openharmony_kernel_liteos_m/components/lms/los_lms.c

783 lines
24 KiB
C

/*
* Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved.
* Copyright (c) 2020-2021 Huawei Device Co., Ltd. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "los_lms_pri.h"
#include "los_config.h"
#include "los_debug.h"
#if (LOSCFG_KERNEL_SMP == 1)
#include "los_spinlock.h"
#else
#include "los_interrupt.h"
#endif
#if (LOSCFG_BACKTRACE_TYPE != 0)
#include "los_backtrace.h"
#endif
#include "los_sched.h"
LITE_OS_SEC_BSS STATIC LmsMemListNode g_lmsCheckPoolArray[LOSCFG_LMS_MAX_RECORD_POOL_NUM];
LITE_OS_SEC_BSS STATIC LOS_DL_LIST g_lmsCheckPoolList;
STATIC UINT32 g_checkDepth = 0;
LmsHook *g_lms = NULL;
#if (LOSCFG_KERNEL_SMP == 1)
LITE_OS_SEC_BSS SPIN_LOCK_INIT(g_lmsSpin);
#define LMS_LOCK(state) LOS_SpinLockSave(&g_lmsSpin, &(state))
#define LMS_UNLOCK(state) LOS_SpinUnlockRestore(&g_lmsSpin, (state))
#else
#define LMS_LOCK(state) (state) = LOS_IntLock()
#define LMS_UNLOCK(state) LOS_IntRestore(state)
#endif
#define OS_MEM_ALIGN_BACK(value, align) (((UINT32)(value)) & ~((UINT32)((align) - 1)))
#define IS_ALIGNED(value, align) ((((UINTPTR)(value)) & ((UINTPTR)((align) - 1))) == 0)
#define OS_MEM_ALIGN_SIZE sizeof(UINTPTR)
#define POOL_ADDR_ALIGNSIZE 64
#define LMS_POOL_UNUSED 0
#define LMS_POOL_USED 1
#define INVALID_SHADOW_VALUE 0xFFFFFFFF
STATIC UINT32 OsLmsPoolResize(UINT32 size)
{
return OS_MEM_ALIGN_BACK(LMS_POOL_RESIZE(size), POOL_ADDR_ALIGNSIZE);
}
STATIC LmsMemListNode *OsLmsGetPoolNode(const VOID *pool)
{
UINTPTR poolAddr = (UINTPTR)pool;
LmsMemListNode *current = NULL;
LOS_DL_LIST *listHead = &g_lmsCheckPoolList;
if (LOS_ListEmpty(&g_lmsCheckPoolList)) {
goto EXIT;
}
LOS_DL_LIST_FOR_EACH_ENTRY(current, listHead, LmsMemListNode, node) {
if (current->poolAddr == poolAddr) {
return current;
}
}
EXIT:
return NULL;
}
STATIC LmsMemListNode *OsLmsGetPoolNodeFromAddr(UINTPTR addr)
{
LmsMemListNode *current = NULL;
LmsMemListNode *previous = NULL;
LOS_DL_LIST *listHead = &g_lmsCheckPoolList;
if (LOS_ListEmpty(&g_lmsCheckPoolList)) {
return NULL;
}
LOS_DL_LIST_FOR_EACH_ENTRY(current, listHead, LmsMemListNode, node) {
if ((addr < current->poolAddr) || (addr >= (current->poolAddr + current->poolSize))) {
continue;
}
if ((previous == NULL) ||
((previous->poolAddr <= current->poolAddr) &&
((current->poolAddr + current->poolSize) <= (previous->poolAddr + previous->poolSize)))) {
previous = current;
}
}
return previous;
}
STATIC LmsMemListNode *OsLmsCheckPoolCreate(VOID)
{
UINT32 i;
LmsMemListNode *current = NULL;
for (i = 0; i < LOSCFG_LMS_MAX_RECORD_POOL_NUM; i++) {
current = &g_lmsCheckPoolArray[i];
if (current->used == LMS_POOL_UNUSED) {
current->used = LMS_POOL_USED;
