3546 lines
		
	
	
		
			102 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3546 lines
		
	
	
		
			102 KiB
		
	
	
	
		
			C
		
	
	
	
/* Extended regular expression matching and search library.
 | 
						||
   Copyright (C) 2002, 2003 Free Software Foundation, Inc.
 | 
						||
   This file is part of the GNU C Library.
 | 
						||
   Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
 | 
						||
 | 
						||
   The GNU C Library is free software; you can redistribute it and/or
 | 
						||
   modify it under the terms of the GNU Lesser General Public
 | 
						||
   License as published by the Free Software Foundation; either
 | 
						||
   version 2.1 of the License, or (at your option) any later version.
 | 
						||
 | 
						||
   The GNU C Library is distributed in the hope that it will be useful,
 | 
						||
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						||
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						||
   Lesser General Public License for more details.
 | 
						||
 | 
						||
   You should have received a copy of the GNU Lesser General Public
 | 
						||
   License along with the GNU C Library; if not, write to the Free
 | 
						||
   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 | 
						||
   MA 02110-1301 USA.  */
 | 
						||
#pragma warning( disable : 4018 )
 | 
						||
 | 
						||
static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern,
 | 
						||
					  int length, reg_syntax_t syntax);
 | 
						||
static void re_compile_fastmap_iter (regex_t *bufp,
 | 
						||
				     const re_dfastate_t *init_state,
 | 
						||
				     char *fastmap);
 | 
						||
static reg_errcode_t init_dfa (re_dfa_t *dfa, int pat_len);
 | 
						||
static reg_errcode_t init_word_char (re_dfa_t *dfa);
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
static void free_charset (re_charset_t *cset);
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
static void free_workarea_compile (regex_t *preg);
 | 
						||
static reg_errcode_t create_initial_state (re_dfa_t *dfa);
 | 
						||
static reg_errcode_t analyze (re_dfa_t *dfa);
 | 
						||
static reg_errcode_t analyze_tree (re_dfa_t *dfa, bin_tree_t *node);
 | 
						||
static void calc_first (re_dfa_t *dfa, bin_tree_t *node);
 | 
						||
static void calc_next (re_dfa_t *dfa, bin_tree_t *node);
 | 
						||
static void calc_epsdest (re_dfa_t *dfa, bin_tree_t *node);
 | 
						||
static reg_errcode_t duplicate_node_closure (re_dfa_t *dfa, int top_org_node,
 | 
						||
					     int top_clone_node, int root_node,
 | 
						||
					     unsigned int constraint);
 | 
						||
static reg_errcode_t duplicate_node (int *new_idx, re_dfa_t *dfa, int org_idx,
 | 
						||
				     unsigned int constraint);
 | 
						||
static int search_duplicated_node (re_dfa_t *dfa, int org_node,
 | 
						||
				   unsigned int constraint);
 | 
						||
static reg_errcode_t calc_eclosure (re_dfa_t *dfa);
 | 
						||
static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa,
 | 
						||
					 int node, int root);
 | 
						||
static void calc_inveclosure (re_dfa_t *dfa);
 | 
						||
static int fetch_number (re_string_t *input, re_token_t *token,
 | 
						||
			 reg_syntax_t syntax);
 | 
						||
static re_token_t fetch_token (re_string_t *input, reg_syntax_t syntax);
 | 
						||
static int peek_token (re_token_t *token, re_string_t *input,
 | 
						||
			reg_syntax_t syntax);
 | 
						||
static int peek_token_bracket (re_token_t *token, re_string_t *input,
 | 
						||
			       reg_syntax_t syntax);
 | 
						||
static bin_tree_t *parse (re_string_t *regexp, regex_t *preg,
 | 
						||
			  reg_syntax_t syntax, reg_errcode_t *err);
 | 
						||
static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg,
 | 
						||
				  re_token_t *token, reg_syntax_t syntax,
 | 
						||
				  int nest, reg_errcode_t *err);
 | 
						||
static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg,
 | 
						||
				 re_token_t *token, reg_syntax_t syntax,
 | 
						||
				 int nest, reg_errcode_t *err);
 | 
						||
static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg,
 | 
						||
				     re_token_t *token, reg_syntax_t syntax,
 | 
						||
				     int nest, reg_errcode_t *err);
 | 
						||
static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg,
 | 
						||
				  re_token_t *token, reg_syntax_t syntax,
 | 
						||
				  int nest, reg_errcode_t *err);
 | 
						||
static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp,
 | 
						||
				 re_dfa_t *dfa, re_token_t *token,
 | 
						||
				 reg_syntax_t syntax, reg_errcode_t *err);
 | 
						||
static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa,
 | 
						||
				      re_token_t *token, reg_syntax_t syntax,
 | 
						||
				      reg_errcode_t *err);
 | 
						||
static reg_errcode_t parse_bracket_element (bracket_elem_t *elem,
 | 
						||
					    re_string_t *regexp,
 | 
						||
					    re_token_t *token, int token_len,
 | 
						||
					    re_dfa_t *dfa,
 | 
						||
					    reg_syntax_t syntax);
 | 
						||
static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem,
 | 
						||
					  re_string_t *regexp,
 | 
						||
					  re_token_t *token);
 | 
						||
#ifndef _LIBC
 | 
						||
# ifdef RE_ENABLE_I18N
 | 
						||
static reg_errcode_t build_range_exp (re_bitset_ptr_t sbcset,
 | 
						||
				      re_charset_t *mbcset, int *range_alloc,
 | 
						||
				      bracket_elem_t *start_elem,
 | 
						||
				      bracket_elem_t *end_elem);
 | 
						||
static reg_errcode_t build_collating_symbol (re_bitset_ptr_t sbcset,
 | 
						||
					     re_charset_t *mbcset,
 | 
						||
					     int *coll_sym_alloc,
 | 
						||
					     const unsigned char *name);
 | 
						||
# else /* not RE_ENABLE_I18N */
 | 
						||
static reg_errcode_t build_range_exp (re_bitset_ptr_t sbcset,
 | 
						||
				      bracket_elem_t *start_elem,
 | 
						||
				      bracket_elem_t *end_elem);
 | 
						||
static reg_errcode_t build_collating_symbol (re_bitset_ptr_t sbcset,
 | 
						||
					     const unsigned char *name);
 | 
						||
# endif /* not RE_ENABLE_I18N */
 | 
						||
#endif /* not _LIBC */
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
static reg_errcode_t build_equiv_class (re_bitset_ptr_t sbcset,
 | 
						||
					re_charset_t *mbcset,
 | 
						||
					int *equiv_class_alloc,
 | 
						||
					const unsigned char *name);
 | 
						||
static reg_errcode_t build_charclass (re_bitset_ptr_t sbcset,
 | 
						||
				      re_charset_t *mbcset,
 | 
						||
				      int *char_class_alloc,
 | 
						||
				      const unsigned char *class_name,
 | 
						||
				      reg_syntax_t syntax);
 | 
						||
#else  /* not RE_ENABLE_I18N */
 | 
						||
static reg_errcode_t build_equiv_class (re_bitset_ptr_t sbcset,
 | 
						||
					const unsigned char *name);
 | 
						||
static reg_errcode_t build_charclass (re_bitset_ptr_t sbcset,
 | 
						||
				      const unsigned char *class_name,
 | 
						||
				      reg_syntax_t syntax);
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
static bin_tree_t *build_word_op (re_dfa_t *dfa, int not, reg_errcode_t *err);
 | 
						||
static void free_bin_tree (bin_tree_t *tree);
 | 
						||
static bin_tree_t *create_tree (bin_tree_t *left, bin_tree_t *right,
 | 
						||
				re_token_type_t type, int index);
 | 
						||
static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa);
 | 
						||
 | 
						||
/* This table gives an error message for each of the error codes listed
 | 
						||
   in regex.h.  Obviously the order here has to be same as there.
 | 
						||
   POSIX doesn't require that we do anything for REG_NOERROR,
 | 
						||
   but why not be nice?  */
 | 
						||
 | 
						||
const char __re_error_msgid[] attribute_hidden =
 | 
						||
  {
 | 
						||
#define REG_NOERROR_IDX	0
 | 
						||
    gettext_noop ("Success")	/* REG_NOERROR */
 | 
						||
    "\0"
 | 
						||
#define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
 | 
						||
    gettext_noop ("No match")	/* REG_NOMATCH */
 | 
						||
    "\0"
 | 
						||
#define REG_BADPAT_IDX	(REG_NOMATCH_IDX + sizeof "No match")
 | 
						||
    gettext_noop ("Invalid regular expression") /* REG_BADPAT */
 | 
						||
    "\0"
 | 
						||
#define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
 | 
						||
    gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
 | 
						||
    "\0"
 | 
						||
#define REG_ECTYPE_IDX	(REG_ECOLLATE_IDX + sizeof "Invalid collation character")
 | 
						||
    gettext_noop ("Invalid character class name") /* REG_ECTYPE */
 | 
						||
    "\0"
 | 
						||
#define REG_EESCAPE_IDX	(REG_ECTYPE_IDX + sizeof "Invalid character class name")
 | 
						||
    gettext_noop ("Trailing backslash") /* REG_EESCAPE */
 | 
						||
    "\0"
 | 
						||
#define REG_ESUBREG_IDX	(REG_EESCAPE_IDX + sizeof "Trailing backslash")
 | 
						||
    gettext_noop ("Invalid back reference") /* REG_ESUBREG */
 | 
						||
    "\0"
 | 
						||
#define REG_EBRACK_IDX	(REG_ESUBREG_IDX + sizeof "Invalid back reference")
 | 
						||
    gettext_noop ("Unmatched [ or [^")	/* REG_EBRACK */
 | 
						||
    "\0"
 | 
						||
#define REG_EPAREN_IDX	(REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
 | 
						||
    gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
 | 
						||
    "\0"
 | 
						||
#define REG_EBRACE_IDX	(REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
 | 
						||
    gettext_noop ("Unmatched \\{") /* REG_EBRACE */
 | 
						||
    "\0"
 | 
						||
#define REG_BADBR_IDX	(REG_EBRACE_IDX + sizeof "Unmatched \\{")
 | 
						||
    gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
 | 
						||
    "\0"
 | 
						||
#define REG_ERANGE_IDX	(REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
 | 
						||
    gettext_noop ("Invalid range end")	/* REG_ERANGE */
 | 
						||
    "\0"
 | 
						||
#define REG_ESPACE_IDX	(REG_ERANGE_IDX + sizeof "Invalid range end")
 | 
						||
    gettext_noop ("Memory exhausted") /* REG_ESPACE */
 | 
						||
    "\0"
 | 
						||
#define REG_BADRPT_IDX	(REG_ESPACE_IDX + sizeof "Memory exhausted")
 | 
						||
    gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
 | 
						||
    "\0"
 | 
						||
#define REG_EEND_IDX	(REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
 | 
						||
    gettext_noop ("Premature end of regular expression") /* REG_EEND */
 | 
						||
    "\0"
 | 
						||
#define REG_ESIZE_IDX	(REG_EEND_IDX + sizeof "Premature end of regular expression")
 | 
						||
    gettext_noop ("Regular expression too big") /* REG_ESIZE */
 | 
						||
    "\0"
 | 
						||
#define REG_ERPAREN_IDX	(REG_ESIZE_IDX + sizeof "Regular expression too big")
 | 
						||
    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
 | 
						||
  };
 | 
						||
 | 
						||
const size_t __re_error_msgid_idx[] attribute_hidden =
 | 
						||
  {
 | 
						||
    REG_NOERROR_IDX,
 | 
						||
    REG_NOMATCH_IDX,
 | 
						||
    REG_BADPAT_IDX,
 | 
						||
    REG_ECOLLATE_IDX,
 | 
						||
    REG_ECTYPE_IDX,
 | 
						||
    REG_EESCAPE_IDX,
 | 
						||
    REG_ESUBREG_IDX,
 | 
						||
    REG_EBRACK_IDX,
 | 
						||
    REG_EPAREN_IDX,
 | 
						||
    REG_EBRACE_IDX,
 | 
						||
    REG_BADBR_IDX,
 | 
						||
    REG_ERANGE_IDX,
 | 
						||
    REG_ESPACE_IDX,
 | 
						||
    REG_BADRPT_IDX,
 | 
						||
    REG_EEND_IDX,
 | 
						||
    REG_ESIZE_IDX,
 | 
						||
    REG_ERPAREN_IDX
 | 
						||
  };
 | 
						||
 | 
						||
/* Entry points for GNU code.  */
 | 
						||
 | 
						||
/* re_compile_pattern is the GNU regular expression compiler: it
 | 
						||
   compiles PATTERN (of length LENGTH) and puts the result in BUFP.
 | 
						||
   Returns 0 if the pattern was valid, otherwise an error string.
 | 
						||
 | 
						||
   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
 | 
						||
   are set in BUFP on entry.  */
 | 
						||
 | 
						||
const char *
 | 
						||
re_compile_pattern (pattern, length, bufp)
 | 
						||
    const char *pattern;
 | 
						||
    size_t length;
 | 
						||
    struct re_pattern_buffer *bufp;
 | 
						||
{
 | 
						||
  reg_errcode_t ret;
 | 
						||
 | 
						||
  /* And GNU code determines whether or not to get register information
 | 
						||
     by passing null for the REGS argument to re_match, etc., not by
 | 
						||
     setting no_sub.  */
 | 
						||
  bufp->no_sub = 0;
 | 
						||
 | 
						||
  /* Match anchors at newline.  */
 | 
						||
  bufp->newline_anchor = 1;
 | 
						||
 | 
						||
  ret = re_compile_internal (bufp, pattern, (int)length, re_syntax_options);
 | 
						||
 | 
						||
  if (!ret)
 | 
						||
    return NULL;
 | 
						||
  return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
 | 
						||
}
 | 
						||
#ifdef _LIBC
 | 
						||
weak_alias (__re_compile_pattern, re_compile_pattern)
 | 
						||
#endif
 | 
						||
 | 
						||
/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
 | 
						||
   also be assigned to arbitrarily: each pattern buffer stores its own
 | 
						||
   syntax, so it can be changed between regex compilations.  */
 | 
						||
/* This has no initializer because initialized variables in Emacs
 | 
						||
   become read-only after dumping.  */
 | 
						||
reg_syntax_t re_syntax_options;
 | 
						||
 | 
						||
 | 
						||
/* Specify the precise syntax of regexps for compilation.  This provides
 | 
						||
   for compatibility for various utilities which historically have
 | 
						||
   different, incompatible syntaxes.
 | 
						||
 | 
						||
   The argument SYNTAX is a bit mask comprised of the various bits
 | 
						||
   defined in regex.h.  We return the old syntax.  */
 | 
						||
 | 
						||
reg_syntax_t
 | 
						||
re_set_syntax (syntax)
 | 
						||
    reg_syntax_t syntax;
 | 
						||
{
 | 
						||
  reg_syntax_t ret = re_syntax_options;
 | 
						||
 | 
						||
  re_syntax_options = syntax;
 | 
						||
  return ret;
 | 
						||
}
 | 
						||
#ifdef _LIBC
 | 
						||
weak_alias (__re_set_syntax, re_set_syntax)
 | 
						||
#endif
 | 
						||
 | 
						||
int
 | 
						||
re_compile_fastmap (bufp)
 | 
						||
    struct re_pattern_buffer *bufp;
 | 
						||
{
 | 
						||
  re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
 | 
						||
  char *fastmap = bufp->fastmap;
 | 
						||
 | 
						||
  memset (fastmap, '\0', sizeof (char) * SBC_MAX);
 | 
						||
  re_compile_fastmap_iter (bufp, dfa->init_state, fastmap);
 | 
						||
  if (dfa->init_state != dfa->init_state_word)
 | 
						||
    re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap);
 | 
						||
  if (dfa->init_state != dfa->init_state_nl)
 | 
						||
    re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap);
 | 
						||
  if (dfa->init_state != dfa->init_state_begbuf)
 | 
						||
    re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap);
 | 
						||
  bufp->fastmap_accurate = 1;
 | 
						||
  return 0;
 | 
						||
}
 | 
						||
#ifdef _LIBC
 | 
						||
weak_alias (__re_compile_fastmap, re_compile_fastmap)
 | 
						||
#endif
 | 
						||
 | 
						||
static inline void
 | 
						||
re_set_fastmap (char *fastmap, int icase, int ch)
 | 
						||
{
 | 
						||
  fastmap[ch] = 1;
 | 
						||
  if (icase)
 | 
						||
    fastmap[tolower (ch)] = 1;
 | 
						||
}
 | 
						||
 | 
						||
/* Helper function for re_compile_fastmap.
