM_NODE_HEAD_SIZE);
ret = OsMemFree(poolHead, node);
} while (0);
MEM_UNLOCK(poolHead, intSave);
return ret;
}
STATIC INLINE VOID OsMemReAllocSmaller(VOID *pool, UINT32 allocSize, struct OsMemNodeHead *node, UINT32 nodeSize)
{
#if (LOSCFG_MEM_WATERLINE == 1)
struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
#endif
node->sizeAndFlag = nodeSize;
if ((allocSize + OS_MEM_MIN_LEFT_SIZE) <= nodeSize) {
OsMemSplitNode(pool, node, allocSize);
#if (LOSCFG_MEM_WATERLINE == 1)
poolInfo->info.curUsedSize -= nodeSize - allocSize;
#endif
#ifdef LOSCFG_KERNEL_LMS
OsLmsReallocSplitNodeMark(node);
} else {
OsLmsReallocResizeMark(node, allocSize);
#endif
}
OS_MEM_NODE_SET_USED_FLAG(node->sizeAndFlag);
#if (LOSCFG_MEM_LEAKCHECK == 1)
OsMemLinkRegisterRecord(node);
#endif
}
STATIC INLINE VOID OsMemMergeNodeForReAllocBigger(VOID *pool, UINT32 allocSize, struct OsMemNodeHead *node,
UINT32 nodeSize, struct OsMemNodeHead *nextNode)
{
node->sizeAndFlag = nodeSize;
OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)nextNode);
OsMemMergeNode(nextNode);
#ifdef LOSCFG_KERNEL_LMS
OsLmsReallocMergeNodeMark(node);
#endif
if ((allocSize + OS_MEM_MIN_LEFT_SIZE) <= node->sizeAndFlag) {
OsMemSplitNode(pool, node, allocSize);
#ifdef LOSCFG_KERNEL_LMS
OsLmsReallocSplitNodeMark(node);
} else {
OsLmsReallocResizeMark(node, allocSize);
#endif
}
OS_MEM_NODE_SET_USED_FLAG(node->sizeAndFlag);
OsMemWaterUsedRecord((struct OsMemPoolHead *)pool, OS_MEM_NODE_GET_SIZE(node->sizeAndFlag) - nodeSize);
#if (LOSCFG_MEM_LEAKCHECK == 1)
OsMemLinkRegisterRecord(node);
#endif
}
STATIC INLINE VOID *OsMemRealloc(struct OsMemPoolHead *pool, const VOID *ptr,
struct OsMemNodeHead *node, UINT32 size, UINT32 intSave)
{
struct OsMemNodeHead *nextNode = NULL;
UINT32 allocSize = OS_MEM_ALIGN(size + OS_MEM_NODE_HEAD_SIZE, OS_MEM_ALIGN_SIZE);
UINT32 nodeSize = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
VOID *tmpPtr = NULL;
if (nodeSize >= allocSize) {
OsMemReAllocSmaller(pool, allocSize, node, nodeSize);
return (VOID *)ptr;
}
nextNode = OS_MEM_NEXT_NODE(node);
if (!OS_MEM_NODE_GET_USED_FLAG(nextNode->sizeAndFlag) &&
((nextNode->sizeAndFlag + nodeSize) >= allocSize)) {
OsMemMergeNodeForReAllocBigger(pool, allocSize, node, nodeSize, nextNode);
return (VOID *)ptr;
}
tmpPtr = OsMemAlloc(pool, size, intSave);
if (tmpPtr != NULL) {
if (memcpy_s(tmpPtr, size, ptr, (nodeSize - OS_MEM_NODE_HEAD_SIZE)) != EOK) {
MEM_UNLOCK(pool, intSave);
(VOID)LOS_MemFree((VOID *)pool, (VOID *)tmpPtr);
MEM_LOCK(pool, intSave);
return NULL;
}
(VOID)OsMemFree(pool, node);
}
return tmpPtr;
}
VOID *LOS_MemRealloc(VOID *pool, VOID *ptr, UINT32 size)
{
if ((pool == NULL) || OS_MEM_NODE_GET_USED_FLAG(size) || OS_MEM_NODE_GET_ALIGNED_FLAG(size)) {
return NULL;
}
OsHookCall(LOS_HOOK_TYPE_MEM_REALLOC, pool, ptr, size);
if (ptr == NULL) {
return LOS_MemAlloc(pool, size);
}
if (size == 0) {
(VOID)LOS_MemFree(pool, ptr);
return NULL;
}
if (size < OS_MEM_MIN_ALLOC_SIZE) {
size = OS_MEM_MIN_ALLOC_SIZE;
}
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *node = NULL;
VOID *newPtr = NULL;
UINT32 intSave = 0;
MEM_LOCK(poolHead, intSave);
do {
ptr = OsGetRealPtr(pool, ptr);
if (ptr == NULL) {
break;
}
node = (struct OsMemNodeHead *)((UINTPTR)ptr - OS_MEM_NODE_HEAD_SIZE);
