diff --git a/arch/risc-v/nuclei/gcc/nmsis/DSP/Include/riscv_common_tables.h b/arch/risc-v/nuclei/gcc/nmsis/DSP/Include/riscv_common_tables.h deleted file mode 100644 index c7bfb466..00000000 --- a/arch/risc-v/nuclei/gcc/nmsis/DSP/Include/riscv_common_tables.h +++ /dev/null @@ -1,379 +0,0 @@ -/* ---------------------------------------------------------------------- - * Project: NMSIS DSP Library - * Title: riscv_common_tables.h - * Description: Extern declaration for common tables - * - * $Date: 27. January 2017 - * $Revision: V.1.5.1 - * - * Target Processor: RISC-V Cores - * -------------------------------------------------------------------- */ -/* - * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. - * Copyright (c) 2019 Nuclei Limited. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef _RISCV_COMMON_TABLES_H -#define _RISCV_COMMON_TABLES_H - -#include "riscv_math.h" - -#if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_FFT_ALLOW_TABLES) - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREV_1024) - extern const uint16_t riscvBitRevTable[1024]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_F32_16) - extern const float32_t twiddleCoef_16[32]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_F32_32) - extern const float32_t twiddleCoef_32[64]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_F32_64) - extern const float32_t twiddleCoef_64[128]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_F32_128) - extern const float32_t twiddleCoef_128[256]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_F32_256) - extern const float32_t twiddleCoef_256[512]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_F32_512) - extern const float32_t twiddleCoef_512[1024]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_F32_1024) - extern const float32_t twiddleCoef_1024[2048]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_F32_2048) - extern const float32_t twiddleCoef_2048[4096]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_F32_4096) - extern const float32_t twiddleCoef_4096[8192]; - #define twiddleCoef twiddleCoef_4096 - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q31_16) - extern const q31_t twiddleCoef_16_q31[24]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q31_32) - extern const q31_t twiddleCoef_32_q31[48]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q31_64) - extern const q31_t twiddleCoef_64_q31[96]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q31_128) - extern const q31_t twiddleCoef_128_q31[192]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q31_256) - extern const q31_t twiddleCoef_256_q31[384]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q31_512) - extern const q31_t twiddleCoef_512_q31[768]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q31_1024) - extern const q31_t twiddleCoef_1024_q31[1536]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q31_2048) - extern const q31_t twiddleCoef_2048_q31[3072]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q31_4096) - extern const q31_t twiddleCoef_4096_q31[6144]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q15_16) - extern const q15_t twiddleCoef_16_q15[24]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q15_32) - extern const q15_t twiddleCoef_32_q15[48]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q15_64) - extern const q15_t twiddleCoef_64_q15[96]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q15_128) - extern const q15_t twiddleCoef_128_q15[192]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q15_256) - extern const q15_t twiddleCoef_256_q15[384]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q15_512) - extern const q15_t twiddleCoef_512_q15[768]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q15_1024) - extern const q15_t twiddleCoef_1024_q15[1536]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q15_2048) - extern const q15_t twiddleCoef_2048_q15[3072]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_Q15_4096) - extern const q15_t twiddleCoef_4096_q15[6144]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_RFFT_F32_32) - extern const float32_t twiddleCoef_rfft_32[32]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_RFFT_F32_64) - extern const float32_t twiddleCoef_rfft_64[64]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_RFFT_F32_128) - extern const float32_t twiddleCoef_rfft_128[128]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_RFFT_F32_256) - extern const float32_t twiddleCoef_rfft_256[256]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_RFFT_F32_512) - extern const float32_t twiddleCoef_rfft_512[512]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_RFFT_F32_1024) - extern const float32_t twiddleCoef_rfft_1024[1024]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_RFFT_F32_2048) - extern const float32_t twiddleCoef_rfft_2048[2048]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_TWIDDLECOEF_RFFT_F32_4096) - extern const float32_t twiddleCoef_rfft_4096[4096]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - /* floating-point bit reversal tables */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FLT_16) - #define RISCVBITREVINDEXTABLE_16_TABLE_LENGTH ((uint16_t)20) - extern const uint16_t riscvBitRevIndexTable16[RISCVBITREVINDEXTABLE_16_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FLT_32) - #define RISCVBITREVINDEXTABLE_32_TABLE_LENGTH ((uint16_t)48) - extern const uint16_t riscvBitRevIndexTable32[RISCVBITREVINDEXTABLE_32_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FLT_64) - #define RISCVBITREVINDEXTABLE_64_TABLE_LENGTH ((uint16_t)56) - extern const uint16_t riscvBitRevIndexTable64[RISCVBITREVINDEXTABLE_64_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FLT_128) - #define RISCVBITREVINDEXTABLE_128_TABLE_LENGTH ((uint16_t)208) - extern const uint16_t riscvBitRevIndexTable128[RISCVBITREVINDEXTABLE_128_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FLT_256) - #define RISCVBITREVINDEXTABLE_256_TABLE_LENGTH ((uint16_t)440) - extern const uint16_t riscvBitRevIndexTable256[RISCVBITREVINDEXTABLE_256_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FLT_512) - #define RISCVBITREVINDEXTABLE_512_TABLE_LENGTH ((uint16_t)448) - extern const uint16_t riscvBitRevIndexTable512[RISCVBITREVINDEXTABLE_512_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FLT_1024) - #define RISCVBITREVINDEXTABLE_1024_TABLE_LENGTH ((uint16_t)1800) - extern const uint16_t riscvBitRevIndexTable1024[RISCVBITREVINDEXTABLE_1024_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FLT_2048) - #define RISCVBITREVINDEXTABLE_2048_TABLE_LENGTH ((uint16_t)3808) - extern const uint16_t riscvBitRevIndexTable2048[RISCVBITREVINDEXTABLE_2048_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FLT_4096) - #define RISCVBITREVINDEXTABLE_4096_TABLE_LENGTH ((uint16_t)4032) - extern const uint16_t riscvBitRevIndexTable4096[RISCVBITREVINDEXTABLE_4096_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - - /* fixed-point bit reversal tables */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FXT_16) - #define RISCVBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH ((uint16_t)12) - extern const uint16_t riscvBitRevIndexTable_fixed_16[RISCVBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FXT_32) - #define RISCVBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH ((uint16_t)24) - extern const uint16_t riscvBitRevIndexTable_fixed_32[RISCVBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FXT_64) - #define RISCVBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH ((uint16_t)56) - extern const uint16_t riscvBitRevIndexTable_fixed_64[RISCVBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FXT_128) - #define RISCVBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH ((uint16_t)112) - extern const uint16_t riscvBitRevIndexTable_fixed_128[RISCVBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FXT_256) - #define RISCVBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH ((uint16_t)240) - extern const uint16_t riscvBitRevIndexTable_fixed_256[RISCVBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FXT_512) - #define RISCVBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH ((uint16_t)480) - extern const uint16_t riscvBitRevIndexTable_fixed_512[RISCVBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FXT_1024) - #define RISCVBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH ((uint16_t)992) - extern const uint16_t riscvBitRevIndexTable_fixed_1024[RISCVBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FXT_2048) - #define RISCVBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH ((uint16_t)1984) - extern const uint16_t riscvBitRevIndexTable_fixed_2048[RISCVBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_BITREVIDX_FXT_4096) - #define RISCVBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH ((uint16_t)4032) - extern const uint16_t riscvBitRevIndexTable_fixed_4096[RISCVBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_REALCOEF_F32) - extern const float32_t realCoefA[8192]; - extern const float32_t realCoefB[8192]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_REALCOEF_Q31) - extern const q31_t realCoefAQ31[8192]; - extern const q31_t realCoefBQ31[8192]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_REALCOEF_Q15) - extern const q15_t realCoefAQ15[8192]; - extern const q15_t realCoefBQ15[8192]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_F32_128) - extern const float32_t Weights_128[256]; - extern const float32_t cos_factors_128[128]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_F32_512) - extern const float32_t Weights_512[1024]; - extern const float32_t cos_factors_512[512]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_F32_2048) - extern const float32_t Weights_2048[4096]; - extern const float32_t cos_factors_2048[2048]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_F32_8192) - extern const float32_t Weights_8192[16384]; - extern const float32_t cos_factors_8192[8192]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_Q15_128) - extern const q15_t WeightsQ15_128[256]; - extern const q15_t cos_factorsQ15_128[128]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_Q15_512) - extern const q15_t WeightsQ15_512[1024]; - extern const q15_t cos_factorsQ15_512[512]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_Q15_2048) - extern const q15_t WeightsQ15_2048[4096]; - extern const q15_t cos_factorsQ15_2048[2048]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_Q15_8192) - extern const q15_t WeightsQ15_8192[16384]; - extern const q15_t cos_factorsQ15_8192[8192]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_Q31_128) - extern const q31_t WeightsQ31_128[256]; - extern const q31_t cos_factorsQ31_128[128]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_Q31_512) - extern const q31_t WeightsQ31_512[1024]; - extern const q31_t cos_factorsQ31_512[512]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_Q31_2048) - extern const q31_t WeightsQ31_2048[4096]; - extern const q31_t cos_factorsQ31_2048[2048]; - #endif - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FFT_TABLES) || defined(RISCV_TABLE_DCT4_Q31_8192) - extern const q31_t WeightsQ31_8192[16384]; - extern const q31_t cos_factorsQ31_8192[8192]; - #endif - -#endif /* if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_FFT_TABLES) */ - -#if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_FAST_ALLOW_TABLES) - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FAST_TABLES) || defined(RISCV_TABLE_RECIP_Q15) - extern const q15_t riscvRecipTableQ15[64]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) defined(RISCV_ALL_FAST_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FAST_TABLES) || defined(RISCV_TABLE_RECIP_Q31) - extern const q31_t riscvRecipTableQ31[64]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) defined(RISCV_ALL_FAST_TABLES) */ - - /* Tables for Fast Math Sine and Cosine */ - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FAST_TABLES) || defined(RISCV_TABLE_SIN_F32) - extern const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) defined(RISCV_ALL_FAST_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FAST_TABLES) || defined(RISCV_TABLE_SIN_Q31) - extern const q31_t sinTable_q31[FAST_MATH_TABLE_SIZE + 1]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) defined(RISCV_ALL_FAST_TABLES) */ - - #if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_ALL_FAST_TABLES) || defined(RISCV_TABLE_SIN_Q15) - extern const q15_t sinTable_q15[FAST_MATH_TABLE_SIZE + 1]; - #endif /* !defined(RISCV_DSP_CONFIG_TABLES) defined(RISCV_ALL_FAST_TABLES) */ - -#endif /* if !defined(RISCV_DSP_CONFIG_TABLES) || defined(RISCV_FAST_TABLES) */ - -#endif /* RISCV_COMMON_TABLES_H */ diff --git a/arch/risc-v/nuclei/gcc/nmsis/DSP/Include/riscv_const_structs.h b/arch/risc-v/nuclei/gcc/nmsis/DSP/Include/riscv_const_structs.h deleted file mode 100644 index 471baef7..00000000 --- a/arch/risc-v/nuclei/gcc/nmsis/DSP/Include/riscv_const_structs.h +++ /dev/null @@ -1,67 +0,0 @@ -/* ---------------------------------------------------------------------- - * Project: NMSIS DSP Library - * Title: riscv_const_structs.h - * Description: Constant structs that are initialized for user convenience. - * For example, some can be given as arguments to the riscv_cfft_f32() function. - * - * $Date: 27. January 2017 - * $Revision: V.1.5.1 - * - * Target Processor: RISC-V Cores - * -------------------------------------------------------------------- */ -/* - * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. - * Copyright (c) 2019 Nuclei Limited. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef _RISCV_CONST_STRUCTS_H -#define _RISCV_CONST_STRUCTS_H - -#include "riscv_math.h" -#include "riscv_common_tables.h" - - extern const riscv_cfft_instance_f32 riscv_cfft_sR_f32_len16; - extern const riscv_cfft_instance_f32 riscv_cfft_sR_f32_len32; - extern const riscv_cfft_instance_f32 riscv_cfft_sR_f32_len64; - extern const riscv_cfft_instance_f32 riscv_cfft_sR_f32_len128; - extern const riscv_cfft_instance_f32 riscv_cfft_sR_f32_len256; - extern const riscv_cfft_instance_f32 riscv_cfft_sR_f32_len512; - extern const riscv_cfft_instance_f32 riscv_cfft_sR_f32_len1024; - extern const riscv_cfft_instance_f32 riscv_cfft_sR_f32_len2048; - extern const riscv_cfft_instance_f32 riscv_cfft_sR_f32_len4096; - - extern const riscv_cfft_instance_q31 riscv_cfft_sR_q31_len16; - extern const riscv_cfft_instance_q31 riscv_cfft_sR_q31_len32; - extern const riscv_cfft_instance_q31 riscv_cfft_sR_q31_len64; - extern const riscv_cfft_instance_q31 riscv_cfft_sR_q31_len128; - extern const riscv_cfft_instance_q31 riscv_cfft_sR_q31_len256; - extern const riscv_cfft_instance_q31 riscv_cfft_sR_q31_len512; - extern const riscv_cfft_instance_q31 riscv_cfft_sR_q31_len1024; - extern const riscv_cfft_instance_q31 riscv_cfft_sR_q31_len2048; - extern const riscv_cfft_instance_q31 riscv_cfft_sR_q31_len4096; - - extern const riscv_cfft_instance_q15 riscv_cfft_sR_q15_len16; - extern const riscv_cfft_instance_q15 riscv_cfft_sR_q15_len32; - extern const riscv_cfft_instance_q15 riscv_cfft_sR_q15_len64; - extern const riscv_cfft_instance_q15 riscv_cfft_sR_q15_len128; - extern const riscv_cfft_instance_q15 riscv_cfft_sR_q15_len256; - extern const riscv_cfft_instance_q15 riscv_cfft_sR_q15_len512; - extern const riscv_cfft_instance_q15 riscv_cfft_sR_q15_len1024; - extern const riscv_cfft_instance_q15 riscv_cfft_sR_q15_len2048; - extern const riscv_cfft_instance_q15 riscv_cfft_sR_q15_len4096; - -#endif diff --git a/arch/risc-v/nuclei/gcc/nmsis/DSP/Include/riscv_math.h b/arch/risc-v/nuclei/gcc/nmsis/DSP/Include/riscv_math.h deleted file mode 100644 index d561d102..00000000 --- a/arch/risc-v/nuclei/gcc/nmsis/DSP/Include/riscv_math.h +++ /dev/null @@ -1,7386 +0,0 @@ -/****************************************************************************** - * @file riscv_math.h - * @brief Public header file for NMSIS DSP Library - * @version V1.6.0 - * @date 18. March 2019 - ******************************************************************************/ -/* - * Copyright (c) 2010-2019 Arm Limited or its affiliates. All rights reserved. - * Copyright (c) 2019 Nuclei Limited. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/** - \mainpage NMSIS DSP Software Library - * - * Introduction - * ------------ - * - * This user manual describes the NMSIS DSP software library, - * a suite of common signal processing functions for use on Nuclei N/NX processor based devices. - * - * The library is divided into a number of functions each covering a specific category: - * - Basic math functions - * - Fast math functions - * - Complex math functions - * - Filters - * - Matrix functions - * - Transform functions - * - Motor control functions - * - Statistical functions - * - Support functions - * - Interpolation functions - * - * The library has separate functions for operating on 8-bit integers, 16-bit integers, - * 32-bit integer and 32-bit floating-point values. - * - * The library functions are declared in the public file riscv_math.h which is placed in the Include folder. - * Simply include this file and link the appropriate library in the application and begin calling the library functions. - * The Library supports single public header file riscv_math.h for Nuclei N cores with little endian. - * Same header file will be used for floating point unit(FPU) variants. - * - * \note Please refer to [NMSIS-DSP](../../../dsp/index.html) - * - * Examples - * -------- - * - * The library ships with a number of examples which demonstrate how to use the library functions. - * - * Toolchain Support - * ----------------- - * - * The library has been developed and tested with nuclei riscv gcc toolchain. - * - * Building the Library - * -------------------- - * - * In NMSIS repo, it contains a Makefile to rebuild libraries on nuclei riscv gcc toolchain in the NMSIS/ folder. - * * In *NMSIS* folder, you can run `make gen_dsp_lib` to build and install DSP library into **NMSIS/Library/DSP/GCC** folder. - * - * Preprocessor Macros - * ------------------- - * - * Each library project have different preprocessor macros. - * - * - RISCV_MATH_MATRIX_CHECK: - * - * Define macro RISCV_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices - * - * - RISCV_MATH_ROUNDING: - * - * Define macro RISCV_MATH_ROUNDING for rounding on support functions - * - * - RISCV_MATH_LOOPUNROLL: - * - * Define macro RISCV_MATH_LOOPUNROLL to enable manual loop unrolling in DSP functions - * - */ - - -/** - * @defgroup groupMath Basic Math Functions - */ - -/** - * @defgroup groupFastMath Fast Math Functions - * This set of functions provides a fast approximation to sine, cosine, and square root. - * As compared to most of the other functions in the NMSIS math library, the fast math functions - * operate on individual values and not arrays. - * There are separate functions for Q15, Q31, and floating-point data. - * - */ - -/** - * @defgroup groupCmplxMath Complex Math Functions - * This set of functions operates on complex data vectors. - * The data in the complex arrays is stored in an interleaved fashion - * (real, imag, real, imag, ...). - * In the API functions, the number of samples in a complex array refers - * to the number of complex values; the array contains twice this number of - * real values. - */ - -/** - * @defgroup groupFilters Filtering Functions - */ - -/** - * @defgroup groupMatrix Matrix Functions - * - * This set of functions provides basic matrix math operations. - * The functions operate on matrix data structures. For example, - * the type - * definition for the floating-point matrix structure is shown - * below: - *
- *     typedef struct
- *     {
- *       uint16_t numRows;     // number of rows of the matrix.
- *       uint16_t numCols;     // number of columns of the matrix.
- *       float32_t *pData;     // points to the data of the matrix.
- *     } riscv_matrix_instance_f32;
- * 
- * There are similar definitions for Q15 and Q31 data types. - * - * The structure specifies the size of the matrix and then points to - * an array of data. The array is of size numRows X numCols - * and the values are arranged in row order. That is, the - * matrix element (i, j) is stored at: - *
- *     pData[i*numCols + j]
- * 
- * - * \par Init Functions - * There is an associated initialization function for each type of matrix - * data structure. - * The initialization function sets the values of the internal structure fields. - * Refer to \ref riscv_mat_init_f32(), \ref riscv_mat_init_q31() and \ref riscv_mat_init_q15() - * for floating-point, Q31 and Q15 types, respectively. - * - * \par - * Use of the initialization function is optional. However, if initialization function is used - * then the instance structure cannot be placed into a const data section. - * To place the instance structure in a const data - * section, manually initialize the data structure. For example: - *
- * riscv_matrix_instance_f32 S = {nRows, nColumns, pData};
- * riscv_matrix_instance_q31 S = {nRows, nColumns, pData};
- * riscv_matrix_instance_q15 S = {nRows, nColumns, pData};
- * 
- * where nRows specifies the number of rows, nColumns - * specifies the number of columns, and pData points to the - * data array. - * - * \par Size Checking - * By default all of the matrix functions perform size checking on the input and - * output matrices. For example, the matrix addition function verifies that the - * two input matrices and the output matrix all have the same number of rows and - * columns. If the size check fails the functions return: - *
- *     RISCV_MATH_SIZE_MISMATCH
- * 
- * Otherwise the functions return - *
- *     RISCV_MATH_SUCCESS
- * 
- * There is some overhead associated with this matrix size checking. - * The matrix size checking is enabled via the \#define - *
- *     RISCV_MATH_MATRIX_CHECK
- * 
- * within the library project settings. By default this macro is defined - * and size checking is enabled. By changing the project settings and - * undefining this macro size checking is eliminated and the functions - * run a bit faster. With size checking disabled the functions always - * return RISCV_MATH_SUCCESS. - */ - -/** - * @defgroup groupTransforms Transform Functions - */ - -/** - * @defgroup groupController Controller Functions - */ - -/** - * @defgroup groupStats Statistics Functions - */ - -/** - * @defgroup groupSupport Support Functions - */ - -/** - * @defgroup groupInterpolation Interpolation Functions - * These functions perform 1- and 2-dimensional interpolation of data. - * Linear interpolation is used for 1-dimensional data and - * bilinear interpolation is used for 2-dimensional data. - */ - -/** - * @defgroup groupExamples Examples - */ - -#ifndef _RISCV_MATH_H -#define _RISCV_MATH_H - -#ifdef __cplusplus -extern "C" -{ -#endif - -/* Compiler specific diagnostic adjustment */ -#if defined ( __CC_ARM ) - -#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) - -#elif defined ( __GNUC__ ) - #pragma GCC diagnostic push - #pragma GCC diagnostic ignored "-Wsign-conversion" - #pragma GCC diagnostic ignored "-Wconversion" - #pragma GCC diagnostic ignored "-Wunused-parameter" - -#elif defined ( __ICCRISCV__ ) - -#elif defined ( __TI_RISCV__ ) - -#elif defined ( __CSMC__ ) - -#elif defined ( __TASKING__ ) - -#elif defined ( _MSC_VER ) - -#else - #error Unknown compiler -#endif - - -/* Included for instrinsics definitions */ -#if !defined ( _MSC_VER ) - -#define __NMSIS_GENERIC -#if (defined (__RISCV_FEATURE_DSP) && (__RISCV_FEATURE_DSP == 1)) - #define __DSP_PRESENT 1 -#endif -#include "nmsis_core.h" - - -#else -#include -#define __STATIC_FORCEINLINE static __forceinline -#define __ALIGNED(x) __declspec(align(x)) -#define LOW_OPTIMIZATION_ENTER -#define LOW_OPTIMIZATION_EXIT -#define IAR_ONLY_LOW_OPTIMIZATION_ENTER -#define IAR_ONLY_LOW_OPTIMIZATION_EXIT -#endif - -#include "string.h" -#include -#include "float.h" - -/* evaluate RISCV DSP feature */ -#if (defined (__RISCV_FEATURE_DSP) && (__RISCV_FEATURE_DSP == 1)) - #define RISCV_MATH_DSP -#endif - - /** - * @brief Macros required for reciprocal calculation in Normalized LMS - */ - -#define DELTA_Q31 (0x100) -#define DELTA_Q15 0x5 -#define INDEX_MASK 0x0000003F -#ifndef PI - #define PI 3.14159265358979f -#endif - - /** - * @brief Macros required for SINE and COSINE Fast math approximations - */ - -#define FAST_MATH_TABLE_SIZE 512 -#define FAST_MATH_Q31_SHIFT (32 - 10) -#define FAST_MATH_Q15_SHIFT (16 - 10) -#define CONTROLLER_Q31_SHIFT (32 - 9) -#define TABLE_SPACING_Q31 0x400000 -#define TABLE_SPACING_Q15 0x80 - - /** - * @brief Macros required for SINE and COSINE Controller functions - */ - /* 1.31(q31) Fixed value of 2/360 */ - /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ -#define INPUT_SPACING 0xB60B61 - - - /** - * @brief Error status returned by some functions in the library. - */ - - typedef enum - { - RISCV_MATH_SUCCESS = 0, /**< No error */ - RISCV_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ - RISCV_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ - RISCV_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation */ - RISCV_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ - RISCV_MATH_SINGULAR = -5, /**< Input matrix is singular and cannot be inverted */ - RISCV_MATH_TEST_FAILURE = -6 /**< Test Failed */ - } riscv_status; - - /** - * @brief 8-bit fractional data type in 1.7 format. - */ - typedef int8_t q7_t; - - /** - * @brief 16-bit fractional data type in 1.15 format. - */ - typedef int16_t q15_t; - - /** - * @brief 32-bit fractional data type in 1.31 format. - */ - typedef int32_t q31_t; - - /** - * @brief 64-bit fractional data type in 1.63 format. - */ - typedef int64_t q63_t; - - /** - * @brief 32-bit floating-point type definition. - */ - typedef float float32_t; - - /** - * @brief 64-bit floating-point type definition. - */ - typedef double float64_t; - - -/** - @brief definition to read/write two 16 bit values. - @deprecated - */ -#define __SIMD32_TYPE int32_t - -#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) -#define __SIMD32_CONST(addr) ( (__SIMD32_TYPE * ) (addr)) -#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE * ) (addr)) -#define __SIMD64(addr) (*( int64_t **) & (addr)) - -/* SIMD replacement */ - -/** - @brief Read 2 Q31 from Q31 pointer and increment pointer afterwards. - @param[in] pQ31 points to input value - @return Q63 value - */ -__STATIC_FORCEINLINE q63_t read_q31x2_ia ( - q31_t ** pQ31) -{ - q63_t val; -#ifndef RISCV_ALIGN_ACCESS -#if __RISCV_XLEN == 64 - val = __LD(*pQ31); -#else - val = *((q63_t *)*pQ31); -#endif /* __RISCV_XLEN == 64 */ -#else - memcpy((void *)(&val), (void *)(*pQ31), 8); -#endif - *pQ31 += 2; - return (val); -} - -/** - @brief Read 2 Q31 from Q31 pointer and decrement pointer afterwards. - @param[in] pQ31 points to input value - @return Q63 value - */ -__STATIC_FORCEINLINE q63_t read_q31x2_da ( - q31_t ** pQ31) -{ - q63_t val; -#ifndef RISCV_ALIGN_ACCESS -#if __RISCV_XLEN == 64 - val = __LD(*pQ31); -#else - val = *((q63_t *)*pQ31); -#endif /* __RISCV_XLEN == 64 */ -#else - memcpy((void *)(&val), (void *)(*pQ31), 8); -#endif - *pQ31 -= 2; - return (val); -} - -/** - @brief Read 2 Q31 from Q31 pointer. - @param[in] pQ31 points to input value - @return Q63 value - */ -__STATIC_FORCEINLINE q63_t read_q31x2 ( - q31_t * pQ31) -{ - q63_t val; -#ifndef RISCV_ALIGN_ACCESS -#if __RISCV_XLEN == 64 - val = __LD(pQ31); -#else - val = *((q63_t *)pQ31); -#endif /* __RISCV_XLEN == 64 */ -#else - memcpy((void *)(&val), (void *)(pQ31), 8); -#endif - return (val); -} - -/** - @brief Write 2 Q31 to Q31 pointer and increment pointer afterwards. - @param[in] pQ31 points to input value - @param[in] value Q63 value - @return none - */ -__STATIC_FORCEINLINE void write_q31x2_ia ( - q31_t ** pQ31, - q63_t value) -{ -#ifndef RISCV_ALIGN_ACCESS -#if __RISCV_XLEN == 64 - __SD(*pQ31, value); -#else - *((q63_t *)*pQ31) = value; -#endif /* __RISCV_XLEN == 64 */ -#else - memcpy((void *)(*pQ31), (void *)(&value), 8); -#endif - *pQ31 += 2; -} - -/** - @brief Write 2 Q31 to Q31 pointer. - @param[in] pQ31 points to input value - @param[in] value Q63 value - @return none - */ -__STATIC_FORCEINLINE void write_q31x2 ( - q31_t * pQ31, - q63_t value) -{ -#ifndef RISCV_ALIGN_ACCESS -#if __RISCV_XLEN == 64 - __SD(pQ31, value); -#else - *((q63_t *)pQ31) = value; -#endif /* __RISCV_XLEN == 64 */ -#else - memcpy((void *)(pQ31), (void *)(&value), 8); -#endif -} - -/** - @brief Read 2 Q15 from Q15 pointer. - @param[in] pQ15 points to input value - @return Q31 value - */ -__STATIC_FORCEINLINE q31_t read_q15x2 ( - q15_t * pQ15) -{ - q31_t val; - -#ifndef RISCV_ALIGN_ACCESS - __ASM volatile ( - "lw %0, (%1)" - :"=r"(val) - :"r"(pQ15) - ); -#else - memcpy((void *)(&val), (void *)(pQ15), 4); -#endif - return (val); -} - -/** - @brief Read 2 Q15 from Q15 pointer and increment pointer afterwards. - @param[in] pQ15 points to input value - @return Q31 value - */ -__STATIC_FORCEINLINE q31_t read_q15x2_ia ( - q15_t ** pQ15) -{ - q31_t val; - -#ifndef RISCV_ALIGN_ACCESS - __ASM volatile ( - "lw %0, (%1)" - :"=r"(val) - :"r"(*pQ15) - ); -#else - memcpy((void *)(&val), (void *)(*pQ15), 4); -#endif - *pQ15 += 2; - - return (val); -} - -/** - @brief Read 4 Q15 from Q15 pointer and increment pointer afterwards. - @param[in] pQ15 points to input value - @return Q63 value - */ -__STATIC_FORCEINLINE q63_t read_q15x4_ia ( - q15_t ** pQ15) -{ - q63_t val; -#ifndef RISCV_ALIGN_ACCESS - val = *((q63_t *)*pQ15); -#else - memcpy((void *)(&val), (void *)(*pQ15), 8); -#endif - *pQ15 += 4; - - return (val); -} - -/** - @brief Read 4 Q15 from Q15 pointer. - @param[in] pQ15 points to input value - @return Q63 value - */ -__STATIC_FORCEINLINE q63_t read_q15x4 ( - q15_t * pQ15) -{ - q63_t val; -#ifndef RISCV_ALIGN_ACCESS -#if __RISCV_XLEN == 64 - val = __LD(pQ15); -#else - val = *((q63_t *)pQ15); -#endif /* __RISCV_XLEN == 64 */ -#else - memcpy((void *)(&val), (void *)(pQ15), 8); -#endif - return (val); -} - -/** - @brief Read 2 Q15 from Q15 pointer and decrement pointer afterwards. - @param[in] pQ15 points to input value - @return Q31 value - */ -__STATIC_FORCEINLINE q31_t read_q15x2_da ( - q15_t ** pQ15) -{ - q31_t val; - -#ifndef RISCV_ALIGN_ACCESS - __ASM volatile ( - "lw %0, (%1)" - :"=r"(val) - :"r"(*pQ15) - ); -#else - memcpy((void *)(&val), (void *)(*pQ15), 4); -#endif - *pQ15 -= 2; - - return (val); -} - -/** - @brief Read 4 Q15 from Q15 pointer and decrement pointer afterwards. - @param[in] pQ15 points to input value - @return Q31 value - */ -__STATIC_FORCEINLINE q63_t read_q15x4_da ( - q15_t ** pQ15) -{ - q63_t val; -#ifndef RISCV_ALIGN_ACCESS - val = *((q63_t *)*pQ15); -#else - memcpy((void *)(&val), (void *)(*pQ15), 8); -#endif - *pQ15 -= 4; - - return (val); -} - -/** - @brief Write 2 Q15 to Q15 pointer and increment pointer afterwards. - @param[in] pQ15 points to input value - @param[in] value Q31 value - @return none - */ -__STATIC_FORCEINLINE void write_q15x2_ia ( - q15_t ** pQ15, - q31_t value) -{ -#ifndef RISCV_ALIGN_ACCESS - __ASM volatile ( - "sw %0, (%1)" - : - :"r"(value), "r"(*pQ15) - :"memory" - ); -#else - memcpy((void *)(*pQ15), (void *)(&value), 4); -#endif - *pQ15 += 2; -} - -/** - @brief Write 4 Q15 to Q15 pointer and increment pointer afterwards. - @param[in] pQ15 points to input value - @param[in] value Q31 value - @return none - */ -__STATIC_FORCEINLINE void write_q15x4_ia ( - q15_t ** pQ15, - q63_t value) -{ -#ifndef RISCV_ALIGN_ACCESS - *((q63_t *)*pQ15) = value; -#else - memcpy((void *)(*pQ15), (void *)(&value), 8); -#endif - *pQ15 += 4; -} - -/** - @brief Write 4 Q15 to Q15 pointer and decrement pointer afterwards. - @param[in] pQ15 points to input value - @param[in] value Q31 value - @return none - */ -__STATIC_FORCEINLINE void write_q15x4_da ( - q15_t ** pQ15, - q63_t value) -{ -#ifndef RISCV_ALIGN_ACCESS - *((q63_t *)*pQ15) = value; -#else - memcpy((void *)(*pQ15), (void *)(&value), 8); -#endif - *pQ15 -= 4; -} - -/** - @brief Write 2 Q15 to Q15 pointer. - @param[in] pQ15 points to input value - @param[in] value Q31 value - @return none - */ -__STATIC_FORCEINLINE void write_q15x2 ( - q15_t * pQ15, - q31_t value) -{ -#ifndef RISCV_ALIGN_ACCESS - __ASM volatile ( - "sw %0, (%1)" - : - :"r"(value), "r"(pQ15) - :"memory" - ); -#else - memcpy((void *)(pQ15), (void *)(&value), 4); -#endif - -} - -/** - @brief Write 4 Q15 to Q15 pointer. - @param[in] pQ15 points to input value - @param[in] value Q31 value - @return none - */ -__STATIC_FORCEINLINE void write_q15x4 ( - q15_t * pQ15, - q63_t value) -{ -#ifndef RISCV_ALIGN_ACCESS - *((q63_t *)pQ15) = value; -#else - memcpy((void *)(pQ15), (void *)(&value), 8); -#endif -} - -/** - @brief Read 8 Q7 from Q7 pointer and increment pointer afterwards. - @param[in] pQ7 points to input value - @return Q63 value - */ -__STATIC_FORCEINLINE q63_t read_q7x8_ia ( - q7_t ** pQ7) -{ - q63_t val; -#ifndef RISCV_ALIGN_ACCESS - val = *((q63_t *)*pQ7); -#else - memcpy((void *)(&val), (void *)(*pQ7), 8); -#endif - *pQ7 += 8; - - return val; -} - -/** - @brief Read 8 Q7 from Q7 pointer and decrement pointer afterwards. - @param[in] pQ7 points to input value - @return Q63 value - */ -__STATIC_FORCEINLINE q63_t read_q7x8_da ( - q7_t ** pQ7) -{ - q63_t val; -#ifndef RISCV_ALIGN_ACCESS - val = *((q63_t *)*pQ7); -#else - memcpy((void *)(&val), (void *)(*pQ7), 8); -#endif - *pQ7 -= 8; - return val; -} - -/** - @brief Read 4 Q7 from Q7 pointer and increment pointer afterwards. - @param[in] pQ7 points to input value - @return Q31 value - */ -__STATIC_FORCEINLINE q31_t read_q7x4_ia ( - q7_t ** pQ7) -{ - q31_t val; - -#ifndef RISCV_ALIGN_ACCESS - __ASM volatile ( - "lw %0, (%1)" - :"=r"(val) - :"r"(*pQ7) - ); -#else - memcpy((void *)(&val), (void *)(*pQ7), 4); -#endif - *pQ7 += 4; - - return (val); -} - -/** - @brief Read 4 Q7 from Q7 pointer and decrement pointer afterwards. - @param[in] pQ7 points to input value - @return Q31 value - */ -__STATIC_FORCEINLINE q31_t read_q7x4_da ( - q7_t ** pQ7) -{ - q31_t val; - -#ifndef RISCV_ALIGN_ACCESS - __ASM volatile ( - "lw %0, (%1)" - :"=r"(val) - :"r"(*pQ7) - ); -#else - memcpy((void *)(&val), (void *)(*pQ7), 4); -#endif - *pQ7 -= 4; - - return (val); -} - -/** - @brief Write 8 Q7 to Q7 pointer and increment pointer afterwards. - @param[in] pQ7 points to input value - @param[in] value Q63 value - @return none - */ -__STATIC_FORCEINLINE void write_q7x8_ia ( - q7_t ** pQ7, - q63_t value) -{ -#ifndef RISCV_ALIGN_ACCESS - *((q63_t *)*pQ7) = value; -#else - memcpy((void *)(*pQ7), (void *)(&value), 8); -#endif - *pQ7 += 8; -} - -/** - @brief Write 4 Q7 to Q7 pointer and increment pointer afterwards. - @param[in] pQ7 points to input value - @param[in] value Q31 value - @return none - */ -__STATIC_FORCEINLINE void write_q7x4_ia ( - q7_t ** pQ7, - q31_t value) -{ - q31_t val = value; - -#ifndef RISCV_ALIGN_ACCESS - __ASM volatile ( - "sw %0, (%1)" - : - :"r"(value), "r"(*pQ7) - :"memory" - ); -#else - memcpy((void *)(*pQ7), (void *)(&value), 4); -#endif - *pQ7 += 4; -} - -/** -* @brief definition to pack four 8 bit values. -*/ -#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ - (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ - (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ - (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) - - - - /** - * @brief Clips Q63 to Q31 values. - */ - __STATIC_FORCEINLINE q31_t clip_q63_to_q31( - q63_t x) - { - return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? - ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; - } - - /** - * @brief Clips Q63 to Q15 values. - */ - __STATIC_FORCEINLINE q15_t clip_q63_to_q15( - q63_t x) - { - return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? - ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); - } - - /** - * @brief Clips Q31 to Q7 values. - */ - __STATIC_FORCEINLINE q7_t clip_q31_to_q7( - q31_t x) - { - return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? - ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; - } - - /** - * @brief Clips Q31 to Q15 values. - */ - __STATIC_FORCEINLINE q15_t clip_q31_to_q15( - q31_t x) - { - return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? - ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; - } - - /** - * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. - */ - __STATIC_FORCEINLINE q63_t mult32x64( - q63_t x, - q31_t y) - { - return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + - (((q63_t) (x >> 32) * y) ) ); - } - - /** - * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. - */ - __STATIC_FORCEINLINE uint32_t riscv_recip_q31( - q31_t in, - q31_t * dst, - const q31_t * pRecipTable) - { - q31_t out; - uint32_t tempVal; - uint32_t index, i; - uint32_t signBits; - - if (in > 0) - { - signBits = ((uint32_t) (__CLZ( in) - 1)); - } - else - { - signBits = ((uint32_t) (__CLZ(-in) - 1)); - } - - /* Convert input sample to 1.31 format */ - in = (in << signBits); - - /* calculation of index for initial approximated Val */ - index = (uint32_t)(in >> 24); - index = (index & INDEX_MASK); - - /* 1.31 with exp 1 */ - out = pRecipTable[index]; - - /* calculation of reciprocal value */ - /* running approximation for two iterations */ - for (i = 0U; i < 2U; i++) - { - tempVal = (uint32_t) (((q63_t) in * out) >> 31); - tempVal = 0x7FFFFFFFu - tempVal; - /* 1.31 with exp 1 */ - /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ - out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); - } - - /* write output */ - *dst = out; - - /* return num of signbits of out = 1/in value */ - return (signBits + 1U); - } - - - /** - * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. - */ - __STATIC_FORCEINLINE uint32_t riscv_recip_q15( - q15_t in, - q15_t * dst, - const q15_t * pRecipTable) - { - q15_t out = 0; - uint32_t tempVal = 0; - uint32_t index = 0, i = 0; - uint32_t signBits = 0; - - if (in > 0) - { - signBits = ((uint32_t)(__CLZ( in) - 17)); - } - else - { - signBits = ((uint32_t)(__CLZ(-in) - 17)); - } - - /* Convert input sample to 1.15 format */ - in = (in << signBits); - - /* calculation of index for initial approximated Val */ - index = (uint32_t)(in >> 8); - index = (index & INDEX_MASK); - - /* 1.15 with exp 1 */ - out = pRecipTable[index]; - - /* calculation of reciprocal value */ - /* running approximation for two iterations */ - for (i = 0U; i < 2U; i++) - { - tempVal = (uint32_t) (((q31_t) in * out) >> 15); - tempVal = 0x7FFFu - tempVal; - /* 1.15 with exp 1 */ - out = (q15_t) (((q31_t) out * tempVal) >> 14); - /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ - } - - /* write output */ - *dst = out; - - /* return num of signbits of out = 1/in value */ - return (signBits + 1); - } - - -/* - * @brief C custom defined intrinsic functions - */ -#if !defined (RISCV_MATH_DSP) - - /* - * @brief C custom defined QADD8 - */ - __STATIC_FORCEINLINE uint32_t __QADD8( - uint32_t x, - uint32_t y) - { - q31_t r, s, t, u; - - r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; - s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; - t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; - u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; - - return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); - } - - - /* - * @brief C custom defined QSUB8 - */ - __STATIC_FORCEINLINE uint32_t __QSUB8( - uint32_t x, - uint32_t y) - { - q31_t r, s, t, u; - - r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; - s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; - t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; - u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; - - return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); - } - - - /* - * @brief C custom defined QADD16 - */ - __STATIC_FORCEINLINE uint32_t __QADD16( - uint32_t x, - uint32_t y) - { -/* q31_t r, s; without initialisation 'riscv_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ - q31_t r = 0, s = 0; - - r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; - s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; - - return ((uint32_t)((s << 16) | (r ))); - } - - - /* - * @brief C custom defined SHADD16 - */ - __STATIC_FORCEINLINE uint32_t __SHADD16( - uint32_t x, - uint32_t y) - { - q31_t r, s; - - r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; - s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; - - return ((uint32_t)((s << 16) | (r ))); - } - - - /* - * @brief C custom defined QSUB16 - */ - __STATIC_FORCEINLINE uint32_t __QSUB16( - uint32_t x, - uint32_t y) - { - q31_t r, s; - - r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; - s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; - - return ((uint32_t)((s << 16) | (r ))); - } - - - /* - * @brief C custom defined SHSUB16 - */ - __STATIC_FORCEINLINE uint32_t __SHSUB16( - uint32_t x, - uint32_t y) - { - q31_t r, s; - - r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; - s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; - - return ((uint32_t)((s << 16) | (r ))); - } - - - /* - * @brief C custom defined QASX - */ - __STATIC_FORCEINLINE uint32_t __QASX( - uint32_t x, - uint32_t y) - { - q31_t r, s; - - r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; - s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; - - return ((uint32_t)((s << 16) | (r ))); - } - - - /* - * @brief C custom defined SHASX - */ - __STATIC_FORCEINLINE uint32_t __SHASX( - uint32_t x, - uint32_t y) - { - q31_t r, s; - - r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; - s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; - - return ((uint32_t)((s << 16) | (r ))); - } - - - /* - * @brief C custom defined QSAX - */ - __STATIC_FORCEINLINE uint32_t __QSAX( - uint32_t x, - uint32_t y) - { - q31_t r, s; - - r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; - s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; - - return ((uint32_t)((s << 16) | (r ))); - } - - - /* - * @brief C custom defined SHSAX - */ - __STATIC_FORCEINLINE uint32_t __SHSAX( - uint32_t x, - uint32_t y) - { - q31_t r, s; - - r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; - s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; - - return ((uint32_t)((s << 16) | (r ))); - } - - - /* - * @brief C custom defined SMUSDX - */ - __STATIC_FORCEINLINE uint32_t __SMUSDX( - uint32_t x, - uint32_t y) - { - return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - - ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); - } - - /* - * @brief C custom defined SMUADX - */ - __STATIC_FORCEINLINE uint32_t __SMUADX( - uint32_t x, - uint32_t y) - { - return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + - ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); - } - - - /* - * @brief C custom defined QADD - */ - __STATIC_FORCEINLINE int32_t __QADD( - int32_t x, - int32_t y) - { - return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); - } - - - /* - * @brief C custom defined QSUB - */ - __STATIC_FORCEINLINE int32_t __QSUB( - int32_t x, - int32_t y) - { - return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); - } - - - /* - * @brief C custom defined SMLAD - */ - __STATIC_FORCEINLINE uint32_t __SMLAD( - uint32_t x, - uint32_t y, - uint32_t sum) - { - return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + - ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + - ( ((q31_t)sum ) ) )); - } - - - /* - * @brief C custom defined SMLADX - */ - __STATIC_FORCEINLINE uint32_t __SMLADX( - uint32_t x, - uint32_t y, - uint32_t sum) - { - return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + - ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + - ( ((q31_t)sum ) ) )); - } - - - /* - * @brief C custom defined SMLSDX - */ - __STATIC_FORCEINLINE uint32_t __SMLSDX( - uint32_t x, - uint32_t y, - uint32_t sum) - { - return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - - ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + - ( ((q31_t)sum ) ) )); - } - - - /* - * @brief C custom defined SMLALD - */ - __STATIC_FORCEINLINE uint64_t __SMLALD( - uint32_t x, - uint32_t y, - uint64_t sum) - { -/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ - return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + - ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + - ( ((q63_t)sum ) ) )); - } - - - /* - * @brief C custom defined SMLALDX - */ - __STATIC_FORCEINLINE uint64_t __SMLALDX( - uint32_t x, - uint32_t y, - uint64_t sum) - { -/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ - return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + - ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + - ( ((q63_t)sum ) ) )); - } - - - /* - * @brief C custom defined SMUAD - */ - __STATIC_FORCEINLINE uint32_t __SMUAD( - uint32_t x, - uint32_t y) - { - return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + - ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); - } - - - /* - * @brief C custom defined SMUSD - */ - __STATIC_FORCEINLINE uint32_t __SMUSD( - uint32_t x, - uint32_t y) - { - return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - - ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); - } - - - /* - * @brief C custom defined SXTB16 - */ - __STATIC_FORCEINLINE uint32_t __SXTB16( - uint32_t x) - { - return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | - ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); - } - - /* - * @brief C custom defined SMMLA - */ - __STATIC_FORCEINLINE int32_t __SMMLA( - int32_t x, - int32_t y, - int32_t sum) - { - return (sum + (int32_t) (((int64_t) x * y) >> 32)); - } - -#endif /* !defined (RISCV_MATH_DSP) */ - - - /** - * @brief Instance structure for the Q7 FIR filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of filter coefficients in the filter. */ - q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - const q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - } riscv_fir_instance_q7; - - /** - * @brief Instance structure for the Q15 FIR filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of filter coefficients in the filter. */ - q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - } riscv_fir_instance_q15; - - /** - * @brief Instance structure for the Q31 FIR filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of filter coefficients in the filter. */ - q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - } riscv_fir_instance_q31; - - /** - * @brief Instance structure for the floating-point FIR filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of filter coefficients in the filter. */ - float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - } riscv_fir_instance_f32; - - /** - * @brief Processing function for the Q7 FIR filter. - * @param[in] S points to an instance of the Q7 FIR filter structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_fir_q7( - const riscv_fir_instance_q7 * S, - const q7_t * pSrc, - q7_t * pDst, - uint32_t blockSize); - - /** - * @brief Initialization function for the Q7 FIR filter. - * @param[in,out] S points to an instance of the Q7 FIR structure. - * @param[in] numTaps Number of filter coefficients in the filter. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] blockSize number of samples that are processed. - */ - void riscv_fir_init_q7( - riscv_fir_instance_q7 * S, - uint16_t numTaps, - const q7_t * pCoeffs, - q7_t * pState, - uint32_t blockSize); - - /** - * @brief Processing function for the Q15 FIR filter. - * @param[in] S points to an instance of the Q15 FIR structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_fir_q15( - const riscv_fir_instance_q15 * S, - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - /** - * @brief Processing function for the fast Q15 FIR filter (fast version). - * @param[in] S points to an instance of the Q15 FIR filter structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_fir_fast_q15( - const riscv_fir_instance_q15 * S, - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - /** - * @brief Initialization function for the Q15 FIR filter. - * @param[in,out] S points to an instance of the Q15 FIR filter structure. - * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] blockSize number of samples that are processed at a time. - * @return The function returns either - * RISCV_MATH_SUCCESS if initialization was successful or - * RISCV_MATH_ARGUMENT_ERROR if numTaps is not a supported value. - */ - riscv_status riscv_fir_init_q15( - riscv_fir_instance_q15 * S, - uint16_t numTaps, - const q15_t * pCoeffs, - q15_t * pState, - uint32_t blockSize); - - /** - * @brief Processing function for the Q31 FIR filter. - * @param[in] S points to an instance of the Q31 FIR filter structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_fir_q31( - const riscv_fir_instance_q31 * S, - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - /** - * @brief Processing function for the fast Q31 FIR filter (fast version). - * @param[in] S points to an instance of the Q31 FIR filter structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_fir_fast_q31( - const riscv_fir_instance_q31 * S, - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - /** - * @brief Initialization function for the Q31 FIR filter. - * @param[in,out] S points to an instance of the Q31 FIR structure. - * @param[in] numTaps Number of filter coefficients in the filter. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] blockSize number of samples that are processed at a time. - */ - void riscv_fir_init_q31( - riscv_fir_instance_q31 * S, - uint16_t numTaps, - const q31_t * pCoeffs, - q31_t * pState, - uint32_t blockSize); - - /** - * @brief Processing function for the floating-point FIR filter. - * @param[in] S points to an instance of the floating-point FIR structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_fir_f32( - const riscv_fir_instance_f32 * S, - const float32_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - /** - * @brief Initialization function for the floating-point FIR filter. - * @param[in,out] S points to an instance of the floating-point FIR filter structure. - * @param[in] numTaps Number of filter coefficients in the filter. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] blockSize number of samples that are processed at a time. - */ - void riscv_fir_init_f32( - riscv_fir_instance_f32 * S, - uint16_t numTaps, - const float32_t * pCoeffs, - float32_t * pState, - uint32_t blockSize); - - /** - * @brief Instance structure for the Q15 Biquad cascade filter. - */ - typedef struct - { - int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ - q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ - const q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ - int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ - } riscv_biquad_casd_df1_inst_q15; - - /** - * @brief Instance structure for the Q31 Biquad cascade filter. - */ - typedef struct - { - uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ - q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ - const q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ - uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ - } riscv_biquad_casd_df1_inst_q31; - - /** - * @brief Instance structure for the floating-point Biquad cascade filter. - */ - typedef struct - { - uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ - float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ - const float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ - } riscv_biquad_casd_df1_inst_f32; - - /** - * @brief Processing function for the Q15 Biquad cascade filter. - * @param[in] S points to an instance of the Q15 Biquad cascade structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_biquad_cascade_df1_q15( - const riscv_biquad_casd_df1_inst_q15 * S, - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - /** - * @brief Initialization function for the Q15 Biquad cascade filter. - * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format - */ - void riscv_biquad_cascade_df1_init_q15( - riscv_biquad_casd_df1_inst_q15 * S, - uint8_t numStages, - const q15_t * pCoeffs, - q15_t * pState, - int8_t postShift); - - /** - * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for RISC-V Core with DSP enabled. - * @param[in] S points to an instance of the Q15 Biquad cascade structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_biquad_cascade_df1_fast_q15( - const riscv_biquad_casd_df1_inst_q15 * S, - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - /** - * @brief Processing function for the Q31 Biquad cascade filter - * @param[in] S points to an instance of the Q31 Biquad cascade structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_biquad_cascade_df1_q31( - const riscv_biquad_casd_df1_inst_q31 * S, - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - /** - * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for RISC-V Core with DSP enabled. - * @param[in] S points to an instance of the Q31 Biquad cascade structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_biquad_cascade_df1_fast_q31( - const riscv_biquad_casd_df1_inst_q31 * S, - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - /** - * @brief Initialization function for the Q31 Biquad cascade filter. - * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format - */ - void riscv_biquad_cascade_df1_init_q31( - riscv_biquad_casd_df1_inst_q31 * S, - uint8_t numStages, - const q31_t * pCoeffs, - q31_t * pState, - int8_t postShift); - - /** - * @brief Processing function for the floating-point Biquad cascade filter. - * @param[in] S points to an instance of the floating-point Biquad cascade structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_biquad_cascade_df1_f32( - const riscv_biquad_casd_df1_inst_f32 * S, - const float32_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - /** - * @brief Initialization function for the floating-point Biquad cascade filter. - * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - */ - void riscv_biquad_cascade_df1_init_f32( - riscv_biquad_casd_df1_inst_f32 * S, - uint8_t numStages, - const float32_t * pCoeffs, - float32_t * pState); - - /** - * @brief Instance structure for the floating-point matrix structure. - */ - typedef struct - { - uint16_t numRows; /**< number of rows of the matrix. */ - uint16_t numCols; /**< number of columns of the matrix. */ - float32_t *pData; /**< points to the data of the matrix. */ - } riscv_matrix_instance_f32; - - - /** - * @brief Instance structure for the floating-point matrix structure. - */ - typedef struct - { - uint16_t numRows; /**< number of rows of the matrix. */ - uint16_t numCols; /**< number of columns of the matrix. */ - float64_t *pData; /**< points to the data of the matrix. */ - } riscv_matrix_instance_f64; - - /** - * @brief Instance structure for the Q15 matrix structure. - */ - typedef struct - { - uint16_t numRows; /**< number of rows of the matrix. */ - uint16_t numCols; /**< number of columns of the matrix. */ - q15_t *pData; /**< points to the data of the matrix. */ - } riscv_matrix_instance_q15; - - /** - * @brief Instance structure for the Q31 matrix structure. - */ - typedef struct - { - uint16_t numRows; /**< number of rows of the matrix. */ - uint16_t numCols; /**< number of columns of the matrix. */ - q31_t *pData; /**< points to the data of the matrix. */ - } riscv_matrix_instance_q31; - - /** - * @brief Floating-point matrix addition. - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_add_f32( - const riscv_matrix_instance_f32 * pSrcA, - const riscv_matrix_instance_f32 * pSrcB, - riscv_matrix_instance_f32 * pDst); - - /** - * @brief Q15 matrix addition. - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_add_q15( - const riscv_matrix_instance_q15 * pSrcA, - const riscv_matrix_instance_q15 * pSrcB, - riscv_matrix_instance_q15 * pDst); - - /** - * @brief Q31 matrix addition. - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_add_q31( - const riscv_matrix_instance_q31 * pSrcA, - const riscv_matrix_instance_q31 * pSrcB, - riscv_matrix_instance_q31 * pDst); - - /** - * @brief Floating-point, complex, matrix multiplication. - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_cmplx_mult_f32( - const riscv_matrix_instance_f32 * pSrcA, - const riscv_matrix_instance_f32 * pSrcB, - riscv_matrix_instance_f32 * pDst); - - /** - * @brief Q15, complex, matrix multiplication. - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_cmplx_mult_q15( - const riscv_matrix_instance_q15 * pSrcA, - const riscv_matrix_instance_q15 * pSrcB, - riscv_matrix_instance_q15 * pDst, - q15_t * pScratch); - - /** - * @brief Q31, complex, matrix multiplication. - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_cmplx_mult_q31( - const riscv_matrix_instance_q31 * pSrcA, - const riscv_matrix_instance_q31 * pSrcB, - riscv_matrix_instance_q31 * pDst); - - /** - * @brief Floating-point matrix transpose. - * @param[in] pSrc points to the input matrix - * @param[out] pDst points to the output matrix - * @return The function returns either RISCV_MATH_SIZE_MISMATCH - * or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_trans_f32( - const riscv_matrix_instance_f32 * pSrc, - riscv_matrix_instance_f32 * pDst); - - /** - * @brief Q15 matrix transpose. - * @param[in] pSrc points to the input matrix - * @param[out] pDst points to the output matrix - * @return The function returns either RISCV_MATH_SIZE_MISMATCH - * or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_trans_q15( - const riscv_matrix_instance_q15 * pSrc, - riscv_matrix_instance_q15 * pDst); - - /** - * @brief Q31 matrix transpose. - * @param[in] pSrc points to the input matrix - * @param[out] pDst points to the output matrix - * @return The function returns either RISCV_MATH_SIZE_MISMATCH - * or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_trans_q31( - const riscv_matrix_instance_q31 * pSrc, - riscv_matrix_instance_q31 * pDst); - - /** - * @brief Floating-point matrix multiplication - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_mult_f32( - const riscv_matrix_instance_f32 * pSrcA, - const riscv_matrix_instance_f32 * pSrcB, - riscv_matrix_instance_f32 * pDst); - - /** - * @brief Q15 matrix multiplication - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @param[in] pState points to the array for storing intermediate results - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_mult_q15( - const riscv_matrix_instance_q15 * pSrcA, - const riscv_matrix_instance_q15 * pSrcB, - riscv_matrix_instance_q15 * pDst, - q15_t * pState); - - /** - * @brief Q15 matrix multiplication (fast variant) for RISC-V Core with DSP enabled - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @param[in] pState points to the array for storing intermediate results - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_mult_fast_q15( - const riscv_matrix_instance_q15 * pSrcA, - const riscv_matrix_instance_q15 * pSrcB, - riscv_matrix_instance_q15 * pDst, - q15_t * pState); - - /** - * @brief Q31 matrix multiplication - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_mult_q31( - const riscv_matrix_instance_q31 * pSrcA, - const riscv_matrix_instance_q31 * pSrcB, - riscv_matrix_instance_q31 * pDst); - - /** - * @brief Q31 matrix multiplication (fast variant) for RISC-V Core with DSP enabled - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_mult_fast_q31( - const riscv_matrix_instance_q31 * pSrcA, - const riscv_matrix_instance_q31 * pSrcB, - riscv_matrix_instance_q31 * pDst); - - /** - * @brief Floating-point matrix subtraction - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_sub_f32( - const riscv_matrix_instance_f32 * pSrcA, - const riscv_matrix_instance_f32 * pSrcB, - riscv_matrix_instance_f32 * pDst); - - /** - * @brief Q15 matrix subtraction - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_sub_q15( - const riscv_matrix_instance_q15 * pSrcA, - const riscv_matrix_instance_q15 * pSrcB, - riscv_matrix_instance_q15 * pDst); - - /** - * @brief Q31 matrix subtraction - * @param[in] pSrcA points to the first input matrix structure - * @param[in] pSrcB points to the second input matrix structure - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_sub_q31( - const riscv_matrix_instance_q31 * pSrcA, - const riscv_matrix_instance_q31 * pSrcB, - riscv_matrix_instance_q31 * pDst); - - /** - * @brief Floating-point matrix scaling. - * @param[in] pSrc points to the input matrix - * @param[in] scale scale factor - * @param[out] pDst points to the output matrix - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_scale_f32( - const riscv_matrix_instance_f32 * pSrc, - float32_t scale, - riscv_matrix_instance_f32 * pDst); - - /** - * @brief Q15 matrix scaling. - * @param[in] pSrc points to input matrix - * @param[in] scaleFract fractional portion of the scale factor - * @param[in] shift number of bits to shift the result by - * @param[out] pDst points to output matrix - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_scale_q15( - const riscv_matrix_instance_q15 * pSrc, - q15_t scaleFract, - int32_t shift, - riscv_matrix_instance_q15 * pDst); - - /** - * @brief Q31 matrix scaling. - * @param[in] pSrc points to input matrix - * @param[in] scaleFract fractional portion of the scale factor - * @param[in] shift number of bits to shift the result by - * @param[out] pDst points to output matrix structure - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - */ -riscv_status riscv_mat_scale_q31( - const riscv_matrix_instance_q31 * pSrc, - q31_t scaleFract, - int32_t shift, - riscv_matrix_instance_q31 * pDst); - - /** - * @brief Q31 matrix initialization. - * @param[in,out] S points to an instance of the floating-point matrix structure. - * @param[in] nRows number of rows in the matrix. - * @param[in] nColumns number of columns in the matrix. - * @param[in] pData points to the matrix data array. - */ -void riscv_mat_init_q31( - riscv_matrix_instance_q31 * S, - uint16_t nRows, - uint16_t nColumns, - q31_t * pData); - - /** - * @brief Q15 matrix initialization. - * @param[in,out] S points to an instance of the floating-point matrix structure. - * @param[in] nRows number of rows in the matrix. - * @param[in] nColumns number of columns in the matrix. - * @param[in] pData points to the matrix data array. - */ -void riscv_mat_init_q15( - riscv_matrix_instance_q15 * S, - uint16_t nRows, - uint16_t nColumns, - q15_t * pData); - - /** - * @brief Floating-point matrix initialization. - * @param[in,out] S points to an instance of the floating-point matrix structure. - * @param[in] nRows number of rows in the matrix. - * @param[in] nColumns number of columns in the matrix. - * @param[in] pData points to the matrix data array. - */ -void riscv_mat_init_f32( - riscv_matrix_instance_f32 * S, - uint16_t nRows, - uint16_t nColumns, - float32_t * pData); - - - /** - * @brief Instance structure for the Q15 PID Control. - */ - typedef struct - { - q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ -#if !defined (RISCV_MATH_DSP) - q15_t A1; - q15_t A2; -#else - q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ -#endif - q15_t state[3]; /**< The state array of length 3. */ - q15_t Kp; /**< The proportional gain. */ - q15_t Ki; /**< The integral gain. */ - q15_t Kd; /**< The derivative gain. */ - } riscv_pid_instance_q15; - - /** - * @brief Instance structure for the Q31 PID Control. - */ - typedef struct - { - q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ - q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ - q31_t A2; /**< The derived gain, A2 = Kd . */ - q31_t state[3]; /**< The state array of length 3. */ - q31_t Kp; /**< The proportional gain. */ - q31_t Ki; /**< The integral gain. */ - q31_t Kd; /**< The derivative gain. */ - } riscv_pid_instance_q31; - - /** - * @brief Instance structure for the floating-point PID Control. - */ - typedef struct - { - float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ - float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ - float32_t A2; /**< The derived gain, A2 = Kd . */ - float32_t state[3]; /**< The state array of length 3. */ - float32_t Kp; /**< The proportional gain. */ - float32_t Ki; /**< The integral gain. */ - float32_t Kd; /**< The derivative gain. */ - } riscv_pid_instance_f32; - - - - /** - * @brief Initialization function for the floating-point PID Control. - * @param[in,out] S points to an instance of the PID structure. - * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. - */ - void riscv_pid_init_f32( - riscv_pid_instance_f32 * S, - int32_t resetStateFlag); - - - /** - * @brief Reset function for the floating-point PID Control. - * @param[in,out] S is an instance of the floating-point PID Control structure - */ - void riscv_pid_reset_f32( - riscv_pid_instance_f32 * S); - - - /** - * @brief Initialization function for the Q31 PID Control. - * @param[in,out] S points to an instance of the Q15 PID structure. - * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. - */ - void riscv_pid_init_q31( - riscv_pid_instance_q31 * S, - int32_t resetStateFlag); - - - /** - * @brief Reset function for the Q31 PID Control. - * @param[in,out] S points to an instance of the Q31 PID Control structure - */ - - void riscv_pid_reset_q31( - riscv_pid_instance_q31 * S); - - - /** - * @brief Initialization function for the Q15 PID Control. - * @param[in,out] S points to an instance of the Q15 PID structure. - * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. - */ - void riscv_pid_init_q15( - riscv_pid_instance_q15 * S, - int32_t resetStateFlag); - - - /** - * @brief Reset function for the Q15 PID Control. - * @param[in,out] S points to an instance of the q15 PID Control structure - */ - void riscv_pid_reset_q15( - riscv_pid_instance_q15 * S); - - - /** - * @brief Instance structure for the floating-point Linear Interpolate function. - */ - typedef struct - { - uint32_t nValues; /**< nValues */ - float32_t x1; /**< x1 */ - float32_t xSpacing; /**< xSpacing */ - float32_t *pYData; /**< pointer to the table of Y values */ - } riscv_linear_interp_instance_f32; - - /** - * @brief Instance structure for the floating-point bilinear interpolation function. - */ - typedef struct - { - uint16_t numRows; /**< number of rows in the data table. */ - uint16_t numCols; /**< number of columns in the data table. */ - float32_t *pData; /**< points to the data table. */ - } riscv_bilinear_interp_instance_f32; - - /** - * @brief Instance structure for the Q31 bilinear interpolation function. - */ - typedef struct - { - uint16_t numRows; /**< number of rows in the data table. */ - uint16_t numCols; /**< number of columns in the data table. */ - q31_t *pData; /**< points to the data table. */ - } riscv_bilinear_interp_instance_q31; - - /** - * @brief Instance structure for the Q15 bilinear interpolation function. - */ - typedef struct - { - uint16_t numRows; /**< number of rows in the data table. */ - uint16_t numCols; /**< number of columns in the data table. */ - q15_t *pData; /**< points to the data table. */ - } riscv_bilinear_interp_instance_q15; - - /** - * @brief Instance structure for the Q15 bilinear interpolation function. - */ - typedef struct - { - uint16_t numRows; /**< number of rows in the data table. */ - uint16_t numCols; /**< number of columns in the data table. */ - q7_t *pData; /**< points to the data table. */ - } riscv_bilinear_interp_instance_q7; - - - /** - * @brief Q7 vector multiplication. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_mult_q7( - const q7_t * pSrcA, - const q7_t * pSrcB, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Q15 vector multiplication. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_mult_q15( - const q15_t * pSrcA, - const q15_t * pSrcB, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Q31 vector multiplication. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_mult_q31( - const q31_t * pSrcA, - const q31_t * pSrcB, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Floating-point vector multiplication. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_mult_f32( - const float32_t * pSrcA, - const float32_t * pSrcB, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Instance structure for the Q15 CFFT/CIFFT function. - */ - typedef struct - { - uint16_t fftLen; /**< length of the FFT. */ - uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ - uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ - const q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ - const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ - uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ - uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ - } riscv_cfft_radix2_instance_q15; - -/* Deprecated */ - riscv_status riscv_cfft_radix2_init_q15( - riscv_cfft_radix2_instance_q15 * S, - uint16_t fftLen, - uint8_t ifftFlag, - uint8_t bitReverseFlag); - -/* Deprecated */ - void riscv_cfft_radix2_q15( - const riscv_cfft_radix2_instance_q15 * S, - q15_t * pSrc); - - - /** - * @brief Instance structure for the Q15 CFFT/CIFFT function. - */ - typedef struct - { - uint16_t fftLen; /**< length of the FFT. */ - uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ - uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ - const q15_t *pTwiddle; /**< points to the twiddle factor table. */ - const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ - uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ - uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ - } riscv_cfft_radix4_instance_q15; - -/* Deprecated */ - riscv_status riscv_cfft_radix4_init_q15( - riscv_cfft_radix4_instance_q15 * S, - uint16_t fftLen, - uint8_t ifftFlag, - uint8_t bitReverseFlag); - -/* Deprecated */ - void riscv_cfft_radix4_q15( - const riscv_cfft_radix4_instance_q15 * S, - q15_t * pSrc); - - /** - * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. - */ - typedef struct - { - uint16_t fftLen; /**< length of the FFT. */ - uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ - uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ - const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ - const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ - uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ - uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ - } riscv_cfft_radix2_instance_q31; - -/* Deprecated */ - riscv_status riscv_cfft_radix2_init_q31( - riscv_cfft_radix2_instance_q31 * S, - uint16_t fftLen, - uint8_t ifftFlag, - uint8_t bitReverseFlag); - -/* Deprecated */ - void riscv_cfft_radix2_q31( - const riscv_cfft_radix2_instance_q31 * S, - q31_t * pSrc); - - /** - * @brief Instance structure for the Q31 CFFT/CIFFT function. - */ - typedef struct - { - uint16_t fftLen; /**< length of the FFT. */ - uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ - uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ - const q31_t *pTwiddle; /**< points to the twiddle factor table. */ - const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ - uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ - uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ - } riscv_cfft_radix4_instance_q31; - -/* Deprecated */ - void riscv_cfft_radix4_q31( - const riscv_cfft_radix4_instance_q31 * S, - q31_t * pSrc); - -/* Deprecated */ - riscv_status riscv_cfft_radix4_init_q31( - riscv_cfft_radix4_instance_q31 * S, - uint16_t fftLen, - uint8_t ifftFlag, - uint8_t bitReverseFlag); - - /** - * @brief Instance structure for the floating-point CFFT/CIFFT function. - */ - typedef struct - { - uint16_t fftLen; /**< length of the FFT. */ - uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ - uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ - const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ - const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ - uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ - uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ - float32_t onebyfftLen; /**< value of 1/fftLen. */ - } riscv_cfft_radix2_instance_f32; - -/* Deprecated */ - riscv_status riscv_cfft_radix2_init_f32( - riscv_cfft_radix2_instance_f32 * S, - uint16_t fftLen, - uint8_t ifftFlag, - uint8_t bitReverseFlag); - -/* Deprecated */ - void riscv_cfft_radix2_f32( - const riscv_cfft_radix2_instance_f32 * S, - float32_t * pSrc); - - /** - * @brief Instance structure for the floating-point CFFT/CIFFT function. - */ - typedef struct - { - uint16_t fftLen; /**< length of the FFT. */ - uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ - uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ - const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ - const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ - uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ - uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ - float32_t onebyfftLen; /**< value of 1/fftLen. */ - } riscv_cfft_radix4_instance_f32; - -/* Deprecated */ - riscv_status riscv_cfft_radix4_init_f32( - riscv_cfft_radix4_instance_f32 * S, - uint16_t fftLen, - uint8_t ifftFlag, - uint8_t bitReverseFlag); - -/* Deprecated */ - void riscv_cfft_radix4_f32( - const riscv_cfft_radix4_instance_f32 * S, - float32_t * pSrc); - - /** - * @brief Instance structure for the fixed-point CFFT/CIFFT function. - */ - typedef struct - { - uint16_t fftLen; /**< length of the FFT. */ - const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ - const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ - uint16_t bitRevLength; /**< bit reversal table length. */ - } riscv_cfft_instance_q15; - -void riscv_cfft_q15( - const riscv_cfft_instance_q15 * S, - q15_t * p1, - uint8_t ifftFlag, - uint8_t bitReverseFlag); - - /** - * @brief Instance structure for the fixed-point CFFT/CIFFT function. - */ - typedef struct - { - uint16_t fftLen; /**< length of the FFT. */ - const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ - const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ - uint16_t bitRevLength; /**< bit reversal table length. */ - } riscv_cfft_instance_q31; - -void riscv_cfft_q31( - const riscv_cfft_instance_q31 * S, - q31_t * p1, - uint8_t ifftFlag, - uint8_t bitReverseFlag); - - /** - * @brief Instance structure for the floating-point CFFT/CIFFT function. - */ - typedef struct - { - uint16_t fftLen; /**< length of the FFT. */ - const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ - const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ - uint16_t bitRevLength; /**< bit reversal table length. */ - } riscv_cfft_instance_f32; - - void riscv_cfft_f32( - const riscv_cfft_instance_f32 * S, - float32_t * p1, - uint8_t ifftFlag, - uint8_t bitReverseFlag); - - /** - * @brief Instance structure for the Q15 RFFT/RIFFT function. - */ - typedef struct - { - uint32_t fftLenReal; /**< length of the real FFT. */ - uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ - uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ - uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ - const q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ - const q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ - const riscv_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ - } riscv_rfft_instance_q15; - - riscv_status riscv_rfft_init_q15( - riscv_rfft_instance_q15 * S, - uint32_t fftLenReal, - uint32_t ifftFlagR, - uint32_t bitReverseFlag); - - void riscv_rfft_q15( - const riscv_rfft_instance_q15 * S, - q15_t * pSrc, - q15_t * pDst); - - /** - * @brief Instance structure for the Q31 RFFT/RIFFT function. - */ - typedef struct - { - uint32_t fftLenReal; /**< length of the real FFT. */ - uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ - uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ - uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ - const q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ - const q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ - const riscv_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ - } riscv_rfft_instance_q31; - - riscv_status riscv_rfft_init_q31( - riscv_rfft_instance_q31 * S, - uint32_t fftLenReal, - uint32_t ifftFlagR, - uint32_t bitReverseFlag); - - void riscv_rfft_q31( - const riscv_rfft_instance_q31 * S, - q31_t * pSrc, - q31_t * pDst); - - /** - * @brief Instance structure for the floating-point RFFT/RIFFT function. - */ - typedef struct - { - uint32_t fftLenReal; /**< length of the real FFT. */ - uint16_t fftLenBy2; /**< length of the complex FFT. */ - uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ - uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ - uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ - const float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ - const float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ - riscv_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ - } riscv_rfft_instance_f32; - - riscv_status riscv_rfft_init_f32( - riscv_rfft_instance_f32 * S, - riscv_cfft_radix4_instance_f32 * S_CFFT, - uint32_t fftLenReal, - uint32_t ifftFlagR, - uint32_t bitReverseFlag); - - void riscv_rfft_f32( - const riscv_rfft_instance_f32 * S, - float32_t * pSrc, - float32_t * pDst); - - /** - * @brief Instance structure for the floating-point RFFT/RIFFT function. - */ -typedef struct - { - riscv_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ - uint16_t fftLenRFFT; /**< length of the real sequence */ - const float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ - } riscv_rfft_fast_instance_f32 ; - -riscv_status riscv_rfft_fast_init_f32 ( - riscv_rfft_fast_instance_f32 * S, - uint16_t fftLen); - -riscv_status riscv_rfft_32_fast_init_f32 ( riscv_rfft_fast_instance_f32 * S ); - -riscv_status riscv_rfft_64_fast_init_f32 ( riscv_rfft_fast_instance_f32 * S ); - -riscv_status riscv_rfft_128_fast_init_f32 ( riscv_rfft_fast_instance_f32 * S ); - -riscv_status riscv_rfft_256_fast_init_f32 ( riscv_rfft_fast_instance_f32 * S ); - -riscv_status riscv_rfft_512_fast_init_f32 ( riscv_rfft_fast_instance_f32 * S ); - -riscv_status riscv_rfft_1024_fast_init_f32 ( riscv_rfft_fast_instance_f32 * S ); - -riscv_status riscv_rfft_2048_fast_init_f32 ( riscv_rfft_fast_instance_f32 * S ); - -riscv_status riscv_rfft_4096_fast_init_f32 ( riscv_rfft_fast_instance_f32 * S ); - - - void riscv_rfft_fast_f32( - riscv_rfft_fast_instance_f32 * S, - float32_t * p, float32_t * pOut, - uint8_t ifftFlag); - - /** - * @brief Instance structure for the floating-point DCT4/IDCT4 function. - */ - typedef struct - { - uint16_t N; /**< length of the DCT4. */ - uint16_t Nby2; /**< half of the length of the DCT4. */ - float32_t normalize; /**< normalizing factor. */ - const float32_t *pTwiddle; /**< points to the twiddle factor table. */ - const float32_t *pCosFactor; /**< points to the cosFactor table. */ - riscv_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ - riscv_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ - } riscv_dct4_instance_f32; - - - /** - * @brief Initialization function for the floating-point DCT4/IDCT4. - * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. - * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. - * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. - * @param[in] N length of the DCT4. - * @param[in] Nby2 half of the length of the DCT4. - * @param[in] normalize normalizing factor. - * @return riscv_status function returns RISCV_MATH_SUCCESS if initialization is successful or RISCV_MATH_ARGUMENT_ERROR if fftLenReal is not a supported transform length. - */ - riscv_status riscv_dct4_init_f32( - riscv_dct4_instance_f32 * S, - riscv_rfft_instance_f32 * S_RFFT, - riscv_cfft_radix4_instance_f32 * S_CFFT, - uint16_t N, - uint16_t Nby2, - float32_t normalize); - - - /** - * @brief Processing function for the floating-point DCT4/IDCT4. - * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. - * @param[in] pState points to state buffer. - * @param[in,out] pInlineBuffer points to the in-place input and output buffer. - */ - void riscv_dct4_f32( - const riscv_dct4_instance_f32 * S, - float32_t * pState, - float32_t * pInlineBuffer); - - - /** - * @brief Instance structure for the Q31 DCT4/IDCT4 function. - */ - typedef struct - { - uint16_t N; /**< length of the DCT4. */ - uint16_t Nby2; /**< half of the length of the DCT4. */ - q31_t normalize; /**< normalizing factor. */ - const q31_t *pTwiddle; /**< points to the twiddle factor table. */ - const q31_t *pCosFactor; /**< points to the cosFactor table. */ - riscv_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ - riscv_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ - } riscv_dct4_instance_q31; - - - /** - * @brief Initialization function for the Q31 DCT4/IDCT4. - * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. - * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure - * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure - * @param[in] N length of the DCT4. - * @param[in] Nby2 half of the length of the DCT4. - * @param[in] normalize normalizing factor. - * @return riscv_status function returns RISCV_MATH_SUCCESS if initialization is successful or RISCV_MATH_ARGUMENT_ERROR if N is not a supported transform length. - */ - riscv_status riscv_dct4_init_q31( - riscv_dct4_instance_q31 * S, - riscv_rfft_instance_q31 * S_RFFT, - riscv_cfft_radix4_instance_q31 * S_CFFT, - uint16_t N, - uint16_t Nby2, - q31_t normalize); - - - /** - * @brief Processing function for the Q31 DCT4/IDCT4. - * @param[in] S points to an instance of the Q31 DCT4 structure. - * @param[in] pState points to state buffer. - * @param[in,out] pInlineBuffer points to the in-place input and output buffer. - */ - void riscv_dct4_q31( - const riscv_dct4_instance_q31 * S, - q31_t * pState, - q31_t * pInlineBuffer); - - - /** - * @brief Instance structure for the Q15 DCT4/IDCT4 function. - */ - typedef struct - { - uint16_t N; /**< length of the DCT4. */ - uint16_t Nby2; /**< half of the length of the DCT4. */ - q15_t normalize; /**< normalizing factor. */ - const q15_t *pTwiddle; /**< points to the twiddle factor table. */ - const q15_t *pCosFactor; /**< points to the cosFactor table. */ - riscv_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ - riscv_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ - } riscv_dct4_instance_q15; - - - /** - * @brief Initialization function for the Q15 DCT4/IDCT4. - * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. - * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. - * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. - * @param[in] N length of the DCT4. - * @param[in] Nby2 half of the length of the DCT4. - * @param[in] normalize normalizing factor. - * @return riscv_status function returns RISCV_MATH_SUCCESS if initialization is successful or RISCV_MATH_ARGUMENT_ERROR if N is not a supported transform length. - */ - riscv_status riscv_dct4_init_q15( - riscv_dct4_instance_q15 * S, - riscv_rfft_instance_q15 * S_RFFT, - riscv_cfft_radix4_instance_q15 * S_CFFT, - uint16_t N, - uint16_t Nby2, - q15_t normalize); - - - /** - * @brief Processing function for the Q15 DCT4/IDCT4. - * @param[in] S points to an instance of the Q15 DCT4 structure. - * @param[in] pState points to state buffer. - * @param[in,out] pInlineBuffer points to the in-place input and output buffer. - */ - void riscv_dct4_q15( - const riscv_dct4_instance_q15 * S, - q15_t * pState, - q15_t * pInlineBuffer); - - - /** - * @brief Floating-point vector addition. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_add_f32( - const float32_t * pSrcA, - const float32_t * pSrcB, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Q7 vector addition. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_add_q7( - const q7_t * pSrcA, - const q7_t * pSrcB, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Q15 vector addition. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_add_q15( - const q15_t * pSrcA, - const q15_t * pSrcB, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Q31 vector addition. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_add_q31( - const q31_t * pSrcA, - const q31_t * pSrcB, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Floating-point vector subtraction. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_sub_f32( - const float32_t * pSrcA, - const float32_t * pSrcB, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Q7 vector subtraction. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_sub_q7( - const q7_t * pSrcA, - const q7_t * pSrcB, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Q15 vector subtraction. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_sub_q15( - const q15_t * pSrcA, - const q15_t * pSrcB, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Q31 vector subtraction. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in each vector - */ - void riscv_sub_q31( - const q31_t * pSrcA, - const q31_t * pSrcB, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Multiplies a floating-point vector by a scalar. - * @param[in] pSrc points to the input vector - * @param[in] scale scale factor to be applied - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_scale_f32( - const float32_t * pSrc, - float32_t scale, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Multiplies a Q7 vector by a scalar. - * @param[in] pSrc points to the input vector - * @param[in] scaleFract fractional portion of the scale value - * @param[in] shift number of bits to shift the result by - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_scale_q7( - const q7_t * pSrc, - q7_t scaleFract, - int8_t shift, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Multiplies a Q15 vector by a scalar. - * @param[in] pSrc points to the input vector - * @param[in] scaleFract fractional portion of the scale value - * @param[in] shift number of bits to shift the result by - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_scale_q15( - const q15_t * pSrc, - q15_t scaleFract, - int8_t shift, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Multiplies a Q31 vector by a scalar. - * @param[in] pSrc points to the input vector - * @param[in] scaleFract fractional portion of the scale value - * @param[in] shift number of bits to shift the result by - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_scale_q31( - const q31_t * pSrc, - q31_t scaleFract, - int8_t shift, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Q7 vector absolute value. - * @param[in] pSrc points to the input buffer - * @param[out] pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - */ - void riscv_abs_q7( - const q7_t * pSrc, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Floating-point vector absolute value. - * @param[in] pSrc points to the input buffer - * @param[out] pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - */ - void riscv_abs_f32( - const float32_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Q15 vector absolute value. - * @param[in] pSrc points to the input buffer - * @param[out] pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - */ - void riscv_abs_q15( - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Q31 vector absolute value. - * @param[in] pSrc points to the input buffer - * @param[out] pDst points to the output buffer - * @param[in] blockSize number of samples in each vector - */ - void riscv_abs_q31( - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Dot product of floating-point vectors. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] result output result returned here - */ - void riscv_dot_prod_f32( - const float32_t * pSrcA, - const float32_t * pSrcB, - uint32_t blockSize, - float32_t * result); - - - /** - * @brief Dot product of Q7 vectors. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] result output result returned here - */ - void riscv_dot_prod_q7( - const q7_t * pSrcA, - const q7_t * pSrcB, - uint32_t blockSize, - q31_t * result); - - - /** - * @brief Dot product of Q15 vectors. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] result output result returned here - */ - void riscv_dot_prod_q15( - const q15_t * pSrcA, - const q15_t * pSrcB, - uint32_t blockSize, - q63_t * result); - - - /** - * @brief Dot product of Q31 vectors. - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[in] blockSize number of samples in each vector - * @param[out] result output result returned here - */ - void riscv_dot_prod_q31( - const q31_t * pSrcA, - const q31_t * pSrcB, - uint32_t blockSize, - q63_t * result); - - - /** - * @brief Shifts the elements of a Q7 vector a specified number of bits. - * @param[in] pSrc points to the input vector - * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_shift_q7( - const q7_t * pSrc, - int8_t shiftBits, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Shifts the elements of a Q15 vector a specified number of bits. - * @param[in] pSrc points to the input vector - * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_shift_q15( - const q15_t * pSrc, - int8_t shiftBits, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Shifts the elements of a Q31 vector a specified number of bits. - * @param[in] pSrc points to the input vector - * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_shift_q31( - const q31_t * pSrc, - int8_t shiftBits, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Adds a constant offset to a floating-point vector. - * @param[in] pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_offset_f32( - const float32_t * pSrc, - float32_t offset, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Adds a constant offset to a Q7 vector. - * @param[in] pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_offset_q7( - const q7_t * pSrc, - q7_t offset, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Adds a constant offset to a Q15 vector. - * @param[in] pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_offset_q15( - const q15_t * pSrc, - q15_t offset, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Adds a constant offset to a Q31 vector. - * @param[in] pSrc points to the input vector - * @param[in] offset is the offset to be added - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_offset_q31( - const q31_t * pSrc, - q31_t offset, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Negates the elements of a floating-point vector. - * @param[in] pSrc points to the input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_negate_f32( - const float32_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Negates the elements of a Q7 vector. - * @param[in] pSrc points to the input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_negate_q7( - const q7_t * pSrc, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Negates the elements of a Q15 vector. - * @param[in] pSrc points to the input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_negate_q15( - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Negates the elements of a Q31 vector. - * @param[in] pSrc points to the input vector - * @param[out] pDst points to the output vector - * @param[in] blockSize number of samples in the vector - */ - void riscv_negate_q31( - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Copies the elements of a floating-point vector. - * @param[in] pSrc input pointer - * @param[out] pDst output pointer - * @param[in] blockSize number of samples to process - */ - void riscv_copy_f32( - const float32_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Copies the elements of a Q7 vector. - * @param[in] pSrc input pointer - * @param[out] pDst output pointer - * @param[in] blockSize number of samples to process - */ - void riscv_copy_q7( - const q7_t * pSrc, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Copies the elements of a Q15 vector. - * @param[in] pSrc input pointer - * @param[out] pDst output pointer - * @param[in] blockSize number of samples to process - */ - void riscv_copy_q15( - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Copies the elements of a Q31 vector. - * @param[in] pSrc input pointer - * @param[out] pDst output pointer - * @param[in] blockSize number of samples to process - */ - void riscv_copy_q31( - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Fills a constant value into a floating-point vector. - * @param[in] value input value to be filled - * @param[out] pDst output pointer - * @param[in] blockSize number of samples to process - */ - void riscv_fill_f32( - float32_t value, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Fills a constant value into a Q7 vector. - * @param[in] value input value to be filled - * @param[out] pDst output pointer - * @param[in] blockSize number of samples to process - */ - void riscv_fill_q7( - q7_t value, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Fills a constant value into a Q15 vector. - * @param[in] value input value to be filled - * @param[out] pDst output pointer - * @param[in] blockSize number of samples to process - */ - void riscv_fill_q15( - q15_t value, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Fills a constant value into a Q31 vector. - * @param[in] value input value to be filled - * @param[out] pDst output pointer - * @param[in] blockSize number of samples to process - */ - void riscv_fill_q31( - q31_t value, - q31_t * pDst, - uint32_t blockSize); - - -/** - * @brief Convolution of floating-point sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. - */ - void riscv_conv_f32( - const float32_t * pSrcA, - uint32_t srcALen, - const float32_t * pSrcB, - uint32_t srcBLen, - float32_t * pDst); - - - /** - * @brief Convolution of Q15 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. - * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). - */ - void riscv_conv_opt_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst, - q15_t * pScratch1, - q15_t * pScratch2); - - -/** - * @brief Convolution of Q15 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. - */ - void riscv_conv_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst); - - - /** - * @brief Convolution of Q15 sequences (fast version) for RISC-V Core with DSP enabled - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. - */ - void riscv_conv_fast_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst); - - - /** - * @brief Convolution of Q15 sequences (fast version) for RISC-V Core with DSP enabled - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. - * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). - */ - void riscv_conv_fast_opt_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst, - q15_t * pScratch1, - q15_t * pScratch2); - - - /** - * @brief Convolution of Q31 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. - */ - void riscv_conv_q31( - const q31_t * pSrcA, - uint32_t srcALen, - const q31_t * pSrcB, - uint32_t srcBLen, - q31_t * pDst); - - - /** - * @brief Convolution of Q31 sequences (fast version) for RISC-V Core with DSP enabled - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. - */ - void riscv_conv_fast_q31( - const q31_t * pSrcA, - uint32_t srcALen, - const q31_t * pSrcB, - uint32_t srcBLen, - q31_t * pDst); - - - /** - * @brief Convolution of Q7 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. - * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). - */ - void riscv_conv_opt_q7( - const q7_t * pSrcA, - uint32_t srcALen, - const q7_t * pSrcB, - uint32_t srcBLen, - q7_t * pDst, - q15_t * pScratch1, - q15_t * pScratch2); - - - /** - * @brief Convolution of Q7 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. - */ - void riscv_conv_q7( - const q7_t * pSrcA, - uint32_t srcALen, - const q7_t * pSrcB, - uint32_t srcBLen, - q7_t * pDst); - - - /** - * @brief Partial convolution of floating-point sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @return Returns either RISCV_MATH_SUCCESS if the function completed correctly or RISCV_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. - */ - riscv_status riscv_conv_partial_f32( - const float32_t * pSrcA, - uint32_t srcALen, - const float32_t * pSrcB, - uint32_t srcBLen, - float32_t * pDst, - uint32_t firstIndex, - uint32_t numPoints); - - - /** - * @brief Partial convolution of Q15 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). - * @return Returns either RISCV_MATH_SUCCESS if the function completed correctly or RISCV_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. - */ - riscv_status riscv_conv_partial_opt_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst, - uint32_t firstIndex, - uint32_t numPoints, - q15_t * pScratch1, - q15_t * pScratch2); - - - /** - * @brief Partial convolution of Q15 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @return Returns either RISCV_MATH_SUCCESS if the function completed correctly or RISCV_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. - */ - riscv_status riscv_conv_partial_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst, - uint32_t firstIndex, - uint32_t numPoints); - - - /** - * @brief Partial convolution of Q15 sequences (fast version) for RISC-V Core with DSP enabled - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @return Returns either RISCV_MATH_SUCCESS if the function completed correctly or RISCV_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. - */ - riscv_status riscv_conv_partial_fast_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst, - uint32_t firstIndex, - uint32_t numPoints); - - - /** - * @brief Partial convolution of Q15 sequences (fast version) for RISC-V Core with DSP enabled - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). - * @return Returns either RISCV_MATH_SUCCESS if the function completed correctly or RISCV_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. - */ - riscv_status riscv_conv_partial_fast_opt_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst, - uint32_t firstIndex, - uint32_t numPoints, - q15_t * pScratch1, - q15_t * pScratch2); - - - /** - * @brief Partial convolution of Q31 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @return Returns either RISCV_MATH_SUCCESS if the function completed correctly or RISCV_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. - */ - riscv_status riscv_conv_partial_q31( - const q31_t * pSrcA, - uint32_t srcALen, - const q31_t * pSrcB, - uint32_t srcBLen, - q31_t * pDst, - uint32_t firstIndex, - uint32_t numPoints); - - - /** - * @brief Partial convolution of Q31 sequences (fast version) for RISC-V Core with DSP enabled - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @return Returns either RISCV_MATH_SUCCESS if the function completed correctly or RISCV_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. - */ - riscv_status riscv_conv_partial_fast_q31( - const q31_t * pSrcA, - uint32_t srcALen, - const q31_t * pSrcB, - uint32_t srcBLen, - q31_t * pDst, - uint32_t firstIndex, - uint32_t numPoints); - - - /** - * @brief Partial convolution of Q7 sequences - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). - * @return Returns either RISCV_MATH_SUCCESS if the function completed correctly or RISCV_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. - */ - riscv_status riscv_conv_partial_opt_q7( - const q7_t * pSrcA, - uint32_t srcALen, - const q7_t * pSrcB, - uint32_t srcBLen, - q7_t * pDst, - uint32_t firstIndex, - uint32_t numPoints, - q15_t * pScratch1, - q15_t * pScratch2); - - -/** - * @brief Partial convolution of Q7 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data - * @param[in] firstIndex is the first output sample to start with. - * @param[in] numPoints is the number of output points to be computed. - * @return Returns either RISCV_MATH_SUCCESS if the function completed correctly or RISCV_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. - */ - riscv_status riscv_conv_partial_q7( - const q7_t * pSrcA, - uint32_t srcALen, - const q7_t * pSrcB, - uint32_t srcBLen, - q7_t * pDst, - uint32_t firstIndex, - uint32_t numPoints); - - - /** - * @brief Instance structure for the Q15 FIR decimator. - */ - typedef struct - { - uint8_t M; /**< decimation factor. */ - uint16_t numTaps; /**< number of coefficients in the filter. */ - const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - } riscv_fir_decimate_instance_q15; - - /** - * @brief Instance structure for the Q31 FIR decimator. - */ - typedef struct - { - uint8_t M; /**< decimation factor. */ - uint16_t numTaps; /**< number of coefficients in the filter. */ - const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - } riscv_fir_decimate_instance_q31; - -/** - @brief Instance structure for floating-point FIR decimator. - */ -typedef struct - { - uint8_t M; /**< decimation factor. */ - uint16_t numTaps; /**< number of coefficients in the filter. */ - const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - } riscv_fir_decimate_instance_f32; - - -/** - @brief Processing function for floating-point FIR decimator. - @param[in] S points to an instance of the floating-point FIR decimator structure - @param[in] pSrc points to the block of input data - @param[out] pDst points to the block of output data - @param[in] blockSize number of samples to process - */ -void riscv_fir_decimate_f32( - const riscv_fir_decimate_instance_f32 * S, - const float32_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - -/** - @brief Initialization function for the floating-point FIR decimator. - @param[in,out] S points to an instance of the floating-point FIR decimator structure - @param[in] numTaps number of coefficients in the filter - @param[in] M decimation factor - @param[in] pCoeffs points to the filter coefficients - @param[in] pState points to the state buffer - @param[in] blockSize number of input samples to process per call - @return execution status - - \ref RISCV_MATH_SUCCESS : Operation successful - - \ref RISCV_MATH_LENGTH_ERROR : blockSize is not a multiple of M - */ -riscv_status riscv_fir_decimate_init_f32( - riscv_fir_decimate_instance_f32 * S, - uint16_t numTaps, - uint8_t M, - const float32_t * pCoeffs, - float32_t * pState, - uint32_t blockSize); - - - /** - * @brief Processing function for the Q15 FIR decimator. - * @param[in] S points to an instance of the Q15 FIR decimator structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - */ - void riscv_fir_decimate_q15( - const riscv_fir_decimate_instance_q15 * S, - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Processing function for the Q15 FIR decimator (fast variant) for RISC-V Core with DSP enabled. - * @param[in] S points to an instance of the Q15 FIR decimator structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - */ - void riscv_fir_decimate_fast_q15( - const riscv_fir_decimate_instance_q15 * S, - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Initialization function for the Q15 FIR decimator. - * @param[in,out] S points to an instance of the Q15 FIR decimator structure. - * @param[in] numTaps number of coefficients in the filter. - * @param[in] M decimation factor. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. - * @return The function returns RISCV_MATH_SUCCESS if initialization is successful or RISCV_MATH_LENGTH_ERROR if - * blockSize is not a multiple of M. - */ - riscv_status riscv_fir_decimate_init_q15( - riscv_fir_decimate_instance_q15 * S, - uint16_t numTaps, - uint8_t M, - const q15_t * pCoeffs, - q15_t * pState, - uint32_t blockSize); - - - /** - * @brief Processing function for the Q31 FIR decimator. - * @param[in] S points to an instance of the Q31 FIR decimator structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - */ - void riscv_fir_decimate_q31( - const riscv_fir_decimate_instance_q31 * S, - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - /** - * @brief Processing function for the Q31 FIR decimator (fast variant) for RISC-V Core with DSP enabled. - * @param[in] S points to an instance of the Q31 FIR decimator structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] blockSize number of input samples to process per call. - */ - void riscv_fir_decimate_fast_q31( - const riscv_fir_decimate_instance_q31 * S, - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Initialization function for the Q31 FIR decimator. - * @param[in,out] S points to an instance of the Q31 FIR decimator structure. - * @param[in] numTaps number of coefficients in the filter. - * @param[in] M decimation factor. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. - * @return The function returns RISCV_MATH_SUCCESS if initialization is successful or RISCV_MATH_LENGTH_ERROR if - * blockSize is not a multiple of M. - */ - riscv_status riscv_fir_decimate_init_q31( - riscv_fir_decimate_instance_q31 * S, - uint16_t numTaps, - uint8_t M, - const q31_t * pCoeffs, - q31_t * pState, - uint32_t blockSize); - - - /** - * @brief Instance structure for the Q15 FIR interpolator. - */ - typedef struct - { - uint8_t L; /**< upsample factor. */ - uint16_t phaseLength; /**< length of each polyphase filter component. */ - const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ - q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ - } riscv_fir_interpolate_instance_q15; - - /** - * @brief Instance structure for the Q31 FIR interpolator. - */ - typedef struct - { - uint8_t L; /**< upsample factor. */ - uint16_t phaseLength; /**< length of each polyphase filter component. */ - const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ - q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ - } riscv_fir_interpolate_instance_q31; - - /** - * @brief Instance structure for the floating-point FIR interpolator. - */ - typedef struct - { - uint8_t L; /**< upsample factor. */ - uint16_t phaseLength; /**< length of each polyphase filter component. */ - const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ - float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ - } riscv_fir_interpolate_instance_f32; - - - /** - * @brief Processing function for the Q15 FIR interpolator. - * @param[in] S points to an instance of the Q15 FIR interpolator structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of input samples to process per call. - */ - void riscv_fir_interpolate_q15( - const riscv_fir_interpolate_instance_q15 * S, - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Initialization function for the Q15 FIR interpolator. - * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. - * @param[in] L upsample factor. - * @param[in] numTaps number of filter coefficients in the filter. - * @param[in] pCoeffs points to the filter coefficient buffer. - * @param[in] pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. - * @return The function returns RISCV_MATH_SUCCESS if initialization is successful or RISCV_MATH_LENGTH_ERROR if - * the filter length numTaps is not a multiple of the interpolation factor L. - */ - riscv_status riscv_fir_interpolate_init_q15( - riscv_fir_interpolate_instance_q15 * S, - uint8_t L, - uint16_t numTaps, - const q15_t * pCoeffs, - q15_t * pState, - uint32_t blockSize); - - - /** - * @brief Processing function for the Q31 FIR interpolator. - * @param[in] S points to an instance of the Q15 FIR interpolator structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of input samples to process per call. - */ - void riscv_fir_interpolate_q31( - const riscv_fir_interpolate_instance_q31 * S, - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Initialization function for the Q31 FIR interpolator. - * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. - * @param[in] L upsample factor. - * @param[in] numTaps number of filter coefficients in the filter. - * @param[in] pCoeffs points to the filter coefficient buffer. - * @param[in] pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. - * @return The function returns RISCV_MATH_SUCCESS if initialization is successful or RISCV_MATH_LENGTH_ERROR if - * the filter length numTaps is not a multiple of the interpolation factor L. - */ - riscv_status riscv_fir_interpolate_init_q31( - riscv_fir_interpolate_instance_q31 * S, - uint8_t L, - uint16_t numTaps, - const q31_t * pCoeffs, - q31_t * pState, - uint32_t blockSize); - - - /** - * @brief Processing function for the floating-point FIR interpolator. - * @param[in] S points to an instance of the floating-point FIR interpolator structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of input samples to process per call. - */ - void riscv_fir_interpolate_f32( - const riscv_fir_interpolate_instance_f32 * S, - const float32_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Initialization function for the floating-point FIR interpolator. - * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. - * @param[in] L upsample factor. - * @param[in] numTaps number of filter coefficients in the filter. - * @param[in] pCoeffs points to the filter coefficient buffer. - * @param[in] pState points to the state buffer. - * @param[in] blockSize number of input samples to process per call. - * @return The function returns RISCV_MATH_SUCCESS if initialization is successful or RISCV_MATH_LENGTH_ERROR if - * the filter length numTaps is not a multiple of the interpolation factor L. - */ - riscv_status riscv_fir_interpolate_init_f32( - riscv_fir_interpolate_instance_f32 * S, - uint8_t L, - uint16_t numTaps, - const float32_t * pCoeffs, - float32_t * pState, - uint32_t blockSize); - - - /** - * @brief Instance structure for the high precision Q31 Biquad cascade filter. - */ - typedef struct - { - uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ - q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ - const q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ - uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ - } riscv_biquad_cas_df1_32x64_ins_q31; - - - /** - * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] blockSize number of samples to process. - */ - void riscv_biquad_cas_df1_32x64_q31( - const riscv_biquad_cas_df1_32x64_ins_q31 * S, - q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format - */ - void riscv_biquad_cas_df1_32x64_init_q31( - riscv_biquad_cas_df1_32x64_ins_q31 * S, - uint8_t numStages, - const q31_t * pCoeffs, - q63_t * pState, - uint8_t postShift); - - - /** - * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. - */ - typedef struct - { - uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ - float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ - const float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ - } riscv_biquad_cascade_df2T_instance_f32; - - /** - * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. - */ - typedef struct - { - uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ - float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ - const float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ - } riscv_biquad_cascade_stereo_df2T_instance_f32; - - /** - * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. - */ - typedef struct - { - uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ - float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ - float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ - } riscv_biquad_cascade_df2T_instance_f64; - - - /** - * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in] S points to an instance of the filter data structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] blockSize number of samples to process. - */ - void riscv_biquad_cascade_df2T_f32( - const riscv_biquad_cascade_df2T_instance_f32 * S, - const float32_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels - * @param[in] S points to an instance of the filter data structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] blockSize number of samples to process. - */ - void riscv_biquad_cascade_stereo_df2T_f32( - const riscv_biquad_cascade_stereo_df2T_instance_f32 * S, - const float32_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in] S points to an instance of the filter data structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] blockSize number of samples to process. - */ - void riscv_biquad_cascade_df2T_f64( - const riscv_biquad_cascade_df2T_instance_f64 * S, - float64_t * pSrc, - float64_t * pDst, - uint32_t blockSize); - - - /** - * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in,out] S points to an instance of the filter data structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - */ - void riscv_biquad_cascade_df2T_init_f32( - riscv_biquad_cascade_df2T_instance_f32 * S, - uint8_t numStages, - const float32_t * pCoeffs, - float32_t * pState); - - - /** - * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in,out] S points to an instance of the filter data structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - */ - void riscv_biquad_cascade_stereo_df2T_init_f32( - riscv_biquad_cascade_stereo_df2T_instance_f32 * S, - uint8_t numStages, - const float32_t * pCoeffs, - float32_t * pState); - - - /** - * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. - * @param[in,out] S points to an instance of the filter data structure. - * @param[in] numStages number of 2nd order stages in the filter. - * @param[in] pCoeffs points to the filter coefficients. - * @param[in] pState points to the state buffer. - */ - void riscv_biquad_cascade_df2T_init_f64( - riscv_biquad_cascade_df2T_instance_f64 * S, - uint8_t numStages, - float64_t * pCoeffs, - float64_t * pState); - - - /** - * @brief Instance structure for the Q15 FIR lattice filter. - */ - typedef struct - { - uint16_t numStages; /**< number of filter stages. */ - q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ - const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ - } riscv_fir_lattice_instance_q15; - - /** - * @brief Instance structure for the Q31 FIR lattice filter. - */ - typedef struct - { - uint16_t numStages; /**< number of filter stages. */ - q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ - const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ - } riscv_fir_lattice_instance_q31; - - /** - * @brief Instance structure for the floating-point FIR lattice filter. - */ - typedef struct - { - uint16_t numStages; /**< number of filter stages. */ - float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ - const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ - } riscv_fir_lattice_instance_f32; - - - /** - * @brief Initialization function for the Q15 FIR lattice filter. - * @param[in] S points to an instance of the Q15 FIR lattice structure. - * @param[in] numStages number of filter stages. - * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. - * @param[in] pState points to the state buffer. The array is of length numStages. - */ - void riscv_fir_lattice_init_q15( - riscv_fir_lattice_instance_q15 * S, - uint16_t numStages, - const q15_t * pCoeffs, - q15_t * pState); - - - /** - * @brief Processing function for the Q15 FIR lattice filter. - * @param[in] S points to an instance of the Q15 FIR lattice structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_fir_lattice_q15( - const riscv_fir_lattice_instance_q15 * S, - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Initialization function for the Q31 FIR lattice filter. - * @param[in] S points to an instance of the Q31 FIR lattice structure. - * @param[in] numStages number of filter stages. - * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. - * @param[in] pState points to the state buffer. The array is of length numStages. - */ - void riscv_fir_lattice_init_q31( - riscv_fir_lattice_instance_q31 * S, - uint16_t numStages, - const q31_t * pCoeffs, - q31_t * pState); - - - /** - * @brief Processing function for the Q31 FIR lattice filter. - * @param[in] S points to an instance of the Q31 FIR lattice structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] blockSize number of samples to process. - */ - void riscv_fir_lattice_q31( - const riscv_fir_lattice_instance_q31 * S, - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - -/** - * @brief Initialization function for the floating-point FIR lattice filter. - * @param[in] S points to an instance of the floating-point FIR lattice structure. - * @param[in] numStages number of filter stages. - * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. - * @param[in] pState points to the state buffer. The array is of length numStages. - */ - void riscv_fir_lattice_init_f32( - riscv_fir_lattice_instance_f32 * S, - uint16_t numStages, - const float32_t * pCoeffs, - float32_t * pState); - - - /** - * @brief Processing function for the floating-point FIR lattice filter. - * @param[in] S points to an instance of the floating-point FIR lattice structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] blockSize number of samples to process. - */ - void riscv_fir_lattice_f32( - const riscv_fir_lattice_instance_f32 * S, - const float32_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Instance structure for the Q15 IIR lattice filter. - */ - typedef struct - { - uint16_t numStages; /**< number of stages in the filter. */ - q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ - q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ - q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ - } riscv_iir_lattice_instance_q15; - - /** - * @brief Instance structure for the Q31 IIR lattice filter. - */ - typedef struct - { - uint16_t numStages; /**< number of stages in the filter. */ - q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ - q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ - q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ - } riscv_iir_lattice_instance_q31; - - /** - * @brief Instance structure for the floating-point IIR lattice filter. - */ - typedef struct - { - uint16_t numStages; /**< number of stages in the filter. */ - float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ - float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ - float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ - } riscv_iir_lattice_instance_f32; - - - /** - * @brief Processing function for the floating-point IIR lattice filter. - * @param[in] S points to an instance of the floating-point IIR lattice structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_iir_lattice_f32( - const riscv_iir_lattice_instance_f32 * S, - const float32_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Initialization function for the floating-point IIR lattice filter. - * @param[in] S points to an instance of the floating-point IIR lattice structure. - * @param[in] numStages number of stages in the filter. - * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. - * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. - * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. - * @param[in] blockSize number of samples to process. - */ - void riscv_iir_lattice_init_f32( - riscv_iir_lattice_instance_f32 * S, - uint16_t numStages, - float32_t * pkCoeffs, - float32_t * pvCoeffs, - float32_t * pState, - uint32_t blockSize); - - - /** - * @brief Processing function for the Q31 IIR lattice filter. - * @param[in] S points to an instance of the Q31 IIR lattice structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_iir_lattice_q31( - const riscv_iir_lattice_instance_q31 * S, - const q31_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Initialization function for the Q31 IIR lattice filter. - * @param[in] S points to an instance of the Q31 IIR lattice structure. - * @param[in] numStages number of stages in the filter. - * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. - * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. - * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. - * @param[in] blockSize number of samples to process. - */ - void riscv_iir_lattice_init_q31( - riscv_iir_lattice_instance_q31 * S, - uint16_t numStages, - q31_t * pkCoeffs, - q31_t * pvCoeffs, - q31_t * pState, - uint32_t blockSize); - - - /** - * @brief Processing function for the Q15 IIR lattice filter. - * @param[in] S points to an instance of the Q15 IIR lattice structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data. - * @param[in] blockSize number of samples to process. - */ - void riscv_iir_lattice_q15( - const riscv_iir_lattice_instance_q15 * S, - const q15_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - -/** - * @brief Initialization function for the Q15 IIR lattice filter. - * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. - * @param[in] numStages number of stages in the filter. - * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. - * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. - * @param[in] pState points to state buffer. The array is of length numStages+blockSize. - * @param[in] blockSize number of samples to process per call. - */ - void riscv_iir_lattice_init_q15( - riscv_iir_lattice_instance_q15 * S, - uint16_t numStages, - q15_t * pkCoeffs, - q15_t * pvCoeffs, - q15_t * pState, - uint32_t blockSize); - - - /** - * @brief Instance structure for the floating-point LMS filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of coefficients in the filter. */ - float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - float32_t mu; /**< step size that controls filter coefficient updates. */ - } riscv_lms_instance_f32; - - - /** - * @brief Processing function for floating-point LMS filter. - * @param[in] S points to an instance of the floating-point LMS filter structure. - * @param[in] pSrc points to the block of input data. - * @param[in] pRef