 | 
						||
   Compile fastmap for the initial_state INIT_STATE.  */
 | 
						||
 | 
						||
static void
 | 
						||
re_compile_fastmap_iter (bufp, init_state, fastmap)
 | 
						||
     regex_t *bufp;
 | 
						||
     const re_dfastate_t *init_state;
 | 
						||
     char *fastmap;
 | 
						||
{
 | 
						||
  re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
 | 
						||
  int node_cnt;
 | 
						||
  int icase = (MB_CUR_MAX == 1 && (bufp->syntax & RE_ICASE));
 | 
						||
  for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt)
 | 
						||
    {
 | 
						||
      int node = init_state->nodes.elems[node_cnt];
 | 
						||
      re_token_type_t type = dfa->nodes[node].type;
 | 
						||
 | 
						||
      if (type == CHARACTER)
 | 
						||
	re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c);
 | 
						||
      else if (type == SIMPLE_BRACKET)
 | 
						||
	{
 | 
						||
	  int i, j, ch;
 | 
						||
	  for (i = 0, ch = 0; i < BITSET_UINTS; ++i)
 | 
						||
	    for (j = 0; j < UINT_BITS; ++j, ++ch)
 | 
						||
	      if (dfa->nodes[node].opr.sbcset[i] & (1 << j))
 | 
						||
		re_set_fastmap (fastmap, icase, ch);
 | 
						||
	}
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      else if (type == COMPLEX_BRACKET)
 | 
						||
	{
 | 
						||
	  int i;
 | 
						||
	  re_charset_t *cset = dfa->nodes[node].opr.mbcset;
 | 
						||
	  if (cset->non_match || cset->ncoll_syms || cset->nequiv_classes
 | 
						||
	      || cset->nranges || cset->nchar_classes)
 | 
						||
	    {
 | 
						||
# ifdef _LIBC
 | 
						||
	      if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0)
 | 
						||
		{
 | 
						||
		  /* In this case we want to catch the bytes which are
 | 
						||
		     the first byte of any collation elements.
 | 
						||
		     e.g. In da_DK, we want to catch 'a' since "aa"
 | 
						||
			  is a valid collation element, and don't catch
 | 
						||
			  'b' since 'b' is the only collation element
 | 
						||
			  which starts from 'b'.  */
 | 
						||
		  int j, ch;
 | 
						||
		  const int32_t *table = (const int32_t *)
 | 
						||
		    _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
 | 
						||
		  for (i = 0, ch = 0; i < BITSET_UINTS; ++i)
 | 
						||
		    for (j = 0; j < UINT_BITS; ++j, ++ch)
 | 
						||
		      if (table[ch] < 0)
 | 
						||
			re_set_fastmap (fastmap, icase, ch);
 | 
						||
		}
 | 
						||
# else
 | 
						||
	      if (MB_CUR_MAX > 1)
 | 
						||
		for (i = 0; i < SBC_MAX; ++i)
 | 
						||
		  if (__btowc (i) == WEOF)
 | 
						||
		    re_set_fastmap (fastmap, icase, i);
 | 
						||
# endif /* not _LIBC */
 | 
						||
	    }
 | 
						||
	  for (i = 0; i < cset->nmbchars; ++i)
 | 
						||
	    {
 | 
						||
	      char buf[256];
 | 
						||
	      mbstate_t state;
 | 
						||
	      memset (&state, '\0', sizeof (state));
 | 
						||
	      __wcrtomb (buf, cset->mbchars[i], &state);
 | 
						||
	      re_set_fastmap (fastmap, icase, *(unsigned char *) buf);
 | 
						||
	    }
 | 
						||
	}
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
      else if (type == END_OF_RE || type == OP_PERIOD)
 | 
						||
	{
 | 
						||
	  memset (fastmap, '\1', sizeof (char) * SBC_MAX);
 | 
						||
	  if (type == END_OF_RE)
 | 
						||
	    bufp->can_be_null = 1;
 | 
						||
	  return;
 | 
						||
	}
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
/* Entry point for POSIX code.  */
 | 
						||
/* regcomp takes a regular expression as a string and compiles it.
 | 
						||
 | 
						||
   PREG is a regex_t *.  We do not expect any fields to be initialized,
 | 
						||
   since POSIX says we shouldn't.  Thus, we set
 | 
						||
 | 
						||
     `buffer' to the compiled pattern;
 | 
						||
     `used' to the length of the compiled pattern;
 | 
						||
     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
 | 
						||
       REG_EXTENDED bit in CFLAGS is set; otherwise, to
 | 
						||
       RE_SYNTAX_POSIX_BASIC;
 | 
						||
     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
 | 
						||
     `fastmap' to an allocated space for the fastmap;
 | 
						||
     `fastmap_accurate' to zero;
 | 
						||
     `re_nsub' to the number of subexpressions in PATTERN.
 | 
						||
 | 
						||
   PATTERN is the address of the pattern string.
 | 
						||
 | 
						||
   CFLAGS is a series of bits which affect compilation.
 | 
						||
 | 
						||
     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
 | 
						||
     use POSIX basic syntax.
 | 
						||
 | 
						||
     If REG_NEWLINE is set, then . and [^...] don't match newline.
 | 
						||
     Also, regexec will try a match beginning after every newline.
 | 
						||
 | 
						||
     If REG_ICASE is set, then we considers upper- and lowercase
 | 
						||
     versions of letters to be equivalent when matching.
 | 
						||
 | 
						||
     If REG_NOSUB is set, then when PREG is passed to regexec, that
 | 
						||
     routine will report only success or failure, and nothing about the
 | 
						||
     registers.
 | 
						||
 | 
						||
   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
 | 
						||
   the return codes and their meanings.)  */
 | 
						||
 | 
						||
int
 | 
						||
regcomp (preg, pattern, cflags)
 | 
						||
    regex_t *__restrict preg;
 | 
						||
    const char *__restrict pattern;
 | 
						||
    int cflags;
 | 
						||
{
 | 
						||
  reg_errcode_t ret;
 | 
						||
  reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED
 | 
						||
			 : RE_SYNTAX_POSIX_BASIC);
 | 
						||
 | 
						||
  preg->buffer = NULL;
 | 
						||
  preg->allocated = 0;
 | 
						||
  preg->used = 0;
 | 
						||
 | 
						||
  /* Try to allocate space for the fastmap.  */
 | 
						||
  preg->fastmap = re_malloc (char, SBC_MAX);
 | 
						||
  if (BE (preg->fastmap == NULL, 0))
 | 
						||
    return REG_ESPACE;
 | 
						||
 | 
						||
  syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0;
 | 
						||
 | 
						||
  /* If REG_NEWLINE is set, newlines are treated differently.  */
 | 
						||
  if (cflags & REG_NEWLINE)
 | 
						||
    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
 | 
						||
      syntax &= ~RE_DOT_NEWLINE;
 | 
						||
      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
 | 
						||
      /* It also changes the matching behavior.  */
 | 
						||
      preg->newline_anchor = 1;
 | 
						||
    }
 | 
						||
  else
 | 
						||
    preg->newline_anchor = 0;
 | 
						||
  preg->no_sub = !!(cflags & REG_NOSUB);
 | 
						||
  preg->translate = NULL;
 | 
						||
 | 
						||
  ret = re_compile_internal(preg, pattern, (int)strlen(pattern), syntax);
 | 
						||
 | 
						||
  /* POSIX doesn't distinguish between an unmatched open-group and an
 | 
						||
     unmatched close-group: both are REG_EPAREN.  */
 | 
						||
  if (ret == REG_ERPAREN)
 | 
						||
    ret = REG_EPAREN;
 | 
						||
 | 
						||
  /* We have already checked preg->fastmap != NULL.  */
 | 
						||
  if (BE (ret == REG_NOERROR, 1))
 | 
						||
    /* Compute the fastmap now, since regexec cannot modify the pattern
 | 
						||
       buffer.  This function nevers fails in this implementation.  */
 | 
						||
    (void) re_compile_fastmap (preg);
 | 
						||
  else
 | 
						||
    {
 | 
						||
      /* Some error occurred while compiling the expression.  */
 | 
						||
      re_free (preg->fastmap);
 | 
						||
      preg->fastmap = NULL;
 | 
						||
    }
 | 
						||
 | 
						||
  return (int) ret;
 | 
						||
}
 | 
						||
#ifdef _LIBC
 | 
						||
weak_alias (__regcomp, regcomp)
 | 
						||
#endif
 | 
						||
 | 
						||
/* Returns a message corresponding to an error code, ERRCODE, returned
 | 
						||
   from either regcomp or regexec.   We don't use PREG here.  */
 | 
						||
 | 
						||
size_t
 | 
						||
regerror (errcode, preg, errbuf, errbuf_size)
 | 
						||
    int errcode;
 | 
						||
    const regex_t *preg;
 | 
						||
    char *errbuf;
 | 
						||
    size_t errbuf_size;
 | 
						||
{
 | 
						||
  const char *msg;
 | 
						||
  size_t msg_size;
 | 
						||
 | 
						||
  if (BE (errcode < 0
 | 
						||
	  || errcode >= (int) (sizeof (__re_error_msgid_idx)
 | 
						||
			       / sizeof (__re_error_msgid_idx[0])), 0))
 | 
						||
    /* Only error codes returned by the rest of the code should be passed
 | 
						||
       to this routine.  If we are given anything else, or if other regex
 | 
						||
       code generates an invalid error code, then the program has a bug.
 | 
						||
       Dump core so we can fix it.  */
 | 
						||
    abort ();
 | 
						||
 | 
						||
  msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]);
 | 
						||
 | 
						||
  msg_size = strlen (msg) + 1; /* Includes the null.  */
 | 
						||
 | 
						||
  if (BE (errbuf_size != 0, 1))
 | 
						||
    {
 | 
						||
      if (BE (msg_size > errbuf_size, 0))
 | 
						||
	{
 | 
						||
#if defined HAVE_MEMPCPY || defined _LIBC
 | 
						||
	  *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
 | 
						||
#else
 | 
						||
	  memcpy (errbuf, msg, errbuf_size - 1);
 | 
						||
	  errbuf[errbuf_size - 1] = 0;
 | 
						||
#endif
 | 
						||
	}
 | 
						||
      else
 | 
						||
	memcpy (errbuf, msg, msg_size);
 | 
						||
    }
 | 
						||
 | 
						||
  return msg_size;
 | 
						||
}
 | 
						||
#ifdef _LIBC
 | 
						||
weak_alias (__regerror, regerror)
 | 
						||
#endif
 | 
						||
 | 
						||
 | 
						||
static void
 | 
						||
free_dfa_content (re_dfa_t *dfa)
 | 
						||
{
 | 
						||
  int i, j;
 | 
						||
 | 
						||
  re_free (dfa->subexps);
 | 
						||
 | 
						||
  for (i = 0; i < dfa->nodes_len; ++i)
 | 
						||
    {
 | 
						||
      re_token_t *node = dfa->nodes + i;
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      if (node->type == COMPLEX_BRACKET && node->duplicated == 0)
 | 
						||
	free_charset (node->opr.mbcset);
 | 
						||
      else
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
	if (node->type == SIMPLE_BRACKET && node->duplicated == 0)
 | 
						||
	  re_free (node->opr.sbcset);
 | 
						||
    }
 | 
						||
  re_free (dfa->nexts);
 | 
						||
  for (i = 0; i < dfa->nodes_len; ++i)
 | 
						||
    {
 | 
						||
      if (dfa->eclosures != NULL)
 | 
						||
	re_node_set_free (dfa->eclosures + i);
 | 
						||
      if (dfa->inveclosures != NULL)
 | 
						||
	re_node_set_free (dfa->inveclosures + i);
 | 
						||
      if (dfa->edests != NULL)
 | 
						||
	re_node_set_free (dfa->edests + i);
 | 
						||
    }
 | 
						||
  re_free (dfa->edests);
 | 
						||
  re_free (dfa->eclosures);
 | 
						||
  re_free (dfa->inveclosures);
 | 
						||
  re_free (dfa->nodes);
 | 
						||
 | 
						||
  for (i = 0; i <= dfa->state_hash_mask; ++i)
 | 
						||
    {
 | 
						||
      struct re_state_table_entry *entry = dfa->state_table + i;
 | 
						||
      for (j = 0; j < entry->num; ++j)
 | 
						||
	{
 | 
						||
	  re_dfastate_t *state = entry->array[j];
 | 
						||
	  free_state (state);
 | 
						||
	}
 | 
						||
      re_free (entry->array);
 | 
						||
    }
 | 
						||
  re_free (dfa->state_table);
 | 
						||
 | 
						||
  if (dfa->word_char != NULL)
 | 
						||
    re_free (dfa->word_char);
 | 
						||
#ifdef DEBUG
 | 
						||
  re_free (dfa->re_str);
 | 
						||
#endif
 | 
						||
 | 
						||
  re_free (dfa);
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/* Free dynamically allocated space used by PREG.  */
 | 
						||
 | 
						||
void
 | 
						||
regfree (preg)
 | 
						||
    regex_t *preg;
 | 
						||
{
 | 
						||
  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | 
						||
  if (BE (dfa != NULL, 1))
 | 
						||
    free_dfa_content (dfa);
 | 
						||
 | 
						||
  re_free (preg->fastmap);
 | 
						||
}
 | 
						||
#ifdef _LIBC
 | 
						||
weak_alias (__regfree, regfree)
 | 
						||
#endif
 | 
						||
 | 
						||
/* Entry points compatible with 4.2 BSD regex library.  We don't define
 | 
						||
   them unless specifically requested.  */
 | 
						||
 | 
						||
#if defined _REGEX_RE_COMP || defined _LIBC
 | 
						||
 | 
						||
/* BSD has one and only one pattern buffer.  */
 | 
						||
static struct re_pattern_buffer re_comp_buf;
 | 
						||
 | 
						||
char *
 | 
						||
# ifdef _LIBC
 | 
						||
/* Make these definitions weak in libc, so POSIX programs can redefine
 | 
						||
   these names if they don't use our functions, and still use
 | 
						||
   regcomp/regexec above without link errors.  */
 | 
						||
weak_function
 | 
						||
# endif
 | 
						||
re_comp (s)
 | 
						||
     const char *s;
 | 
						||
{
 | 
						||
  reg_errcode_t ret;
 | 
						||
  char *fastmap;
 | 
						||
 | 
						||
  if (!s)
 | 
						||
    {
 | 
						||
      if (!re_comp_buf.buffer)
 | 
						||
	return gettext ("No previous regular expression");
 | 
						||
      return 0;
 | 
						||
    }
 | 
						||
 | 
						||
  if (re_comp_buf.buffer)
 | 
						||
    {
 | 
						||
      fastmap = re_comp_buf.fastmap;
 | 
						||
      re_comp_buf.fastmap = NULL;
 | 
						||
      __regfree (&re_comp_buf);
 | 
						||
      memset (&re_comp_buf, '\0', sizeof (re_comp_buf));
 | 
						||
      re_comp_buf.fastmap = fastmap;
 | 
						||
    }
 | 
						||
 | 
						||
  if (re_comp_buf.fastmap == NULL)
 | 
						||
    {
 | 
						||
      re_comp_buf.fastmap = (char *) malloc (SBC_MAX);
 | 
						||
      if (re_comp_buf.fastmap == NULL)
 | 
						||
	return (char *) gettext (__re_error_msgid
 | 
						||
				 + __re_error_msgid_idx[(int) REG_ESPACE]);
 | 
						||
    }
 | 
						||
 | 
						||
  /* Since `re_exec' always passes NULL for the `regs' argument, we
 | 
						||
     don't need to initialize the pattern buffer fields which affect it.  */
 | 
						||
 | 
						||
  /* Match anchors at newlines.  */
 | 
						||
  re_comp_buf.newline_anchor = 1;
 | 
						||
 | 
						||
  ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options);
 | 
						||
 | 
						||
  if (!ret)
 | 
						||
    return NULL;
 | 
						||
 | 
						||
  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
 | 
						||
  return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
 | 
						||
}
 | 
						||
 | 
						||
#ifdef _LIBC
 | 
						||
libc_freeres_fn (free_mem)
 | 
						||
{
 | 
						||
  __regfree (&re_comp_buf);
 | 
						||
}
 | 
						||
#endif
 | 
						||
 | 
						||
#endif /* _REGEX_RE_COMP */
 | 
						||
 | 
						||
/* Internal entry point.
 | 
						||
   Compile the regular expression PATTERN, whose length is LENGTH.