if (OsMemCheckUsedNode(pool, node) != LOS_OK) {
break;
}
newPtr = OsMemRealloc(pool, ptr, node, size, intSave);
} while (0);
MEM_UNLOCK(poolHead, intSave);
return newPtr;
}
#if (LOSCFG_MEM_FREE_BY_TASKID == 1)
STATIC VOID MemNodeFreeByTaskIDHandle(struct OsMemNodeHead *curNode, VOID *arg)
{
UINT32 *args = (UINT32 *)arg;
UINT32 taskID = *args;
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)(UINTPTR)(*(args + 1));
struct OsMemUsedNodeHead *node = NULL;
if (!OS_MEM_NODE_GET_USED_FLAG(curNode->sizeAndFlag)) {
return;
}
node = (struct OsMemUsedNodeHead *)curNode;
if (node->header.taskID == taskID) {
OsMemFree(poolHead, &node->header);
}
return;
}
UINT32 LOS_MemFreeByTaskID(VOID *pool, UINT32 taskID)
{
UINT32 args[2] = { taskID, (UINT32)(UINTPTR)pool };
if (pool == NULL) {
return LOS_NOK;
}
if (taskID >= LOSCFG_BASE_CORE_TSK_LIMIT) {
return LOS_NOK;
}
OsAllMemNodeDoHandle(pool, MemNodeFreeByTaskIDHandle, (VOID *)args);
return LOS_OK;
}
#endif
UINT32 LOS_MemPoolSizeGet(const VOID *pool)
{
UINT32 count = 0;
if (pool == NULL) {
return LOS_NOK;
}
count += ((struct OsMemPoolHead *)pool)->info.totalSize;
#if (LOSCFG_MEM_MUL_REGIONS == 1)
count -= ((struct OsMemPoolHead *)pool)->info.totalGapSize;
#endif
#if OS_MEM_EXPAND_ENABLE
UINT32 size;
struct OsMemNodeHead *node = NULL;
struct OsMemNodeHead *sentinel = OS_MEM_END_NODE(pool, count);
while (OsMemIsLastSentinelNode(sentinel) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(sentinel->sizeAndFlag);
node = OsMemSentinelNodeGet(sentinel);
sentinel = OS_MEM_END_NODE(node, size);
count += size;
}
#endif
return count;
}
STATIC VOID MemUsedGetHandle(struct OsMemNodeHead *curNode, VOID *arg)
{
UINT32 *memUsed = (UINT32 *)arg;
if (OS_MEM_IS_GAP_NODE(curNode)) {
*memUsed += OS_MEM_NODE_HEAD_SIZE;
} else if (OS_MEM_NODE_GET_USED_FLAG(curNode->sizeAndFlag)) {
*memUsed += OS_MEM_NODE_GET_SIZE(curNode->sizeAndFlag);
}
return;
}
UINT32 LOS_MemTotalUsedGet(VOID *pool)
{
UINT32 memUsed = 0;
if (pool == NULL) {
return LOS_NOK;
}
OsAllMemNodeDoHandle(pool, MemUsedGetHandle, (VOID *)&memUsed);
return memUsed;
}
STATIC INLINE VOID OsMemMagicCheckPrint(struct OsMemNodeHead **tmpNode)
{
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
PRINT_ERR("[%s], %d, memory check error!\n"
"memory used but magic num wrong, magic num = 0x%x\n",
__FUNCTION__, __LINE__, (*tmpNode)->magic);
#else
(VOID)tmpNode;
#endif
}
STATIC UINT32 OsMemAddrValidCheckPrint(const VOID *pool, struct OsMemFreeNodeHead **tmpNode)
{
if (((*tmpNode)->prev != NULL) && !OsMemAddrValidCheck(pool, (*tmpNode)->prev)) {
PRINT_ERR("[%s], %d, memory check error!\n"
" freeNode.prev: %p is out of legal mem range\n",
__FUNCTION__, __LINE__, (*tmpNode)->prev);
return LOS_NOK;
}
if (((*tmpNode)->next != NULL) && !OsMemAddrValidCheck(pool, (*tmpNode)->next)) {
PRINT_ERR("[%s], %d, memory check error!\n"
" freeNode.next: %p is out of legal mem range\n",
__FUNCTION__, __LINE__, (*tmpNode)->next);
return LOS_NOK;
}
return LOS_OK;
}
STATIC UINT32 OsMemIntegrityCheckSub(struct OsMemNodeHead **tmpNode, const VOID *pool)
{
if (!OS_MEM_MAGIC_VALID(*tmpNode)) {
OsMemMagicCheckPrint(tmpNode);
return LOS_NOK;
}
if (!OsMemAddrValidCheck(pool, (*tmpNode)->ptr.prev)) {
PRINT_ERR("[%s], %d, memory check error!\n"