points to the block of reference data. - * @param[out] pOut points to the block of output data. - * @param[out] pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - */ - void riscv_lms_f32( - const riscv_lms_instance_f32 * S, - const float32_t * pSrc, - float32_t * pRef, - float32_t * pOut, - float32_t * pErr, - uint32_t blockSize); - - - /** - * @brief Initialization function for floating-point LMS filter. - * @param[in] S points to an instance of the floating-point LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] pCoeffs points to the coefficient buffer. - * @param[in] pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - */ - void riscv_lms_init_f32( - riscv_lms_instance_f32 * S, - uint16_t numTaps, - float32_t * pCoeffs, - float32_t * pState, - float32_t mu, - uint32_t blockSize); - - - /** - * @brief Instance structure for the Q15 LMS filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of coefficients in the filter. */ - q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - q15_t mu; /**< step size that controls filter coefficient updates. */ - uint32_t postShift; /**< bit shift applied to coefficients. */ - } riscv_lms_instance_q15; - - - /** - * @brief Initialization function for the Q15 LMS filter. - * @param[in] S points to an instance of the Q15 LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] pCoeffs points to the coefficient buffer. - * @param[in] pState points to the state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - */ - void riscv_lms_init_q15( - riscv_lms_instance_q15 * S, - uint16_t numTaps, - q15_t * pCoeffs, - q15_t * pState, - q15_t mu, - uint32_t blockSize, - uint32_t postShift); - - - /** - * @brief Processing function for Q15 LMS filter. - * @param[in] S points to an instance of the Q15 LMS filter structure. - * @param[in] pSrc points to the block of input data. - * @param[in] pRef points to the block of reference data. - * @param[out] pOut points to the block of output data. - * @param[out] pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - */ - void riscv_lms_q15( - const riscv_lms_instance_q15 * S, - const q15_t * pSrc, - q15_t * pRef, - q15_t * pOut, - q15_t * pErr, - uint32_t blockSize); - - - /** - * @brief Instance structure for the Q31 LMS filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of coefficients in the filter. */ - q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - q31_t mu; /**< step size that controls filter coefficient updates. */ - uint32_t postShift; /**< bit shift applied to coefficients. */ - } riscv_lms_instance_q31; - - - /** - * @brief Processing function for Q31 LMS filter. - * @param[in] S points to an instance of the Q15 LMS filter structure. - * @param[in] pSrc points to the block of input data. - * @param[in] pRef points to the block of reference data. - * @param[out] pOut points to the block of output data. - * @param[out] pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - */ - void riscv_lms_q31( - const riscv_lms_instance_q31 * S, - const q31_t * pSrc, - q31_t * pRef, - q31_t * pOut, - q31_t * pErr, - uint32_t blockSize); - - - /** - * @brief Initialization function for Q31 LMS filter. - * @param[in] S points to an instance of the Q31 LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] pCoeffs points to coefficient buffer. - * @param[in] pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - */ - void riscv_lms_init_q31( - riscv_lms_instance_q31 * S, - uint16_t numTaps, - q31_t * pCoeffs, - q31_t * pState, - q31_t mu, - uint32_t blockSize, - uint32_t postShift); - - - /** - * @brief Instance structure for the floating-point normalized LMS filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of coefficients in the filter. */ - float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - float32_t mu; /**< step size that control filter coefficient updates. */ - float32_t energy; /**< saves previous frame energy. */ - float32_t x0; /**< saves previous input sample. */ - } riscv_lms_norm_instance_f32; - - - /** - * @brief Processing function for floating-point normalized LMS filter. - * @param[in] S points to an instance of the floating-point normalized LMS filter structure. - * @param[in] pSrc points to the block of input data. - * @param[in] pRef points to the block of reference data. - * @param[out] pOut points to the block of output data. - * @param[out] pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - */ - void riscv_lms_norm_f32( - riscv_lms_norm_instance_f32 * S, - const float32_t * pSrc, - float32_t * pRef, - float32_t * pOut, - float32_t * pErr, - uint32_t blockSize); - - - /** - * @brief Initialization function for floating-point normalized LMS filter. - * @param[in] S points to an instance of the floating-point LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] pCoeffs points to coefficient buffer. - * @param[in] pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - */ - void riscv_lms_norm_init_f32( - riscv_lms_norm_instance_f32 * S, - uint16_t numTaps, - float32_t * pCoeffs, - float32_t * pState, - float32_t mu, - uint32_t blockSize); - - - /** - * @brief Instance structure for the Q31 normalized LMS filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of coefficients in the filter. */ - q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - q31_t mu; /**< step size that controls filter coefficient updates. */ - uint8_t postShift; /**< bit shift applied to coefficients. */ - const q31_t *recipTable; /**< points to the reciprocal initial value table. */ - q31_t energy; /**< saves previous frame energy. */ - q31_t x0; /**< saves previous input sample. */ - } riscv_lms_norm_instance_q31; - - - /** - * @brief Processing function for Q31 normalized LMS filter. - * @param[in] S points to an instance of the Q31 normalized LMS filter structure. - * @param[in] pSrc points to the block of input data. - * @param[in] pRef points to the block of reference data. - * @param[out] pOut points to the block of output data. - * @param[out] pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - */ - void riscv_lms_norm_q31( - riscv_lms_norm_instance_q31 * S, - const q31_t * pSrc, - q31_t * pRef, - q31_t * pOut, - q31_t * pErr, - uint32_t blockSize); - - - /** - * @brief Initialization function for Q31 normalized LMS filter. - * @param[in] S points to an instance of the Q31 normalized LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] pCoeffs points to coefficient buffer. - * @param[in] pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - */ - void riscv_lms_norm_init_q31( - riscv_lms_norm_instance_q31 * S, - uint16_t numTaps, - q31_t * pCoeffs, - q31_t * pState, - q31_t mu, - uint32_t blockSize, - uint8_t postShift); - - - /** - * @brief Instance structure for the Q15 normalized LMS filter. - */ - typedef struct - { - uint16_t numTaps; /**< Number of coefficients in the filter. */ - q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ - q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ - q15_t mu; /**< step size that controls filter coefficient updates. */ - uint8_t postShift; /**< bit shift applied to coefficients. */ - const q15_t *recipTable; /**< Points to the reciprocal initial value table. */ - q15_t energy; /**< saves previous frame energy. */ - q15_t x0; /**< saves previous input sample. */ - } riscv_lms_norm_instance_q15; - - - /** - * @brief Processing function for Q15 normalized LMS filter. - * @param[in] S points to an instance of the Q15 normalized LMS filter structure. - * @param[in] pSrc points to the block of input data. - * @param[in] pRef points to the block of reference data. - * @param[out] pOut points to the block of output data. - * @param[out] pErr points to the block of error data. - * @param[in] blockSize number of samples to process. - */ - void riscv_lms_norm_q15( - riscv_lms_norm_instance_q15 * S, - const q15_t * pSrc, - q15_t * pRef, - q15_t * pOut, - q15_t * pErr, - uint32_t blockSize); - - - /** - * @brief Initialization function for Q15 normalized LMS filter. - * @param[in] S points to an instance of the Q15 normalized LMS filter structure. - * @param[in] numTaps number of filter coefficients. - * @param[in] pCoeffs points to coefficient buffer. - * @param[in] pState points to state buffer. - * @param[in] mu step size that controls filter coefficient updates. - * @param[in] blockSize number of samples to process. - * @param[in] postShift bit shift applied to coefficients. - */ - void riscv_lms_norm_init_q15( - riscv_lms_norm_instance_q15 * S, - uint16_t numTaps, - q15_t * pCoeffs, - q15_t * pState, - q15_t mu, - uint32_t blockSize, - uint8_t postShift); - - - /** - * @brief Correlation of floating-point sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - */ - void riscv_correlate_f32( - const float32_t * pSrcA, - uint32_t srcALen, - const float32_t * pSrcB, - uint32_t srcBLen, - float32_t * pDst); - - -/** - @brief Correlation of Q15 sequences - @param[in] pSrcA points to the first input sequence - @param[in] srcALen length of the first input sequence - @param[in] pSrcB points to the second input sequence - @param[in] srcBLen length of the second input sequence - @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. -*/ -void riscv_correlate_opt_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst, - q15_t * pScratch); - - -/** - @brief Correlation of Q15 sequences. - @param[in] pSrcA points to the first input sequence - @param[in] srcALen length of the first input sequence - @param[in] pSrcB points to the second input sequence - @param[in] srcBLen length of the second input sequence - @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - */ - void riscv_correlate_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst); - - -/** - @brief Correlation of Q15 sequences (fast version). - @param[in] pSrcA points to the first input sequence - @param[in] srcALen length of the first input sequence - @param[in] pSrcB points to the second input sequence - @param[in] srcBLen length of the second input sequence - @param[out] pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1. - @return none - */ -void riscv_correlate_fast_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst); - -/** - @brief Correlation of Q15 sequences (fast version). - @param[in] pSrcA points to the first input sequence. - @param[in] srcALen length of the first input sequence. - @param[in] pSrcB points to the second input sequence. - @param[in] srcBLen length of the second input sequence. - @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - */ -void riscv_correlate_fast_opt_q15( - const q15_t * pSrcA, - uint32_t srcALen, - const q15_t * pSrcB, - uint32_t srcBLen, - q15_t * pDst, - q15_t * pScratch); - - - /** - * @brief Correlation of Q31 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - */ - void riscv_correlate_q31( - const q31_t * pSrcA, - uint32_t srcALen, - const q31_t * pSrcB, - uint32_t srcBLen, - q31_t * pDst); - - -/** - @brief Correlation of Q31 sequences (fast version). - @param[in] pSrcA points to the first input sequence - @param[in] srcALen length of the first input sequence - @param[in] pSrcB points to the second input sequence - @param[in] srcBLen length of the second input sequence - @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - */ -void riscv_correlate_fast_q31( - const q31_t * pSrcA, - uint32_t srcALen, - const q31_t * pSrcB, - uint32_t srcBLen, - q31_t * pDst); - - - /** - * @brief Correlation of Q7 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. - * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). - */ - void riscv_correlate_opt_q7( - const q7_t * pSrcA, - uint32_t srcALen, - const q7_t * pSrcB, - uint32_t srcBLen, - q7_t * pDst, - q15_t * pScratch1, - q15_t * pScratch2); - - - /** - * @brief Correlation of Q7 sequences. - * @param[in] pSrcA points to the first input sequence. - * @param[in] srcALen length of the first input sequence. - * @param[in] pSrcB points to the second input sequence. - * @param[in] srcBLen length of the second input sequence. - * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. - */ - void riscv_correlate_q7( - const q7_t * pSrcA, - uint32_t srcALen, - const q7_t * pSrcB, - uint32_t srcBLen, - q7_t * pDst); - - - /** - * @brief Instance structure for the floating-point sparse FIR filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of coefficients in the filter. */ - uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ - float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ - const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ - int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ - } riscv_fir_sparse_instance_f32; - - /** - * @brief Instance structure for the Q31 sparse FIR filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of coefficients in the filter. */ - uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ - q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ - const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ - int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ - } riscv_fir_sparse_instance_q31; - - /** - * @brief Instance structure for the Q15 sparse FIR filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of coefficients in the filter. */ - uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ - q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ - const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ - int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ - } riscv_fir_sparse_instance_q15; - - /** - * @brief Instance structure for the Q7 sparse FIR filter. - */ - typedef struct - { - uint16_t numTaps; /**< number of coefficients in the filter. */ - uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ - q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ - const q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ - uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ - int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ - } riscv_fir_sparse_instance_q7; - - - /** - * @brief Processing function for the floating-point sparse FIR filter. - * @param[in] S points to an instance of the floating-point sparse FIR structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] pScratchIn points to a temporary buffer of size blockSize. - * @param[in] blockSize number of input samples to process per call. - */ - void riscv_fir_sparse_f32( - riscv_fir_sparse_instance_f32 * S, - const float32_t * pSrc, - float32_t * pDst, - float32_t * pScratchIn, - uint32_t blockSize); - - - /** - * @brief Initialization function for the floating-point sparse FIR filter. - * @param[in,out] S points to an instance of the floating-point sparse FIR structure. - * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] pCoeffs points to the array of filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] pTapDelay points to the array of offset times. - * @param[in] maxDelay maximum offset time supported. - * @param[in] blockSize number of samples that will be processed per block. - */ - void riscv_fir_sparse_init_f32( - riscv_fir_sparse_instance_f32 * S, - uint16_t numTaps, - const float32_t * pCoeffs, - float32_t * pState, - int32_t * pTapDelay, - uint16_t maxDelay, - uint32_t blockSize); - - - /** - * @brief Processing function for the Q31 sparse FIR filter. - * @param[in] S points to an instance of the Q31 sparse FIR structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] pScratchIn points to a temporary buffer of size blockSize. - * @param[in] blockSize number of input samples to process per call. - */ - void riscv_fir_sparse_q31( - riscv_fir_sparse_instance_q31 * S, - const q31_t * pSrc, - q31_t * pDst, - q31_t * pScratchIn, - uint32_t blockSize); - - - /** - * @brief Initialization function for the Q31 sparse FIR filter. - * @param[in,out] S points to an instance of the Q31 sparse FIR structure. - * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] pCoeffs points to the array of filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] pTapDelay points to the array of offset times. - * @param[in] maxDelay maximum offset time supported. - * @param[in] blockSize number of samples that will be processed per block. - */ - void riscv_fir_sparse_init_q31( - riscv_fir_sparse_instance_q31 * S, - uint16_t numTaps, - const q31_t * pCoeffs, - q31_t * pState, - int32_t * pTapDelay, - uint16_t maxDelay, - uint32_t blockSize); - - - /** - * @brief Processing function for the Q15 sparse FIR filter. - * @param[in] S points to an instance of the Q15 sparse FIR structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] pScratchIn points to a temporary buffer of size blockSize. - * @param[in] pScratchOut points to a temporary buffer of size blockSize. - * @param[in] blockSize number of input samples to process per call. - */ - void riscv_fir_sparse_q15( - riscv_fir_sparse_instance_q15 * S, - const q15_t * pSrc, - q15_t * pDst, - q15_t * pScratchIn, - q31_t * pScratchOut, - uint32_t blockSize); - - - /** - * @brief Initialization function for the Q15 sparse FIR filter. - * @param[in,out] S points to an instance of the Q15 sparse FIR structure. - * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] pCoeffs points to the array of filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] pTapDelay points to the array of offset times. - * @param[in] maxDelay maximum offset time supported. - * @param[in] blockSize number of samples that will be processed per block. - */ - void riscv_fir_sparse_init_q15( - riscv_fir_sparse_instance_q15 * S, - uint16_t numTaps, - const q15_t * pCoeffs, - q15_t * pState, - int32_t * pTapDelay, - uint16_t maxDelay, - uint32_t blockSize); - - - /** - * @brief Processing function for the Q7 sparse FIR filter. - * @param[in] S points to an instance of the Q7 sparse FIR structure. - * @param[in] pSrc points to the block of input data. - * @param[out] pDst points to the block of output data - * @param[in] pScratchIn points to a temporary buffer of size blockSize. - * @param[in] pScratchOut points to a temporary buffer of size blockSize. - * @param[in] blockSize number of input samples to process per call. - */ - void riscv_fir_sparse_q7( - riscv_fir_sparse_instance_q7 * S, - const q7_t * pSrc, - q7_t * pDst, - q7_t * pScratchIn, - q31_t * pScratchOut, - uint32_t blockSize); - - - /** - * @brief Initialization function for the Q7 sparse FIR filter. - * @param[in,out] S points to an instance of the Q7 sparse FIR structure. - * @param[in] numTaps number of nonzero coefficients in the filter. - * @param[in] pCoeffs points to the array of filter coefficients. - * @param[in] pState points to the state buffer. - * @param[in] pTapDelay points to the array of offset times. - * @param[in] maxDelay maximum offset time supported. - * @param[in] blockSize number of samples that will be processed per block. - */ - void riscv_fir_sparse_init_q7( - riscv_fir_sparse_instance_q7 * S, - uint16_t numTaps, - const q7_t * pCoeffs, - q7_t * pState, - int32_t * pTapDelay, - uint16_t maxDelay, - uint32_t blockSize); - - - /** - * @brief Floating-point sin_cos function. - * @param[in] theta input value in degrees - * @param[out] pSinVal points to the processed sine output. - * @param[out] pCosVal points to the processed cos output. - */ - void riscv_sin_cos_f32( - float32_t theta, - float32_t * pSinVal, - float32_t * pCosVal); - - - /** - * @brief Q31 sin_cos function. - * @param[in] theta scaled input value in degrees - * @param[out] pSinVal points to the processed sine output. - * @param[out] pCosVal points to the processed cosine output. - */ - void riscv_sin_cos_q31( - q31_t theta, - q31_t * pSinVal, - q31_t * pCosVal); - - - /** - * @brief Floating-point complex conjugate. - * @param[in] pSrc points to the input vector - * @param[out] pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - */ - void riscv_cmplx_conj_f32( - const float32_t * pSrc, - float32_t * pDst, - uint32_t numSamples); - - /** - * @brief Q31 complex conjugate. - * @param[in] pSrc points to the input vector - * @param[out] pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - */ - void riscv_cmplx_conj_q31( - const q31_t * pSrc, - q31_t * pDst, - uint32_t numSamples); - - - /** - * @brief Q15 complex conjugate. - * @param[in] pSrc points to the input vector - * @param[out] pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - */ - void riscv_cmplx_conj_q15( - const q15_t * pSrc, - q15_t * pDst, - uint32_t numSamples); - - - /** - * @brief Floating-point complex magnitude squared - * @param[in] pSrc points to the complex input vector - * @param[out] pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - */ - void riscv_cmplx_mag_squared_f32( - const float32_t * pSrc, - float32_t * pDst, - uint32_t numSamples); - - - /** - * @brief Q31 complex magnitude squared - * @param[in] pSrc points to the complex input vector - * @param[out] pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - */ - void riscv_cmplx_mag_squared_q31( - const q31_t * pSrc, - q31_t * pDst, - uint32_t numSamples); - - - /** - * @brief Q15 complex magnitude squared - * @param[in] pSrc points to the complex input vector - * @param[out] pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - */ - void riscv_cmplx_mag_squared_q15( - const q15_t * pSrc, - q15_t * pDst, - uint32_t numSamples); - - - /** - * @ingroup groupController - */ - - /** - * @defgroup PID PID Motor Control - * - * A Proportional Integral Derivative (PID) controller is a generic feedback control - * loop mechanism widely used in industrial control systems. - * A PID controller is the most commonly used type of feedback controller. - * - * This set of functions implements (PID) controllers - * for Q15, Q31, and floating-point data types. The functions operate on a single sample - * of data and each call to the function returns a single processed value. - * S points to an instance of the PID control data structure. in - * is the input sample value. The functions return the output value. - * - * \par Algorithm: - *
-   *    y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
-   *    A0 = Kp + Ki + Kd
-   *    A1 = (-Kp ) - (2 * Kd )
-   *    A2 = Kd
-   * 
- * - * \par - * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant - * - * \par - * \image html PID.png "Proportional Integral Derivative Controller" - * - * \par - * The PID controller calculates an "error" value as the difference between - * the measured output and the reference input. - * The controller attempts to minimize the error by adjusting the process control inputs. - * The proportional value determines the reaction to the current error, - * the integral value determines the reaction based on the sum of recent errors, - * and the derivative value determines the reaction based on the rate at which the error has been changing. - * - * \par Instance Structure - * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. - * A separate instance structure must be defined for each PID Controller. - * There are separate instance structure declarations for each of the 3 supported data types. - * - * \par Reset Functions - * There is also an associated reset function for each data type which clears the state array. - * - * \par Initialization Functions - * There is also an associated initialization function for each data type. - * The initialization function performs the following operations: - * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. - * - Zeros out the values in the state buffer. - * - * \par - * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. - * - * \par Fixed-Point Behavior - * Care must be taken when using the fixed-point versions of the PID Controller functions. - * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. - * Refer to the function specific documentation below for usage guidelines. - */ - - /** - * @addtogroup PID - * @{ - */ - - /** - * @brief Process function for the floating-point PID Control. - * @param[in,out] S is an instance of the floating-point PID Control structure - * @param[in] in input sample to process - * @return processed output sample. - */ - __STATIC_FORCEINLINE float32_t riscv_pid_f32( - riscv_pid_instance_f32 * S, - float32_t in) - { - float32_t out; - - /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ - out = (S->A0 * in) + - (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); - - /* Update state */ - S->state[1] = S->state[0]; - S->state[0] = in; - S->state[2] = out; - - /* return to application */ - return (out); - - } - -/** - @brief Process function for the Q31 PID Control. - @param[in,out] S points to an instance of the Q31 PID Control structure - @param[in] in input sample to process - @return processed output sample. - - \par Scaling and Overflow Behavior - The function is implemented using an internal 64-bit accumulator. - The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. - Thus, if the accumulator result overflows it wraps around rather than clip. - In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. - After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. - */ -__STATIC_FORCEINLINE q31_t riscv_pid_q31( - riscv_pid_instance_q31 * S, - q31_t in) - { - q63_t acc; - q31_t out; - - /* acc = A0 * x[n] */ - acc = (q63_t) S->A0 * in; - - /* acc += A1 * x[n-1] */ - acc += (q63_t) S->A1 * S->state[0]; - - /* acc += A2 * x[n-2] */ - acc += (q63_t) S->A2 * S->state[1]; - - /* convert output to 1.31 format to add y[n-1] */ - out = (q31_t) (acc >> 31U); - - /* out += y[n-1] */ - out += S->state[2]; - - /* Update state */ - S->state[1] = S->state[0]; - S->state[0] = in; - S->state[2] = out; - - /* return to application */ - return (out); - } - - -/** - @brief Process function for the Q15 PID Control. - @param[in,out] S points to an instance of the Q15 PID Control structure - @param[in] in input sample to process - @return processed output sample. - - \par Scaling and Overflow Behavior - The function is implemented using a 64-bit internal accumulator. - Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. - The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. - There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. - After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. - Lastly, the accumulator is saturated to yield a result in 1.15 format. - */ -__STATIC_FORCEINLINE q15_t riscv_pid_q15( - riscv_pid_instance_q15 * S, - q15_t in) - { - q63_t acc; - q15_t out; - -#if defined (RISCV_MATH_DSP) - /* Implementation of PID controller */ - - /* acc = A0 * x[n] */ - acc = (q31_t) __RV_KMDA((uint32_t)S->A0, (uint32_t)in); - - /* acc += A1 * x[n-1] + A2 * x[n-2] */ - acc = (q63_t)__RV_SMALDA((uint64_t)acc, (uint32_t)S->A1, (uint32_t)read_q15x2 (S->state)); -#else - /* acc = A0 * x[n] */ - acc = ((q31_t) S->A0) * in; - - /* acc += A1 * x[n-1] + A2 * x[n-2] */ - acc += (q31_t) S->A1 * S->state[0]; - acc += (q31_t) S->A2 * S->state[1]; -#endif - - /* acc += y[n-1] */ - acc += (q31_t) S->state[2] << 15; - - /* saturate the output */ - out = (q15_t) (__SSAT((acc >> 15), 16)); - - /* Update state */ - S->state[1] = S->state[0]; - S->state[0] = in; - S->state[2] = out; - - /* return to application */ - return (out); - } - - /** - * @} end of PID group - */ - - - /** - * @brief Floating-point matrix inverse. - * @param[in] src points to the instance of the input floating-point matrix structure. - * @param[out] dst points to the instance of the output floating-point matrix structure. - * @return The function returns RISCV_MATH_SIZE_MISMATCH, if the dimensions do not match. - * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status RISCV_MATH_SINGULAR. - */ - riscv_status riscv_mat_inverse_f32( - const riscv_matrix_instance_f32 * src, - riscv_matrix_instance_f32 * dst); - - - /** - * @brief Floating-point matrix inverse. - * @param[in] src points to the instance of the input floating-point matrix structure. - * @param[out] dst points to the instance of the output floating-point matrix structure. - * @return The function returns RISCV_MATH_SIZE_MISMATCH, if the dimensions do not match. - * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status RISCV_MATH_SINGULAR. - */ - riscv_status riscv_mat_inverse_f64( - const riscv_matrix_instance_f64 * src, - riscv_matrix_instance_f64 * dst); - - - - /** - * @ingroup groupController - */ - - /** - * @defgroup clarke Vector Clarke Transform - * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. - * Generally the Clarke transform uses three-phase currents Ia, Ib and Ic to calculate currents - * in the two-phase orthogonal stator axis Ialpha and Ibeta. - * When Ialpha is superposed with Ia as shown in the figure below - * \image html clarke.png Stator current space vector and its components in (a,b). - * and Ia + Ib + Ic = 0, in this condition Ialpha and Ibeta - * can be calculated using only Ia and Ib. - * - * The function operates on a single sample of data and each call to the function returns the processed output. - * The library provides separate functions for Q31 and floating-point data types. - * \par Algorithm - * \image html clarkeFormula.png - * where Ia and Ib are the instantaneous stator phases and - * pIalpha and pIbeta are the two coordinates of time invariant vector. - * \par Fixed-Point Behavior - * Care must be taken when using the Q31 version of the Clarke transform. - * In particular, the overflow and saturation behavior of the accumulator used must be considered. - * Refer to the function specific documentation below for usage guidelines. - */ - - /** - * @addtogroup clarke - * @{ - */ - - /** - * - * @brief Floating-point Clarke transform - * @param[in] Ia input three-phase coordinate a - * @param[in] Ib input three-phase coordinate b - * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha - * @param[out] pIbeta points to output two-phase orthogonal vector axis beta - * @return none - */ - __STATIC_FORCEINLINE void riscv_clarke_f32( - float32_t Ia, - float32_t Ib, - float32_t * pIalpha, - float32_t * pIbeta) - { - /* Calculate pIalpha using the equation, pIalpha = Ia */ - *pIalpha = Ia; - - /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ - *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); - } - - -/** - @brief Clarke transform for Q31 version - @param[in] Ia input three-phase coordinate a - @param[in] Ib input three-phase coordinate b - @param[out] pIalpha points