 | 
						||
   SYNTAX indicate regular expression's syntax.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_compile_internal (preg, pattern, length, syntax)
 | 
						||
     regex_t *preg;
 | 
						||
     const char * pattern;
 | 
						||
     int length;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
{
 | 
						||
  reg_errcode_t err = REG_NOERROR;
 | 
						||
  re_dfa_t *dfa;
 | 
						||
  re_string_t regexp;
 | 
						||
 | 
						||
  /* Initialize the pattern buffer.  */
 | 
						||
  preg->fastmap_accurate = 0;
 | 
						||
  preg->syntax = syntax;
 | 
						||
  preg->not_bol = preg->not_eol = 0;
 | 
						||
  preg->used = 0;
 | 
						||
  preg->re_nsub = 0;
 | 
						||
  preg->can_be_null = 0;
 | 
						||
  preg->regs_allocated = REGS_UNALLOCATED;
 | 
						||
 | 
						||
  /* Initialize the dfa.  */
 | 
						||
  dfa = (re_dfa_t *) preg->buffer;
 | 
						||
  if (preg->allocated < sizeof (re_dfa_t))
 | 
						||
    {
 | 
						||
      /* If zero allocated, but buffer is non-null, try to realloc
 | 
						||
	 enough space.  This loses if buffer's address is bogus, but
 | 
						||
	 that is the user's responsibility.  If ->buffer is NULL this
 | 
						||
	 is a simple allocation.  */
 | 
						||
      dfa = re_realloc (preg->buffer, re_dfa_t, 1);
 | 
						||
      if (dfa == NULL)
 | 
						||
	return REG_ESPACE;
 | 
						||
      preg->allocated = sizeof (re_dfa_t);
 | 
						||
    }
 | 
						||
  preg->buffer = (unsigned char *) dfa;
 | 
						||
  preg->used = sizeof (re_dfa_t);
 | 
						||
 | 
						||
  err = init_dfa (dfa, length);
 | 
						||
  if (BE (err != REG_NOERROR, 0))
 | 
						||
    {
 | 
						||
      re_free (dfa);
 | 
						||
      preg->buffer = NULL;
 | 
						||
      preg->allocated = 0;
 | 
						||
      return err;
 | 
						||
    }
 | 
						||
#ifdef DEBUG
 | 
						||
  dfa->re_str = re_malloc (char, length + 1);
 | 
						||
  strncpy (dfa->re_str, pattern, length + 1);
 | 
						||
#endif
 | 
						||
 | 
						||
  err = re_string_construct (®exp, pattern, length, preg->translate,
 | 
						||
			     syntax & RE_ICASE);
 | 
						||
  if (BE (err != REG_NOERROR, 0))
 | 
						||
    {
 | 
						||
      re_free (dfa);
 | 
						||
      preg->buffer = NULL;
 | 
						||
      preg->allocated = 0;
 | 
						||
      return err;
 | 
						||
    }
 | 
						||
 | 
						||
  /* Parse the regular expression, and build a structure tree.  */
 | 
						||
  preg->re_nsub = 0;
 | 
						||
  dfa->str_tree = parse (®exp, preg, syntax, &err);
 | 
						||
  if (BE (dfa->str_tree == NULL, 0))
 | 
						||
    goto re_compile_internal_free_return;
 | 
						||
 | 
						||
  /* Analyze the tree and collect information which is necessary to
 | 
						||
     create the dfa.  */
 | 
						||
  err = analyze (dfa);
 | 
						||
  if (BE (err != REG_NOERROR, 0))
 | 
						||
    goto re_compile_internal_free_return;
 | 
						||
 | 
						||
  /* Then create the initial state of the dfa.  */
 | 
						||
  err = create_initial_state (dfa);
 | 
						||
 | 
						||
  /* Release work areas.  */
 | 
						||
  free_workarea_compile (preg);
 | 
						||
  re_string_destruct (®exp);
 | 
						||
 | 
						||
  if (BE (err != REG_NOERROR, 0))
 | 
						||
    {
 | 
						||
    re_compile_internal_free_return:
 | 
						||
      free_dfa_content (dfa);
 | 
						||
      preg->buffer = NULL;
 | 
						||
      preg->allocated = 0;
 | 
						||
    }
 | 
						||
 | 
						||
  return err;
 | 
						||
}
 | 
						||
 | 
						||
/* Initialize DFA.  We use the length of the regular expression PAT_LEN
 | 
						||
   as the initial length of some arrays.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
init_dfa (dfa, pat_len)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     int pat_len;
 | 
						||
{
 | 
						||
  int table_size;
 | 
						||
 | 
						||
  memset (dfa, '\0', sizeof (re_dfa_t));
 | 
						||
 | 
						||
  dfa->nodes_alloc = pat_len + 1;
 | 
						||
  dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc);
 | 
						||
 | 
						||
  dfa->states_alloc = pat_len + 1;
 | 
						||
 | 
						||
  /*  table_size = 2 ^ ceil(log pat_len) */
 | 
						||
  for (table_size = 1; table_size > 0; table_size <<= 1)
 | 
						||
    if (table_size > pat_len)
 | 
						||
      break;
 | 
						||
 | 
						||
  dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size);
 | 
						||
  dfa->state_hash_mask = table_size - 1;
 | 
						||
 | 
						||
  dfa->subexps_alloc = 1;
 | 
						||
  dfa->subexps = re_malloc (re_subexp_t, dfa->subexps_alloc);
 | 
						||
  dfa->word_char = NULL;
 | 
						||
 | 
						||
  if (BE (dfa->nodes == NULL || dfa->state_table == NULL
 | 
						||
	  || dfa->subexps == NULL, 0))
 | 
						||
    {
 | 
						||
      /* We don't bother to free anything which was allocated.  Very
 | 
						||
	 soon the process will go down anyway.  */
 | 
						||
      dfa->subexps = NULL;
 | 
						||
      dfa->state_table = NULL;
 | 
						||
      dfa->nodes = NULL;
 | 
						||
      return REG_ESPACE;
 | 
						||
    }
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Initialize WORD_CHAR table, which indicate which character is
 | 
						||
   "word".  In this case "word" means that it is the word construction
 | 
						||
   character used by some operators like "\<", "\>", etc.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
init_word_char (dfa)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
{
 | 
						||
  int i, j, ch;
 | 
						||
  dfa->word_char = (re_bitset_ptr_t) calloc (sizeof (bitset), 1);
 | 
						||
  if (BE (dfa->word_char == NULL, 0))
 | 
						||
    return REG_ESPACE;
 | 
						||
  for (i = 0, ch = 0; i < BITSET_UINTS; ++i)
 | 
						||
    for (j = 0; j < UINT_BITS; ++j, ++ch)
 | 
						||
      if (isalnum (ch) || ch == '_')
 | 
						||
	dfa->word_char[i] |= 1 << j;
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Free the work area which are only used while compiling.  */
 | 
						||
 | 
						||
static void
 | 
						||
free_workarea_compile (preg)
 | 
						||
     regex_t *preg;
 | 
						||
{
 | 
						||
  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | 
						||
  free_bin_tree (dfa->str_tree);
 | 
						||
  dfa->str_tree = NULL;
 | 
						||
  re_free (dfa->org_indices);
 | 
						||
  dfa->org_indices = NULL;
 | 
						||
}
 | 
						||
 | 
						||
/* Create initial states for all contexts.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
create_initial_state (dfa)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
{
 | 
						||
  int first, i;
 | 
						||
  reg_errcode_t err;
 | 
						||
  re_node_set init_nodes;
 | 
						||
 | 
						||
  /* Initial states have the epsilon closure of the node which is
 | 
						||
     the first node of the regular expression.  */
 | 
						||
  first = dfa->str_tree->first;
 | 
						||
  dfa->init_node = first;
 | 
						||
  err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first);
 | 
						||
  if (BE (err != REG_NOERROR, 0))
 | 
						||
    return err;
 | 
						||
 | 
						||
  /* The back-references which are in initial states can epsilon transit,
 | 
						||
     since in this case all of the subexpressions can be null.
 | 
						||
     Then we add epsilon closures of the nodes which are the next nodes of
 | 
						||
     the back-references.  */
 | 
						||
  if (dfa->nbackref > 0)
 | 
						||
    for (i = 0; i < init_nodes.nelem; ++i)
 | 
						||
      {
 | 
						||
	int node_idx = init_nodes.elems[i];
 | 
						||
	re_token_type_t type = dfa->nodes[node_idx].type;
 | 
						||
 | 
						||
	int clexp_idx;
 | 
						||
	if (type != OP_BACK_REF)
 | 
						||
	  continue;
 | 
						||
	for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx)
 | 
						||
	  {
 | 
						||
	    re_token_t *clexp_node;
 | 
						||
	    clexp_node = dfa->nodes + init_nodes.elems[clexp_idx];
 | 
						||
	    if (clexp_node->type == OP_CLOSE_SUBEXP
 | 
						||
		&& clexp_node->opr.idx + 1 == dfa->nodes[node_idx].opr.idx)
 | 
						||
	      break;
 | 
						||
	  }
 | 
						||
	if (clexp_idx == init_nodes.nelem)
 | 
						||
	  continue;
 | 
						||
 | 
						||
	if (type == OP_BACK_REF)
 | 
						||
	  {
 | 
						||
	    int dest_idx = dfa->edests[node_idx].elems[0];
 | 
						||
	    if (!re_node_set_contains (&init_nodes, dest_idx))
 | 
						||
	      {
 | 
						||
		re_node_set_merge (&init_nodes, dfa->eclosures + dest_idx);
 | 
						||
		i = 0;
 | 
						||
	      }
 | 
						||
	  }
 | 
						||
      }
 | 
						||
 | 
						||
  /* It must be the first time to invoke acquire_state.  */
 | 
						||
  dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0);
 | 
						||
  /* We don't check ERR here, since the initial state must not be NULL.  */
 | 
						||
  if (BE (dfa->init_state == NULL, 0))
 | 
						||
    return err;
 | 
						||
  if (dfa->init_state->has_constraint)
 | 
						||
    {
 | 
						||
      dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes,
 | 
						||
						       CONTEXT_WORD);
 | 
						||
      dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes,
 | 
						||
						     CONTEXT_NEWLINE);
 | 
						||
      dfa->init_state_begbuf = re_acquire_state_context (&err, dfa,
 | 
						||
							 &init_nodes,
 | 
						||
							 CONTEXT_NEWLINE
 | 
						||
							 | CONTEXT_BEGBUF);
 | 
						||
      if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL
 | 
						||
	      || dfa->init_state_begbuf == NULL, 0))
 | 
						||
	return err;
 | 
						||
    }
 | 
						||
  else
 | 
						||
    dfa->init_state_word = dfa->init_state_nl
 | 
						||
      = dfa->init_state_begbuf = dfa->init_state;
 | 
						||
 | 
						||
  re_node_set_free (&init_nodes);
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Analyze the structure tree, and calculate "first", "next", "edest",
 | 
						||
   "eclosure", and "inveclosure".  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
analyze (dfa)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
{
 | 
						||
  int i;
 | 
						||
  reg_errcode_t ret;
 | 
						||
 | 
						||
  /* Allocate arrays.  */
 | 
						||
  dfa->nexts = re_malloc (int, dfa->nodes_alloc);
 | 
						||
  dfa->org_indices = re_malloc (int, dfa->nodes_alloc);
 | 
						||
  dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc);
 | 
						||
  dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc);
 | 
						||
  dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_alloc);
 | 
						||
  if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL
 | 
						||
	  || dfa->eclosures == NULL || dfa->inveclosures == NULL, 0))
 | 
						||
    return REG_ESPACE;
 | 
						||
  /* Initialize them.  */
 | 
						||
  for (i = 0; i < dfa->nodes_len; ++i)
 | 
						||
    {
 | 
						||
      dfa->nexts[i] = -1;
 | 
						||
      re_node_set_init_empty (dfa->edests + i);
 | 
						||
      re_node_set_init_empty (dfa->eclosures + i);
 | 
						||
      re_node_set_init_empty (dfa->inveclosures + i);
 | 
						||
    }
 | 
						||
 | 
						||
  ret = analyze_tree (dfa, dfa->str_tree);
 | 
						||
  if (BE (ret == REG_NOERROR, 1))
 | 
						||
    {
 | 
						||
      ret = calc_eclosure (dfa);
 | 
						||
      if (ret == REG_NOERROR)
 | 
						||
	calc_inveclosure (dfa);
 | 
						||
    }
 | 
						||
  return ret;
 | 
						||
}
 | 
						||
 | 
						||
/* Helper functions for analyze.
 | 
						||
   This function calculate "first", "next", and "edest" for the subtree
 | 
						||
   whose root is NODE.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
analyze_tree (dfa, node)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     bin_tree_t *node;
 | 
						||
{
 | 
						||
  reg_errcode_t ret;
 | 
						||
  if (node->first == -1)
 | 
						||
    calc_first (dfa, node);
 | 
						||
  if (node->next == -1)
 | 
						||
    calc_next (dfa, node);
 | 
						||
  if (node->eclosure.nelem == 0)
 | 
						||
    calc_epsdest (dfa, node);
 | 
						||
  /* Calculate "first" etc. for the left child.  */
 | 
						||
  if (node->left != NULL)
 | 
						||
    {
 | 
						||
      ret = analyze_tree (dfa, node->left);
 | 
						||
      if (BE (ret != REG_NOERROR, 0))
 | 
						||
	return ret;
 | 
						||
    }
 | 
						||
  /* Calculate "first" etc. for the right child.  */
 | 
						||
  if (node->right != NULL)
 | 
						||
    {
 | 
						||
      ret = analyze_tree (dfa, node->right);
 | 
						||
      if (BE (ret != REG_NOERROR, 0))
 | 
						||
	return ret;
 | 
						||
    }
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Calculate "first" for the node NODE.  */
 | 
						||
static void
 | 
						||
calc_first (dfa, node)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     bin_tree_t *node;
 | 
						||
{
 | 
						||
  int idx, type;
 | 
						||
  idx = node->node_idx;
 | 
						||
  type = (node->type == 0) ? dfa->nodes[idx].type : node->type;
 | 
						||
 | 
						||
  switch (type)
 | 
						||
    {
 | 
						||
#ifdef DEBUG
 | 
						||
    case OP_OPEN_BRACKET:
 | 
						||
    case OP_CLOSE_BRACKET:
 | 
						||
    case OP_OPEN_DUP_NUM:
 | 
						||
    case OP_CLOSE_DUP_NUM:
 | 
						||
    case OP_NON_MATCH_LIST:
 | 
						||
    case OP_OPEN_COLL_ELEM:
 | 
						||
    case OP_CLOSE_COLL_ELEM:
 | 
						||
    case OP_OPEN_EQUIV_CLASS:
 | 
						||
    case OP_CLOSE_EQUIV_CLASS:
 | 
						||
    case OP_OPEN_CHAR_CLASS:
 | 
						||
    case OP_CLOSE_CHAR_CLASS:
 | 
						||
      /* These must not be appeared here.  */
 | 
						||
      assert (0);
 | 
						||
#endif
 | 
						||
    case END_OF_RE:
 | 
						||
    case CHARACTER:
 | 
						||
    case OP_PERIOD:
 | 
						||
    case OP_DUP_ASTERISK:
 | 
						||
    case OP_DUP_QUESTION:
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
    case COMPLEX_BRACKET:
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
    case SIMPLE_BRACKET:
 | 
						||
    case OP_BACK_REF:
 | 
						||
    case ANCHOR:
 | 
						||
    case OP_OPEN_SUBEXP:
 | 
						||
    case OP_CLOSE_SUBEXP:
 | 
						||
      node->first = idx;
 | 
						||
      break;
 | 
						||
    case OP_DUP_PLUS:
 | 
						||
#ifdef DEBUG
 | 
						||
      assert (node->left != NULL);
 | 
						||
#endif
 | 
						||
      if (node->left->first == -1)
 | 
						||
	calc_first (dfa, node->left);
 | 
						||
      node->first = node->left->first;
 | 
						||
      break;
 | 
						||
    case OP_ALT:
 | 
						||
      node->first = idx;
 | 
						||
      break;
 | 
						||
      /* else fall through */
 | 
						||
    default:
 | 
						||
#ifdef DEBUG
 | 
						||
      assert (node->left != NULL);
 | 
						||
#endif
 | 
						||
      if (node->left->first == -1)
 | 
						||
	calc_first (dfa, node->left);
 | 
						||
      node->first = node->left->first;
 | 
						||
      break;
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
/* Calculate "next" for the node NODE.  */
 | 
						||
 | 
						||
static void
 | 
						||
calc_next (dfa, node)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     bin_tree_t *node;
 | 
						||
{
 | 
						||
  int idx, type;
 | 
						||
  bin_tree_t *parent = node->parent;
 | 
						||
  if (parent == NULL)
 | 
						||
    {
 | 
						||
      node->next = -1;
 | 
						||
      idx = node->node_idx;
 | 
						||
      if (node->type == 0)
 | 
						||
	dfa->nexts[idx] = node->next;
 | 
						||
      return;
 | 
						||
    }
 | 
						||
 | 
						||
  idx = parent->node_idx;
 | 
						||
  type = (parent->type == 0) ? dfa->nodes[idx].type : parent->type;
 | 
						||
 | 
						||
  switch (type)
 | 
						||
    {
 | 
						||
    case OP_DUP_ASTERISK:
 | 
						||
    case OP_DUP_PLUS:
 | 
						||
      node->next = idx;
 | 
						||
      break;
 | 
						||
    case CONCAT:
 | 
						||
      if (parent->left == node)
 | 
						||
	{
 | 
						||
	  if (parent->right->first == -1)
 | 
						||
	    calc_first (dfa, parent->right);
 | 
						||
	  node->next = parent->right->first;
 | 
						||
	  break;
 | 
						||
	}
 | 
						||
      /* else fall through */
 | 
						||
    default:
 | 
						||
      if (parent->next == -1)
 | 
						||
	calc_next (dfa, parent);
 | 
						||
      node->next = parent->next;
 | 
						||
      break;
 | 
						||
    }
 | 
						||
  idx = node->node_idx;
 | 
						||
  if (node->type == 0)
 | 
						||
    dfa->nexts[idx] = node->next;
 | 
						||
}
 | 
						||
 | 
						||
/* Calculate "edest" for the node NODE.  */
 | 
						||
 | 
						||
static void
 | 
						||
calc_epsdest (dfa, node)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     bin_tree_t *node;
 | 
						||
{
 | 
						||
  int idx;
 | 
						||
  idx = node->node_idx;
 | 
						||
  if (node->type == 0)
 | 
						||
    {
 | 
						||
      if (dfa->nodes[idx].type == OP_DUP_ASTERISK
 | 
						||
	  || dfa->nodes[idx].type == OP_DUP_PLUS
 | 
						||
	  || dfa->nodes[idx].type == OP_DUP_QUESTION)
 | 
						||
	{
 | 
						||
	  if (node->left->first == -1)
 | 
						||
	    calc_first (dfa, node->left);
 | 
						||
	  if (node->next == -1)
 | 
						||
	    calc_next (dfa, node);
 | 
						||
	  re_node_set_init_2 (dfa->edests + idx, node->left->first,
 | 
						||
			      node->next);
 | 
						||
	}
 | 
						||
      else if (dfa->nodes[idx].type == OP_ALT)
 | 
						||
	{
 | 
						||
	  int left, right;
 | 
						||
	  if (node->left != NULL)
 | 
						||
	    {
 | 
						||
	      if (node->left->first == -1)
 | 
						||
		calc_first (dfa, node->left);
 | 
						||
	      left = node->left->first;
 | 
						||
	    }
 | 
						||
	  else
 | 
						||
	    {
 | 
						||
	      if (node->next == -1)
 | 
						||
		calc_next (dfa, node);
 | 
						||
	      left = node->next;
 | 
						||
	    }
 | 
						||
	  if (node->right != NULL)
 | 
						||
	    {
 | 
						||
	      if (node->right->first == -1)
 | 
						||
		calc_first (dfa, node->right);
 | 
						||
	      right = node->right->first;
 | 
						||
	    }
 | 
						||
	  else
 | 
						||
	    {
 | 
						||
	      if (node->next == -1)
 | 
						||
		calc_next (dfa, node);
 | 
						||
	      right = node->next;
 | 
						||
	    }
 | 
						||
	  re_node_set_init_2 (dfa->edests + idx, left, right);
 | 
						||
	}
 | 
						||
      else if (dfa->nodes[idx].type == ANCHOR
 | 
						||
	       || dfa->nodes[idx].type == OP_OPEN_SUBEXP
 | 
						||
	       || dfa->nodes[idx].type == OP_CLOSE_SUBEXP
 | 
						||
	       || dfa->nodes[idx].type == OP_BACK_REF)
 | 
						||
	re_node_set_init_1 (dfa->edests + idx, node->next);
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
/* Duplicate the epsilon closure of the node ROOT_NODE.