" node prev: %p is out of legal mem range\n",
__FUNCTION__, __LINE__, (*tmpNode)->ptr.next);
return LOS_NOK;
}
if (!OS_MEM_NODE_GET_USED_FLAG((*tmpNode)->sizeAndFlag)) { /* is free node, check free node range */
if (OsMemAddrValidCheckPrint(pool, (struct OsMemFreeNodeHead **)tmpNode)) {
return LOS_NOK;
}
}
return LOS_OK;
}
STATIC UINT32 OsMemFreeListNodeCheck(const struct OsMemPoolHead *pool,
const struct OsMemFreeNodeHead *node)
{
if (!OsMemAddrValidCheck(pool, node) ||
((node->prev != NULL) && !OsMemAddrValidCheck(pool, node->prev)) ||
((node->next != NULL) && !OsMemAddrValidCheck(pool, node->next)) ||
!OsMemAddrValidCheck(pool, node->header.ptr.prev)) {
return LOS_NOK;
}
if (!OS_MEM_IS_ALIGNED(node, sizeof(VOID *)) ||
!OS_MEM_IS_ALIGNED(node->prev, sizeof(VOID *)) ||
!OS_MEM_IS_ALIGNED(node->next, sizeof(VOID *)) ||
!OS_MEM_IS_ALIGNED(node->header.ptr.prev, sizeof(VOID *))) {
return LOS_NOK;
}
return LOS_OK;
}
STATIC VOID OsMemPoolHeadCheck(const struct OsMemPoolHead *pool)
{
struct OsMemFreeNodeHead *tmpNode = NULL;
UINT32 index;
UINT32 flag = 0;
if ((pool->info.pool != pool) || !OS_MEM_IS_ALIGNED(pool, sizeof(VOID *))) {
PRINT_ERR("wrong mem pool addr: %p, func: %s, line: %d\n", pool, __FUNCTION__, __LINE__);
return;
}
for (index = 0; index < OS_MEM_FREE_LIST_COUNT; index++) {
for (tmpNode = pool->freeList[index]; tmpNode != NULL; tmpNode = tmpNode->next) {
if (OsMemFreeListNodeCheck(pool, tmpNode)) {
flag = 1;
PRINT_ERR("FreeListIndex: %u, node: %p, bNode: %p, prev:%p, next: %p\n",
index, tmpNode, tmpNode->header.ptr.prev, tmpNode->prev, tmpNode->next);
}
}
}
if (flag) {
PRINTK("mem pool info: poolAddr: %p, poolSize: 0x%x\n", pool, pool->info.totalSize);
#if (LOSCFG_MEM_WATERLINE == 1)
PRINTK("mem pool info: poolWaterLine: 0x%x, poolCurUsedSize: 0x%x\n", pool->info.waterLine,
pool->info.curUsedSize);
#endif
#if OS_MEM_EXPAND_ENABLE
UINT32 size;
struct OsMemNodeHead *node = NULL;
struct OsMemNodeHead *sentinel = OS_MEM_END_NODE(pool, pool->info.totalSize);
while (OsMemIsLastSentinelNode(sentinel) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(sentinel->sizeAndFlag);
node = OsMemSentinelNodeGet(sentinel);
sentinel = OS_MEM_END_NODE(node, size);
PRINTK("expand node info: nodeAddr: 0x%x, nodeSize: 0x%x\n", node, size);
}
#endif
}
}
STATIC UINT32 OsMemIntegrityCheck(const struct OsMemPoolHead *pool, struct OsMemNodeHead **tmpNode,
struct OsMemNodeHead **preNode)
{
struct OsMemNodeHead *endNode = OS_MEM_END_NODE(pool, pool->info.totalSize);
OsMemPoolHeadCheck(pool);
*preNode = OS_MEM_FIRST_NODE(pool);
do {
for (*tmpNode = *preNode; *tmpNode < endNode; *tmpNode = OS_MEM_NEXT_NODE(*tmpNode)) {
if (OS_MEM_IS_GAP_NODE(*tmpNode)) {
continue;
}
if (OsMemIntegrityCheckSub(tmpNode, pool) == LOS_NOK) {
return LOS_NOK;
}
*preNode = *tmpNode;
}
#if OS_MEM_EXPAND_ENABLE
if (OsMemIsLastSentinelNode(*tmpNode) == FALSE) {
*preNode = OsMemSentinelNodeGet(*tmpNode);
endNode = OS_MEM_END_NODE(*preNode, OS_MEM_NODE_GET_SIZE((*tmpNode)->sizeAndFlag));
} else
#endif
{
break;
}
} while (1);
return LOS_OK;
}
#if (LOSCFG_KERNEL_PRINTF != 0)
STATIC VOID OsMemNodeInfo(const struct OsMemNodeHead *tmpNode,
const struct OsMemNodeHead *preNode)
{
struct OsMemUsedNodeHead *usedNode = NULL;