return current;
}
}
return NULL;
}
UINT32 LOS_LmsCheckPoolAdd(const VOID *pool, UINT32 size)
{
UINT32 intSave;
UINTPTR poolAddr = (UINTPTR)pool;
UINT32 realSize;
LmsMemListNode *lmsPoolNode = NULL;
if (pool == NULL) {
return 0;
}
LMS_LOCK(intSave);
lmsPoolNode = OsLmsGetPoolNode(pool);
if (lmsPoolNode != NULL) { /* if pool already on checklist */
/* Re-initialize the same pool, maybe with different size */
/* delete the old node, then add a new one */
lmsPoolNode->used = LMS_POOL_UNUSED;
LOS_ListDelete(&(lmsPoolNode->node));
}
lmsPoolNode = OsLmsCheckPoolCreate();
if (lmsPoolNode == NULL) {
PRINT_DEBUG("[LMS]the num of lms check pool is max already !\n");
LMS_UNLOCK(intSave);
return 0;
}
realSize = OsLmsPoolResize(size);
lmsPoolNode->poolAddr = poolAddr;
lmsPoolNode->poolSize = realSize;
lmsPoolNode->shadowStart = (UINTPTR)poolAddr + realSize;
lmsPoolNode->shadowSize = poolAddr + size - lmsPoolNode->shadowStart;
/* init shadow value */
(VOID)memset_s((VOID *)lmsPoolNode->shadowStart, lmsPoolNode->shadowSize, LMS_SHADOW_AFTERFREE_U8,
lmsPoolNode->shadowSize);
LOS_ListAdd(&g_lmsCheckPoolList, &(lmsPoolNode->node));
LMS_UNLOCK(intSave);
return realSize;
}
VOID LOS_LmsCheckPoolDel(const VOID *pool)
{
UINT32 intSave;
if (pool == NULL) {
return;
}
LMS_LOCK(intSave);
LmsMemListNode *delNode = OsLmsGetPoolNode(pool);
if (delNode == NULL) {
PRINT_ERR("[LMS]pool %p is not on lms checklist !\n", pool);
goto RELEASE;
}
delNode->used = LMS_POOL_UNUSED;
LOS_ListDelete(&(delNode->node));
RELEASE:
LMS_UNLOCK(intSave);
}
VOID OsLmsInit(VOID)
{
(VOID)memset_s(g_lmsCheckPoolArray, sizeof(g_lmsCheckPoolArray), 0, sizeof(g_lmsCheckPoolArray));
LOS_ListInit(&g_lmsCheckPoolList);
static LmsHook hook = {
.init = LOS_LmsCheckPoolAdd,
.deInit = LOS_LmsCheckPoolDel,
.mallocMark = OsLmsLosMallocMark,
.freeMark = OsLmsLosFreeMark,
.simpleMark = OsLmsSimpleMark,
.check = OsLmsCheckValid,
};
g_lms = &hook;
}
STATIC INLINE UINT32 OsLmsMem2Shadow(LmsMemListNode *node, UINTPTR memAddr, UINTPTR *shadowAddr, UINT32 *shadowOffset)
{
if ((memAddr < node->poolAddr) || (memAddr >= node->poolAddr + node->poolSize)) { /* check ptr valid */
PRINT_ERR("[LMS]memAddr %p is not in pool region [%p, %p)\n", memAddr, node->poolAddr,
node->poolAddr + node->poolSize);
return LOS_NOK;
}
UINT32 memOffset = memAddr - node->poolAddr;
*shadowAddr = node->shadowStart + memOffset / LMS_SHADOW_U8_REFER_BYTES;
*shadowOffset = ((memOffset % LMS_SHADOW_U8_REFER_BYTES) / LMS_SHADOW_U8_CELL_NUM) *
LMS_SHADOW_BITS_PER_CELL; /* (memOffset % 16) / 4 */
return LOS_OK;
}
STATIC INLINE VOID OsLmsGetShadowInfo(LmsMemListNode *node, UINTPTR memAddr, LmsAddrInfo *info)
{
UINTPTR shadowAddr;
UINT32 shadowOffset;
UINT32 shadowValue;