 | 
						||
   Note that duplicated nodes have constraint INIT_CONSTRAINT in addition
 | 
						||
   to their own constraint.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
duplicate_node_closure (dfa, top_org_node, top_clone_node, root_node,
 | 
						||
			init_constraint)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     int top_org_node, top_clone_node, root_node;
 | 
						||
     unsigned int init_constraint;
 | 
						||
{
 | 
						||
  reg_errcode_t err;
 | 
						||
  int org_node, clone_node, ret;
 | 
						||
  unsigned int constraint = init_constraint;
 | 
						||
  for (org_node = top_org_node, clone_node = top_clone_node;;)
 | 
						||
    {
 | 
						||
      int org_dest, clone_dest;
 | 
						||
      if (dfa->nodes[org_node].type == OP_BACK_REF)
 | 
						||
	{
 | 
						||
	  /* If the back reference epsilon-transit, its destination must
 | 
						||
	     also have the constraint.  Then duplicate the epsilon closure
 | 
						||
	     of the destination of the back reference, and store it in
 | 
						||
	     edests of the back reference.  */
 | 
						||
	  org_dest = dfa->nexts[org_node];
 | 
						||
	  re_node_set_empty (dfa->edests + clone_node);
 | 
						||
	  err = duplicate_node (&clone_dest, dfa, org_dest, constraint);
 | 
						||
	  if (BE (err != REG_NOERROR, 0))
 | 
						||
	    return err;
 | 
						||
	  dfa->nexts[clone_node] = dfa->nexts[org_node];
 | 
						||
	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
 | 
						||
	  if (BE (ret < 0, 0))
 | 
						||
	    return REG_ESPACE;
 | 
						||
	}
 | 
						||
      else if (dfa->edests[org_node].nelem == 0)
 | 
						||
	{
 | 
						||
	  /* In case of the node can't epsilon-transit, don't duplicate the
 | 
						||
	     destination and store the original destination as the
 | 
						||
	     destination of the node.  */
 | 
						||
	  dfa->nexts[clone_node] = dfa->nexts[org_node];
 | 
						||
	  break;
 | 
						||
	}
 | 
						||
      else if (dfa->edests[org_node].nelem == 1)
 | 
						||
	{
 | 
						||
	  /* In case of the node can epsilon-transit, and it has only one
 | 
						||
	     destination.  */
 | 
						||
	  org_dest = dfa->edests[org_node].elems[0];
 | 
						||
	  re_node_set_empty (dfa->edests + clone_node);
 | 
						||
	  if (dfa->nodes[org_node].type == ANCHOR)
 | 
						||
	    {
 | 
						||
	      /* In case of the node has another constraint, append it.  */
 | 
						||
	      if (org_node == root_node && clone_node != org_node)
 | 
						||
		{
 | 
						||
		  /* ...but if the node is root_node itself, it means the
 | 
						||
		     epsilon closure have a loop, then tie it to the
 | 
						||
		     destination of the root_node.  */
 | 
						||
		  ret = re_node_set_insert (dfa->edests + clone_node,
 | 
						||
					    org_dest);
 | 
						||
		  if (BE (ret < 0, 0))
 | 
						||
		    return REG_ESPACE;
 | 
						||
		  break;
 | 
						||
		}
 | 
						||
	      constraint |= dfa->nodes[org_node].opr.ctx_type;
 | 
						||
	    }
 | 
						||
	  err = duplicate_node (&clone_dest, dfa, org_dest, constraint);
 | 
						||
	  if (BE (err != REG_NOERROR, 0))
 | 
						||
	    return err;
 | 
						||
	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
 | 
						||
	  if (BE (ret < 0, 0))
 | 
						||
	    return REG_ESPACE;
 | 
						||
	}
 | 
						||
      else /* dfa->edests[org_node].nelem == 2 */
 | 
						||
	{
 | 
						||
	  /* In case of the node can epsilon-transit, and it has two
 | 
						||
	     destinations. E.g. '|', '*', '+', '?'.   */
 | 
						||
	  org_dest = dfa->edests[org_node].elems[0];
 | 
						||
	  re_node_set_empty (dfa->edests + clone_node);
 | 
						||
	  /* Search for a duplicated node which satisfies the constraint.  */
 | 
						||
	  clone_dest = search_duplicated_node (dfa, org_dest, constraint);
 | 
						||
	  if (clone_dest == -1)
 | 
						||
	    {
 | 
						||
	      /* There are no such a duplicated node, create a new one.  */
 | 
						||
	      err = duplicate_node (&clone_dest, dfa, org_dest, constraint);
 | 
						||
	      if (BE (err != REG_NOERROR, 0))
 | 
						||
		return err;
 | 
						||
	      ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
 | 
						||
	      if (BE (ret < 0, 0))
 | 
						||
		return REG_ESPACE;
 | 
						||
	      err = duplicate_node_closure (dfa, org_dest, clone_dest,
 | 
						||
					    root_node, constraint);
 | 
						||
	      if (BE (err != REG_NOERROR, 0))
 | 
						||
		return err;
 | 
						||
	    }
 | 
						||
	  else
 | 
						||
	    {
 | 
						||
	      /* There are a duplicated node which satisfy the constraint,
 | 
						||
		 use it to avoid infinite loop.  */
 | 
						||
	      ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
 | 
						||
	      if (BE (ret < 0, 0))
 | 
						||
		return REG_ESPACE;
 | 
						||
	    }
 | 
						||
 | 
						||
	  org_dest = dfa->edests[org_node].elems[1];
 | 
						||
	  err = duplicate_node (&clone_dest, dfa, org_dest, constraint);
 | 
						||
	  if (BE (err != REG_NOERROR, 0))
 | 
						||
	    return err;
 | 
						||
	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
 | 
						||
	  if (BE (ret < 0, 0))
 | 
						||
	    return REG_ESPACE;
 | 
						||
	}
 | 
						||
      org_node = org_dest;
 | 
						||
      clone_node = clone_dest;
 | 
						||
    }
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Search for a node which is duplicated from the node ORG_NODE, and
 | 
						||
   satisfies the constraint CONSTRAINT.  */
 | 
						||
 | 
						||
static int
 | 
						||
search_duplicated_node (dfa, org_node, constraint)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     int org_node;
 | 
						||
     unsigned int constraint;
 | 
						||
{
 | 
						||
  int idx;
 | 
						||
  for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx)
 | 
						||
    {
 | 
						||
      if (org_node == dfa->org_indices[idx]
 | 
						||
	  && constraint == dfa->nodes[idx].constraint)
 | 
						||
	return idx; /* Found.  */
 | 
						||
    }
 | 
						||
  return -1; /* Not found.  */
 | 
						||
}
 | 
						||
 | 
						||
/* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT.
 | 
						||
   The new index will be stored in NEW_IDX and return REG_NOERROR if succeeded,
 | 
						||
   otherwise return the error code.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
duplicate_node (new_idx, dfa, org_idx, constraint)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     int *new_idx, org_idx;
 | 
						||
     unsigned int constraint;
 | 
						||
{
 | 
						||
  re_token_t dup;
 | 
						||
  int dup_idx;
 | 
						||
 | 
						||
  dup = dfa->nodes[org_idx];
 | 
						||
  dup_idx = re_dfa_add_node (dfa, dup, 1);
 | 
						||
  if (BE (dup_idx == -1, 0))
 | 
						||
    return REG_ESPACE;
 | 
						||
  dfa->nodes[dup_idx].constraint = constraint;
 | 
						||
  if (dfa->nodes[org_idx].type == ANCHOR)
 | 
						||
    dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].opr.ctx_type;
 | 
						||
  dfa->nodes[dup_idx].duplicated = 1;
 | 
						||
  re_node_set_init_empty (dfa->edests + dup_idx);
 | 
						||
  re_node_set_init_empty (dfa->eclosures + dup_idx);
 | 
						||
  re_node_set_init_empty (dfa->inveclosures + dup_idx);
 | 
						||
 | 
						||
  /* Store the index of the original node.  */
 | 
						||
  dfa->org_indices[dup_idx] = org_idx;
 | 
						||
  *new_idx = dup_idx;
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
static void
 | 
						||
calc_inveclosure (dfa)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
{
 | 
						||
  int src, idx, dest;
 | 
						||
  for (src = 0; src < dfa->nodes_len; ++src)
 | 
						||
    {
 | 
						||
      for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx)
 | 
						||
	{
 | 
						||
	  dest = dfa->eclosures[src].elems[idx];
 | 
						||
	  re_node_set_insert (dfa->inveclosures + dest, src);
 | 
						||
	}
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
/* Calculate "eclosure" for all the node in DFA.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
calc_eclosure (dfa)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
{
 | 
						||
  int node_idx, incomplete;
 | 
						||
#ifdef DEBUG
 | 
						||
  assert (dfa->nodes_len > 0);
 | 
						||
#endif
 | 
						||
  incomplete = 0;
 | 
						||
  /* For each nodes, calculate epsilon closure.  */
 | 
						||
  for (node_idx = 0; ; ++node_idx)
 | 
						||
    {
 | 
						||
      reg_errcode_t err;
 | 
						||
      re_node_set eclosure_elem;
 | 
						||
      if (node_idx == dfa->nodes_len)
 | 
						||
	{
 | 
						||
	  if (!incomplete)
 | 
						||
	    break;
 | 
						||
	  incomplete = 0;
 | 
						||
	  node_idx = 0;
 | 
						||
	}
 | 
						||
 | 
						||
#ifdef DEBUG
 | 
						||
      assert (dfa->eclosures[node_idx].nelem != -1);
 | 
						||
#endif
 | 
						||
      /* If we have already calculated, skip it.  */
 | 
						||
      if (dfa->eclosures[node_idx].nelem != 0)
 | 
						||
	continue;
 | 
						||
      /* Calculate epsilon closure of `node_idx'.  */
 | 
						||
      err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1);
 | 
						||
      if (BE (err != REG_NOERROR, 0))
 | 
						||
	return err;
 | 
						||
 | 
						||
      if (dfa->eclosures[node_idx].nelem == 0)
 | 
						||
	{
 | 
						||
	  incomplete = 1;
 | 
						||
	  re_node_set_free (&eclosure_elem);
 | 
						||
	}
 | 
						||
    }
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Calculate epsilon closure of NODE.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
calc_eclosure_iter (new_set, dfa, node, root)
 | 
						||
     re_node_set *new_set;
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     int node, root;
 | 
						||
{
 | 
						||
  reg_errcode_t err;
 | 
						||
  unsigned int constraint;
 | 
						||
  int i, incomplete;
 | 
						||
  re_node_set eclosure;
 | 
						||
  incomplete = 0;
 | 
						||
  err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1);
 | 
						||
  if (BE (err != REG_NOERROR, 0))
 | 
						||
    return err;
 | 
						||
 | 
						||
  /* This indicates that we are calculating this node now.
 | 
						||
     We reference this value to avoid infinite loop.  */
 | 
						||
  dfa->eclosures[node].nelem = -1;
 | 
						||
 | 
						||
  constraint = ((dfa->nodes[node].type == ANCHOR)
 | 
						||
		? dfa->nodes[node].opr.ctx_type : 0);
 | 
						||
  /* If the current node has constraints, duplicate all nodes.
 | 
						||
     Since they must inherit the constraints.  */
 | 
						||
  if (constraint && !dfa->nodes[dfa->edests[node].elems[0]].duplicated)
 | 
						||
    {
 | 
						||
      int org_node, cur_node;
 | 
						||
      org_node = cur_node = node;
 | 
						||
      err = duplicate_node_closure (dfa, node, node, node, constraint);
 | 
						||
      if (BE (err != REG_NOERROR, 0))
 | 
						||
	return err;
 | 
						||
    }
 | 
						||
 | 
						||
  /* Expand each epsilon destination nodes.  */
 | 
						||
  if (IS_EPSILON_NODE(dfa->nodes[node].type))
 | 
						||
    for (i = 0; i < dfa->edests[node].nelem; ++i)
 | 
						||
      {
 | 
						||
	re_node_set eclosure_elem;
 | 
						||
	int edest = dfa->edests[node].elems[i];
 | 
						||
	/* If calculating the epsilon closure of `edest' is in progress,
 | 
						||
	   return intermediate result.  */
 | 
						||
	if (dfa->eclosures[edest].nelem == -1)
 | 
						||
	  {
 | 
						||
	    incomplete = 1;
 | 
						||
	    continue;
 | 
						||
	  }
 | 
						||
	/* If we haven't calculated the epsilon closure of `edest' yet,
 | 
						||
	   calculate now. Otherwise use calculated epsilon closure.  */
 | 
						||
	if (dfa->eclosures[edest].nelem == 0)
 | 
						||
	  {
 | 
						||
	    err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0);
 | 
						||
	    if (BE (err != REG_NOERROR, 0))
 | 
						||
	      return err;
 | 
						||
	  }
 | 
						||
	else
 | 
						||
	  eclosure_elem = dfa->eclosures[edest];
 | 
						||
	/* Merge the epsilon closure of `edest'.  */
 | 
						||
	re_node_set_merge (&eclosure, &eclosure_elem);
 | 
						||
	/* If the epsilon closure of `edest' is incomplete,
 | 
						||
	   the epsilon closure of this node is also incomplete.  */
 | 
						||
	if (dfa->eclosures[edest].nelem == 0)
 | 
						||
	  {
 | 
						||
	    incomplete = 1;
 | 
						||
	    re_node_set_free (&eclosure_elem);
 | 
						||
	  }
 | 
						||
      }
 | 
						||
 | 
						||
  /* Epsilon closures include itself.  */
 | 
						||
  re_node_set_insert (&eclosure, node);
 | 
						||
  if (incomplete && !root)
 | 
						||
    dfa->eclosures[node].nelem = 0;
 | 
						||
  else
 | 
						||
    dfa->eclosures[node] = eclosure;
 | 
						||
  *new_set = eclosure;
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Functions for token which are used in the parser.  */
 | 
						||
 | 
						||
/* Fetch a token from INPUT.
 | 
						||
   We must not use this function inside bracket expressions.  */
 | 
						||
 | 
						||
static re_token_t
 | 
						||
fetch_token (input, syntax)
 | 
						||
     re_string_t *input;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
{
 | 
						||
  re_token_t token;
 | 
						||
  int consumed_byte;
 | 
						||
  consumed_byte = peek_token (&token, input, syntax);
 | 
						||
  re_string_skip_bytes (input, consumed_byte);
 | 
						||
  return token;
 | 
						||
}
 | 
						||
 | 
						||
/* Peek a token from INPUT, and return the length of the token.