struct OsMemFreeNodeHead *freeNode = NULL;
if (tmpNode == preNode) {
PRINTK("\n the broken node is the first node\n");
}
if (OS_MEM_NODE_GET_USED_FLAG(tmpNode->sizeAndFlag)) {
usedNode = (struct OsMemUsedNodeHead *)tmpNode;
PRINTK("\n broken node head: %p "
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
"0x%x "
#endif
"0x%x, ",
usedNode->header.ptr.prev,
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
usedNode->header.magic,
#endif
usedNode->header.sizeAndFlag);
} else {
freeNode = (struct OsMemFreeNodeHead *)tmpNode;
PRINTK("\n broken node head: %p %p %p "
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
"0x%x "
#endif
"0x%x, ",
freeNode->header.ptr.prev, freeNode->next, freeNode->prev,
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
freeNode->header.magic,
#endif
freeNode->header.sizeAndFlag);
}
if (OS_MEM_NODE_GET_USED_FLAG(preNode->sizeAndFlag)) {
usedNode = (struct OsMemUsedNodeHead *)preNode;
PRINTK("prev node head: %p "
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
"0x%x "
#endif
"0x%x\n",
usedNode->header.ptr.prev,
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
usedNode->header.magic,
#endif
usedNode->header.sizeAndFlag);
} else {
freeNode = (struct OsMemFreeNodeHead *)preNode;
PRINTK("prev node head: %p %p %p "
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
"0x%x "
#endif
"0x%x, ",
freeNode->header.ptr.prev, freeNode->next, freeNode->prev,
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
freeNode->header.magic,
#endif
freeNode->header.sizeAndFlag);
}
#if (LOSCFG_MEM_LEAKCHECK == 1)
OsMemNodeBacktraceInfo(tmpNode, preNode);
#endif
}
#endif
struct OsMemIntegrityCheckInfo {
struct OsMemNodeHead preNode;
struct OsMemNodeHead errNode;
};
struct OsMemIntegrityCheckInfo g_integrityCheckRecord = {0};
STATIC INLINE VOID OsMemCheckInfoRecord(const struct OsMemNodeHead *errNode,
const struct OsMemNodeHead *preNode)
{
(VOID)memcpy(&g_integrityCheckRecord.preNode, preNode, sizeof(struct OsMemNodeHead));
(VOID)memcpy(&g_integrityCheckRecord.errNode, errNode, sizeof(struct OsMemNodeHead));
}
STATIC VOID OsMemIntegrityCheckError(struct OsMemPoolHead *pool,
const struct OsMemNodeHead *tmpNode,
const struct OsMemNodeHead *preNode,
UINT32 intSave)
{
#if (LOSCFG_KERNEL_PRINTF != 0)
OsMemNodeInfo(tmpNode, preNode);
#endif
OsMemCheckInfoRecord(tmpNode, preNode);
#if (LOSCFG_MEM_FREE_BY_TASKID == 1 || LOSCFG_TASK_MEM_USED == 1)
LosTaskCB *taskCB = NULL;
if (OS_MEM_NODE_GET_USED_FLAG(preNode->sizeAndFlag)) {
struct OsMemUsedNodeHead *usedNode = (struct OsMemUsedNodeHead *)preNode;
UINT32 taskID = usedNode->header.taskID;
if (taskID >= LOSCFG_BASE_CORE_TSK_LIMIT) {
MEM_UNLOCK(pool, intSave);
LOS_Panic("Task ID %u in pre node is invalid!\n", taskID);
}
taskCB = OS_TCB_FROM_TID(taskID);
if ((taskCB->taskStatus & OS_TASK_STATUS_UNUSED) || (taskCB->taskEntry == NULL)) {
MEM_UNLOCK(pool, intSave);
LOS_Panic("\r\nTask ID %u in pre node is not created!\n", taskID);
}
} else {
PRINTK("The prev node is free\n");
}
MEM_UNLOCK(pool, intSave);
PRINT_ERR("cur node: 0x%x, pre node: 0x%x, pre node was allocated by task: %d, %s\n",
(unsigned int)tmpNode, (unsigned int)preNode, taskCB->taskID, taskCB->taskName);
LOS_Panic("Memory integrity check error!\n");
#else