if (OsLmsMem2Shadow(node, memAddr, &shadowAddr, &shadowOffset) != LOS_OK) {
return;
}
shadowValue = ((*(UINT8 *)shadowAddr) >> shadowOffset) & LMS_SHADOW_MASK;
info->memAddr = memAddr;
info->shadowAddr = shadowAddr;
info->shadowOffset = shadowOffset;
info->shadowValue = shadowValue;
}
VOID OsLmsSetShadowValue(LmsMemListNode *node, UINTPTR startAddr, UINTPTR endAddr, UINT8 value)
{
UINTPTR shadowStart;
UINTPTR shadowEnd;
UINT32 startOffset;
UINT32 endOffset;
UINT8 shadowValueMask;
UINT8 shadowValue;
/* endAddr -1, then we mark [startAddr, endAddr) to value */
if (OsLmsMem2Shadow(node, startAddr, &shadowStart, &startOffset) ||
OsLmsMem2Shadow(node, endAddr - 1, &shadowEnd, &endOffset)) {
return;
}
if (shadowStart == shadowEnd) { /* in the same u8 */
/* because endAddr - 1, the endOffset falls into the previous cell,
so endOffset + 2 is required for calculation */
shadowValueMask = LMS_SHADOW_MASK_U8;
shadowValueMask =
(shadowValueMask << startOffset) & (~(shadowValueMask << (endOffset + LMS_SHADOW_BITS_PER_CELL)));
shadowValue = value & shadowValueMask;
*(UINT8 *)shadowStart &= ~shadowValueMask;
*(UINT8 *)shadowStart |= shadowValue;
} else {
/* Adjust startAddr to left util it reach the beginning of a u8 */
if (startOffset > 0) {
shadowValueMask = LMS_SHADOW_MASK_U8;
shadowValueMask = shadowValueMask << startOffset;
shadowValue = value & shadowValueMask;
*(UINT8 *)shadowStart &= ~shadowValueMask;
*(UINT8 *)shadowStart |= shadowValue;
shadowStart += 1;
}
/* Adjust endAddr to right util it reach the end of a u8 */
if (endOffset < (LMS_SHADOW_U8_CELL_NUM - 1) * LMS_SHADOW_BITS_PER_CELL) {
shadowValueMask = LMS_SHADOW_MASK_U8;
shadowValueMask &= ~(shadowValueMask << (endOffset + LMS_SHADOW_BITS_PER_CELL));
shadowValue = value & shadowValueMask;
*(UINT8 *)shadowEnd &= ~shadowValueMask;
*(UINT8 *)shadowEnd |= shadowValue;
shadowEnd -= 1;
}
if (shadowEnd + 1 > shadowStart) {
(VOID)memset((VOID *)shadowStart, value & LMS_SHADOW_MASK_U8, shadowEnd + 1 - shadowStart);
}
}
}
VOID OsLmsGetShadowValue(LmsMemListNode *node, UINTPTR addr, UINT32 *shadowValue)
{
UINTPTR shadowAddr;
UINT32 shadowOffset;
if (OsLmsMem2Shadow(node, addr, &shadowAddr, &shadowOffset) != LOS_OK) {
return;
}
*shadowValue = ((*(UINT8 *)shadowAddr) >> shadowOffset) & LMS_SHADOW_MASK;
}
VOID OsLmsSimpleMark(UINTPTR startAddr, UINTPTR endAddr, UINT32 value)
{
UINT32 intSave;
if (endAddr <= startAddr) {
PRINT_DEBUG("[LMS]mark 0x%x, 0x%x, 0x%x\n", startAddr, endAddr, (UINTPTR)__builtin_return_address(0));
return;
}
if (!IS_ALIGNED(startAddr, OS_MEM_ALIGN_SIZE) || !IS_ALIGNED(endAddr, OS_MEM_ALIGN_SIZE)) {
PRINT_ERR("[LMS]mark addr is not aligned! 0x%x, 0x%x\n", startAddr, endAddr);
return;
}