 | 
						||
   We must not use this function inside bracket expressions.  */
 | 
						||
 | 
						||
static int
 | 
						||
peek_token (token, input, syntax)
 | 
						||
     re_token_t *token;
 | 
						||
     re_string_t *input;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
{
 | 
						||
  unsigned char c;
 | 
						||
 | 
						||
  if (re_string_eoi (input))
 | 
						||
    {
 | 
						||
      token->type = END_OF_RE;
 | 
						||
      return 0;
 | 
						||
    }
 | 
						||
 | 
						||
  c = re_string_peek_byte (input, 0);
 | 
						||
  token->opr.c = c;
 | 
						||
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  token->mb_partial = 0;
 | 
						||
  if (MB_CUR_MAX > 1 &&
 | 
						||
      !re_string_first_byte (input, re_string_cur_idx (input)))
 | 
						||
    {
 | 
						||
      token->type = CHARACTER;
 | 
						||
      token->mb_partial = 1;
 | 
						||
      return 1;
 | 
						||
    }
 | 
						||
#endif
 | 
						||
  if (c == '\\')
 | 
						||
    {
 | 
						||
      unsigned char c2;
 | 
						||
      if (re_string_cur_idx (input) + 1 >= re_string_length (input))
 | 
						||
	{
 | 
						||
	  token->type = BACK_SLASH;
 | 
						||
	  return 1;
 | 
						||
	}
 | 
						||
 | 
						||
      c2 = re_string_peek_byte_case (input, 1);
 | 
						||
      token->opr.c = c2;
 | 
						||
      token->type = CHARACTER;
 | 
						||
      switch (c2)
 | 
						||
	{
 | 
						||
	case '|':
 | 
						||
	  if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR))
 | 
						||
	    token->type = OP_ALT;
 | 
						||
	  break;
 | 
						||
	case '1': case '2': case '3': case '4': case '5':
 | 
						||
	case '6': case '7': case '8': case '9':
 | 
						||
	  if (!(syntax & RE_NO_BK_REFS))
 | 
						||
	    {
 | 
						||
	      token->type = OP_BACK_REF;
 | 
						||
	      token->opr.idx = c2 - '0';
 | 
						||
	    }
 | 
						||
	  break;
 | 
						||
	case '<':
 | 
						||
	  if (!(syntax & RE_NO_GNU_OPS))
 | 
						||
	    {
 | 
						||
	      token->type = ANCHOR;
 | 
						||
	      token->opr.idx = WORD_FIRST;
 | 
						||
	    }
 | 
						||
	  break;
 | 
						||
	case '>':
 | 
						||
	  if (!(syntax & RE_NO_GNU_OPS))
 | 
						||
	    {
 | 
						||
	      token->type = ANCHOR;
 | 
						||
	      token->opr.idx = WORD_LAST;
 | 
						||
	    }
 | 
						||
	  break;
 | 
						||
	case 'b':
 | 
						||
	  if (!(syntax & RE_NO_GNU_OPS))
 | 
						||
	    {
 | 
						||
	      token->type = ANCHOR;
 | 
						||
	      token->opr.idx = WORD_DELIM;
 | 
						||
	    }
 | 
						||
	  break;
 | 
						||
	case 'B':
 | 
						||
	  if (!(syntax & RE_NO_GNU_OPS))
 | 
						||
	    {
 | 
						||
	      token->type = ANCHOR;
 | 
						||
	      token->opr.idx = INSIDE_WORD;
 | 
						||
	    }
 | 
						||
	  break;
 | 
						||
	case 'w':
 | 
						||
	  if (!(syntax & RE_NO_GNU_OPS))
 | 
						||
	    token->type = OP_WORD;
 | 
						||
	  break;
 | 
						||
	case 'W':
 | 
						||
	  if (!(syntax & RE_NO_GNU_OPS))
 | 
						||
	    token->type = OP_NOTWORD;
 | 
						||
	  break;
 | 
						||
	case '`':
 | 
						||
	  if (!(syntax & RE_NO_GNU_OPS))
 | 
						||
	    {
 | 
						||
	      token->type = ANCHOR;
 | 
						||
	      token->opr.idx = BUF_FIRST;
 | 
						||
	    }
 | 
						||
	  break;
 | 
						||
	case '\'':
 | 
						||
	  if (!(syntax & RE_NO_GNU_OPS))
 | 
						||
	    {
 | 
						||
	      token->type = ANCHOR;
 | 
						||
	      token->opr.idx = BUF_LAST;
 | 
						||
	    }
 | 
						||
	  break;
 | 
						||
	case '(':
 | 
						||
	  if (!(syntax & RE_NO_BK_PARENS))
 | 
						||
	    token->type = OP_OPEN_SUBEXP;
 | 
						||
	  break;
 | 
						||
	case ')':
 | 
						||
	  if (!(syntax & RE_NO_BK_PARENS))
 | 
						||
	    token->type = OP_CLOSE_SUBEXP;
 | 
						||
	  break;
 | 
						||
	case '+':
 | 
						||
	  if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
 | 
						||
	    token->type = OP_DUP_PLUS;
 | 
						||
	  break;
 | 
						||
	case '?':
 | 
						||
	  if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
 | 
						||
	    token->type = OP_DUP_QUESTION;
 | 
						||
	  break;
 | 
						||
	case '{':
 | 
						||
	  if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
 | 
						||
	    token->type = OP_OPEN_DUP_NUM;
 | 
						||
	  break;
 | 
						||
	case '}':
 | 
						||
	  if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
 | 
						||
	    token->type = OP_CLOSE_DUP_NUM;
 | 
						||
	  break;
 | 
						||
	default:
 | 
						||
	  break;
 | 
						||
	}
 | 
						||
      return 2;
 | 
						||
    }
 | 
						||
 | 
						||
  token->type = CHARACTER;
 | 
						||
  switch (c)
 | 
						||
    {
 | 
						||
    case '\n':
 | 
						||
      if (syntax & RE_NEWLINE_ALT)
 | 
						||
	token->type = OP_ALT;
 | 
						||
      break;
 | 
						||
    case '|':
 | 
						||
      if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR))
 | 
						||
	token->type = OP_ALT;
 | 
						||
      break;
 | 
						||
    case '*':
 | 
						||
      token->type = OP_DUP_ASTERISK;
 | 
						||
      break;
 | 
						||
    case '+':
 | 
						||
      if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
 | 
						||
	token->type = OP_DUP_PLUS;
 | 
						||
      break;
 | 
						||
    case '?':
 | 
						||
      if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
 | 
						||
	token->type = OP_DUP_QUESTION;
 | 
						||
      break;
 | 
						||
    case '{':
 | 
						||
      if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
 | 
						||
	token->type = OP_OPEN_DUP_NUM;
 | 
						||
      break;
 | 
						||
    case '}':
 | 
						||
      if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
 | 
						||
	token->type = OP_CLOSE_DUP_NUM;
 | 
						||
      break;
 | 
						||
    case '(':
 | 
						||
      if (syntax & RE_NO_BK_PARENS)
 | 
						||
	token->type = OP_OPEN_SUBEXP;
 | 
						||
      break;
 | 
						||
    case ')':
 | 
						||
      if (syntax & RE_NO_BK_PARENS)
 | 
						||
	token->type = OP_CLOSE_SUBEXP;
 | 
						||
      break;
 | 
						||
    case '[':
 | 
						||
      token->type = OP_OPEN_BRACKET;
 | 
						||
      break;
 | 
						||
    case '.':
 | 
						||
      token->type = OP_PERIOD;
 | 
						||
      break;
 | 
						||
    case '^':
 | 
						||
      if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) &&
 | 
						||
	  re_string_cur_idx (input) != 0)
 | 
						||
	{
 | 
						||
	  char prev = re_string_peek_byte (input, -1);
 | 
						||
	  if (prev != '|' && prev != '(' &&
 | 
						||
	      (!(syntax & RE_NEWLINE_ALT) || prev != '\n'))
 | 
						||
	    break;
 | 
						||
	}
 | 
						||
      token->type = ANCHOR;
 | 
						||
      token->opr.idx = LINE_FIRST;
 | 
						||
      break;
 | 
						||
    case '$':
 | 
						||
      if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) &&
 | 
						||
	  re_string_cur_idx (input) + 1 != re_string_length (input))
 | 
						||
	{
 | 
						||
	  re_token_t next;
 | 
						||
	  re_string_skip_bytes (input, 1);
 | 
						||
	  peek_token (&next, input, syntax);
 | 
						||
	  re_string_skip_bytes (input, -1);
 | 
						||
	  if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP)
 | 
						||
	    break;
 | 
						||
	}
 | 
						||
      token->type = ANCHOR;
 | 
						||
      token->opr.idx = LINE_LAST;
 | 
						||
      break;
 | 
						||
    default:
 | 
						||
      break;
 | 
						||
    }
 | 
						||
  return 1;
 | 
						||
}
 | 
						||
 | 
						||
/* Peek a token from INPUT, and return the length of the token.
 | 
						||
   We must not use this function out of bracket expressions.  */
 | 
						||
 | 
						||
static int
 | 
						||
peek_token_bracket (token, input, syntax)
 | 
						||
     re_token_t *token;
 | 
						||
     re_string_t *input;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
{
 | 
						||
  unsigned char c;
 | 
						||
  if (re_string_eoi (input))
 | 
						||
    {
 | 
						||
      token->type = END_OF_RE;
 | 
						||
      return 0;
 | 
						||
    }
 | 
						||
  c = re_string_peek_byte (input, 0);
 | 
						||
  token->opr.c = c;
 | 
						||
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  if (MB_CUR_MAX > 1 &&
 | 
						||
      !re_string_first_byte (input, re_string_cur_idx (input)))
 | 
						||
    {
 | 
						||
      token->type = CHARACTER;
 | 
						||
      return 1;
 | 
						||
    }
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
 | 
						||
  if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS))
 | 
						||
    {
 | 
						||
      /* In this case, '\' escape a character.  */
 | 
						||
      unsigned char c2;
 | 
						||
      re_string_skip_bytes (input, 1);
 | 
						||
      c2 = re_string_peek_byte (input, 0);
 | 
						||
      token->opr.c = c2;
 | 
						||
      token->type = CHARACTER;
 | 
						||
      return 1;
 | 
						||
    }
 | 
						||
  if (c == '[') /* '[' is a special char in a bracket exps.  */
 | 
						||
    {
 | 
						||
      unsigned char c2;
 | 
						||
      int token_len;
 | 
						||
      c2 = re_string_peek_byte (input, 1);
 | 
						||
      token->opr.c = c2;
 | 
						||
      token_len = 2;
 | 
						||
      switch (c2)
 | 
						||
	{
 | 
						||
	case '.':
 | 
						||
	  token->type = OP_OPEN_COLL_ELEM;
 | 
						||
	  break;
 | 
						||
	case '=':
 | 
						||
	  token->type = OP_OPEN_EQUIV_CLASS;
 | 
						||
	  break;
 | 
						||
	case ':':
 | 
						||
	  if (syntax & RE_CHAR_CLASSES)
 | 
						||
	    {
 | 
						||
	      token->type = OP_OPEN_CHAR_CLASS;
 | 
						||
	      break;
 | 
						||
	    }
 | 
						||
	  /* else fall through.  */
 | 
						||
	default:
 | 
						||
	  token->type = CHARACTER;
 | 
						||
	  token->opr.c = c;
 | 
						||
	  token_len = 1;
 | 
						||
	  break;
 | 
						||
	}
 | 
						||
      return token_len;
 | 
						||
    }
 | 
						||
  switch (c)
 | 
						||
    {
 | 
						||
    case '-':
 | 
						||
      token->type = OP_CHARSET_RANGE;
 | 
						||
      break;
 | 
						||
    case ']':
 | 
						||
      token->type = OP_CLOSE_BRACKET;
 | 
						||
      break;
 | 
						||
    case '^':
 | 
						||
      token->type = OP_NON_MATCH_LIST;
 | 
						||
      break;
 | 
						||
    default:
 | 
						||
      token->type = CHARACTER;
 | 
						||
    }
 | 
						||
  return 1;
 | 
						||
}
 | 
						||
 | 
						||
/* Functions for parser.  */
 | 
						||
 | 
						||
/* Entry point of the parser.
 | 
						||
   Parse the regular expression REGEXP and return the structure tree.
 | 
						||
   If an error is occured, ERR is set by error code, and return NULL.
 | 
						||
   This function build the following tree, from regular expression <reg_exp>:
 | 
						||
	   CAT
 | 
						||
	   / \
 | 
						||
	  /   \
 | 
						||
   <reg_exp>  EOR
 | 
						||
 | 
						||
   CAT means concatenation.
 | 
						||
   EOR means end of regular expression.  */
 | 
						||
 | 
						||
static bin_tree_t *
 | 
						||
parse (regexp, preg, syntax, err)
 | 
						||
     re_string_t *regexp;
 | 
						||
     regex_t *preg;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
     reg_errcode_t *err;
 | 
						||
{
 | 
						||
  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | 
						||
  bin_tree_t *tree, *eor, *root;
 | 
						||
  re_token_t current_token;
 | 
						||
  int new_idx;
 | 
						||
  current_token = fetch_token (regexp, syntax);
 | 
						||
  tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err);
 | 
						||
  if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | 
						||
    return NULL;
 | 
						||
  new_idx = re_dfa_add_node (dfa, current_token, 0);
 | 
						||
  eor = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
  if (tree != NULL)
 | 
						||
    root = create_tree (tree, eor, CONCAT, 0);
 | 
						||
  else
 | 
						||
    root = eor;
 | 
						||
  if (BE (new_idx == -1 || eor == NULL || root == NULL, 0))
 | 
						||
    {
 | 
						||
      *err = REG_ESPACE;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
  return root;
 | 
						||
}
 | 
						||
 | 
						||
/* This function build the following tree, from regular expression
 | 
						||
   <branch1>|<branch2>:
 | 
						||
	   ALT
 | 
						||
	   / \
 | 
						||
	  /   \
 | 
						||
   <branch1> <branch2>
 | 
						||
 | 
						||
   ALT means alternative, which represents the operator `|'.  */
 | 
						||
 | 
						||
static bin_tree_t *
 | 
						||
parse_reg_exp (regexp, preg, token, syntax, nest, err)
 | 
						||
     re_string_t *regexp;
 | 
						||
     regex_t *preg;
 | 
						||
     re_token_t *token;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
     int nest;
 | 
						||
     reg_errcode_t *err;
 | 
						||
{
 | 
						||
  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | 
						||
  bin_tree_t *tree, *branch = NULL;
 | 
						||
  int new_idx;
 | 
						||
  tree = parse_branch (regexp, preg, token, syntax, nest, err);
 | 
						||
  if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | 
						||
    return NULL;
 | 
						||
 | 
						||
  while (token->type == OP_ALT)
 | 
						||
    {
 | 
						||
      re_token_t alt_token = *token;
 | 
						||
      new_idx = re_dfa_add_node (dfa, alt_token, 0);
 | 
						||
      *token = fetch_token (regexp, syntax);
 | 
						||
      if (token->type != OP_ALT && token->type != END_OF_RE
 | 
						||
	  && (nest == 0 || token->type != OP_CLOSE_SUBEXP))
 | 
						||
	{
 | 
						||
	  branch = parse_branch (regexp, preg, token, syntax, nest, err);
 | 
						||
	  if (BE (*err != REG_NOERROR && branch == NULL, 0))
 | 
						||
	    {
 | 
						||
	      free_bin_tree (tree);
 | 
						||
	      return NULL;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
      else
 | 
						||
	branch = NULL;
 | 
						||
      tree = create_tree (tree, branch, 0, new_idx);
 | 
						||
      if (BE (new_idx == -1 || tree == NULL, 0))
 | 
						||
	{
 | 
						||
	  *err = REG_ESPACE;
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
      dfa->has_plural_match = 1;
 | 
						||
    }
 | 
						||
  return tree;
 | 
						||
}
 | 
						||
 | 
						||
/* This function build the following tree, from regular expression
 | 
						||
   <exp1><exp2>:
 | 
						||
	CAT
 | 
						||
	/ \
 | 
						||
       /   \
 | 
						||
   <exp1> <exp2>
 | 
						||
 | 
						||
   CAT means concatenation.  */
 | 
						||
 | 
						||
static bin_tree_t *
 | 
						||
parse_branch (regexp, preg, token, syntax, nest, err)
 | 
						||
     re_string_t *regexp;
 | 
						||
     regex_t *preg;
 | 
						||
     re_token_t *token;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
     int nest;
 | 
						||
     reg_errcode_t *err;
 | 
						||
{
 | 
						||
  bin_tree_t *tree, *exp;
 | 
						||
  tree = parse_expression (regexp, preg, token, syntax, nest, err);
 | 
						||
  if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | 
						||
    return NULL;
 | 
						||
 | 
						||
  while (token->type != OP_ALT && token->type != END_OF_RE
 | 
						||
	 && (nest == 0 || token->type != OP_CLOSE_SUBEXP))
 | 
						||
    {
 | 
						||
      exp = parse_expression (regexp, preg, token, syntax, nest, err);
 | 
						||
      if (BE (*err != REG_NOERROR && exp == NULL, 0))
 | 
						||
	{
 | 
						||
	  free_bin_tree (tree);
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
      if (tree != NULL && exp != NULL)
 | 
						||
	{
 | 
						||
	  tree = create_tree (tree, exp, CONCAT, 0);
 | 
						||
	  if (tree == NULL)
 | 
						||
	    {
 | 
						||
	      *err = REG_ESPACE;
 | 
						||
	      return NULL;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
      else if (tree == NULL)
 | 
						||
	tree = exp;
 | 
						||
      /* Otherwise exp == NULL, we don't need to create new tree.  */
 | 
						||
    }
 | 
						||
  return tree;
 | 
						||
}
 | 
						||
 | 
						||
/* This function build the following tree, from regular expression a*:
 | 
						||
	 *
 | 
						||
	 |
 | 
						||
	 a
 | 
						||
*/
 | 
						||
 | 
						||
static bin_tree_t *
 | 
						||
parse_expression (regexp, preg, token, syntax, nest, err)
 | 
						||
     re_string_t *regexp;
 | 
						||
     regex_t *preg;
 | 
						||
     re_token_t *token;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
     int nest;
 | 
						||
     reg_errcode_t *err;
 | 
						||
{
 | 
						||
  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | 
						||
  bin_tree_t *tree;
 | 
						||
  int new_idx;
 | 
						||
  switch (token->type)
 | 
						||
    {
 | 
						||
    case CHARACTER:
 | 
						||