MEM_UNLOCK(pool, intSave);
LOS_Panic("Memory integrity check error, cur node: 0x%x, pre node: 0x%x\n", tmpNode, preNode);
#endif
}
#if (LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK == 1)
STATIC INLINE UINT32 OsMemAllocCheck(struct OsMemPoolHead *pool, UINT32 intSave)
{
struct OsMemNodeHead *tmpNode = NULL;
struct OsMemNodeHead *preNode = NULL;
if (OsMemIntegrityCheck(pool, &tmpNode, &preNode)) {
OsMemIntegrityCheckError(pool, tmpNode, preNode, intSave);
return LOS_NOK;
}
return LOS_OK;
}
#endif
UINT32 LOS_MemIntegrityCheck(const VOID *pool)
{
if (pool == NULL) {
return LOS_NOK;
}
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *tmpNode = NULL;
struct OsMemNodeHead *preNode = NULL;
UINT32 intSave = 0;
MEM_LOCK(poolHead, intSave);
if (OsMemIntegrityCheck(poolHead, &tmpNode, &preNode)) {
goto ERROR_OUT;
}
MEM_UNLOCK(poolHead, intSave);
return LOS_OK;
ERROR_OUT:
OsMemIntegrityCheckError(poolHead, tmpNode, preNode, intSave);
return LOS_NOK;
}
STATIC INLINE VOID OsMemInfoGet(struct OsMemNodeHead *node,
LOS_MEM_POOL_STATUS *poolStatus)
{
UINT32 totalUsedSize = 0;
UINT32 totalFreeSize = 0;
UINT32 usedNodeNum = 0;
UINT32 freeNodeNum = 0;
UINT32 maxFreeSize = 0;
UINT32 size;
if (!OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag)) {
size = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
++freeNodeNum;
totalFreeSize += size;
if (maxFreeSize < size) {
maxFreeSize = size;
}
} else {
if (OS_MEM_IS_GAP_NODE(node)) {
size = OS_MEM_NODE_HEAD_SIZE;
} else {
size = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
}
++usedNodeNum;
totalUsedSize += size;
}
poolStatus->totalUsedSize += totalUsedSize;
poolStatus->totalFreeSize += totalFreeSize;
poolStatus->maxFreeNodeSize = poolStatus->maxFreeNodeSize > maxFreeSize ?
poolStatus->maxFreeNodeSize : maxFreeSize;
poolStatus->usedNodeNum += usedNodeNum;
poolStatus->freeNodeNum += freeNodeNum;
}
STATIC VOID OsMemNodeInfoGetHandle(struct OsMemNodeHead *curNode, VOID *arg)
{
LOS_MEM_POOL_STATUS *poolStatus = (LOS_MEM_POOL_STATUS *)arg;
OsMemInfoGet(curNode, poolStatus);
return;
}
UINT32 LOS_MemInfoGet(VOID *pool, LOS_MEM_POOL_STATUS *poolStatus)
{
struct OsMemPoolHead *poolInfo = pool;
UINT32 intSave = 0;
if (poolStatus == NULL) {
PRINT_ERR("can't use NULL addr to save info\n");
return LOS_NOK;
}
if ((pool == NULL) || (poolInfo->info.pool != pool)) {
PRINT_ERR("wrong mem pool addr: 0x%x, line:%d\n", (UINTPTR)poolInfo, __LINE__);
return LOS_NOK;
}
(VOID)memset(poolStatus, 0, sizeof(LOS_MEM_POOL_STATUS));
OsAllMemNodeDoHandle(pool, OsMemNodeInfoGetHandle, (VOID *)poolStatus);
MEM_LOCK(poolInfo, intSave);
#if (LOSCFG_MEM_WATERLINE == 1)
poolStatus->usageWaterLine = poolInfo->info.waterLine;
#endif
MEM_UNLOCK(poolInfo, intSave);
return LOS_OK;
}
STATIC VOID OsMemInfoPrint(VOID *pool)
{
#if (LOSCFG_KERNEL_PRINTF != 0)
struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
LOS_MEM_POOL_STATUS status = {0};
if (LOS_MemInfoGet(pool, &status) == LOS_NOK) {
return;
}
#if (LOSCFG_MEM_WATERLINE == 1)
PRINTK("pool addr pool size used size free size "
"max free node size used node num free node num UsageWaterLine\n");
PRINTK("--------------- -------- ------- -------- "
"-------------- ------------- ------------ ------------\n");