LMS_LOCK(intSave);
LmsMemListNode *node = OsLmsGetPoolNodeFromAddr(startAddr);
if (node == NULL) {
LMS_UNLOCK(intSave);
return;
}
OsLmsSetShadowValue(node, startAddr, endAddr, value);
LMS_UNLOCK(intSave);
}
VOID OsLmsLosMallocMark(const VOID *curNodeStart, const VOID *nextNodeStart, UINT32 nodeHeadSize)
{
UINT32 intSave;
UINTPTR curNodeStartAddr = (UINTPTR)curNodeStart;
UINTPTR nextNodeStartAddr = (UINTPTR)nextNodeStart;
LMS_LOCK(intSave);
LmsMemListNode *node = OsLmsGetPoolNodeFromAddr((UINTPTR)curNodeStart);
if (node == NULL) {
LMS_UNLOCK(intSave);
return;
}
OsLmsSetShadowValue(node, curNodeStartAddr, curNodeStartAddr + nodeHeadSize, LMS_SHADOW_REDZONE_U8);
OsLmsSetShadowValue(node, curNodeStartAddr + nodeHeadSize, nextNodeStartAddr, LMS_SHADOW_ACCESSIBLE_U8);
OsLmsSetShadowValue(node, nextNodeStartAddr, nextNodeStartAddr + nodeHeadSize, LMS_SHADOW_REDZONE_U8);
LMS_UNLOCK(intSave);
}
VOID OsLmsCheckValid(UINTPTR checkAddr, BOOL isFreeCheck)
{
UINT32 intSave;
UINT32 shadowValue = INVALID_SHADOW_VALUE;
LMS_LOCK(intSave);
LmsMemListNode *node = OsLmsGetPoolNodeFromAddr(checkAddr);
if (node == NULL) {
LMS_UNLOCK(intSave);
return;
}
OsLmsGetShadowValue(node, checkAddr, &shadowValue);
LMS_UNLOCK(intSave);
if ((shadowValue == LMS_SHADOW_ACCESSIBLE) || ((isFreeCheck) && (shadowValue == LMS_SHADOW_PAINT))) {
return;
}
OsLmsReportError(checkAddr, MEM_REGION_SIZE_1, isFreeCheck ? FREE_ERRORMODE : COMMON_ERRMODE);
}
VOID OsLmsLosFreeMark(const VOID *curNodeStart, const VOID *nextNodeStart, UINT32 nodeHeadSize)
{
UINT32 intSave;
UINT32 shadowValue = INVALID_SHADOW_VALUE;
LMS_LOCK(intSave);
LmsMemListNode *node = OsLmsGetPoolNodeFromAddr((UINTPTR)curNodeStart);
if (node == NULL) {
LMS_UNLOCK(intSave);
return;
}
UINTPTR curNodeStartAddr = (UINTPTR)curNodeStart;
UINTPTR nextNodeStartAddr = (UINTPTR)nextNodeStart;
OsLmsGetShadowValue(node, curNodeStartAddr + nodeHeadSize, &shadowValue);
if ((shadowValue != LMS_SHADOW_ACCESSIBLE) && (shadowValue != LMS_SHADOW_PAINT)) {
LMS_UNLOCK(intSave);
OsLmsReportError(curNodeStartAddr + nodeHeadSize, MEM_REGION_SIZE_1, FREE_ERRORMODE);
return;
}
if (*((UINT8 *)curNodeStart) == 0) { /* if merge the node has memset with 0 */
OsLmsSetShadowValue(node, curNodeStartAddr, curNodeStartAddr + nodeHeadSize, LMS_SHADOW_AFTERFREE_U8);
}
OsLmsSetShadowValue(node, curNodeStartAddr + nodeHeadSize, nextNodeStartAddr, LMS_SHADOW_AFTERFREE_U8);
if (*((UINT8 *)nextNodeStart) == 0) { /* if merge the node has memset with 0 */
OsLmsSetShadowValue(node, nextNodeStartAddr, nextNodeStartAddr + nodeHeadSize, LMS_SHADOW_AFTERFREE_U8);
}
LMS_UNLOCK(intSave);
}
VOID LOS_LmsAddrProtect(UINTPTR addrStart, UINTPTR addrEnd)
{
UINT32 intSave;
if (addrEnd <= addrStart) {