to output two-phase orthogonal vector axis alpha - @param[out] pIbeta points to output two-phase orthogonal vector axis beta - @return none - - \par Scaling and Overflow Behavior - The function is implemented using an internal 32-bit accumulator. - The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. - There is saturation on the addition, hence there is no risk of overflow. - */ -__STATIC_FORCEINLINE void riscv_clarke_q31( - q31_t Ia, - q31_t Ib, - q31_t * pIalpha, - q31_t * pIbeta) - { - q31_t product1, product2; /* Temporary variables used to store intermediate results */ - - /* Calculating pIalpha from Ia by equation pIalpha = Ia */ - *pIalpha = Ia; - - /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ - product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); - - /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ - product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); - - /* pIbeta is calculated by adding the intermediate products */ - *pIbeta = __QADD(product1, product2); - } - - /** - * @} end of clarke group - */ - - - /** - * @ingroup groupController - */ - - /** - * @defgroup inv_clarke Vector Inverse Clarke Transform - * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. - * - * The function operates on a single sample of data and each call to the function returns the processed output. - * The library provides separate functions for Q31 and floating-point data types. - * \par Algorithm - * \image html clarkeInvFormula.png - * where pIa and pIb are the instantaneous stator phases and - * Ialpha and Ibeta are the two coordinates of time invariant vector. - * \par Fixed-Point Behavior - * Care must be taken when using the Q31 version of the Clarke transform. - * In particular, the overflow and saturation behavior of the accumulator used must be considered. - * Refer to the function specific documentation below for usage guidelines. - */ - - /** - * @addtogroup inv_clarke - * @{ - */ - - /** - * @brief Floating-point Inverse Clarke transform - * @param[in] Ialpha input two-phase orthogonal vector axis alpha - * @param[in] Ibeta input two-phase orthogonal vector axis beta - * @param[out] pIa points to output three-phase coordinate a - * @param[out] pIb points to output three-phase coordinate b - * @return none - */ - __STATIC_FORCEINLINE void riscv_inv_clarke_f32( - float32_t Ialpha, - float32_t Ibeta, - float32_t * pIa, - float32_t * pIb) - { - /* Calculating pIa from Ialpha by equation pIa = Ialpha */ - *pIa = Ialpha; - - /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ - *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; - } - - -/** - @brief Inverse Clarke transform for Q31 version - @param[in] Ialpha input two-phase orthogonal vector axis alpha - @param[in] Ibeta input two-phase orthogonal vector axis beta - @param[out] pIa points to output three-phase coordinate a - @param[out] pIb points to output three-phase coordinate b - @return none - - \par Scaling and Overflow Behavior - The function is implemented using an internal 32-bit accumulator. - The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. - There is saturation on the subtraction, hence there is no risk of overflow. - */ -__STATIC_FORCEINLINE void riscv_inv_clarke_q31( - q31_t Ialpha, - q31_t Ibeta, - q31_t * pIa, - q31_t * pIb) - { - q31_t product1, product2; /* Temporary variables used to store intermediate results */ - - /* Calculating pIa from Ialpha by equation pIa = Ialpha */ - *pIa = Ialpha; - - /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ - product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); - - /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ - product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); - - /* pIb is calculated by subtracting the products */ - *pIb = __QSUB(product2, product1); - } - - /** - * @} end of inv_clarke group - */ - - - - /** - * @ingroup groupController - */ - - /** - * @defgroup park Vector Park Transform - * - * Forward Park transform converts the input two-coordinate vector to flux and torque components. - * The Park transform can be used to realize the transformation of the Ialpha and the Ibeta currents - * from the stationary to the moving reference frame and control the spatial relationship between - * the stator vector current and rotor flux vector. - * If we consider the d axis aligned with the rotor flux, the diagram below shows the - * current vector and the relationship from the two reference frames: - * \image html park.png "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" - * - * The function operates on a single sample of data and each call to the function returns the processed output. - * The library provides separate functions for Q31 and floating-point data types. - * \par Algorithm - * \image html parkFormula.png - * where Ialpha and Ibeta are the stator vector components, - * pId and pIq are rotor vector components and cosVal and sinVal are the - * cosine and sine values of theta (rotor flux position). - * \par Fixed-Point Behavior - * Care must be taken when using the Q31 version of the Park transform. - * In particular, the overflow and saturation behavior of the accumulator used must be considered. - * Refer to the function specific documentation below for usage guidelines. - */ - - /** - * @addtogroup park - * @{ - */ - - /** - * @brief Floating-point Park transform - * @param[in] Ialpha input two-phase vector coordinate alpha - * @param[in] Ibeta input two-phase vector coordinate beta - * @param[out] pId points to output rotor reference frame d - * @param[out] pIq points to output rotor reference frame q - * @param[in] sinVal sine value of rotation angle theta - * @param[in] cosVal cosine value of rotation angle theta - * @return none - * - * The function implements the forward Park transform. - * - */ - __STATIC_FORCEINLINE void riscv_park_f32( - float32_t Ialpha, - float32_t Ibeta, - float32_t * pId, - float32_t * pIq, - float32_t sinVal, - float32_t cosVal) - { - /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ - *pId = Ialpha * cosVal + Ibeta * sinVal; - - /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ - *pIq = -Ialpha * sinVal + Ibeta * cosVal; - } - - -/** - @brief Park transform for Q31 version - @param[in] Ialpha input two-phase vector coordinate alpha - @param[in] Ibeta input two-phase vector coordinate beta - @param[out] pId points to output rotor reference frame d - @param[out] pIq points to output rotor reference frame q - @param[in] sinVal sine value of rotation angle theta - @param[in] cosVal cosine value of rotation angle theta - @return none - - \par Scaling and Overflow Behavior - The function is implemented using an internal 32-bit accumulator. - The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. - There is saturation on the addition and subtraction, hence there is no risk of overflow. - */ -__STATIC_FORCEINLINE void riscv_park_q31( - q31_t Ialpha, - q31_t Ibeta, - q31_t * pId, - q31_t * pIq, - q31_t sinVal, - q31_t cosVal) - { - q31_t product1, product2; /* Temporary variables used to store intermediate results */ - q31_t product3, product4; /* Temporary variables used to store intermediate results */ - - /* Intermediate product is calculated by (Ialpha * cosVal) */ - product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); - - /* Intermediate product is calculated by (Ibeta * sinVal) */ - product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); - - - /* Intermediate product is calculated by (Ialpha * sinVal) */ - product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); - - /* Intermediate product is calculated by (Ibeta * cosVal) */ - product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); - - /* Calculate pId by adding the two intermediate products 1 and 2 */ - *pId = __QADD(product1, product2); - - /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ - *pIq = __QSUB(product4, product3); - } - - /** - * @} end of park group - */ - - - /** - * @ingroup groupController - */ - - /** - * @defgroup inv_park Vector Inverse Park transform - * Inverse Park transform converts the input flux and torque components to two-coordinate vector. - * - * The function operates on a single sample of data and each call to the function returns the processed output. - * The library provides separate functions for Q31 and floating-point data types. - * \par Algorithm - * \image html parkInvFormula.png - * where pIalpha and pIbeta are the stator vector components, - * Id and Iq are rotor vector components and cosVal and sinVal are the - * cosine and sine values of theta (rotor flux position). - * \par Fixed-Point Behavior - * Care must be taken when using the Q31 version of the Park transform. - * In particular, the overflow and saturation behavior of the accumulator used must be considered. - * Refer to the function specific documentation below for usage guidelines. - */ - - /** - * @addtogroup inv_park - * @{ - */ - - /** - * @brief Floating-point Inverse Park transform - * @param[in] Id input coordinate of rotor reference frame d - * @param[in] Iq input coordinate of rotor reference frame q - * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha - * @param[out] pIbeta points to output two-phase orthogonal vector axis beta - * @param[in] sinVal sine value of rotation angle theta - * @param[in] cosVal cosine value of rotation angle theta - * @return none - */ - __STATIC_FORCEINLINE void riscv_inv_park_f32( - float32_t Id, - float32_t Iq, - float32_t * pIalpha, - float32_t * pIbeta, - float32_t sinVal, - float32_t cosVal) - { - /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ - *pIalpha = Id * cosVal - Iq * sinVal; - - /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ - *pIbeta = Id * sinVal + Iq * cosVal; - } - - -/** - @brief Inverse Park transform for Q31 version - @param[in] Id input coordinate of rotor reference frame d - @param[in] Iq input coordinate of rotor reference frame q - @param[out] pIalpha points to output two-phase orthogonal vector axis alpha - @param[out] pIbeta points to output two-phase orthogonal vector axis beta - @param[in] sinVal sine value of rotation angle theta - @param[in] cosVal cosine value of rotation angle theta - @return none - - @par Scaling and Overflow Behavior - The function is implemented using an internal 32-bit accumulator. - The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. - There is saturation on the addition, hence there is no risk of overflow. - */ -__STATIC_FORCEINLINE void riscv_inv_park_q31( - q31_t Id, - q31_t Iq, - q31_t * pIalpha, - q31_t * pIbeta, - q31_t sinVal, - q31_t cosVal) - { - q31_t product1, product2; /* Temporary variables used to store intermediate results */ - q31_t product3, product4; /* Temporary variables used to store intermediate results */ - - /* Intermediate product is calculated by (Id * cosVal) */ - product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); - - /* Intermediate product is calculated by (Iq * sinVal) */ - product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); - - - /* Intermediate product is calculated by (Id * sinVal) */ - product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); - - /* Intermediate product is calculated by (Iq * cosVal) */ - product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); - - /* Calculate pIalpha by using the two intermediate products 1 and 2 */ - *pIalpha = __QSUB(product1, product2); - - /* Calculate pIbeta by using the two intermediate products 3 and 4 */ - *pIbeta = __QADD(product4, product3); - } - - /** - * @} end of Inverse park group - */ - - - /** - * @ingroup groupInterpolation - */ - - /** - * @defgroup LinearInterpolate Linear Interpolation - * - * Linear interpolation is a method of curve fitting using linear polynomials. - * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line - * - * \par - * \image html LinearInterp.png "Linear interpolation" - * - * \par - * A Linear Interpolate function calculates an output value(y), for the input(x) - * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) - * - * \par Algorithm: - *
-   *       y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
-   *       where x0, x1 are nearest values of input x
-   *             y0, y1 are nearest values to output y
-   * 
- * - * \par - * This set of functions implements Linear interpolation process - * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single - * sample of data and each call to the function returns a single processed value. - * S points to an instance of the Linear Interpolate function data structure. - * x is the input sample value. The functions returns the output value. - * - * \par - * if x is outside of the table boundary, Linear interpolation returns first value of the table - * if x is below input range and returns last value of table if x is above range. - */ - - /** - * @addtogroup LinearInterpolate - * @{ - */ - - /** - * @brief Process function for the floating-point Linear Interpolation Function. - * @param[in,out] S is an instance of the floating-point Linear Interpolation structure - * @param[in] x input sample to process - * @return y processed output sample. - * - */ - __STATIC_FORCEINLINE float32_t riscv_linear_interp_f32( - riscv_linear_interp_instance_f32 * S, - float32_t x) - { - float32_t y; - float32_t x0, x1; /* Nearest input values */ - float32_t y0, y1; /* Nearest output values */ - float32_t xSpacing = S->xSpacing; /* spacing between input values */ - int32_t i; /* Index variable */ - float32_t *pYData = S->pYData; /* pointer to output table */ - - /* Calculation of index */ - i = (int32_t) ((x - S->x1) / xSpacing); - - if (i < 0) - { - /* Iniatilize output for below specified range as least output value of table */ - y = pYData[0]; - } - else if ((uint32_t)i >= (S->nValues - 1)) - { - /* Iniatilize output for above specified range as last output value of table */ - y = pYData[S->nValues - 1]; - } - else - { - /* Calculation of nearest input values */ - x0 = S->x1 + i * xSpacing; - x1 = S->x1 + (i + 1) * xSpacing; - - /* Read of nearest output values */ - y0 = pYData[i]; - y1 = pYData[i + 1]; - - /* Calculation of output */ - y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); - - } - - /* returns output value */ - return (y); - } - - - /** - * - * @brief Process function for the Q31 Linear Interpolation Function. - * @param[in] pYData pointer to Q31 Linear Interpolation table - * @param[in] x input sample to process - * @param[in] nValues number of table values - * @return y processed output sample. - * - * \par - * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. - * This function can support maximum of table size 2^12. - * - */ - __STATIC_FORCEINLINE q31_t riscv_linear_interp_q31( - q31_t * pYData, - q31_t x, - uint32_t nValues) - { - q31_t y; /* output */ - q31_t y0, y1; /* Nearest output values */ - q31_t fract; /* fractional part */ - int32_t index; /* Index to read nearest output values */ - - /* Input is in 12.20 format */ - /* 12 bits for the table index */ - /* Index value calculation */ - index = ((x & (q31_t)0xFFF00000) >> 20); - - if (index >= (int32_t)(nValues - 1)) - { - return (pYData[nValues - 1]); - } - else if (index < 0) - { - return (pYData[0]); - } - else - { - /* 20 bits for the fractional part */ - /* shift left by 11 to keep fract in 1.31 format */ - fract = (x & 0x000FFFFF) << 11; - - /* Read two nearest output values from the index in 1.31(q31) format */ - y0 = pYData[index]; - y1 = pYData[index + 1]; - - /* Calculation of y0 * (1-fract) and y is in 2.30 format */ - y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); - - /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ - y += ((q31_t) (((q63_t) y1 * fract) >> 32)); - - /* Convert y to 1.31 format */ - return (y << 1U); - } - } - - - /** - * - * @brief Process function for the Q15 Linear Interpolation Function. - * @param[in] pYData pointer to Q15 Linear Interpolation table - * @param[in] x input sample to process - * @param[in] nValues number of table values - * @return y processed output sample. - * - * \par - * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. - * This function can support maximum of table size 2^12. - * - */ - __STATIC_FORCEINLINE q15_t riscv_linear_interp_q15( - q15_t * pYData, - q31_t x, - uint32_t nValues) - { - q63_t y; /* output */ - q15_t y0, y1; /* Nearest output values */ - q31_t fract; /* fractional part */ - int32_t index; /* Index to read nearest output values */ - - /* Input is in 12.20 format */ - /* 12 bits for the table index */ - /* Index value calculation */ - index = ((x & (int32_t)0xFFF00000) >> 20); - - if (index >= (int32_t)(nValues - 1)) - { - return (pYData[nValues - 1]); - } - else if (index < 0) - { - return (pYData[0]); - } - else - { - /* 20 bits for the fractional part */ - /* fract is in 12.20 format */ - fract = (x & 0x000FFFFF); - - /* Read two nearest output values from the index */ - y0 = pYData[index]; - y1 = pYData[index + 1]; - - /* Calculation of y0 * (1-fract) and y is in 13.35 format */ - y = ((q63_t) y0 * (0xFFFFF - fract)); - - /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ - y += ((q63_t) y1 * (fract)); - - /* convert y to 1.15 format */ - return (q15_t) (y >> 20); - } - } - - - /** - * - * @brief Process function for the Q7 Linear Interpolation Function. - * @param[in] pYData pointer to Q7 Linear Interpolation table - * @param[in] x input sample to process - * @param[in] nValues number of table values - * @return y processed output sample. - * - * \par - * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. - * This function can support maximum of table size 2^12. - */ - __STATIC_FORCEINLINE q7_t riscv_linear_interp_q7( - q7_t * pYData, - q31_t x, - uint32_t nValues) - { - q31_t y; /* output */ - q7_t y0, y1; /* Nearest output values */ - q31_t fract; /* fractional part */ - uint32_t index; /* Index to read nearest output values */ - - /* Input is in 12.20 format */ - /* 12 bits for the table index */ - /* Index value calculation */ - if (x < 0) - { - return (pYData[0]); - } - index = (x >> 20) & 0xfff; - - if (index >= (nValues - 1)) - { - return (pYData[nValues - 1]); - } - else - { - /* 20 bits for the fractional part */ - /* fract is in 12.20 format */ - fract = (x & 0x000FFFFF); - - /* Read two nearest output values from the index and are in 1.7(q7) format */ - y0 = pYData[index]; - y1 = pYData[index + 1]; - - /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ - y = ((y0 * (0xFFFFF - fract))); - - /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ - y += (y1 * fract); - - /* convert y to 1.7(q7) format */ - return (q7_t) (y >> 20); - } - } - - /** - * @} end of LinearInterpolate group - */ - - /** - * @brief Fast approximation to the trigonometric sine function for floating-point data. - * @param[in] x input value in radians. - * @return sin(x). - */ - float32_t riscv_sin_f32( - float32_t x); - - - /** - * @brief Fast approximation to the trigonometric sine function for Q31 data. - * @param[in] x Scaled input value in radians. - * @return sin(x). - */ - q31_t riscv_sin_q31( - q31_t x); - - - /** - * @brief Fast approximation to the trigonometric sine function for Q15 data. - * @param[in] x Scaled input value in radians. - * @return sin(x). - */ - q15_t riscv_sin_q15( - q15_t x); - - - /** - * @brief Fast approximation to the trigonometric cosine function for floating-point data. - * @param[in] x input value in radians. - * @return cos(x). - */ - float32_t riscv_cos_f32( - float32_t x); - - - /** - * @brief Fast approximation to the trigonometric cosine function for Q31 data. - * @param[in] x Scaled input value in radians. - * @return cos(x). - */ - q31_t riscv_cos_q31( - q31_t x); - - - /** - * @brief Fast approximation to the trigonometric cosine function for Q15 data. - * @param[in] x Scaled input value in radians. - * @return cos(x). - */ - q15_t riscv_cos_q15( - q15_t x); - - - /** - * @ingroup groupFastMath - */ - - - /** - * @defgroup SQRT Square Root - * - * Computes the square root of a number. - * There are separate functions for Q15, Q31, and floating-point data types. - * The square root function is computed using the Newton-Raphson algorithm. - * This is an iterative algorithm of the form: - *
-   *      x1 = x0 - f(x0)/f'(x0)
-   * 
- * where x1 is the current estimate, - * x0 is the previous estimate, and - * f'(x0) is the derivative of f() evaluated at x0. - * For the square root function, the algorithm reduces to: - *
-   *     x0 = in/2                         [initial guess]
-   *     x1 = 1/2 * ( x0 + in / x0)        [each iteration]
-   * 
- */ - - - /** - * @addtogroup SQRT - * @{ - */ - -/** - @brief Floating-point square root function. - @param[in] in input value - @param[out] pOut square root of input value - @return execution status - - \ref RISCV_MATH_SUCCESS : input value is positive - - \ref RISCV_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 - */ -__STATIC_FORCEINLINE riscv_status riscv_sqrt_f32( - float32_t in, - float32_t * pOut) - { - - if (in >= 0.0f) - { -#if defined ( __riscv_flen ) - __ASM volatile("fsqrt.s %0, %1" : "=f"(*pOut) : "f"(in)); -#else - *pOut = sqrtf(in); -#endif /*__riscv_flen*/ - - return (RISCV_MATH_SUCCESS); - } - else - { - *pOut = 0.0f; - return (RISCV_MATH_ARGUMENT_ERROR); - } - } - - -/** - @brief Q31 square root function. - @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF - @param[out] pOut points to square root of input value - @return execution status - - \ref RISCV_MATH_SUCCESS : input value is positive - - \ref RISCV_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 - */ -riscv_status riscv_sqrt_q31( - q31_t in, - q31_t * pOut); - - -/** - @brief Q15 square root function. - @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF - @param[out] pOut points to square root of input value - @return execution status - - \ref RISCV_MATH_SUCCESS : input value is positive - - \ref RISCV_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 - */ -riscv_status riscv_sqrt_q15( - q15_t in, - q15_t * pOut); - - /** - * @brief Vector Floating-point square root function. - * @param[in] pIn input vector. - * @param[out] pOut vector of square roots of input elements. - * @param[in] len length of input vector. - * @return The function returns RISCV_MATH_SUCCESS if input value is positive value or RISCV_MATH_ARGUMENT_ERROR if - * in is negative value and returns zero output for negative values. - */ - void riscv_vsqrt_f32( - float32_t * pIn, - float32_t * pOut, - uint16_t len); - - void riscv_vsqrt_q31( - q31_t * pIn, - q31_t * pOut, - uint16_t len); - - void riscv_vsqrt_q15( - q15_t * pIn, - q15_t * pOut, - uint16_t len); - - /** - * @} end of SQRT group - */ - - - /** - * @brief floating-point Circular write function. - */ - __STATIC_FORCEINLINE void riscv_circularWrite_f32( - int32_t * circBuffer, - int32_t L, - uint16_t * writeOffset, - int32_t bufferInc, - const int32_t * src, - int32_t srcInc, - uint32_t blockSize) - { - uint32_t i = 0U; - int32_t wOffset; - - /* Copy the value of Index pointer that points - * to the current location where the input samples to be copied */ - wOffset = *writeOffset; - - /* Loop over the blockSize */ - i = blockSize; - - while (i > 0U) - { - /* copy the input sample to the circular buffer */ - circBuffer[wOffset] = *src; - - /* Update the input pointer */ - src += srcInc; - - /* Circularly update wOffset. Watch out for positive and negative value */ - wOffset += bufferInc; - if (wOffset >= L) - wOffset -= L; - - /* Decrement the loop counter */ - i--; - } - - /* Update the index pointer */ - *writeOffset = (uint16_t)wOffset; - } - - - - /** - * @brief floating-point Circular Read function. - */ - __STATIC_FORCEINLINE void riscv_circularRead_f32( - int32_t * circBuffer, - int32_t L, - int32_t * readOffset, - int32_t bufferInc, - int32_t * dst, - int32_t * dst_base, - int32_t dst_length, - int32_t dstInc, - uint32_t blockSize) - { - uint32_t i = 0U; - int32_t rOffset; - int32_t* dst_end; - - /* Copy the value of Index pointer that points - * to the current location from where the input samples to be read */ - rOffset = *readOffset; - dst_end = dst_base + dst_length; - - /* Loop over the blockSize */ - i = blockSize; - - while (i > 0U) - { - /* copy the sample from the circular buffer to the destination buffer */ - *dst = circBuffer[rOffset]; - - /* Update the input pointer */ - dst += dstInc; - - if (dst == dst_end) - { - dst = dst_base; - } - - /* Circularly update rOffset. Watch out for positive and negative value */ - rOffset += bufferInc; - - if (rOffset >= L) - { - rOffset -= L; - } - - /* Decrement the loop counter */ - i--; - } - - /* Update the index pointer */ - *readOffset = rOffset; - } - - - /** - * @brief Q15 Circular write function. - */ - __STATIC_FORCEINLINE void riscv_circularWrite_q15( - q15_t * circBuffer, - int32_t L, - uint16_t * writeOffset, - int32_t bufferInc, - const q15_t * src, - int32_t srcInc, - uint32_t blockSize) - { - uint32_t i = 0U; - int32_t wOffset; - - /* Copy the value of Index pointer that points - * to the current location where the input samples to be copied */ - wOffset = *writeOffset; - - /* Loop over the blockSize */ - i = blockSize; - - while (i > 0U) - { - /* copy the input sample to the circular buffer */ - circBuffer[wOffset] = *src; - - /* Update the input pointer */ - src += srcInc; - - /* Circularly update wOffset. Watch out for positive and negative value */ - wOffset += bufferInc; - if (wOffset >= L) - wOffset -= L; - - /* Decrement the loop counter */ - i--; - } - - /* Update the index pointer */ - *writeOffset = (uint16_t)wOffset; - } - - - /** - * @brief Q15 Circular Read function. - */ - __STATIC_FORCEINLINE void riscv_circularRead_q15( - q15_t * circBuffer, - int32_t L, - int32_t * readOffset, - int32_t bufferInc, - q15_t * dst, - q15_t * dst_base, - int32_t dst_length, - int32_t dstInc, - uint32_t blockSize) - { - uint32_t i = 0; - int32_t rOffset; - q15_t* dst_end; - - /* Copy the value of Index pointer that points - * to the current location from where the input samples to be read */ - rOffset = *readOffset; - - dst_end = dst_base + dst_length; - - /* Loop over the blockSize */ - i = blockSize; - - while (i > 0U) - { - /* copy the sample from the circular buffer to the destination buffer */ - *dst = circBuffer[rOffset]; - - /* Update the input pointer */ - dst += dstInc; - - if (dst == dst_end) - { - dst = dst_base; - } - - /* Circularly update wOffset. Watch out for positive and negative value */ - rOffset += bufferInc; - - if (rOffset >= L) - { - rOffset -= L; - } - - /* Decrement the loop counter */ - i--; - } - - /* Update the index pointer */ - *readOffset = rOffset; - } - - - /** - * @brief Q7 Circular write function. - */ - __STATIC_FORCEINLINE void riscv_circularWrite_q7( - q7_t * circBuffer, - int32_t L, - uint16_t * writeOffset, - int32_t bufferInc, - const q7_t * src, - int32_t srcInc, - uint32_t blockSize) - { - uint32_t i = 0U; - int32_t wOffset; - - /* Copy the value of Index pointer that points - * to the current location where the input samples to be copied */ - wOffset = *writeOffset; - - /* Loop over the blockSize */ - i = blockSize; - - while (i > 0U) - { - /* copy the input sample to the circular buffer */ - circBuffer[wOffset] = *src; - - /* Update the input pointer */ - src += srcInc; - - /* Circularly update wOffset. Watch out for positive and negative value */ - wOffset += bufferInc; - if (wOffset >= L) - wOffset -= L; - - /* Decrement the loop counter */ - i--; - } - - /* Update the index pointer */ - *writeOffset = (uint16_t)wOffset; - } - - - /** - * @brief Q7 Circular Read function. - */ - __STATIC_FORCEINLINE void riscv_circularRead_q7( - q7_t * circBuffer, - int32_t L, - int32_t * readOffset, - int32_t bufferInc, - q7_t * dst, - q7_t * dst_base, - int32_t dst_length, - int32_t dstInc, - uint32_t blockSize) - { - uint32_t i = 0; - int32_t rOffset; - q7_t* dst_end; - - /* Copy the value of Index pointer that points - * to the current location from where the input samples to be read */ - rOffset = *readOffset; - - dst_end = dst_base + dst_length; - - /* Loop over the blockSize */ - i = blockSize; - - while (i > 0U) - { - /* copy the sample from the circular buffer to the destination buffer */ - *dst = circBuffer[rOffset]; - - /* Update the input pointer */ - dst += dstInc; - - if (dst == dst_end) - { - dst = dst_base; - } - - /* Circularly update rOffset. Watch out for positive and negative value */ - rOffset += bufferInc; - - if (rOffset >= L) - { - rOffset -= L; - } - - /* Decrement the loop counter */ - i--; - } - - /* Update the index pointer */ - *readOffset = rOffset; - } - - - /** - * @brief Sum of the squares of the elements of a Q31 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_power_q31( - const q31_t * pSrc, - uint32_t blockSize, - q63_t * pResult); - - - /** - * @brief Sum of the squares of the elements of a floating-point vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_power_f32( - const float32_t * pSrc, - uint32_t blockSize, - float32_t * pResult); - - - /** - * @brief Sum of the squares of the elements of a Q15 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_power_q15( - const q15_t * pSrc, - uint32_t blockSize, - q63_t * pResult); - - - /** - * @brief Sum of the squares of the elements of a Q7 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_power_q7( - const q7_t * pSrc, - uint32_t blockSize, - q31_t * pResult); - - - /** - * @brief Mean value of a Q7 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_mean_q7( - const q7_t * pSrc, - uint32_t blockSize, - q7_t * pResult); - - - /** - * @brief Mean value of a Q15 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_mean_q15( - const q15_t * pSrc, - uint32_t blockSize, - q15_t * pResult); - - - /** - * @brief Mean value of a Q31 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_mean_q31( - const q31_t * pSrc, - uint32_t blockSize, - q31_t * pResult); - - - /** - * @brief Mean value of a floating-point vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_mean_f32( - const float32_t * pSrc, - uint32_t blockSize, - float32_t * pResult); - - - /** - * @brief Variance of the elements of a floating-point vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_var_f32( - const