PRINTK("%-16p 0x%-8x 0x%-8x 0x%-8x 0x%-16x 0x%-13x 0x%-13x 0x%-13x\n",
poolInfo->info.pool, LOS_MemPoolSizeGet(pool), status.totalUsedSize,
status.totalFreeSize, status.maxFreeNodeSize, status.usedNodeNum,
status.freeNodeNum, status.usageWaterLine);
#else
PRINTK("pool addr pool size used size free size "
"max free node size used node num free node num\n");
PRINTK("--------------- -------- ------- -------- "
"-------------- ------------- ------------\n");
PRINTK("%-16p 0x%-8x 0x%-8x 0x%-8x 0x%-16x 0x%-13x 0x%-13x\n",
poolInfo->info.pool, LOS_MemPoolSizeGet(pool), status.totalUsedSize,
status.totalFreeSize, status.maxFreeNodeSize, status.usedNodeNum,
status.freeNodeNum);
#endif
#endif
}
UINT32 LOS_MemFreeNodeShow(VOID *pool)
{
#if (LOSCFG_KERNEL_PRINTF != 0)
struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
if ((poolInfo == NULL) || ((UINTPTR)pool != (UINTPTR)poolInfo->info.pool)) {
PRINT_ERR("wrong mem pool addr: 0x%x, line: %d\n", (UINTPTR)poolInfo, __LINE__);
return LOS_NOK;
}
struct OsMemFreeNodeHead *node = NULL;
UINT32 countNum[OS_MEM_FREE_LIST_COUNT] = {0};
UINT32 index;
UINT32 intSave = 0;
MEM_LOCK(poolInfo, intSave);
for (index = 0; index < OS_MEM_FREE_LIST_COUNT; index++) {
node = poolInfo->freeList[index];
while (node) {
node = node->next;
countNum[index]++;
}
}
MEM_UNLOCK(poolInfo, intSave);
PRINTK("\n ************************ left free node number**********************\n");
for (index = 0; index < OS_MEM_FREE_LIST_COUNT; index++) {
if (countNum[index] == 0) {
continue;
}
PRINTK("free index: %03u, ", index);
if (index < OS_MEM_SMALL_BUCKET_COUNT) {
PRINTK("size: [0x%x], num: %u\n", (index + 1) << 2, countNum[index]); /* 2: setup is 4. */
} else {
UINT32 val = 1 << (((index - OS_MEM_SMALL_BUCKET_COUNT) >> OS_MEM_SLI) + OS_MEM_LARGE_START_BUCKET);
UINT32 offset = val >> OS_MEM_SLI;
PRINTK("size: [0x%x, 0x%x], num: %u\n",
(offset * ((index - OS_MEM_SMALL_BUCKET_COUNT) % (1 << OS_MEM_SLI))) + val,
((offset * (((index - OS_MEM_SMALL_BUCKET_COUNT) % (1 << OS_MEM_SLI)) + 1)) + val - 1),
countNum[index]);
}
}
PRINTK("\n ********************************************************************\n\n");
#endif
return LOS_OK;
}
VOID LOS_MemUnlockEnable(VOID *pool)
{
if (pool == NULL) {
return;
}
((struct OsMemPoolHead *)pool)->info.attr |= OS_MEM_POOL_UNLOCK_ENABLE;
}
#if (LOSCFG_MEM_MUL_REGIONS == 1)
STATIC INLINE UINT32 OsMemMulRegionsParamCheck(VOID *pool, const LosMemRegion * const memRegions,
UINT32 memRegionCount)
{
const LosMemRegion *memRegion = NULL;
VOID *lastStartAddress = NULL;
VOID *curStartAddress = NULL;
UINT32 lastLength;
UINT32 curLength;
UINT32 regionCount;
if ((pool != NULL) && (((struct OsMemPoolHead *)pool)->info.pool != pool)) {
PRINT_ERR("wrong mem pool addr: %p, func: %s, line: %d\n", pool, __FUNCTION__, __LINE__);
return LOS_NOK;
}
if (pool != NULL) {
lastStartAddress = pool;
lastLength = ((struct OsMemPoolHead *)pool)->info.totalSize;
}
memRegion = memRegions;
regionCount = 0;
while (regionCount < memRegionCount) {
curStartAddress = memRegion->startAddress;
curLength = memRegion->length;
if ((curStartAddress == NULL) || (curLength == 0)) {
PRINT_ERR("Memory address or length configured wrongly:address:0x%x, the length:0x%x\n",
(UINTPTR)curStartAddress, curLength);