return;
}
LMS_LOCK(intSave);
LmsMemListNode *node = OsLmsGetPoolNodeFromAddr(addrStart);
if (node != NULL) {
OsLmsSetShadowValue(node, addrStart, addrEnd, LMS_SHADOW_REDZONE_U8);
}
LMS_UNLOCK(intSave);
}
VOID LOS_LmsAddrDisableProtect(UINTPTR addrStart, UINTPTR addrEnd)
{
UINT32 intSave;
if (addrEnd <= addrStart) {
return;
}
LMS_LOCK(intSave);
LmsMemListNode *node = OsLmsGetPoolNodeFromAddr(addrStart);
if (node != NULL) {
OsLmsSetShadowValue(node, addrStart, addrEnd, LMS_SHADOW_ACCESSIBLE_U8);
}
LMS_UNLOCK(intSave);
}
STATIC UINT32 OsLmsCheckAddr(UINTPTR addr)
{
UINT32 intSave;
UINT32 shadowValue = INVALID_SHADOW_VALUE;
/* do not check nested or before all cpu start */
LMS_LOCK(intSave);
if ((g_checkDepth != 0) || (!g_taskScheduled)) {
LMS_UNLOCK(intSave);
return 0;
}
LmsMemListNode *node = OsLmsGetPoolNodeFromAddr(addr);
if (node == NULL) {
LMS_UNLOCK(intSave);
return LMS_SHADOW_ACCESSIBLE_U8;
}
OsLmsGetShadowValue(node, addr, &shadowValue);
LMS_UNLOCK(intSave);
return shadowValue;
}
#if (LOSCFG_LMS_CHECK_STRICT == 1)
STATIC INLINE UINT32 OsLmsCheckAddrRegion(UINTPTR addr, UINT32 size)
{
UINT32 i;
for (i = 0; i < size; i++) {
if (OsLmsCheckAddr(addr + i)) {
return LOS_NOK;
}
}
return LOS_OK;
}
#else
STATIC INLINE UINT32 OsLmsCheckAddrRegion(UINTPTR addr, UINT32 size)
{
if (OsLmsCheckAddr(addr) || OsLmsCheckAddr(addr + size - 1)) {
return LOS_NOK;
} else {
return LOS_OK;
}
}
#endif
VOID OsLmsPrintPoolListInfo(VOID)
{
UINT32 count = 0;
UINT32 intSave;
LmsMemListNode *current = NULL;
LOS_DL_LIST *listHead = &g_lmsCheckPoolList;
LMS_LOCK(intSave);
LOS_DL_LIST_FOR_EACH_ENTRY(current, listHead, LmsMemListNode, node)
{
count++;
PRINT_DEBUG(
"[LMS]memory pool[%1u]: totalsize 0x%-8x memstart 0x%-8x memstop 0x%-8x memsize 0x%-8x shadowstart 0x%-8x "
"shadowSize 0x%-8x\n",
count, current->poolSize + current->shadowSize, current->poolAddr, current->poolAddr + current->poolSize,
current->poolSize, current->shadowStart, current->shadowSize);
}
LMS_UNLOCK(intSave);
}
VOID OsLmsPrintMemInfo(UINTPTR addr)
{
#define LMS_DUMP_OFFSET 16
#define LMS_DUMP_RANGE_DOUBLE 2
PRINTK("\n[LMS] Dump info around address [0x%8x]:\n", addr);
const UINT32 printY = LMS_DUMP_OFFSET * LMS_DUMP_RANGE_DOUBLE + 1;
const UINT32 printX = LMS_MEM_BYTES_PER_SHADOW_CELL * LMS_DUMP_RANGE_DOUBLE;
UINTPTR dumpAddr = addr - addr % printX - LMS_DUMP_OFFSET * printX;
UINT32 shadowValue = 0;
UINTPTR shadowAddr = 0;
UINT32 shadowOffset = 0;
LmsMemListNode *nodeInfo = NULL;
INT32 isCheckAddr, x, y;
nodeInfo = OsLmsGetPoolNodeFromAddr(addr);
if (nodeInfo == NULL) {
PRINT_ERR("[LMS]addr is not in checkpool\n");
return;
}
for (y = 0; y < printY; y++, dumpAddr += printX) {