float32_t * pSrc, - uint32_t blockSize, - float32_t * pResult); - - - /** - * @brief Variance of the elements of a Q31 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_var_q31( - const q31_t * pSrc, - uint32_t blockSize, - q31_t * pResult); - - - /** - * @brief Variance of the elements of a Q15 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_var_q15( - const q15_t * pSrc, - uint32_t blockSize, - q15_t * pResult); - - - /** - * @brief Root Mean Square of the elements of a floating-point vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_rms_f32( - const float32_t * pSrc, - uint32_t blockSize, - float32_t * pResult); - - - /** - * @brief Root Mean Square of the elements of a Q31 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_rms_q31( - const q31_t * pSrc, - uint32_t blockSize, - q31_t * pResult); - - - /** - * @brief Root Mean Square of the elements of a Q15 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_rms_q15( - const q15_t * pSrc, - uint32_t blockSize, - q15_t * pResult); - - - /** - * @brief Standard deviation of the elements of a floating-point vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_std_f32( - const float32_t * pSrc, - uint32_t blockSize, - float32_t * pResult); - - - /** - * @brief Standard deviation of the elements of a Q31 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_std_q31( - const q31_t * pSrc, - uint32_t blockSize, - q31_t * pResult); - - - /** - * @brief Standard deviation of the elements of a Q15 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output value. - */ - void riscv_std_q15( - const q15_t * pSrc, - uint32_t blockSize, - q15_t * pResult); - - - /** - * @brief Floating-point complex magnitude - * @param[in] pSrc points to the complex input vector - * @param[out] pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - */ - void riscv_cmplx_mag_f32( - const float32_t * pSrc, - float32_t * pDst, - uint32_t numSamples); - - - /** - * @brief Q31 complex magnitude - * @param[in] pSrc points to the complex input vector - * @param[out] pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - */ - void riscv_cmplx_mag_q31( - const q31_t * pSrc, - q31_t * pDst, - uint32_t numSamples); - - - /** - * @brief Q15 complex magnitude - * @param[in] pSrc points to the complex input vector - * @param[out] pDst points to the real output vector - * @param[in] numSamples number of complex samples in the input vector - */ - void riscv_cmplx_mag_q15( - const q15_t * pSrc, - q15_t * pDst, - uint32_t numSamples); - - - /** - * @brief Q15 complex dot product - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[in] numSamples number of complex samples in each vector - * @param[out] realResult real part of the result returned here - * @param[out] imagResult imaginary part of the result returned here - */ - void riscv_cmplx_dot_prod_q15( - const q15_t * pSrcA, - const q15_t * pSrcB, - uint32_t numSamples, - q31_t * realResult, - q31_t * imagResult); - - - /** - * @brief Q31 complex dot product - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[in] numSamples number of complex samples in each vector - * @param[out] realResult real part of the result returned here - * @param[out] imagResult imaginary part of the result returned here - */ - void riscv_cmplx_dot_prod_q31( - const q31_t * pSrcA, - const q31_t * pSrcB, - uint32_t numSamples, - q63_t * realResult, - q63_t * imagResult); - - - /** - * @brief Floating-point complex dot product - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[in] numSamples number of complex samples in each vector - * @param[out] realResult real part of the result returned here - * @param[out] imagResult imaginary part of the result returned here - */ - void riscv_cmplx_dot_prod_f32( - const float32_t * pSrcA, - const float32_t * pSrcB, - uint32_t numSamples, - float32_t * realResult, - float32_t * imagResult); - - - /** - * @brief Q15 complex-by-real multiplication - * @param[in] pSrcCmplx points to the complex input vector - * @param[in] pSrcReal points to the real input vector - * @param[out] pCmplxDst points to the complex output vector - * @param[in] numSamples number of samples in each vector - */ - void riscv_cmplx_mult_real_q15( - const q15_t * pSrcCmplx, - const q15_t * pSrcReal, - q15_t * pCmplxDst, - uint32_t numSamples); - - - /** - * @brief Q31 complex-by-real multiplication - * @param[in] pSrcCmplx points to the complex input vector - * @param[in] pSrcReal points to the real input vector - * @param[out] pCmplxDst points to the complex output vector - * @param[in] numSamples number of samples in each vector - */ - void riscv_cmplx_mult_real_q31( - const q31_t * pSrcCmplx, - const q31_t * pSrcReal, - q31_t * pCmplxDst, - uint32_t numSamples); - - - /** - * @brief Floating-point complex-by-real multiplication - * @param[in] pSrcCmplx points to the complex input vector - * @param[in] pSrcReal points to the real input vector - * @param[out] pCmplxDst points to the complex output vector - * @param[in] numSamples number of samples in each vector - */ - void riscv_cmplx_mult_real_f32( - const float32_t * pSrcCmplx, - const float32_t * pSrcReal, - float32_t * pCmplxDst, - uint32_t numSamples); - - - /** - * @brief Minimum value of a Q7 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] result is output pointer - * @param[in] index is the array index of the minimum value in the input buffer. - */ - void riscv_min_q7( - const q7_t * pSrc, - uint32_t blockSize, - q7_t * result, - uint32_t * index); - - - /** - * @brief Minimum value of a Q15 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output pointer - * @param[in] pIndex is the array index of the minimum value in the input buffer. - */ - void riscv_min_q15( - const q15_t * pSrc, - uint32_t blockSize, - q15_t * pResult, - uint32_t * pIndex); - - - /** - * @brief Minimum value of a Q31 vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output pointer - * @param[out] pIndex is the array index of the minimum value in the input buffer. - */ - void riscv_min_q31( - const q31_t * pSrc, - uint32_t blockSize, - q31_t * pResult, - uint32_t * pIndex); - - - /** - * @brief Minimum value of a floating-point vector. - * @param[in] pSrc is input pointer - * @param[in] blockSize is the number of samples to process - * @param[out] pResult is output pointer - * @param[out] pIndex is the array index of the minimum value in the input buffer. - */ - void riscv_min_f32( - const float32_t * pSrc, - uint32_t blockSize, - float32_t * pResult, - uint32_t * pIndex); - - -/** - * @brief Maximum value of a Q7 vector. - * @param[in] pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] pResult maximum value returned here - * @param[out] pIndex index of maximum value returned here - */ - void riscv_max_q7( - const q7_t * pSrc, - uint32_t blockSize, - q7_t * pResult, - uint32_t * pIndex); - - -/** - * @brief Maximum value of a Q15 vector. - * @param[in] pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] pResult maximum value returned here - * @param[out] pIndex index of maximum value returned here - */ - void riscv_max_q15( - const q15_t * pSrc, - uint32_t blockSize, - q15_t * pResult, - uint32_t * pIndex); - - -/** - * @brief Maximum value of a Q31 vector. - * @param[in] pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] pResult maximum value returned here - * @param[out] pIndex index of maximum value returned here - */ - void riscv_max_q31( - const q31_t * pSrc, - uint32_t blockSize, - q31_t * pResult, - uint32_t * pIndex); - - -/** - * @brief Maximum value of a floating-point vector. - * @param[in] pSrc points to the input buffer - * @param[in] blockSize length of the input vector - * @param[out] pResult maximum value returned here - * @param[out] pIndex index of maximum value returned here - */ - void riscv_max_f32( - const float32_t * pSrc, - uint32_t blockSize, - float32_t * pResult, - uint32_t * pIndex); - - - /** - * @brief Q15 complex-by-complex multiplication - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - */ - void riscv_cmplx_mult_cmplx_q15( - const q15_t * pSrcA, - const q15_t * pSrcB, - q15_t * pDst, - uint32_t numSamples); - - - /** - * @brief Q31 complex-by-complex multiplication - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - */ - void riscv_cmplx_mult_cmplx_q31( - const q31_t * pSrcA, - const q31_t * pSrcB, - q31_t * pDst, - uint32_t numSamples); - - - /** - * @brief Floating-point complex-by-complex multiplication - * @param[in] pSrcA points to the first input vector - * @param[in] pSrcB points to the second input vector - * @param[out] pDst points to the output vector - * @param[in] numSamples number of complex samples in each vector - */ - void riscv_cmplx_mult_cmplx_f32( - const float32_t * pSrcA, - const float32_t * pSrcB, - float32_t * pDst, - uint32_t numSamples); - - - /** - * @brief Converts the elements of the floating-point vector to Q31 vector. - * @param[in] pSrc points to the floating-point input vector - * @param[out] pDst points to the Q31 output vector - * @param[in] blockSize length of the input vector - */ - void riscv_float_to_q31( - const float32_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Converts the elements of the floating-point vector to Q15 vector. - * @param[in] pSrc points to the floating-point input vector - * @param[out] pDst points to the Q15 output vector - * @param[in] blockSize length of the input vector - */ - void riscv_float_to_q15( - const float32_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Converts the elements of the floating-point vector to Q7 vector. - * @param[in] pSrc points to the floating-point input vector - * @param[out] pDst points to the Q7 output vector - * @param[in] blockSize length of the input vector - */ - void riscv_float_to_q7( - const float32_t * pSrc, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Converts the elements of the Q31 vector to floating-point vector. - * @param[in] pSrc is input pointer - * @param[out] pDst is output pointer - * @param[in] blockSize is the number of samples to process - */ - void riscv_q31_to_float( - const q31_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Converts the elements of the Q31 vector to Q15 vector. - * @param[in] pSrc is input pointer - * @param[out] pDst is output pointer - * @param[in] blockSize is the number of samples to process - */ - void riscv_q31_to_q15( - const q31_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @brief Converts the elements of the Q31 vector to Q7 vector. - * @param[in] pSrc is input pointer - * @param[out] pDst is output pointer - * @param[in] blockSize is the number of samples to process - */ - void riscv_q31_to_q7( - const q31_t * pSrc, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Converts the elements of the Q15 vector to floating-point vector. - * @param[in] pSrc is input pointer - * @param[out] pDst is output pointer - * @param[in] blockSize is the number of samples to process - */ - void riscv_q15_to_float( - const q15_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Converts the elements of the Q15 vector to Q31 vector. - * @param[in] pSrc is input pointer - * @param[out] pDst is output pointer - * @param[in] blockSize is the number of samples to process - */ - void riscv_q15_to_q31( - const q15_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Converts the elements of the Q15 vector to Q7 vector. - * @param[in] pSrc is input pointer - * @param[out] pDst is output pointer - * @param[in] blockSize is the number of samples to process - */ - void riscv_q15_to_q7( - const q15_t * pSrc, - q7_t * pDst, - uint32_t blockSize); - - - /** - * @brief Converts the elements of the Q7 vector to floating-point vector. - * @param[in] pSrc is input pointer - * @param[out] pDst is output pointer - * @param[in] blockSize is the number of samples to process - */ - void riscv_q7_to_float( - const q7_t * pSrc, - float32_t * pDst, - uint32_t blockSize); - - - /** - * @brief Converts the elements of the Q7 vector to Q31 vector. - * @param[in] pSrc input pointer - * @param[out] pDst output pointer - * @param[in] blockSize number of samples to process - */ - void riscv_q7_to_q31( - const q7_t * pSrc, - q31_t * pDst, - uint32_t blockSize); - - - /** - * @brief Converts the elements of the Q7 vector to Q15 vector. - * @param[in] pSrc input pointer - * @param[out] pDst output pointer - * @param[in] blockSize number of samples to process - */ - void riscv_q7_to_q15( - const q7_t * pSrc, - q15_t * pDst, - uint32_t blockSize); - - - /** - * @ingroup groupInterpolation - */ - - /** - * @defgroup BilinearInterpolate Bilinear Interpolation - * - * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. - * The underlying function f(x, y) is sampled on a regular grid and the interpolation process - * determines values between the grid points. - * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. - * Bilinear interpolation is often used in image processing to rescale images. - * The NMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. - * - * Algorithm - * \par - * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. - * For floating-point, the instance structure is defined as: - *
-   *   typedef struct
-   *   {
-   *     uint16_t numRows;
-   *     uint16_t numCols;
-   *     float32_t *pData;
-   * } riscv_bilinear_interp_instance_f32;
-   * 
- * - * \par - * where numRows specifies the number of rows in the table; - * numCols specifies the number of columns in the table; - * and pData points to an array of size numRows*numCols values. - * The data table pTable is organized in row order and the supplied data values fall on integer indexes. - * That is, table element (x,y) is located at pTable[x + y*numCols] where x and y are integers. - * - * \par - * Let (x, y) specify the desired interpolation point. Then define: - *
-   *     XF = floor(x)
-   *     YF = floor(y)
-   * 
- * \par - * The interpolated output point is computed as: - *
-   *  f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
-   *           + f(XF+1, YF) * (x-XF)*(1-(y-YF))
-   *           + f(XF, YF+1) * (1-(x-XF))*(y-YF)
-   *           + f(XF+1, YF+1) * (x-XF)*(y-YF)
-   * 
- * Note that the coordinates (x, y) contain integer and fractional components. - * The integer components specify which portion of the table to use while the - * fractional components control the interpolation processor. - * - * \par - * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. - */ - - - /** - * @addtogroup BilinearInterpolate - * @{ - */ - - /** - * @brief Floating-point bilinear interpolation. - * @param[in,out] S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate. - * @param[in] Y interpolation coordinate. - * @return out interpolated value. - */ - __STATIC_FORCEINLINE float32_t riscv_bilinear_interp_f32( - const riscv_bilinear_interp_instance_f32 * S, - float32_t X, - float32_t Y) - { - float32_t out; - float32_t f00, f01, f10, f11; - float32_t *pData = S->pData; - int32_t xIndex, yIndex, index; - float32_t xdiff, ydiff; - float32_t b1, b2, b3, b4; - - xIndex = (int32_t) X; - yIndex = (int32_t) Y; - - /* Care taken for table outside boundary */ - /* Returns zero output when values are outside table boundary */ - if (xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) - { - return (0); - } - - /* Calculation of index for two nearest points in X-direction */ - index = (xIndex - 1) + (yIndex - 1) * S->numCols; - - - /* Read two nearest points in X-direction */ - f00 = pData[index]; - f01 = pData[index + 1]; - - /* Calculation of index for two nearest points in Y-direction */ - index = (xIndex - 1) + (yIndex) * S->numCols; - - - /* Read two nearest points in Y-direction */ - f10 = pData[index]; - f11 = pData[index + 1]; - - /* Calculation of intermediate values */ - b1 = f00; - b2 = f01 - f00; - b3 = f10 - f00; - b4 = f00 - f01 - f10 + f11; - - /* Calculation of fractional part in X */ - xdiff = X - xIndex; - - /* Calculation of fractional part in Y */ - ydiff = Y - yIndex; - - /* Calculation of bi-linear interpolated output */ - out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; - - /* return to application */ - return (out); - } - - - /** - * @brief Q31 bilinear interpolation. - * @param[in,out] S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate in 12.20 format. - * @param[in] Y interpolation coordinate in 12.20 format. - * @return out interpolated value. - */ - __STATIC_FORCEINLINE q31_t riscv_bilinear_interp_q31( - riscv_bilinear_interp_instance_q31 * S, - q31_t X, - q31_t Y) - { - q31_t out; /* Temporary output */ - q31_t acc = 0; /* output */ - q31_t xfract, yfract; /* X, Y fractional parts */ - q31_t x1, x2, y1, y2; /* Nearest output values */ - int32_t rI, cI; /* Row and column indices */ - q31_t *pYData = S->pData; /* pointer to output table values */ - uint32_t nCols = S->numCols; /* num of rows */ - - /* Input is in 12.20 format */ - /* 12 bits for the table index */ - /* Index value calculation */ - rI = ((X & (q31_t)0xFFF00000) >> 20); - - /* Input is in 12.20 format */ - /* 12 bits for the table index */ - /* Index value calculation */ - cI = ((Y & (q31_t)0xFFF00000) >> 20); - - /* Care taken for table outside boundary */ - /* Returns zero output when values are outside table boundary */ - if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) - { - return (0); - } - - /* 20 bits for the fractional part */ - /* shift left xfract by 11 to keep 1.31 format */ - xfract = (X & 0x000FFFFF) << 11U; - - /* Read two nearest output values from the index */ - x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; - x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; - - /* 20 bits for the fractional part */ - /* shift left yfract by 11 to keep 1.31 format */ - yfract = (Y & 0x000FFFFF) << 11U; - - /* Read two nearest output values from the index */ - y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; - y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; - - /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ - out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); - acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); - - /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ - out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); - acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); - - /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ - out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); - acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); - - /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ - out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); - acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); - - /* Convert acc to 1.31(q31) format */ - return ((q31_t)(acc << 2)); - } - - - /** - * @brief Q15 bilinear interpolation. - * @param[in,out] S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate in 12.20 format. - * @param[in] Y interpolation coordinate in 12.20 format. - * @return out interpolated value. - */ - __STATIC_FORCEINLINE q15_t riscv_bilinear_interp_q15( - riscv_bilinear_interp_instance_q15 * S, - q31_t X, - q31_t Y) - { - q63_t acc = 0; /* output */ - q31_t out; /* Temporary output */ - q15_t x1, x2, y1, y2; /* Nearest output values */ - q31_t xfract, yfract; /* X, Y fractional parts */ - int32_t rI, cI; /* Row and column indices */ - q15_t *pYData = S->pData; /* pointer to output table values */ - uint32_t nCols = S->numCols; /* num of rows */ - - /* Input is in 12.20 format */ - /* 12 bits for the table index */ - /* Index value calculation */ - rI = ((X & (q31_t)0xFFF00000) >> 20); - - /* Input is in 12.20 format */ - /* 12 bits for the table index */ - /* Index value calculation */ - cI = ((Y & (q31_t)0xFFF00000) >> 20); - - /* Care taken for table outside boundary */ - /* Returns zero output when values are outside table boundary */ - if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) - { - return (0); - } - - /* 20 bits for the fractional part */ - /* xfract should be in 12.20 format */ - xfract = (X & 0x000FFFFF); - - /* Read two nearest output values from the index */ - x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; - x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; - - /* 20 bits for the fractional part */ - /* yfract should be in 12.20 format */ - yfract = (Y & 0x000FFFFF); - - /* Read two nearest output values from the index */ - y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; - y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; - - /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ - - /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ - /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ - out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4U); - acc = ((q63_t) out * (0xFFFFF - yfract)); - - /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ - out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4U); - acc += ((q63_t) out * (xfract)); - - /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ - out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4U); - acc += ((q63_t) out * (yfract)); - - /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ - out = (q31_t) (((q63_t) y2 * (xfract)) >> 4U); - acc += ((q63_t) out * (yfract)); - - /* acc is in 13.51 format and down shift acc by 36 times */ - /* Convert out to 1.15 format */ - return ((q15_t)(acc >> 36)); - } - - - /** - * @brief Q7 bilinear interpolation. - * @param[in,out] S points to an instance of the interpolation structure. - * @param[in] X interpolation coordinate in 12.20 format. - * @param[in] Y interpolation coordinate in 12.20 format. - * @return out interpolated value. - */ - __STATIC_FORCEINLINE q7_t riscv_bilinear_interp_q7( - riscv_bilinear_interp_instance_q7 * S, - q31_t X, - q31_t Y) - { - q63_t acc = 0; /* output */ - q31_t out; /* Temporary output */ - q31_t xfract, yfract; /* X, Y fractional parts */ - q7_t x1, x2, y1, y2; /* Nearest output values */ - int32_t rI, cI; /* Row and column indices */ - q7_t *pYData = S->pData; /* pointer to output table values */ - uint32_t nCols = S->numCols; /* num of rows */ - - /* Input is in 12.20 format */ - /* 12 bits for the table index */ - /* Index value calculation */ - rI = ((X & (q31_t)0xFFF00000) >> 20); - - /* Input is in 12.20 format */ - /* 12 bits for the table index */ - /* Index value calculation */ - cI = ((Y & (q31_t)0xFFF00000) >> 20); - - /* Care taken for table outside boundary */ - /* Returns zero output when values are outside table boundary */ - if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) - { - return (0); - } - - /* 20 bits for the fractional part */ - /* xfract should be in 12.20 format */ - xfract = (X & (q31_t)0x000FFFFF); - - /* Read two nearest output values from the index */ - x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; - x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; - - /* 20 bits for the fractional part */ - /* yfract should be in 12.20 format */ - yfract = (Y & (q31_t)0x000FFFFF); - - /* Read two nearest output values from the index */ - y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; - y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; - - /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ - out = ((x1 * (0xFFFFF - xfract))); - acc = (((q63_t) out * (0xFFFFF - yfract))); - - /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ - out = ((x2 * (0xFFFFF - yfract))); - acc += (((q63_t) out * (xfract))); - - /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ - out = ((y1 * (0xFFFFF - xfract))); - acc += (((q63_t) out * (yfract))); - - /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ - out = ((y2 * (yfract))); - acc += (((q63_t) out * (xfract))); - - /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ - return ((q7_t)(acc >> 40)); - } - - /** - * @} end of BilinearInterpolate group - */ - - -/* SMMLAR */ -#define multAcc_32x32_keep32_R(a, x, y) \ - a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) - -/* SMMLSR */ -#define multSub_32x32_keep32_R(a, x, y) \ - a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) - -/* SMMULR */ -#define mult_32x32_keep32_R(a, x, y) \ - a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) - -/* SMMLA */ -#define multAcc_32x32_keep32(a, x, y) \ - a += (q31_t) (((q63_t) x * y) >> 32) - -/* SMMLS */ -#define multSub_32x32_keep32(a, x, y) \ - a -= (q31_t) (((q63_t) x * y) >> 32) - -/* SMMUL */ -#define mult_32x32_keep32(a, x, y) \ - a = (q31_t) (((q63_t) x * y ) >> 32) - - -#define LOW_OPTIMIZATION_ENTER \ - __attribute__(( optimize("-O1") )) -#define LOW_OPTIMIZATION_EXIT -#define IAR_ONLY_LOW_OPTIMIZATION_ENTER -#define IAR_ONLY_LOW_OPTIMIZATION_EXIT - - -#ifdef __cplusplus -} -#endif - - -#endif /* _RISCV_MATH_H */ - -/** - * - * End of file. - */ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imac.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imac.a deleted file mode 100644 index 3f2e5918..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imac.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imacp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imacp.a deleted file mode 100644 index ed8e1f08..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imacp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafc.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafc.a deleted file mode 100644 index 050b9148..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafc.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafcp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafcp.a deleted file mode 100644 index 8adfbd24..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafcp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafdc.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafdc.a deleted file mode 100644 index 262e9e4e..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafdc.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafdcp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafdcp.a deleted file mode 100644 index c08ad914..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv32imafdcp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imac.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imac.a deleted file mode 100644 index 04e3709b..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imac.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imacp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imacp.a deleted file mode 100644 index 7f2d0706..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imacp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafc.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafc.a deleted file mode 100644 index 577a9072..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafc.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafcp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafcp.a deleted file mode 100644 index 7a4731cf..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafcp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafdc.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafdc.a deleted file mode 100644 index a77b5705..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafdc.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafdcp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafdcp.a deleted file mode 100644 index d7ebb92a..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/DSP/GCC/libnmsis_dsp_rv64imafdcp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imac.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imac.a deleted file mode 100644 index 0c53f849..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imac.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imacp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imacp.a deleted file mode 100644 index 2b4bb7ac..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imacp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafc.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafc.a deleted file mode 100644 index f879b126..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafc.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafcp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafcp.a deleted file mode 100644 index 43aff14b..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafcp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafdc.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafdc.a deleted file mode 100644 index 4211799a..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafdc.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafdcp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafdcp.a deleted file mode 100644 index 09793aea..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv32imafdcp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imac.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imac.a deleted file mode 100644 index 6868dbe2..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imac.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imacp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imacp.a deleted file mode 100644 index 42d38954..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imacp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafc.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafc.a deleted file mode 100644 index e79348fb..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafc.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafcp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafcp.a deleted file mode 100644 index 08d9c723..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafcp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafdc.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafdc.a deleted file mode 100644 index 2eb57b6e..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafdc.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafdcp.a b/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafdcp.a deleted file mode 100644 index 08360fb4..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/NN/GCC/libnmsis_nn_rv64imafdcp.