      new_idx = re_dfa_add_node (dfa, *token, 0);
 | 
						||
      tree = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
      if (BE (new_idx == -1 || tree == NULL, 0))
 | 
						||
	{
 | 
						||
	  *err = REG_ESPACE;
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      if (MB_CUR_MAX > 1)
 | 
						||
	{
 | 
						||
	  while (!re_string_eoi (regexp)
 | 
						||
		 && !re_string_first_byte (regexp, re_string_cur_idx (regexp)))
 | 
						||
	    {
 | 
						||
	      bin_tree_t *mbc_remain;
 | 
						||
	      *token = fetch_token (regexp, syntax);
 | 
						||
	      new_idx = re_dfa_add_node (dfa, *token, 0);
 | 
						||
	      mbc_remain = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
	      tree = create_tree (tree, mbc_remain, CONCAT, 0);
 | 
						||
	      if (BE (new_idx == -1 || mbc_remain == NULL || tree == NULL, 0))
 | 
						||
		{
 | 
						||
		  *err = REG_ESPACE;
 | 
						||
		  return NULL;
 | 
						||
		}
 | 
						||
	    }
 | 
						||
	}
 | 
						||
#endif
 | 
						||
      break;
 | 
						||
    case OP_OPEN_SUBEXP:
 | 
						||
      tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err);
 | 
						||
      if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | 
						||
	return NULL;
 | 
						||
      break;
 | 
						||
    case OP_OPEN_BRACKET:
 | 
						||
      tree = parse_bracket_exp (regexp, dfa, token, syntax, err);
 | 
						||
      if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | 
						||
	return NULL;
 | 
						||
      break;
 | 
						||
    case OP_BACK_REF:
 | 
						||
      if (BE (preg->re_nsub < token->opr.idx
 | 
						||
	      || dfa->subexps[token->opr.idx - 1].end == -1, 0))
 | 
						||
	{
 | 
						||
	  *err = REG_ESUBREG;
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
      dfa->used_bkref_map |= 1 << (token->opr.idx - 1);
 | 
						||
      new_idx = re_dfa_add_node (dfa, *token, 0);
 | 
						||
      tree = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
      if (BE (new_idx == -1 || tree == NULL, 0))
 | 
						||
	{
 | 
						||
	  *err = REG_ESPACE;
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
      ++dfa->nbackref;
 | 
						||
      dfa->has_mb_node = 1;
 | 
						||
      break;
 | 
						||
    case OP_DUP_ASTERISK:
 | 
						||
    case OP_DUP_PLUS:
 | 
						||
    case OP_DUP_QUESTION:
 | 
						||
    case OP_OPEN_DUP_NUM:
 | 
						||
      if (syntax & RE_CONTEXT_INVALID_OPS)
 | 
						||
	{
 | 
						||
	  *err = REG_BADRPT;
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
      else if (syntax & RE_CONTEXT_INDEP_OPS)
 | 
						||
	{
 | 
						||
	  *token = fetch_token (regexp, syntax);
 | 
						||
	  return parse_expression (regexp, preg, token, syntax, nest, err);
 | 
						||
	}
 | 
						||
      /* else fall through  */
 | 
						||
    case OP_CLOSE_SUBEXP:
 | 
						||
      if ((token->type == OP_CLOSE_SUBEXP) &&
 | 
						||
	  !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD))
 | 
						||
	{
 | 
						||
	  *err = REG_ERPAREN;
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
      /* else fall through  */
 | 
						||
    case OP_CLOSE_DUP_NUM:
 | 
						||
      /* We treat it as a normal character.  */
 | 
						||
 | 
						||
      /* Then we can these characters as normal characters.  */
 | 
						||
      token->type = CHARACTER;
 | 
						||
      new_idx = re_dfa_add_node (dfa, *token, 0);
 | 
						||
      tree = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
      if (BE (new_idx == -1 || tree == NULL, 0))
 | 
						||
	{
 | 
						||
	  *err = REG_ESPACE;
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
      break;
 | 
						||
    case ANCHOR:
 | 
						||
      if (dfa->word_char == NULL)
 | 
						||
	{
 | 
						||
	  *err = init_word_char (dfa);
 | 
						||
	  if (BE (*err != REG_NOERROR, 0))
 | 
						||
	    return NULL;
 | 
						||
	}
 | 
						||
      if (token->opr.ctx_type == WORD_DELIM)
 | 
						||
	{
 | 
						||
	  bin_tree_t *tree_first, *tree_last;
 | 
						||
	  int idx_first, idx_last;
 | 
						||
	  token->opr.ctx_type = WORD_FIRST;
 | 
						||
	  idx_first = re_dfa_add_node (dfa, *token, 0);
 | 
						||
	  tree_first = create_tree (NULL, NULL, 0, idx_first);
 | 
						||
	  token->opr.ctx_type = WORD_LAST;
 | 
						||
	  idx_last = re_dfa_add_node (dfa, *token, 0);
 | 
						||
	  tree_last = create_tree (NULL, NULL, 0, idx_last);
 | 
						||
	  token->type = OP_ALT;
 | 
						||
	  new_idx = re_dfa_add_node (dfa, *token, 0);
 | 
						||
	  tree = create_tree (tree_first, tree_last, 0, new_idx);
 | 
						||
	  if (BE (idx_first == -1 || idx_last == -1 || new_idx == -1
 | 
						||
		  || tree_first == NULL || tree_last == NULL
 | 
						||
		  || tree == NULL, 0))
 | 
						||
	    {
 | 
						||
	      *err = REG_ESPACE;
 | 
						||
	      return NULL;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
      else
 | 
						||
	{
 | 
						||
	  new_idx = re_dfa_add_node (dfa, *token, 0);
 | 
						||
	  tree = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
	  if (BE (new_idx == -1 || tree == NULL, 0))
 | 
						||
	    {
 | 
						||
	      *err = REG_ESPACE;
 | 
						||
	      return NULL;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
      /* We must return here, since ANCHORs can't be followed
 | 
						||
	 by repetition operators.
 | 
						||
	 eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>",
 | 
						||
	     it must not be "<ANCHOR(^)><REPEAT(*)>".  */
 | 
						||
      *token = fetch_token (regexp, syntax);
 | 
						||
      return tree;
 | 
						||
    case OP_PERIOD:
 | 
						||
      new_idx = re_dfa_add_node (dfa, *token, 0);
 | 
						||
      tree = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
      if (BE (new_idx == -1 || tree == NULL, 0))
 | 
						||
	{
 | 
						||
	  *err = REG_ESPACE;
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
      if (MB_CUR_MAX > 1)
 | 
						||
	dfa->has_mb_node = 1;
 | 
						||
      break;
 | 
						||
    case OP_WORD:
 | 
						||
      tree = build_word_op (dfa, 0, err);
 | 
						||
      if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | 
						||
	return NULL;
 | 
						||
      break;
 | 
						||
    case OP_NOTWORD:
 | 
						||
      tree = build_word_op (dfa, 1, err);
 | 
						||
      if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | 
						||
	return NULL;
 | 
						||
      break;
 | 
						||
    case OP_ALT:
 | 
						||
    case END_OF_RE:
 | 
						||
      return NULL;
 | 
						||
    case BACK_SLASH:
 | 
						||
      *err = REG_EESCAPE;
 | 
						||
      return NULL;
 | 
						||
    default:
 | 
						||
      /* Must not happen?  */
 | 
						||
#ifdef DEBUG
 | 
						||
      assert (0);
 | 
						||
#endif
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
  *token = fetch_token (regexp, syntax);
 | 
						||
 | 
						||
  while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS
 | 
						||
	 || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM)
 | 
						||
    {
 | 
						||
      tree = parse_dup_op (tree, regexp, dfa, token, syntax, err);
 | 
						||
      if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | 
						||
	return NULL;
 | 
						||
      dfa->has_plural_match = 1;
 | 
						||
    }
 | 
						||
 | 
						||
  return tree;
 | 
						||
}
 | 
						||
 | 
						||
/* This function build the following tree, from regular expression
 | 
						||
   (<reg_exp>):
 | 
						||
	 SUBEXP
 | 
						||
	    |
 | 
						||
	<reg_exp>
 | 
						||
*/
 | 
						||
 | 
						||
static bin_tree_t *
 | 
						||
parse_sub_exp (regexp, preg, token, syntax, nest, err)
 | 
						||
     re_string_t *regexp;
 | 
						||
     regex_t *preg;
 | 
						||
     re_token_t *token;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
     int nest;
 | 
						||
     reg_errcode_t *err;
 | 
						||
{
 | 
						||
  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
 | 
						||
  bin_tree_t *tree, *left_par, *right_par;
 | 
						||
  size_t cur_nsub;
 | 
						||
  int new_idx;
 | 
						||
  cur_nsub = preg->re_nsub++;
 | 
						||
  if (dfa->subexps_alloc < preg->re_nsub)
 | 
						||
    {
 | 
						||
      re_subexp_t *new_array;
 | 
						||
      dfa->subexps_alloc *= 2;
 | 
						||
      new_array = re_realloc (dfa->subexps, re_subexp_t, dfa->subexps_alloc);
 | 
						||
      if (BE (new_array == NULL, 0))
 | 
						||
	{
 | 
						||
	  dfa->subexps_alloc /= 2;
 | 
						||
	  *err = REG_ESPACE;
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
      dfa->subexps = new_array;
 | 
						||
    }
 | 
						||
  dfa->subexps[cur_nsub].start = dfa->nodes_len;
 | 
						||
  dfa->subexps[cur_nsub].end = -1;
 | 
						||
 | 
						||
  new_idx = re_dfa_add_node (dfa, *token, 0);
 | 
						||
  left_par = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
  if (BE (new_idx == -1 || left_par == NULL, 0))
 | 
						||
    {
 | 
						||
      *err = REG_ESPACE;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
  dfa->nodes[new_idx].opr.idx = (int)cur_nsub;
 | 
						||
  *token = fetch_token (regexp, syntax);
 | 
						||
 | 
						||
  /* The subexpression may be a null string.  */
 | 
						||
  if (token->type == OP_CLOSE_SUBEXP)
 | 
						||
    tree = NULL;
 | 
						||
  else
 | 
						||
    {
 | 
						||
      tree = parse_reg_exp (regexp, preg, token, syntax, nest, err);
 | 
						||
      if (BE (*err != REG_NOERROR && tree == NULL, 0))
 | 
						||
	return NULL;
 | 
						||
    }
 | 
						||
  if (BE (token->type != OP_CLOSE_SUBEXP, 0))
 | 
						||
    {
 | 
						||
      free_bin_tree (tree);
 | 
						||
      *err = REG_BADPAT;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
  new_idx = re_dfa_add_node (dfa, *token, 0);
 | 
						||
  dfa->subexps[cur_nsub].end = dfa->nodes_len;
 | 
						||
  right_par = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
  tree = ((tree == NULL) ? right_par
 | 
						||
	  : create_tree (tree, right_par, CONCAT, 0));
 | 
						||
  tree = create_tree (left_par, tree, CONCAT, 0);
 | 
						||
  if (BE (new_idx == -1 || right_par == NULL || tree == NULL, 0))
 | 
						||
    {
 | 
						||
      *err = REG_ESPACE;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
  dfa->nodes[new_idx].opr.idx = (int)cur_nsub;
 | 
						||
 | 
						||
  return tree;
 | 
						||
}
 | 
						||
 | 
						||
/* This function parse repetition operators like "*", "+", "{1,3}" etc.  */
 | 
						||
 | 
						||
static bin_tree_t *
 | 
						||
parse_dup_op (dup_elem, regexp, dfa, token, syntax, err)
 | 
						||
     bin_tree_t *dup_elem;
 | 
						||
     re_string_t *regexp;
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     re_token_t *token;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
     reg_errcode_t *err;
 | 
						||
{
 | 
						||
  re_token_t dup_token;
 | 
						||
  bin_tree_t *tree = dup_elem, *work_tree;
 | 
						||
  int new_idx, start_idx = re_string_cur_idx (regexp);
 | 
						||
  re_token_t start_token = *token;
 | 
						||
  if (token->type == OP_OPEN_DUP_NUM)
 | 
						||
    {
 | 
						||
      int i;
 | 
						||
      int end = 0;
 | 
						||
      int start = fetch_number (regexp, token, syntax);
 | 
						||
      bin_tree_t *elem;
 | 
						||
      if (start == -1)
 | 
						||
	{
 | 
						||
	  if (token->type == CHARACTER && token->opr.c == ',')
 | 
						||
	    start = 0; /* We treat "{,m}" as "{0,m}".  */
 | 
						||
	  else
 | 
						||
	    {
 | 
						||
	      *err = REG_BADBR; /* <re>{} is invalid.  */
 | 
						||
	      return NULL;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
      if (BE (start != -2, 1))
 | 
						||
	{
 | 
						||
	  /* We treat "{n}" as "{n,n}".  */
 | 
						||
	  end = ((token->type == OP_CLOSE_DUP_NUM) ? start
 | 
						||
		 : ((token->type == CHARACTER && token->opr.c == ',')
 | 
						||
		    ? fetch_number (regexp, token, syntax) : -2));
 | 
						||
	}
 | 
						||
      if (BE (start == -2 || end == -2, 0))
 | 
						||
	{
 | 
						||
	  /* Invalid sequence.  */
 | 
						||
	  if (token->type == OP_CLOSE_DUP_NUM)
 | 
						||
	    goto parse_dup_op_invalid_interval;
 | 
						||
	  else
 | 
						||
	    goto parse_dup_op_ebrace;
 | 
						||
	}
 | 
						||
      if (BE (start == 0 && end == 0, 0))
 | 
						||
	{
 | 
						||
	  /* We treat "<re>{0}" and "<re>{0,0}" as null string.  */
 | 
						||
	  *token = fetch_token (regexp, syntax);
 | 
						||
	  free_bin_tree (dup_elem);
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
 | 
						||
      /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}".  */
 | 
						||
      elem = tree;
 | 
						||
      for (i = 0; i < start; ++i)
 | 
						||
	if (i != 0)
 | 
						||
	  {
 | 
						||
	    work_tree = duplicate_tree (elem, dfa);
 | 
						||
	    tree = create_tree (tree, work_tree, CONCAT, 0);
 | 
						||
	    if (BE (work_tree == NULL || tree == NULL, 0))
 | 
						||
	      goto parse_dup_op_espace;
 | 
						||
	  }
 | 
						||
 | 
						||
      if (end == -1)
 | 
						||
	{
 | 
						||
	  /* We treat "<re>{0,}" as "<re>*".  */
 | 
						||
	  dup_token.type = OP_DUP_ASTERISK;
 | 
						||
	  if (start > 0)
 | 
						||
	    {
 | 
						||
	      elem = duplicate_tree (elem, dfa);
 | 
						||
	      new_idx = re_dfa_add_node (dfa, dup_token, 0);
 | 
						||
	      work_tree = create_tree (elem, NULL, 0, new_idx);
 | 
						||
	      tree = create_tree (tree, work_tree, CONCAT, 0);
 | 
						||
	      if (BE (elem == NULL || new_idx == -1 || work_tree == NULL
 | 
						||
		      || tree == NULL, 0))
 | 
						||
		goto parse_dup_op_espace;
 | 
						||
	    }
 | 
						||
	  else
 | 
						||
	    {
 | 
						||
	      new_idx = re_dfa_add_node (dfa, dup_token, 0);
 | 
						||
	      tree = create_tree (elem, NULL, 0, new_idx);
 | 
						||
	      if (BE (new_idx == -1 || tree == NULL, 0))
 | 
						||
		goto parse_dup_op_espace;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
      else if (end - start > 0)
 | 
						||
	{
 | 
						||
	  /* Then extract "<re>{0,m}" to "<re>?<re>?...<re>?".  */
 | 
						||
	  dup_token.type = OP_DUP_QUESTION;
 | 
						||
	  if (start > 0)
 | 
						||
	    {
 | 
						||
	      elem = duplicate_tree (elem, dfa);
 | 
						||
	      new_idx = re_dfa_add_node (dfa, dup_token, 0);
 | 
						||
	      elem = create_tree (elem, NULL, 0, new_idx);
 | 
						||
	      tree = create_tree (tree, elem, CONCAT, 0);
 | 
						||
	      if (BE (elem == NULL || new_idx == -1 || tree == NULL, 0))
 | 
						||
		goto parse_dup_op_espace;
 | 
						||
	    }
 | 
						||
	  else
 | 
						||
	    {
 | 
						||
	      new_idx = re_dfa_add_node (dfa, dup_token, 0);
 | 
						||
	      tree = elem = create_tree (elem, NULL, 0, new_idx);
 | 
						||
	      if (BE (new_idx == -1 || tree == NULL, 0))
 | 
						||
		goto parse_dup_op_espace;
 | 
						||
	    }
 | 
						||
	  for (i = 1; i < end - start; ++i)
 | 
						||
	    {
 | 
						||
	      work_tree = duplicate_tree (elem, dfa);
 | 
						||
	      tree = create_tree (tree, work_tree, CONCAT, 0);
 | 
						||
	      if (BE (work_tree == NULL || tree == NULL, 0))
 | 
						||
		{
 | 
						||
		  *err = REG_ESPACE;
 | 
						||
		  return NULL;
 | 
						||
		}
 | 
						||
	    }
 | 
						||
	}
 | 
						||
    }
 | 
						||
  else
 | 
						||
    {
 | 
						||
      new_idx = re_dfa_add_node (dfa, *token, 0);
 | 
						||
      tree = create_tree (tree, NULL, 0, new_idx);
 | 
						||
      if (BE (new_idx == -1 || tree == NULL, 0))
 | 
						||
	{
 | 
						||
	  *err = REG_ESPACE;
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
    }
 | 
						||
  *token = fetch_token (regexp, syntax);
 | 
						||
  return tree;
 | 
						||
 | 
						||
 parse_dup_op_espace:
 | 
						||
  free_bin_tree (tree);
 | 
						||
  *err = REG_ESPACE;
 | 
						||
  return NULL;
 | 
						||
 | 
						||
 parse_dup_op_ebrace:
 | 
						||
  if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0))
 | 
						||
    {
 | 
						||
      *err = REG_EBRACE;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
  goto parse_dup_op_rollback;
 | 
						||
 parse_dup_op_invalid_interval:
 | 
						||
  if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0))
 | 
						||
    {
 | 
						||
      *err = REG_BADBR;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
 parse_dup_op_rollback:
 | 
						||
  re_string_set_index (regexp, start_idx);
 | 
						||
  *token = start_token;
 | 
						||
  token->type = CHARACTER;
 | 
						||
  return dup_elem;
 | 
						||
}
 | 
						||
 | 
						||
/* Size of the names for collating symbol/equivalence_class/character_class.