if (dumpAddr < nodeInfo->poolAddr) { /* find util dumpAddr in pool region */
continue;
}
if ((dumpAddr + printX) >=
nodeInfo->poolAddr + nodeInfo->poolSize) { /* finish if dumpAddr exceeds pool's upper region */
goto END;
}
PRINTK("\n\t[0x%x]: ", dumpAddr);
for (x = 0; x < printX; x++) {
if ((dumpAddr + x) == addr) {
PRINTK("[%02x]", *(UINT8 *)(dumpAddr + x));
} else {
PRINTK(" %02x ", *(UINT8 *)(dumpAddr + x));
}
}
if (OsLmsMem2Shadow(nodeInfo, dumpAddr, &shadowAddr, &shadowOffset) != LOS_OK) {
goto END;
}
PRINTK("|\t[0x%x | %2u]: ", shadowAddr, shadowOffset);
for (x = 0; x < printX; x += LMS_MEM_BYTES_PER_SHADOW_CELL) {
OsLmsGetShadowValue(nodeInfo, dumpAddr + x, &shadowValue);
isCheckAddr = dumpAddr + x - (UINTPTR)addr + LMS_MEM_BYTES_PER_SHADOW_CELL;
if ((isCheckAddr > 0) && (isCheckAddr <= LMS_MEM_BYTES_PER_SHADOW_CELL)) {
PRINTK("[%1x]", shadowValue);
} else {
PRINTK(" %1x ", shadowValue);
}
}
}
END:
PRINTK("\n");
}
STATIC VOID OsLmsGetErrorInfo(UINTPTR addr, UINT32 size, LmsAddrInfo *info)
{
LmsMemListNode *node = OsLmsGetPoolNodeFromAddr(addr);
OsLmsGetShadowInfo(node, addr, info);
if (info->shadowValue != LMS_SHADOW_ACCESSIBLE_U8) {
return;
} else {
OsLmsGetShadowInfo(node, addr + size - 1, info);
}
}
STATIC VOID OsLmsPrintErrInfo(LmsAddrInfo *info, UINT32 errMod)
{
switch (info->shadowValue) {
case LMS_SHADOW_AFTERFREE:
PRINT_ERR("Use after free error detected\n");
break;
case LMS_SHADOW_REDZONE:
PRINT_ERR("Heap buffer overflow error detected\n");
break;
case LMS_SHADOW_ACCESSIBLE:
PRINT_ERR("No error\n");
break;
default:
PRINT_ERR("UnKnown Error detected\n");
break;
}
switch (errMod) {
case FREE_ERRORMODE:
PRINT_ERR("Illegal Double free address at: [0x%lx]\n", info->memAddr);
break;
case LOAD_ERRMODE:
PRINT_ERR("Illegal READ address at: [0x%lx]\n", info->memAddr);
break;
case STORE_ERRMODE:
PRINT_ERR("Illegal WRITE address at: [0x%lx]\n", info->memAddr);
break;
case COMMON_ERRMODE:
PRINT_ERR("Common Error at: [0x%lx]\n", info->memAddr);
break;
default:
PRINT_ERR("UnKnown Error mode at: [0x%lx]\n", info->memAddr);
break;
}
PRINT_ERR("Shadow memory address: [0x%lx : %1u] Shadow memory value: [%u] \n", info->shadowAddr,
info->shadowOffset, info->shadowValue);
}
VOID OsLmsReportError(UINTPTR p, UINT32 size, UINT32 errMod)
{
UINT32 intSave;
LmsAddrInfo info;
LMS_LOCK(intSave);
g_checkDepth += 1;
(VOID)memset_s(&info, sizeof(LmsAddrInfo), 0, sizeof(LmsAddrInfo));
PRINT_ERR("***** Kernel Address Sanitizer Error Detected Start *****\n");
OsLmsGetErrorInfo(p, size, &info);
OsLmsPrintErrInfo(&info, errMod);
#if (LOSCFG_BACKTRACE_TYPE != 0)
LOS_BackTrace();
#endif
OsLmsPrintMemInfo(info.memAddr);
g_checkDepth -= 1;
LMS_UNLOCK(intSave);