return LOS_NOK;
}
if (((UINTPTR)curStartAddress & (OS_MEM_ALIGN_SIZE - 1)) || (curLength & (OS_MEM_ALIGN_SIZE - 1))) {
PRINT_ERR("Memory address or length configured not aligned:address:0x%x, the length:0x%x, alignsize:%d\n",
(UINTPTR)curStartAddress, curLength, OS_MEM_ALIGN_SIZE);
return LOS_NOK;
}
if ((lastStartAddress != NULL) && (((UINT8 *)lastStartAddress + lastLength) >= (UINT8 *)curStartAddress)) {
PRINT_ERR("Memory regions overlapped, the last start address:0x%x, "
"the length:0x%x, the current start address:0x%x\n",
(UINTPTR)lastStartAddress, lastLength, (UINTPTR)curStartAddress);
return LOS_NOK;
}
memRegion++;
regionCount++;
lastStartAddress = curStartAddress;
lastLength = curLength;
}
return LOS_OK;
}
STATIC INLINE VOID OsMemMulRegionsLink(struct OsMemPoolHead *poolHead, VOID *lastStartAddress, UINT32 lastLength,
struct OsMemNodeHead *lastEndNode, const LosMemRegion *memRegion)
{
UINT32 curLength;
UINT32 gapSize;
struct OsMemNodeHead *curEndNode = NULL;
struct OsMemNodeHead *curFreeNode = NULL;
VOID *curStartAddress = NULL;
curStartAddress = memRegion->startAddress;
curLength = memRegion->length;
#ifdef LOSCFG_KERNEL_LMS
UINT32 resize = 0;
if (g_lms != NULL) {
/*
* resize == 0, shadow memory init failed, no shadow memory for this pool, set poolSize as original size.
* resize != 0, shadow memory init successful, set poolSize as resize.
*/
resize = g_lms->init(curStartAddress, curLength);
curLength = (resize == 0) ? curLength : resize;
}
#endif
// mark the gap between two regions as one used node
gapSize = (UINT8 *)(curStartAddress) - ((UINT8 *)(poolHead) + poolHead->info.totalSize);
lastEndNode->sizeAndFlag = gapSize + OS_MEM_NODE_HEAD_SIZE;
OS_MEM_SET_MAGIC(lastEndNode);
OS_MEM_NODE_SET_USED_FLAG(lastEndNode->sizeAndFlag);
// mark the gap node with magic number
OS_MEM_MARK_GAP_NODE(lastEndNode);
poolHead->info.totalSize += (curLength + gapSize);
poolHead->info.totalGapSize += gapSize;
curFreeNode = (struct OsMemNodeHead *)curStartAddress;
curFreeNode->sizeAndFlag = curLength - OS_MEM_NODE_HEAD_SIZE;
curFreeNode->ptr.prev = lastEndNode;
OS_MEM_SET_MAGIC(curFreeNode);
OsMemFreeNodeAdd(poolHead, (struct OsMemFreeNodeHead *)curFreeNode);
curEndNode = OS_MEM_END_NODE(curStartAddress, curLength);
curEndNode->sizeAndFlag = 0;
curEndNode->ptr.prev = curFreeNode;
OS_MEM_SET_MAGIC(curEndNode);
OS_MEM_NODE_SET_USED_FLAG(curEndNode->sizeAndFlag);
#if (LOSCFG_MEM_WATERLINE == 1)
poolHead->info.curUsedSize += OS_MEM_NODE_HEAD_SIZE;
poolHead->info.waterLine = poolHead->info.curUsedSize;
#endif
}
UINT32 LOS_MemRegionsAdd(VOID *pool, const LosMemRegion *const memRegions, UINT32 memRegionCount)
{
UINT32 ret;
UINT32 lastLength;
UINT32 curLength;
UINT32 regionCount;
struct OsMemPoolHead *poolHead = NULL;
struct OsMemNodeHead *lastEndNode = NULL;
struct OsMemNodeHead *firstFreeNode = NULL;
const LosMemRegion *memRegion = NULL;
VOID *lastStartAddress = NULL;
VOID *curStartAddress = NULL;
ret = OsMemMulRegionsParamCheck(pool, memRegions, memRegionCount);
if (ret != LOS_OK) {
return ret;
}
memRegion = memRegions;
regionCount = 0;
if (pool != NULL) { // add the memory regions to the specified memory pool
poolHead = (struct OsMemPoolHead *)pool;
lastStartAddress = pool;
lastLength = poolHead->info.totalSize;