 | 
						||
   I'm not sure, but maybe enough.  */
 | 
						||
#define BRACKET_NAME_BUF_SIZE 32
 | 
						||
 | 
						||
#ifndef _LIBC
 | 
						||
  /* Local function for parse_bracket_exp only used in case of NOT _LIBC.
 | 
						||
     Build the range expression which starts from START_ELEM, and ends
 | 
						||
     at END_ELEM.  The result are written to MBCSET and SBCSET.
 | 
						||
     RANGE_ALLOC is the allocated size of mbcset->range_starts, and
 | 
						||
     mbcset->range_ends, is a pointer argument sinse we may
 | 
						||
     update it.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
# ifdef RE_ENABLE_I18N
 | 
						||
build_range_exp (sbcset, mbcset, range_alloc, start_elem, end_elem)
 | 
						||
     re_charset_t *mbcset;
 | 
						||
     int *range_alloc;
 | 
						||
# else /* not RE_ENABLE_I18N */
 | 
						||
build_range_exp (sbcset, start_elem, end_elem)
 | 
						||
# endif /* not RE_ENABLE_I18N */
 | 
						||
     re_bitset_ptr_t sbcset;
 | 
						||
     bracket_elem_t *start_elem, *end_elem;
 | 
						||
{
 | 
						||
  unsigned int start_ch, end_ch;
 | 
						||
  /* Equivalence Classes and Character Classes can't be a range start/end.  */
 | 
						||
  if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS
 | 
						||
	  || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS,
 | 
						||
	  0))
 | 
						||
    return REG_ERANGE;
 | 
						||
 | 
						||
  /* We can handle no multi character collating elements without libc
 | 
						||
     support.  */
 | 
						||
  if (BE ((start_elem->type == COLL_SYM
 | 
						||
	   && strlen ((char *) start_elem->opr.name) > 1)
 | 
						||
	  || (end_elem->type == COLL_SYM
 | 
						||
	      && strlen ((char *) end_elem->opr.name) > 1), 0))
 | 
						||
    return REG_ECOLLATE;
 | 
						||
 | 
						||
# ifdef RE_ENABLE_I18N
 | 
						||
  {
 | 
						||
    wchar_t wc, start_wc, end_wc;
 | 
						||
    wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
 | 
						||
 | 
						||
    start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch
 | 
						||
		: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
 | 
						||
		   : 0));
 | 
						||
    end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch
 | 
						||
	      : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
 | 
						||
		 : 0));
 | 
						||
    start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM)
 | 
						||
		? __btowc (start_ch) : start_elem->opr.wch);
 | 
						||
    end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM)
 | 
						||
	      ? __btowc (end_ch) : end_elem->opr.wch);
 | 
						||
    cmp_buf[0] = start_wc;
 | 
						||
    cmp_buf[4] = end_wc;
 | 
						||
    if (wcscoll (cmp_buf, cmp_buf + 4) > 0)
 | 
						||
      return REG_ERANGE;
 | 
						||
 | 
						||
    /* Check the space of the arrays.  */
 | 
						||
    if (*range_alloc == mbcset->nranges)
 | 
						||
      {
 | 
						||
	/* There are not enough space, need realloc.  */
 | 
						||
	wchar_t *new_array_start, *new_array_end;
 | 
						||
	int new_nranges;
 | 
						||
 | 
						||
	/* +1 in case of mbcset->nranges is 0.  */
 | 
						||
	new_nranges = 2 * mbcset->nranges + 1;
 | 
						||
	/* Use realloc since mbcset->range_starts and mbcset->range_ends
 | 
						||
	   are NULL if *range_alloc == 0.  */
 | 
						||
	new_array_start = re_realloc (mbcset->range_starts, wchar_t,
 | 
						||
				      new_nranges);
 | 
						||
	new_array_end = re_realloc (mbcset->range_ends, wchar_t,
 | 
						||
				    new_nranges);
 | 
						||
 | 
						||
	if (BE (new_array_start == NULL || new_array_end == NULL, 0))
 | 
						||
	  return REG_ESPACE;
 | 
						||
 | 
						||
	mbcset->range_starts = new_array_start;
 | 
						||
	mbcset->range_ends = new_array_end;
 | 
						||
	*range_alloc = new_nranges;
 | 
						||
      }
 | 
						||
 | 
						||
    mbcset->range_starts[mbcset->nranges] = start_wc;
 | 
						||
    mbcset->range_ends[mbcset->nranges++] = end_wc;
 | 
						||
 | 
						||
    /* Build the table for single byte characters.  */
 | 
						||
    for (wc = 0; wc <= SBC_MAX; ++wc)
 | 
						||
      {
 | 
						||
	cmp_buf[2] = wc;
 | 
						||
	if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
 | 
						||
	    && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
 | 
						||
	  bitset_set (sbcset, wc);
 | 
						||
      }
 | 
						||
  }
 | 
						||
# else /* not RE_ENABLE_I18N */
 | 
						||
  {
 | 
						||
    unsigned int ch;
 | 
						||
    start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch
 | 
						||
		: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
 | 
						||
		   : 0));
 | 
						||
    end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch
 | 
						||
	      : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
 | 
						||
		 : 0));
 | 
						||
    if (start_ch > end_ch)
 | 
						||
      return REG_ERANGE;
 | 
						||
    /* Build the table for single byte characters.  */
 | 
						||
    for (ch = 0; ch <= SBC_MAX; ++ch)
 | 
						||
      if (start_ch <= ch  && ch <= end_ch)
 | 
						||
	bitset_set (sbcset, ch);
 | 
						||
  }
 | 
						||
# endif /* not RE_ENABLE_I18N */
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
#endif /* not _LIBC */
 | 
						||
 | 
						||
#ifndef _LIBC
 | 
						||
/* Helper function for parse_bracket_exp only used in case of NOT _LIBC..
 | 
						||
   Build the collating element which is represented by NAME.
 | 
						||
   The result are written to MBCSET and SBCSET.
 | 
						||
   COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
 | 
						||
   pointer argument since we may update it.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
# ifdef RE_ENABLE_I18N
 | 
						||
build_collating_symbol (sbcset, mbcset, coll_sym_alloc, name)
 | 
						||
     re_charset_t *mbcset;
 | 
						||
     int *coll_sym_alloc;
 | 
						||
# else /* not RE_ENABLE_I18N */
 | 
						||
build_collating_symbol (sbcset, name)
 | 
						||
# endif /* not RE_ENABLE_I18N */
 | 
						||
     re_bitset_ptr_t sbcset;
 | 
						||
     const unsigned char *name;
 | 
						||
{
 | 
						||
  size_t name_len = strlen ((const char *) name);
 | 
						||
  if (BE (name_len != 1, 0))
 | 
						||
    return REG_ECOLLATE;
 | 
						||
  else
 | 
						||
    {
 | 
						||
      bitset_set (sbcset, name[0]);
 | 
						||
      return REG_NOERROR;
 | 
						||
    }
 | 
						||
}
 | 
						||
#endif /* not _LIBC */
 | 
						||
 | 
						||
/* This function parse bracket expression like "[abc]", "[a-c]",
 | 
						||
   "[[.a-a.]]" etc.  */
 | 
						||
 | 
						||
static bin_tree_t *
 | 
						||
parse_bracket_exp (regexp, dfa, token, syntax, err)
 | 
						||
     re_string_t *regexp;
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     re_token_t *token;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
     reg_errcode_t *err;
 | 
						||
{
 | 
						||
#ifdef _LIBC
 | 
						||
  const unsigned char *collseqmb;
 | 
						||
  const char *collseqwc;
 | 
						||
  uint32_t nrules;
 | 
						||
  int32_t table_size;
 | 
						||
  const int32_t *symb_table;
 | 
						||
  const unsigned char *extra;
 | 
						||
 | 
						||
  /* Local function for parse_bracket_exp used in _LIBC environement.
 | 
						||
     Seek the collating symbol entry correspondings to NAME.
 | 
						||
     Return the index of the symbol in the SYMB_TABLE.  */
 | 
						||
 | 
						||
  static inline int32_t
 | 
						||
  seek_collating_symbol_entry (name, name_len)
 | 
						||
	 const unsigned char *name;
 | 
						||
	 size_t name_len;
 | 
						||
    {
 | 
						||
      int32_t hash = elem_hash ((const char *) name, name_len);
 | 
						||
      int32_t elem = hash % table_size;
 | 
						||
      int32_t second = hash % (table_size - 2);
 | 
						||
      while (symb_table[2 * elem] != 0)
 | 
						||
	{
 | 
						||
	  /* First compare the hashing value.  */
 | 
						||
	  if (symb_table[2 * elem] == hash
 | 
						||
	      /* Compare the length of the name.  */
 | 
						||
	      && name_len == extra[symb_table[2 * elem + 1]]
 | 
						||
	      /* Compare the name.  */
 | 
						||
	      && memcmp (name, &extra[symb_table[2 * elem + 1] + 1],
 | 
						||
			 name_len) == 0)
 | 
						||
	    {
 | 
						||
	      /* Yep, this is the entry.  */
 | 
						||
	      break;
 | 
						||
	    }
 | 
						||
 | 
						||
	  /* Next entry.  */
 | 
						||
	  elem += second;
 | 
						||
	}
 | 
						||
      return elem;
 | 
						||
    }
 | 
						||
 | 
						||
  /* Local function for parse_bracket_exp used in _LIBC environement.
 | 
						||
     Look up the collation sequence value of BR_ELEM.
 | 
						||
     Return the value if succeeded, UINT_MAX otherwise.  */
 | 
						||
 | 
						||
  static inline unsigned int
 | 
						||
  lookup_collation_sequence_value (br_elem)
 | 
						||
	 bracket_elem_t *br_elem;
 | 
						||
    {
 | 
						||
      if (br_elem->type == SB_CHAR)
 | 
						||
	{
 | 
						||
	  /*
 | 
						||
	  if (MB_CUR_MAX == 1)
 | 
						||
	  */
 | 
						||
	  if (nrules == 0)
 | 
						||
	    return collseqmb[br_elem->opr.ch];
 | 
						||
	  else
 | 
						||
	    {
 | 
						||
	      wint_t wc = __btowc (br_elem->opr.ch);
 | 
						||
	      return collseq_table_lookup (collseqwc, wc);
 | 
						||
	    }
 | 
						||
	}
 | 
						||
      else if (br_elem->type == MB_CHAR)
 | 
						||
	{
 | 
						||
	  return collseq_table_lookup (collseqwc, br_elem->opr.wch);
 | 
						||
	}
 | 
						||
      else if (br_elem->type == COLL_SYM)
 | 
						||
	{
 | 
						||
	  size_t sym_name_len = strlen ((char *) br_elem->opr.name);
 | 
						||
	  if (nrules != 0)
 | 
						||
	    {
 | 
						||
	      int32_t elem, idx;
 | 
						||
	      elem = seek_collating_symbol_entry (br_elem->opr.name,
 | 
						||
						  sym_name_len);
 | 
						||
	      if (symb_table[2 * elem] != 0)
 | 
						||
		{
 | 
						||
		  /* We found the entry.  */
 | 
						||
		  idx = symb_table[2 * elem + 1];
 | 
						||
		  /* Skip the name of collating element name.  */
 | 
						||
		  idx += 1 + extra[idx];
 | 
						||
		  /* Skip the byte sequence of the collating element.  */
 | 
						||
		  idx += 1 + extra[idx];
 | 
						||
		  /* Adjust for the alignment.  */
 | 
						||
		  idx = (idx + 3) & ~3;
 | 
						||
		  /* Skip the multibyte collation sequence value.  */
 | 
						||
		  idx += sizeof (unsigned int);
 | 
						||
		  /* Skip the wide char sequence of the collating element.  */
 | 
						||
		  idx += sizeof (unsigned int) *
 | 
						||
		    (1 + *(unsigned int *) (extra + idx));
 | 
						||
		  /* Return the collation sequence value.  */
 | 
						||
		  return *(unsigned int *) (extra + idx);
 | 
						||
		}
 | 
						||
	      else if (symb_table[2 * elem] == 0 && sym_name_len == 1)
 | 
						||
		{
 | 
						||
		  /* No valid character.  Match it as a single byte
 | 
						||
		     character.  */
 | 
						||
		  return collseqmb[br_elem->opr.name[0]];
 | 
						||
		}
 | 
						||
	    }
 | 
						||
	  else if (sym_name_len == 1)
 | 
						||
	    return collseqmb[br_elem->opr.name[0]];
 | 
						||
	}
 | 
						||
      return UINT_MAX;
 | 
						||
    }
 | 
						||
 | 
						||
  /* Local function for parse_bracket_exp used in _LIBC environement.
 | 
						||
     Build the range expression which starts from START_ELEM, and ends
 | 
						||
     at END_ELEM.  The result are written to MBCSET and SBCSET.
 | 
						||
     RANGE_ALLOC is the allocated size of mbcset->range_starts, and
 | 
						||
     mbcset->range_ends, is a pointer argument sinse we may
 | 
						||
     update it.  */
 | 
						||
 | 
						||
  static inline reg_errcode_t
 | 
						||
# ifdef RE_ENABLE_I18N
 | 
						||
  build_range_exp (sbcset, mbcset, range_alloc, start_elem, end_elem)
 | 
						||
	 re_charset_t *mbcset;
 | 
						||
	 int *range_alloc;
 | 
						||
# else /* not RE_ENABLE_I18N */
 | 
						||
  build_range_exp (sbcset, start_elem, end_elem)
 | 
						||
# endif /* not RE_ENABLE_I18N */
 | 
						||
	 re_bitset_ptr_t sbcset;
 | 
						||
	 bracket_elem_t *start_elem, *end_elem;
 | 
						||
    {
 | 
						||
      unsigned int ch;
 | 
						||
      uint32_t start_collseq;
 | 
						||
      uint32_t end_collseq;
 | 
						||
 | 
						||
# ifdef RE_ENABLE_I18N
 | 
						||
      /* Check the space of the arrays.  */
 | 
						||
      if (*range_alloc == mbcset->nranges)
 | 
						||
	{
 | 
						||
	  /* There are not enough space, need realloc.  */
 | 
						||
	  uint32_t *new_array_start;
 | 
						||
	  uint32_t *new_array_end;
 | 
						||
	  int new_nranges;
 | 
						||
 | 
						||
	  /* +1 in case of mbcset->nranges is 0.  */
 | 
						||
	  new_nranges = 2 * mbcset->nranges + 1;
 | 
						||
	  /* Use realloc since mbcset->range_starts and mbcset->range_ends
 | 
						||
	     are NULL if *range_alloc == 0.  */
 | 
						||
	  new_array_start = re_realloc (mbcset->range_starts, uint32_t,
 | 
						||
					new_nranges);
 | 
						||
	  new_array_end = re_realloc (mbcset->range_ends, uint32_t,
 | 
						||
				      new_nranges);
 | 
						||
 | 
						||
	  if (BE (new_array_start == NULL || new_array_end == NULL, 0))
 | 
						||
	    return REG_ESPACE;
 | 
						||
 | 
						||
	  mbcset->range_starts = new_array_start;
 | 
						||
	  mbcset->range_ends = new_array_end;
 | 
						||
	  *range_alloc = new_nranges;
 | 
						||
	}
 | 
						||
# endif /* RE_ENABLE_I18N */
 | 
						||
 | 
						||
      /* Equivalence Classes and Character Classes can't be a range
 | 
						||
	 start/end.  */
 | 
						||
      if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS
 | 
						||
	      || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS,
 | 
						||
	      0))
 | 
						||
	return REG_ERANGE;
 | 
						||
 | 
						||
      start_collseq = lookup_collation_sequence_value (start_elem);
 | 
						||
      end_collseq = lookup_collation_sequence_value (end_elem);
 | 
						||
      /* Check start/end collation sequence values.  */
 | 
						||
      if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0))
 | 
						||
	return REG_ECOLLATE;
 | 
						||
      if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0))
 | 
						||
	return REG_ERANGE;
 | 
						||
 | 
						||
# ifdef RE_ENABLE_I18N
 | 
						||
      /* Got valid collation sequence values, add them as a new entry.  */
 | 
						||
      mbcset->range_starts[mbcset->nranges] = start_collseq;
 | 
						||
      mbcset->range_ends[mbcset->nranges++] = end_collseq;
 | 
						||
# endif /* RE_ENABLE_I18N */
 | 
						||
 | 
						||
      /* Build the table for single byte characters.  */
 | 
						||
      for (ch = 0; ch <= SBC_MAX; ch++)
 | 
						||
	{
 | 
						||
	  uint32_t ch_collseq;
 | 
						||
	  /*
 | 
						||
	  if (MB_CUR_MAX == 1)
 | 
						||
	  */
 | 
						||
	  if (nrules == 0)
 | 
						||
	    ch_collseq = collseqmb[ch];
 | 
						||
	  else
 | 
						||
	    ch_collseq = collseq_table_lookup (collseqwc, __btowc (ch));
 | 
						||
	  if (start_collseq <= ch_collseq && ch_collseq <= end_collseq)
 | 
						||
	    bitset_set (sbcset, ch);
 | 
						||
	}
 | 
						||
      return REG_NOERROR;
 | 
						||
    }
 | 
						||
 | 
						||
  /* Local function for parse_bracket_exp used in _LIBC environement.