PRINT_ERR("***** Kernel Address Sanitizer Error Detected End *****\n");
}
#if (LOSCFG_LMS_STORE_CHECK == 1)
VOID __asan_store1_noabort(UINTPTR p)
{
if (OsLmsCheckAddr(p) != LMS_SHADOW_ACCESSIBLE_U8) {
OsLmsReportError(p, MEM_REGION_SIZE_1, STORE_ERRMODE);
}
}
VOID __asan_store2_noabort(UINTPTR p)
{
if (OsLmsCheckAddrRegion(p, MEM_REGION_SIZE_2) != LOS_OK) {
OsLmsReportError(p, MEM_REGION_SIZE_2, STORE_ERRMODE);
}
}
VOID __asan_store4_noabort(UINTPTR p)
{
if (OsLmsCheckAddrRegion(p, MEM_REGION_SIZE_4) != LOS_OK) {
OsLmsReportError(p, MEM_REGION_SIZE_4, STORE_ERRMODE);
}
}
VOID __asan_store8_noabort(UINTPTR p)
{
if (OsLmsCheckAddrRegion(p, MEM_REGION_SIZE_8) != LOS_OK) {
OsLmsReportError(p, MEM_REGION_SIZE_8, STORE_ERRMODE);
}
}
VOID __asan_store16_noabort(UINTPTR p)
{
if (OsLmsCheckAddrRegion(p, MEM_REGION_SIZE_16) != LOS_OK) {
OsLmsReportError(p, MEM_REGION_SIZE_16, STORE_ERRMODE);
}
}
VOID __asan_storeN_noabort(UINTPTR p, UINT32 size)
{
if (OsLmsCheckAddrRegion(p, size) != LOS_OK) {
OsLmsReportError(p, size, STORE_ERRMODE);
}
}
#else
VOID __asan_store1_noabort(UINTPTR p)
{
(VOID)p;
}
VOID __asan_store2_noabort(UINTPTR p)
{
(VOID)p;
}
VOID __asan_store4_noabort(UINTPTR p)
{
(VOID)p;
}
VOID __asan_store8_noabort(UINTPTR p)
{
(VOID)p;
}
VOID __asan_store16_noabort(UINTPTR p)
{
(VOID)p;
}
VOID __asan_storeN_noabort(UINTPTR p, UINT32 size)
{
(VOID)p;
(VOID)size;
}
#endif
#if (LOSCFG_LMS_LOAD_CHECK == 1)
VOID __asan_load1_noabort(UINTPTR p)
{
if (OsLmsCheckAddr(p) != LMS_SHADOW_ACCESSIBLE_U8) {
OsLmsReportError(p, MEM_REGION_SIZE_1, LOAD_ERRMODE);
}
}
VOID __asan_load2_noabort(UINTPTR p)
{
if (OsLmsCheckAddrRegion(p, MEM_REGION_SIZE_2) != LOS_OK) {
OsLmsReportError(p, MEM_REGION_SIZE_2, LOAD_ERRMODE);
}
}
VOID __asan_load4_noabort(UINTPTR p)
{
if (OsLmsCheckAddrRegion(p, MEM_REGION_SIZE_4) != LOS_OK) {
OsLmsReportError(p, MEM_REGION_SIZE_4, LOAD_ERRMODE);
}
}
VOID __asan_load8_noabort(UINTPTR p)
{
if (OsLmsCheckAddrRegion(p, MEM_REGION_SIZE_8) != LOS_OK) {
OsLmsReportError(p, MEM_REGION_SIZE_8, LOAD_ERRMODE);
}
}
VOID __asan_load16_noabort(UINTPTR p)
{
if (OsLmsCheckAddrRegion(p, MEM_REGION_SIZE_16) != LOS_OK) {
OsLmsReportError(p, MEM_REGION_SIZE_16, LOAD_ERRMODE);
}
}
VOID __asan_loadN_noabort(UINTPTR p, UINT32 size)
{
if (OsLmsCheckAddrRegion(p, size) != LOS_OK) {
OsLmsReportError(p, size, LOAD_ERRMODE);
}
}
#else
VOID __asan_load1_noabort(UINTPTR p)
{
(VOID)p;
}
VOID __asan_load2_noabort(UINTPTR p)
{
(VOID)p;
}
VOID __asan_load4_noabort(UINTPTR p)
{
(VOID)p;
}
VOID __asan_load8_noabort(UINTPTR p)
{
(VOID)p;
}
VOID __asan_load16_noabort(UINTPTR p)
{
(VOID)p;
}
VOID __asan_loadN_noabort(UINTPTR p, UINT32 size)
{
(VOID)p;
(VOID)size;
}
#endif
VOID __asan_handle_no_return(VOID)
{
return;
}