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/Library/mathlib/GCC/libmathlib_rv64imafdcpv.a b/arch/risc-v/nuclei/gcc/nmsis/Library/mathlib/GCC/libmathlib_rv64imafdcpv.a deleted file mode 100644 index c6cea696..00000000 Binary files a/arch/risc-v/nuclei/gcc/nmsis/Library/mathlib/GCC/libmathlib_rv64imafdcpv.a and /dev/null differ diff --git a/arch/risc-v/nuclei/gcc/nmsis/NN/Include/riscv_nn_tables.h b/arch/risc-v/nuclei/gcc/nmsis/NN/Include/riscv_nn_tables.h deleted file mode 100644 index 3b068f5f..00000000 --- a/arch/risc-v/nuclei/gcc/nmsis/NN/Include/riscv_nn_tables.h +++ /dev/null @@ -1,57 +0,0 @@ -/* ---------------------------------------------------------------------- - * Project: NMSIS NN Library - * Title: riscv_nn_tables.h - * Description: Extern declaration for NN tables - * - * $Date: 17. January 2018 - * $Revision: V.1.0.0 - * - * Target Processor: RISC-V Cores - * -------------------------------------------------------------------- */ -/* - * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. - * Copyright (c) 2019 Nuclei Limited. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef _RISCV_NN_TABLES_H -#define _RISCV_NN_TABLES_H - -#include "riscv_math.h" - -/** -* @brief tables for various activation functions -* -*/ - -extern const q15_t sigmoidTable_q15[256]; -extern const q7_t sigmoidTable_q7[256]; - -extern const q7_t tanhTable_q7[256]; -extern const q15_t tanhTable_q15[256]; - - /** - * @brief 2-way tables for various activation functions - * - * 2-way table, H table for value larger than 1/4 - * L table for value smaller than 1/4, H table for remaining - * We have this only for the q15_t version. It does not make - * sense to have it for q7_t type - */ -extern const q15_t sigmoidHTable_q15[192]; -extern const q15_t sigmoidLTable_q15[128]; - -#endif /* RISCV_NN_TABLES_H */ diff --git a/arch/risc-v/nuclei/gcc/nmsis/NN/Include/riscv_nnfunctions.h b/arch/risc-v/nuclei/gcc/nmsis/NN/Include/riscv_nnfunctions.h deleted file mode 100644 index de7c3547..00000000 --- a/arch/risc-v/nuclei/gcc/nmsis/NN/Include/riscv_nnfunctions.h +++ /dev/null @@ -1,1134 +0,0 @@ -/* - * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. - * Copyright (c) 2019 Nuclei Limited. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* ---------------------------------------------------------------------- - * Project: NMSIS NN Library - * Title: riscv_nnfunctions.h - * Description: Public header file for NMSIS NN Library - * - * $Date: 13. July 2018 - * $Revision: V.1.0.0 - * - * Target Processor: RISC-V Cores - * -------------------------------------------------------------------- */ - -/** - \mainpage NMSIS NN Software Library - * - * Introduction - * ------------ - * - * This user manual describes the NMSIS NN software library, - * a collection of efficient neural network kernels developed to maximize the - * performance and minimize the memory footprint of neural networks on Nuclei N processor cores. - * - * The library is divided into a number of functions each covering a specific category: - * - Neural Network Convolution Functions - * - Neural Network Activation Functions - * - Fully-connected Layer Functions - * - Neural Network Pooling Functions - * - Softmax Functions - * - Neural Network Support Functions - * - * The library has separate functions for operating on different weight and activation data - * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The description of the - * kernels are included in the function description. The implementation details are also - * described in this paper [1]. - * - * \note Please refer to [NMSIS-NN](../../../nn/index.html) - * - * Block Diagram - * -------- - * \image html NMSIS-NN-OVERVIEW.PNG - * - * Examples - * -------- - * - * The library ships with a number of examples which demonstrate how to use the library functions. - * - * Pre-processor Macros - * ------------ - * - * Each library project have differant pre-processor macros. - * - * - RISCV_MATH_DSP: - * - * Define macro RISCV_MATH_DSP, If the silicon supports DSP instructions. - * - * - RISCV_NN_TRUNCATE: - * - * Define macro RISCV_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation. - * - * - * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601 - */ - -/** - * @defgroup groupNN Neural Network Functions - * These functions perform basic operations for neural network layers. - */ - -#ifndef _RISCV_NNFUNCTIONS_H -#define _RISCV_NNFUNCTIONS_H - -#include "riscv_nnsupportfunctions.h" -#include "riscv_nn_tables.h" - -#define USE_INTRINSIC - -//#define RISCV_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */ - -#ifdef __cplusplus -extern "C" -{ -#endif - -/** - * @defgroup NNConv Neural Network Convolution Functions - * - * Perform convolution layer - * - * The convolution is implemented in 2 steps: im2col and GEMM - * - * im2col is a process of converting each patch of image data into - * a column. After im2col, the convolution is computed as matrix-matrix - * multiplication. - * - * To reduce the memory footprint, the im2col is performed partially. - * Each iteration, only a few column (i.e., patches) are generated and - * computed with GEMM kernels similar to NMSIS-DSP riscv_mat_mult functions. - * - */ - - /** - * @brief Basic Q7 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns RISCV_MATH_SUCCESS - * - */ - - riscv_status riscv_convolve_HWC_q7_basic(const q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Basic Q7 convolution function (non-sqaure shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimension x - * @param[in] dim_im_in_y input tensor dimension y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns RISCV_MATH_SUCCESS - */ - - riscv_status riscv_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Basic Q15 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns RISCV_MATH_SUCCESS - * - */ - - riscv_status riscv_convolve_HWC_q15_basic(const q15_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q15_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q15_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q15_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Fast Q7 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some constraints: - * ch_im_in is multiple of 4 - * ch_im_out is multiple of 2 - */ - - riscv_status riscv_convolve_HWC_q7_fast(const q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Fast Q7 convolution function (non-sqaure shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimension x - * @param[in] dim_im_in_y input tensor dimension y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some constraints: - * ch_im_in is multiple of 4 - * ch_im_out is multiple of 2 - */ - - riscv_status riscv_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimension x - * @param[in] dim_im_in_y input tensor dimension y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - * - * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1 - * and dim_kernel_y=1). It can be used for - * second half of MobileNets after depthwise separable convolution. - * - * This function is the version with full list of optimization tricks, but with - * some constraints: - * ch_im_in is multiple of 4 - * ch_im_out is multiple of 2 - */ - riscv_status riscv_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Q7 version of convolution for RGB image - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - * - * This kernel is written exclusively for convolution with ch_im_in - * equals 3. This applies on the first layer of CNNs which has input - * image with RGB format. - */ - - riscv_status riscv_convolve_HWC_q7_RGB(const q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Fast Q15 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some constraints: - * ch_im_in is multiple of 2 - * ch_im_out is multiple of 2 - */ - - riscv_status riscv_convolve_HWC_q15_fast(const q15_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q15_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q15_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q15_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Fast Q15 convolution function (non-sqaure shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimension x - * @param[in] dim_im_in_y input tensor dimension y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - * - * @details - * - * Buffer size: - * - * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel - * - * bufferB size: 0 - * - * Input dimension constraints: - * - * ch_im_in is multiple of 2 - * - * ch_im_out is multiple of 2 - * - */ - - riscv_status - riscv_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q15_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q15_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q15_t * Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Q7 depthwise separable convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some constraints: - * ch_im_in is multiple of 2 - * ch_im_out is multiple of 2 - */ - - riscv_status riscv_depthwise_separable_conv_HWC_q7(const q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out, - q15_t * bufferA, - q7_t * bufferB); - - /** - * @brief Q7 depthwise separable convolution function (non-square shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimension x - * @param[in] dim_im_in_y input tensor dimension y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding sizes x - * @param[in] padding_y padding sizes y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * RISCV_MATH_SIZE_MISMATCH or RISCV_MATH_SUCCESS based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some constraints: - * ch_im_in is multiple of 2 - * ch_im_out is multiple of 2 - */ - riscv_status riscv_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t * wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t * bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t * Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t * bufferA, - q7_t * bufferB); - - -/** - * @defgroup FC Fully-connected Layer Functions - * - * Perform fully-connected layer - * - * Fully-connected layer is basically a matrix-vector multiplication - * with bias. The matrix is the weights and the input/output vectors - * are the activation values. Supported {weight, activation} precisions - * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}. - * - * Here we have two types of kernel functions. The basic function - * implements the function using regular GEMV approach. The opt functions - * operates with weights in interleaved formats. - * - */ - - /** - * @brief Q7 basic fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns RISCV_MATH_SUCCESS - * - */ - - riscv_status riscv_fully_connected_q7(const q7_t * pV, - const q7_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q7_t * pOut, - q15_t * vec_buffer); - - /** - * @brief S8 basic fully-connected layer function for TF Lite - * @param[in] pInput pointer to pInput vector - * @param[in] pWeight pointer to matrix weights - * @param[in] col_dim dimension of the input vector - * @param[in] row_dim dimension of the output vector - * @param[in] nb_batches number of batches - * @param[in] input_offset - * @param[in] filter_offset - * @param[in] out_mult requantization parameter - * @param[in] out_shift requantization parameter - * @param[in] output_offset - * @param[in] pBias pointer to bias - * @param[out] pOut pointer to output vector - * @param[in] output_activation_min for clamping - * @param[in] output_activation_max for clamping - * @param[in,out] vec_buffer pointer to buffer space for pInput - * @return The function returns RISCV_MATH_SUCCESS - * - * @details - * - * Buffer size: - * - * vec_buffer size: col_dim of word16. - * - * This basic function is designed to work with regular pWeight - * matrix without interleaving. - * - */ - riscv_status - riscv_fully_connected_s8(const int8_t *pInput, - const int8_t *weight, - const uint16_t input_length, - const uint16_t num_rows, - const uint16_t nb_batches, - const int32_t input_offset, - const int32_t filter_offset, - const int32_t out_mult, - const int32_t out_shift, - const int32_t output_offset, - const int8_t *bias, - int8_t *pOut, - const int32_t output_activation_min, - const int32_t output_activation_max, - q15_t *vec_buffer) ; - - /** - * @brief Q7 opt fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns RISCV_MATH_SUCCESS - * - */ - - riscv_status riscv_fully_connected_q7_opt(const q7_t * pV, - const q7_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q7_t * pOut, - q15_t * vec_buffer); - - /** - * @brief Q15 basic fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns RISCV_MATH_SUCCESS - * - */ - - riscv_status riscv_fully_connected_q15(const q15_t * pV, - const q15_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q15_t * bias, - q15_t * pOut, - q15_t * vec_buffer); - - /** - * @brief Q15 opt fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns RISCV_MATH_SUCCESS - * - */ - - riscv_status riscv_fully_connected_q15_opt(const q15_t * pV, - const q15_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q15_t * bias, - q15_t * pOut, - q15_t * vec_buffer); - - /** - * @brief Mixed Q15-Q7 fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns RISCV_MATH_SUCCESS - * - */ - - riscv_status riscv_fully_connected_mat_q7_vec_q15(const q15_t * pV, - const q7_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q15_t * pOut, - q15_t * vec_buffer); - - /** - * @brief Mixed Q15-Q7 opt fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns RISCV_MATH_SUCCESS - * - */ - - riscv_status riscv_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV, - const q7_t * pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q15_t * pOut, - q15_t * vec_buffer); - -/** - * @brief Matrix-Multiplication Kernels for Convolution - * - * These functions are used within convolution layer functions for - * matrix multiplication. - * - * The implementation is similar to NMSIS-DSP riscv_mat_mult functions - * with one Q7 and one Q15 operands. The Q15 operand is the im2col - * output which is always with 2 columns. - * - */ - - /** - * @brief Matrix-multiplication function for convolution - * @param[in] pA pointer to operand A - * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors - * @param[in] ch_im_out numRow of A - * @param[in] numCol_A numCol of A - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias the bias - * @param[in,out] pOut pointer to output - * @return The function returns the incremented output pointer - */ - - q7_t *riscv_nn_mat_mult_kernel_q7_q15(const q7_t * pA, - const q15_t * pInBuffer, - const uint16_t ch_im_out, - const uint16_t numCol_A, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q7_t * pOut); - - q7_t *riscv_nn_mat_mult_kernel_q7(const q7_t * pA, - const q7_t * pInBuffer, - const uint16_t ch_im_out, - const uint16_t numCol_A, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q7_t * pOut); - - /** - * @brief Matrix-multiplication function for convolution with reordered columns - * @param[in] pA pointer to operand A - * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors - * @param[in] ch_im_out numRow of A - * @param[in] numCol_A numCol of A - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias the bias - * @param[in,out] pOut pointer to output - * @return The function returns the incremented output pointer - */ - - q7_t *riscv_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA, - const q15_t * pInBuffer, - const uint16_t ch_im_out, - const uint16_t numCol_A, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q7_t * pOut); - - q7_t *riscv_nn_mat_mult_kernel_q7_reordered(const q7_t * pA, - const q7_t * pInBuffer, - const uint16_t ch_im_out, - const uint16_t numCol_A, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t * bias, - q7_t * pOut); - -#ifdef __cplusplus -} -#endif - -/* - * Other functions - * These layers are typically not timing critical - * Basic implementation is supported here - */ - -#ifdef __cplusplus -extern "C" -{ -#endif - -/** - * @defgroup Acti Neural Network Activation Functions - * - * Perform activation layers, including ReLU (Rectified Linear Unit), - * sigmoid and tanh - * - */ - - /** - * @brief Q7 RELU function - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @return none. - */ - - void riscv_relu_q7(q7_t * data, uint16_t size); - - /** - * @brief Q15 RELU function - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @return none. - */ - - void riscv_relu_q15(q15_t * data, uint16_t size); - - /** - * @brief Q7 neural network activation function using direct table look-up - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 - * @param[in] type type of activation functions - * @return none. - */ - - void riscv_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, - riscv_nn_activation_type type); - - /** - * @brief Q15 neural network activation function using direct table look-up - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 - * @param[in] type type of activation functions - * @return none. - */ - - void riscv_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, - riscv_nn_activation_type type); - -/** - * @defgroup Pooling Neural Network Pooling Functions - * - * Perform pooling functions, including max pooling and average pooling - * - */ - - /** - * @brief Q7 max pooling function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] Im_out pointer to output tensor - * @return none. - * - */ - - void riscv_maxpool_q7_HWC(q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const uint16_t dim_im_out, - q7_t * bufferA, - q7_t * Im_out); - - /** - * @brief Q7 average pooling function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] Im_out pointer to output tensor - * @return none. - * - */ - - void riscv_avepool_q7_HWC(q7_t * Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const uint16_t dim_im_out, - q7_t * bufferA, - q7_t * Im_out); - -/** - * @defgroup Softmax Softmax Functions - * - * EXP(2) based softmax function - * - */ - - /** - * @brief Q7 softmax function - * @param[in] vec_in pointer to input vector - * @param[in] dim_vec input vector dimension - * @param[out] p_out pointer to output vector - * @return none. - * - */ - - void riscv_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out); - - /** - * @brief Q15 softmax function - * @param[in] vec_in pointer to input vector - * @param[in] dim_vec input vector dimension - * @param[out] p_out pointer to output vector - * @return none. - * - */ - - void riscv_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out); - - /** - * @brief uint8 depthwise convolution function with asymmetric quantization for even number of channel multiplier - * and input channels. Unless specified otherwise, arguments are mandatory. - * - * @param[in] input Pointer to input tensor - * @param[in] input_x Width of input tensor - * @param[in] input_y Height of input tensor - * @param[in] input_ch Channels in input tensor - * @param[in] kernel Pointer to kernel weights - * @param[in] kernel_x Width of kernel - * @param[in] kernel_y Height of kernel - * @param[in] ch_mult Number of channel multiplier - * @param[in] pad_x Padding sizes x - * @param[in] pad_y Padding sizes y - * @param[in] stride_x Convolution stride along the width - * @param[in] stride_y Convolution stride along the height - * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement. - * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement. - * @param[in] bias Pointer to optional bias values. If no bias is - * available, NULL is expected - * @param[in] input_offset Input tensor zero offset - * @param[in] filter_offset Kernel tensor zero offset - * @param[in] output_offset Output tensor zero offset - * @param[in,out] output Pointer to output tensor - * @param[in] output_x Width of output tensor - * @param[in] output_y Height of output tensor - * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255} - * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255} - * @param[in] out_shift Amount of right-shift for output - * @param[in] out_mult Output multiplier for requantization - * @return The function returns one of the following - * RISCV_MATH_SIZE_MISMATCH - Not supported dimension of tensors - * RISCV_MATH_SUCCESS - Successful operation - * RISCV_MATH_ARGUMENT_ERROR - Implementation not available - * - * Input constraints - * ch_mult is multiple of 2 - * kernel_x is multiple of 2 - * - */ - riscv_status riscv_depthwise_conv_u8_basic_ver1(const uint8_t *input, - const uint16_t input_x, - const uint16_t input_y, - const uint16_t input_ch, - const uint8_t *kernel, - const uint16_t kernel_x, - const uint16_t kernel_y, - const int16_t ch_mult, - const int16_t pad_x, - const int16_t pad_y, - const int16_t stride_x, - const int16_t stride_y, - const int16_t dilation_x, - const int16_t dilation_y, - const int32_t *bias, - const int32_t input_offset, - const int32_t filter_offset, - const int32_t output_offset, - uint8_t *output, - const uint16_t output_x, - const uint16_t output_y, - const int32_t output_activation_min, - const int32_t output_activation_max, - const int32_t out_shift, - const int32_t out_mult); -#ifdef __cplusplus -} -#endif - -#endif diff --git a/arch/risc-v/nuclei/gcc/nmsis/NN/Include/riscv_nnsupportfunctions.h b/arch/risc-v/nuclei/gcc/nmsis/NN/Include/riscv_nnsupportfunctions.h deleted file mode 100644 index 6061f08d..00000000 --- a/arch/risc-v/nuclei/gcc/nmsis/NN/Include/riscv_nnsupportfunctions.h +++ /dev/null @@ -1,366 +0,0 @@ -/* - * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. - * Copyright (c) 2019 Nuclei Limited. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* ---------------------------------------------------------------------- - * Project: NMSIS NN Library - * Title: riscv_nnsupportfunctions.h - * Description: Public header file of support functions for NMSIS NN Library - * - * $Date: July 2019 - * $Revision: V.1.0.0 - * - * Target Processor: RISC-V Cores - * -------------------------------------------------------------------- */ - -#ifndef _RISCV_NNSUPPORTFUNCTIONS_H_ -#define _RISCV_NNSUPPORTFUNCTIONS_H_ - -#include "riscv_math.h" -#include "riscv_common_tables.h" - -#ifdef __cplusplus -extern "C" -{ -#endif - -#define LEFT_SHIFT(_shift) (_shift > 0 ? _shift : 0) -#define RIGHT_SHIFT(_shift) (_shift > 0 ? 0 : -_shift) -#define Q31_MIN (0x80000000L) -#define Q31_MAX (0x7FFFFFFFL) - -#define MAX(A,B) (A) > (B) ? (A) : (B) -#define MIN(A,B) (A) < (B) ? (A) : (B) - -/** - * @brief Union for SIMD access of q31/q15/q7 types - */ -union riscv_nnword -{ - q31_t word; - /**< q31 type */ - q15_t half_words[2]; - /**< q15 type */ - q7_t bytes[4]; - /**< q7 type */ -}; - -/** - * @brief Struct for specifying activation function types - * - */ -typedef enum -{ - RISCV_SIGMOID = 0, - /**< Sigmoid activation function */ - RISCV_TANH = 1, - /**< Tanh activation function */ -} riscv_nn_activation_type; - -/** - * @defgroup nndata_convert Neural Network Data Conversion Functions - * - * Perform data type conversion in-between neural network operations - * - */ - -/** - * @brief Converts the elements of the q7 vector to q15 vector without left-shift - * @param[in] *pSrc points to the q7 input vector - * @param[out] *pDst points to the q15 output vector - * @param[in] blockSize length of the input vector - * @return none. - * - */ -void riscv_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize); - -void riscv_q7_to_q7_no_shift(const q7_t * pSrc, q7_t * pDst, uint32_t blockSize); - -/** - * @brief Non-saturating addition of elements of a q7 vector - * @param[in] *input Pointer to the q7 input vector - * @param[out] *output Pointer to the q31 output variable. - * @param[in] block_size length of the input vector - * @return none. - * \par Description: - * - * 2^24 samples can be added without saturating the result. - * - * The equation used for the conversion process is: - * - *
- *  sum = input[0] + input[1] + .. + input[block_size -1]
- * 
- * - * */ -void riscv_nn_add_q7(const q7_t *input, q31_t *output, uint32_t block_size); - -/** - * @brief Converts the elements of the q7 vector to reordered q15 vector without left-shift - * @param[in] *pSrc points to the q7 input vector - * @param[out] *pDst points to the q15 output vector - * @param[in] blockSize length of the input vector - * @return none. - * - */ -void riscv_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize); - -void riscv_q7_to_q7_reordered_no_shift(const q7_t * pSrc, q7_t * pDst, uint32_t blockSize); - -/** - * @brief Converts the elements from a q7 vector to a q15 vector with an added offset - * @param[in] *src points to the q7 input vector - * @param[out] *dst points to the q15 output vector - * @param[in] block_size length of the input vector - * @param[in] offset q7 offset to be added to each input vector element. - * @return none. - * - * \par Description: - * - * The equation used for the conversion process is: - * - *
- *  dst[n] = (q15_t) src[n] + offset;   0 <= n < block_size.
- * 
- * - */ -void riscv_q7_to_q15_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q7_t offset); - -#if defined (RISCV_MATH_DSP) - -/** - * @brief read and expand one q7 word into two q15 words - */ - -__STATIC_FORCEINLINE void *read_and_pad(void *source, q31_t * out1, q31_t * out2) -{ - q31_t inA = *__SIMD32(source)++; - q31_t inAbuf1 = __SXTB16(__ROR(inA, 8)); - q31_t inAbuf2 = __SXTB16(inA); - - *out2 = __PKHTB(inAbuf1, inAbuf2, 16); - *out1 = __PKHBT(inAbuf2, inAbuf1, 16); - - return source; -} - -/** - * @brief read and expand one q7 word into two q15 words with reordering - */ - -__STATIC_FORCEINLINE q7_t *read_and_pad_reordered(q7_t *source, q31_t * out1, q31_t * out2) -{ - q31_t inA = read_q7x4_ia(&source); - *out2 = __SXTB16(__ROR(inA, 8)); - *out1 = __SXTB16(inA); - - return source; -} - -/** - * @brief read and expand one q7 word into two q15 words with reordering and add an offset - */ -__STATIC_FORCEINLINE q7_t *read_and_pad_reordered_with_offset(q7_t *source, q31_t * out1, q31_t * out2,q31_t offset) -{ - q31_t inA = read_q7x4_ia(&source); - - *out2 = __SXTB16(__ROR(inA, 8)); - *out1 = __SXTB16(inA); - *out1 = __QADD16(*out1,offset); - *out2 = __QADD16(*out2,offset); - - return source; -} - - -#endif - - - -/** - * @defgroup NNBasicMath Basic Math Functions for Neural Network Computation - * - * Basic Math Functions for Neural Network Computation - * - */ - -/** - * @brief q7 vector multiplication with variable output shifts - * @param[in] *pSrcA pointer to the first input vector - * @param[in] *pSrcB pointer to the second input vector - * @param[out] *pDst pointer to the output vector - * @param[in] out_shift amount of right-shift for output - * @param[in] blockSize number of samples in each vector - * @return none. - * - * Scaling and Overflow Behavior: - * \par - * The function uses saturating arithmetic. - * Results outside of the allowable q15 range [0x8000 0x7FFF] will be saturated. - */ - -void riscv_nn_mult_q15( - q15_t * pSrcA, - q15_t * pSrcB, - q15_t * pDst, - const uint16_t out_shift, - uint32_t blockSize); - -/** - * @brief q7 vector multiplication with variable output shifts - * @param[in] *pSrcA pointer to the first input vector - * @param[in] *pSrcB pointer to the second input vector - * @param[out] *pDst pointer to the output vector - * @param[in] out_shift amount of right-shift for output - * @param[in] blockSize number of samples in each vector - * @return none. - * - * Scaling and Overflow Behavior: - * \par - * The function uses saturating arithmetic. - * Results outside of the allowable q7 range [0x80 0x7F] will be saturated. - */ - -void riscv_nn_mult_q7( - q7_t * pSrcA, - q7_t * pSrcB, - q7_t * pDst, - const uint16_t out_shift, - uint32_t blockSize); - -/** - * @brief macro for adding rounding offset - */ -#ifndef RISCV_NN_TRUNCATE - #define NN_ROUND(out_shift) ( (0x1 << out_shift) >> 1 ) -#else - #define NN_ROUND(out_shift) 0 -#endif - -/** - * @brief Saturating doubling high multiply. Result matches - * NEON instruction VQRDMULH. - * @param[in] m1 Multiplicand - * @param[in] m2 Multiplier - * @return Result of multiplication. - * - */ -__STATIC_FORCEINLINE q31_t riscv_nn_sat_doubling_high_mult(const q31_t m1, const q31_t m2) -{ - q31_t result = 0; - // Rounding offset to add for a right shift of 31 - q63_t mult = 1 << 30; - - if ((m1 < 0) ^ (m2 < 0)) - { - mult = 1 - mult; - } - // Gets resolved as a SMLAL instruction - mult = mult + (q63_t)m1 * m2; - - // Utilize all of the upper 32 bits. This is the doubling step - // as well. - result = mult / (1UL << 31); - - if ((m1 == m2) && (m1 == Q31_MIN)) - { - result = Q31_MAX; - } - return result; -} - -/** - * @brief Rounding divide by power of two. - * @param[in] dividend - Dividend - * @param[in] exponent - Divisor = power(2, exponent) - * Range: [0, 31] - * @return Rounded result of division. Midpoint is rounded away from zero. - * - */ -__STATIC_FORCEINLINE q31_t riscv_nn_divide_by_power_of_two(const q31_t dividend, const q31_t exponent) -{ - q31_t result = 0; - const q31_t remainder_mask = (1l << exponent) - 1; - int32_t remainder = remainder_mask & dividend; - - // Basic division - result = dividend >> exponent; - - // Adjust 'result' for rounding (mid point away from zero) - q31_t threshold = remainder_mask >> 1; - if (result < 0) - { - threshold++; - } - if (remainder > threshold) - { - result++; - } - - return result; -} - -/** - * @brief Requantize a given value. - * @param[in] val Value to be requantized - * @param[in] multiplier multiplier - * @param[in] shift left or right shift for 'val * multiplier' - * - * @return Returns (val * multiplier)/(2 ^ shift) - * - */ -__STATIC_FORCEINLINE q31_t riscv_nn_requantize(const q31_t val, const q31_t multiplier, const q31_t shift) -{ - return riscv_nn_divide_by_power_of_two(riscv_nn_sat_doubling_high_mult(val * (1 << LEFT_SHIFT(shift)), multiplier), - RIGHT_SHIFT(shift)); -} - -/** - @brief Read 2 q15 elements and post increment pointer. - @param[in] in_q15 Pointer to pointer that holds address of input. - @return q31 value - */ -__STATIC_FORCEINLINE q31_t riscv_nn_read_q15x2_ia(const q15_t **in_q15) -{ - q31_t val; - - memcpy(&val, *in_q15, 4); - *in_q15 += 2; - - return (val); -} - -/** - @brief Read 4 q7 from q7 pointer and post increment pointer. - @param[in] in_q7 Pointer to pointer that holds address of input. - @return q31 value - */ -__STATIC_FORCEINLINE q31_t riscv_nn_read_q7x4_ia(const q7_t **in_q7) -{ - q31_t val; - memcpy(&val, *in_q7, 4); - *in_q7 += 4; - - return (val); -} - -#ifdef __cplusplus -} -#endif - -#endif