} else { // initialize the memory pool with the first memory region
lastStartAddress = memRegion->startAddress;
lastLength = memRegion->length;
poolHead = (struct OsMemPoolHead *)lastStartAddress;
ret = LOS_MemInit(lastStartAddress, lastLength);
if (ret != LOS_OK) {
return ret;
}
memRegion++;
regionCount++;
}
firstFreeNode = OS_MEM_FIRST_NODE(lastStartAddress);
lastEndNode = OS_MEM_END_NODE(lastStartAddress, poolHead->info.totalSize);
/* traverse the rest memory regions, and initialize them as free nodes and link together */
while (regionCount < memRegionCount) {
curStartAddress = memRegion->startAddress;
curLength = memRegion->length;
OsMemMulRegionsLink(poolHead, lastStartAddress, lastLength, lastEndNode, memRegion);
lastStartAddress = curStartAddress;
lastLength = curLength;
lastEndNode = OS_MEM_END_NODE(poolHead, poolHead->info.totalSize);
memRegion++;
regionCount++;
}
firstFreeNode->ptr.prev = lastEndNode;
return ret;
}
#endif
UINT32 OsMemSystemInit(VOID)
{
UINT32 ret;
#if (LOSCFG_SYS_EXTERNAL_HEAP == 0)
m_aucSysMem0 = g_memStart;
#else
m_aucSysMem0 = LOSCFG_SYS_HEAP_ADDR;
#endif
ret = LOS_MemInit(m_aucSysMem0, LOSCFG_SYS_HEAP_SIZE);
PRINT_INFO("LiteOS heap memory address:%p, size:0x%lx\n", m_aucSysMem0, (unsigned long int)LOSCFG_SYS_HEAP_SIZE);
return ret;
}
#if (LOSCFG_PLATFORM_EXC == 1)
STATIC VOID OsMemExcInfoGetSub(struct OsMemPoolHead *pool, MemInfoCB *memExcInfo)
{
struct OsMemNodeHead *tmpNode = NULL;
UINT32 taskID = OS_TASK_ERRORID;
UINT32 intSave = 0;
(VOID)memset(memExcInfo, 0, sizeof(MemInfoCB));
MEM_LOCK(pool, intSave);
memExcInfo->type = MEM_MANG_MEMORY;
memExcInfo->startAddr = (UINTPTR)pool->info.pool;
memExcInfo->size = pool->info.totalSize;
memExcInfo->free = pool->info.totalSize - pool->info.curUsedSize;
struct OsMemNodeHead *firstNode = OS_MEM_FIRST_NODE(pool);
struct OsMemNodeHead *endNode = OS_MEM_END_NODE(pool, pool->info.totalSize);
for (tmpNode = firstNode; tmpNode < endNode; tmpNode = OS_MEM_NEXT_NODE(tmpNode)) {
memExcInfo->blockSize++;
if (OS_MEM_NODE_GET_USED_FLAG(tmpNode->sizeAndFlag)) {
if (!OS_MEM_MAGIC_VALID(tmpNode) ||
!OsMemAddrValidCheck(pool, tmpNode->ptr.prev)) {
#if (LOSCFG_MEM_FREE_BY_TASKID == 1 || LOSCFG_TASK_MEM_USED == 1)
taskID = ((struct OsMemUsedNodeHead *)tmpNode)->header.taskID;
#endif
goto ERROUT;
}
} else { /* is free node, check free node range */
struct OsMemFreeNodeHead *freeNode = (struct OsMemFreeNodeHead *)tmpNode;
if (OsMemAddrValidCheckPrint(pool, &freeNode)) {
goto ERROUT;
}
}
}
MEM_UNLOCK(pool, intSave);
return;
ERROUT:
memExcInfo->errorAddr = (UINTPTR)((CHAR *)tmpNode + OS_MEM_NODE_HEAD_SIZE);
memExcInfo->errorLen = OS_MEM_NODE_GET_SIZE(tmpNode->sizeAndFlag) - OS_MEM_NODE_HEAD_SIZE;
memExcInfo->errorOwner = taskID;
MEM_UNLOCK(pool, intSave);
return;
}
UINT32 OsMemExcInfoGet(UINT32 memNumMax, MemInfoCB *memExcInfo)
{
UINT8 *buffer = (UINT8 *)memExcInfo;
UINT32 count = 0;
#if (LOSCFG_MEM_MUL_POOL == 1)
struct OsMemPoolHead *memPool = g_poolHead;
while (memPool != NULL) {
OsMemExcInfoGetSub(memPool, (MemInfoCB *)buffer);
count++;
buffer += sizeof(MemInfoCB);
if (count >= memNumMax) {
break;
}
memPool = memPool->nextPool;
}
#else
OsMemExcInfoGetSub(m_aucSysMem0, buffer);
count++;
#endif
return count;
}
#endif