 | 
						||
     Build the collating element which is represented by NAME.
 | 
						||
     The result are written to MBCSET and SBCSET.
 | 
						||
     COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
 | 
						||
     pointer argument sinse we may update it.  */
 | 
						||
 | 
						||
  static inline reg_errcode_t
 | 
						||
# ifdef RE_ENABLE_I18N
 | 
						||
  build_collating_symbol (sbcset, mbcset, coll_sym_alloc, name)
 | 
						||
	 re_charset_t *mbcset;
 | 
						||
	 int *coll_sym_alloc;
 | 
						||
# else /* not RE_ENABLE_I18N */
 | 
						||
  build_collating_symbol (sbcset, name)
 | 
						||
# endif /* not RE_ENABLE_I18N */
 | 
						||
	 re_bitset_ptr_t sbcset;
 | 
						||
	 const unsigned char *name;
 | 
						||
    {
 | 
						||
      int32_t elem, idx;
 | 
						||
      size_t name_len = strlen ((const char *) name);
 | 
						||
      if (nrules != 0)
 | 
						||
	{
 | 
						||
	  elem = seek_collating_symbol_entry (name, name_len);
 | 
						||
	  if (symb_table[2 * elem] != 0)
 | 
						||
	    {
 | 
						||
	      /* We found the entry.  */
 | 
						||
	      idx = symb_table[2 * elem + 1];
 | 
						||
	      /* Skip the name of collating element name.  */
 | 
						||
	      idx += 1 + extra[idx];
 | 
						||
	    }
 | 
						||
	  else if (symb_table[2 * elem] == 0 && name_len == 1)
 | 
						||
	    {
 | 
						||
	      /* No valid character, treat it as a normal
 | 
						||
		 character.  */
 | 
						||
	      bitset_set (sbcset, name[0]);
 | 
						||
	      return REG_NOERROR;
 | 
						||
	    }
 | 
						||
	  else
 | 
						||
	    return REG_ECOLLATE;
 | 
						||
 | 
						||
# ifdef RE_ENABLE_I18N
 | 
						||
	  /* Got valid collation sequence, add it as a new entry.  */
 | 
						||
	  /* Check the space of the arrays.  */
 | 
						||
	  if (*coll_sym_alloc == mbcset->ncoll_syms)
 | 
						||
	    {
 | 
						||
	      /* Not enough, realloc it.  */
 | 
						||
	      /* +1 in case of mbcset->ncoll_syms is 0.  */
 | 
						||
	      *coll_sym_alloc = 2 * mbcset->ncoll_syms + 1;
 | 
						||
	      /* Use realloc since mbcset->coll_syms is NULL
 | 
						||
		 if *alloc == 0.  */
 | 
						||
	      mbcset->coll_syms = re_realloc (mbcset->coll_syms, int32_t,
 | 
						||
					      *coll_sym_alloc);
 | 
						||
	      if (BE (mbcset->coll_syms == NULL, 0))
 | 
						||
		return REG_ESPACE;
 | 
						||
	    }
 | 
						||
	  mbcset->coll_syms[mbcset->ncoll_syms++] = idx;
 | 
						||
# endif /* RE_ENABLE_I18N */
 | 
						||
	  return REG_NOERROR;
 | 
						||
	}
 | 
						||
      else
 | 
						||
	{
 | 
						||
	  if (BE (name_len != 1, 0))
 | 
						||
	    return REG_ECOLLATE;
 | 
						||
	  else
 | 
						||
	    {
 | 
						||
	      bitset_set (sbcset, name[0]);
 | 
						||
	      return REG_NOERROR;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
    }
 | 
						||
#endif
 | 
						||
 | 
						||
  re_token_t br_token;
 | 
						||
  re_bitset_ptr_t sbcset;
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  re_charset_t *mbcset;
 | 
						||
  int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0;
 | 
						||
  int equiv_class_alloc = 0, char_class_alloc = 0;
 | 
						||
#else /* not RE_ENABLE_I18N */
 | 
						||
  int non_match = 0;
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
  bin_tree_t *work_tree;
 | 
						||
  int token_len, new_idx;
 | 
						||
#ifdef _LIBC
 | 
						||
  collseqmb = (const unsigned char *)
 | 
						||
    _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
 | 
						||
  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
 | 
						||
  if (nrules)
 | 
						||
    {
 | 
						||
      /*
 | 
						||
      if (MB_CUR_MAX > 1)
 | 
						||
      */
 | 
						||
	collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
 | 
						||
      table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB);
 | 
						||
      symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE,
 | 
						||
						  _NL_COLLATE_SYMB_TABLEMB);
 | 
						||
      extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
 | 
						||
						   _NL_COLLATE_SYMB_EXTRAMB);
 | 
						||
    }
 | 
						||
#endif
 | 
						||
  sbcset = (re_bitset_ptr_t) calloc (sizeof (unsigned int), BITSET_UINTS);
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  if (BE (sbcset == NULL || mbcset == NULL, 0))
 | 
						||
#else
 | 
						||
  if (BE (sbcset == NULL, 0))
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
    {
 | 
						||
      *err = REG_ESPACE;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
 | 
						||
  token_len = peek_token_bracket (token, regexp, syntax);
 | 
						||
  if (BE (token->type == END_OF_RE, 0))
 | 
						||
    {
 | 
						||
      *err = REG_BADPAT;
 | 
						||
      goto parse_bracket_exp_free_return;
 | 
						||
    }
 | 
						||
  if (token->type == OP_NON_MATCH_LIST)
 | 
						||
    {
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      int i;
 | 
						||
      mbcset->non_match = 1;
 | 
						||
#else /* not RE_ENABLE_I18N */
 | 
						||
      non_match = 1;
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
      if (syntax & RE_HAT_LISTS_NOT_NEWLINE)
 | 
						||
	bitset_set (sbcset, '\0');
 | 
						||
      re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
 | 
						||
      token_len = peek_token_bracket (token, regexp, syntax);
 | 
						||
      if (BE (token->type == END_OF_RE, 0))
 | 
						||
	{
 | 
						||
	  *err = REG_BADPAT;
 | 
						||
	  goto parse_bracket_exp_free_return;
 | 
						||
	}
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      if (MB_CUR_MAX > 1)
 | 
						||
	for (i = 0; i < SBC_MAX; ++i)
 | 
						||
	  if (__btowc (i) == WEOF)
 | 
						||
	    bitset_set (sbcset, i);
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
    }
 | 
						||
 | 
						||
  /* We treat the first ']' as a normal character.  */
 | 
						||
  if (token->type == OP_CLOSE_BRACKET)
 | 
						||
    token->type = CHARACTER;
 | 
						||
 | 
						||
  while (1)
 | 
						||
    {
 | 
						||
      bracket_elem_t start_elem, end_elem;
 | 
						||
      unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE];
 | 
						||
      unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE];
 | 
						||
      reg_errcode_t ret;
 | 
						||
      int token_len2 = 0, is_range_exp = 0;
 | 
						||
      re_token_t token2;
 | 
						||
 | 
						||
      start_elem.opr.name = start_name_buf;
 | 
						||
      ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa,
 | 
						||
				   syntax);
 | 
						||
      if (BE (ret != REG_NOERROR, 0))
 | 
						||
	{
 | 
						||
	  *err = ret;
 | 
						||
	  goto parse_bracket_exp_free_return;
 | 
						||
	}
 | 
						||
 | 
						||
      token_len = peek_token_bracket (token, regexp, syntax);
 | 
						||
      if (BE (token->type == END_OF_RE, 0))
 | 
						||
	{
 | 
						||
	  *err = REG_BADPAT;
 | 
						||
	  goto parse_bracket_exp_free_return;
 | 
						||
	}
 | 
						||
      if (token->type == OP_CHARSET_RANGE)
 | 
						||
	{
 | 
						||
	  re_string_skip_bytes (regexp, token_len); /* Skip '-'.  */
 | 
						||
	  token_len2 = peek_token_bracket (&token2, regexp, syntax);
 | 
						||
	  if (BE (token->type == END_OF_RE, 0))
 | 
						||
	    {
 | 
						||
	      *err = REG_BADPAT;
 | 
						||
	      goto parse_bracket_exp_free_return;
 | 
						||
	    }
 | 
						||
	  if (token2.type == OP_CLOSE_BRACKET)
 | 
						||
	    {
 | 
						||
	      /* We treat the last '-' as a normal character.  */
 | 
						||
	      re_string_skip_bytes (regexp, -token_len);
 | 
						||
	      token->type = CHARACTER;
 | 
						||
	    }
 | 
						||
	  else
 | 
						||
	    is_range_exp = 1;
 | 
						||
	}
 | 
						||
 | 
						||
      if (is_range_exp == 1)
 | 
						||
	{
 | 
						||
	  end_elem.opr.name = end_name_buf;
 | 
						||
	  ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2,
 | 
						||
				       dfa, syntax);
 | 
						||
	  if (BE (ret != REG_NOERROR, 0))
 | 
						||
	    {
 | 
						||
	      *err = ret;
 | 
						||
	      goto parse_bracket_exp_free_return;
 | 
						||
	    }
 | 
						||
 | 
						||
	  token_len = peek_token_bracket (token, regexp, syntax);
 | 
						||
	  if (BE (token->type == END_OF_RE, 0))
 | 
						||
	    {
 | 
						||
	      *err = REG_BADPAT;
 | 
						||
	      goto parse_bracket_exp_free_return;
 | 
						||
	    }
 | 
						||
	  *err = build_range_exp (sbcset,
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
				  mbcset, &range_alloc,
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
				  &start_elem, &end_elem);
 | 
						||
	  if (BE (*err != REG_NOERROR, 0))
 | 
						||
	    goto parse_bracket_exp_free_return;
 | 
						||
	}
 | 
						||
      else
 | 
						||
	{
 | 
						||
	  switch (start_elem.type)
 | 
						||
	    {
 | 
						||
	    case SB_CHAR:
 | 
						||
	      bitset_set (sbcset, start_elem.opr.ch);
 | 
						||
	      break;
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
	    case MB_CHAR:
 | 
						||
	      /* Check whether the array has enough space.  */
 | 
						||
	      if (mbchar_alloc == mbcset->nmbchars)
 | 
						||
		{
 | 
						||
		  /* Not enough, realloc it.  */
 | 
						||
		  /* +1 in case of mbcset->nmbchars is 0.  */
 | 
						||
		  mbchar_alloc = 2 * mbcset->nmbchars + 1;
 | 
						||
		  /* Use realloc since array is NULL if *alloc == 0.  */
 | 
						||
		  mbcset->mbchars = re_realloc (mbcset->mbchars, wchar_t,
 | 
						||
						mbchar_alloc);
 | 
						||
		  if (BE (mbcset->mbchars == NULL, 0))
 | 
						||
		    goto parse_bracket_exp_espace;
 | 
						||
		}
 | 
						||
	      mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch;
 | 
						||
	      break;
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
	    case EQUIV_CLASS:
 | 
						||
	      *err = build_equiv_class (sbcset,
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
					mbcset, &equiv_class_alloc,
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
					start_elem.opr.name);
 | 
						||
	      if (BE (*err != REG_NOERROR, 0))
 | 
						||
		goto parse_bracket_exp_free_return;
 | 
						||
	      break;
 | 
						||
	    case COLL_SYM:
 | 
						||
	      *err = build_collating_symbol (sbcset,
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
					     mbcset, &coll_sym_alloc,
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
					     start_elem.opr.name);
 | 
						||
	      if (BE (*err != REG_NOERROR, 0))
 | 
						||
		goto parse_bracket_exp_free_return;
 | 
						||
	      break;
 | 
						||
	    case CHAR_CLASS:
 | 
						||
	      *err = build_charclass (sbcset,
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
				      mbcset, &char_class_alloc,
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
				      start_elem.opr.name, syntax);
 | 
						||
	      if (BE (*err != REG_NOERROR, 0))
 | 
						||
	       goto parse_bracket_exp_free_return;
 | 
						||
	      break;
 | 
						||
	    default:
 | 
						||
	      assert (0);
 | 
						||
	      break;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
      if (token->type == OP_CLOSE_BRACKET)
 | 
						||
	break;
 | 
						||
    }
 | 
						||
 | 
						||
  re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
 | 
						||
 | 
						||
  /* If it is non-matching list.  */
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  if (mbcset->non_match)
 | 
						||
#else /* not RE_ENABLE_I18N */
 | 
						||
  if (non_match)
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
    bitset_not (sbcset);
 | 
						||
 | 
						||
  /* Build a tree for simple bracket.  */
 | 
						||
  br_token.type = SIMPLE_BRACKET;
 | 
						||
  br_token.opr.sbcset = sbcset;
 | 
						||
  new_idx = re_dfa_add_node (dfa, br_token, 0);
 | 
						||
  work_tree = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
  if (BE (new_idx == -1 || work_tree == NULL, 0))
 | 
						||
    goto parse_bracket_exp_espace;
 | 
						||
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes
 | 
						||
      || mbcset->nranges || (MB_CUR_MAX > 1 && (mbcset->nchar_classes
 | 
						||
						|| mbcset->non_match)))
 | 
						||
    {
 | 
						||
      re_token_t alt_token;
 | 
						||
      bin_tree_t *mbc_tree;
 | 
						||
      /* Build a tree for complex bracket.  */
 | 
						||
      br_token.type = COMPLEX_BRACKET;
 | 
						||
      br_token.opr.mbcset = mbcset;
 | 
						||
      dfa->has_mb_node = 1;
 | 
						||
      new_idx = re_dfa_add_node (dfa, br_token, 0);
 | 
						||
      mbc_tree = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
      if (BE (new_idx == -1 || mbc_tree == NULL, 0))
 | 
						||
	goto parse_bracket_exp_espace;
 | 
						||
      /* Then join them by ALT node.  */
 | 
						||
      dfa->has_plural_match = 1;
 | 
						||
      alt_token.type = OP_ALT;
 | 
						||
      new_idx = re_dfa_add_node (dfa, alt_token, 0);
 | 
						||
      work_tree = create_tree (work_tree, mbc_tree, 0, new_idx);
 | 
						||
      if (BE (new_idx != -1 && mbc_tree != NULL, 1))
 | 
						||
	return work_tree;
 | 
						||
    }
 | 
						||
  else
 | 
						||
    {
 | 
						||
      free_charset (mbcset);
 | 
						||
      return work_tree;
 | 
						||
    }
 | 
						||
#else /* not RE_ENABLE_I18N */
 | 
						||
  return work_tree;
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
 | 
						||
 parse_bracket_exp_espace:
 | 
						||
  *err = REG_ESPACE;
 | 
						||
 parse_bracket_exp_free_return:
 | 
						||
  re_free (sbcset);
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  free_charset (mbcset);
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
  return NULL;
 | 
						||
}
 | 
						||
 | 
						||
/* Parse an element in the bracket expression.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
parse_bracket_element (elem, regexp, token, token_len, dfa, syntax)
 | 
						||
     bracket_elem_t *elem;
 | 
						||
     re_string_t *regexp;
 | 
						||
     re_token_t *token;
 | 
						||
     int token_len;
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
{
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  int cur_char_size;
 | 
						||
  cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp));
 | 
						||
  if (cur_char_size > 1)
 | 
						||
    {
 | 
						||
      elem->type = MB_CHAR;
 | 
						||
      elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp));
 | 
						||
      re_string_skip_bytes (regexp, cur_char_size);
 | 
						||
      return REG_NOERROR;
 | 
						||
    }
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
  re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
 | 
						||
  if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS
 | 
						||
      || token->type == OP_OPEN_EQUIV_CLASS)
 | 
						||
    return parse_bracket_symbol (elem, regexp, token);
 | 
						||
  elem->type = SB_CHAR;
 | 
						||
  elem->opr.ch = token->opr.c;
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Parse a bracket symbol in the bracket expression.  Bracket symbols are
 | 
						||
   such as [:<character_class>:], [.<collating_element>.], and
 | 
						||
   [=<equivalent_class>=].  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
parse_bracket_symbol (elem, regexp, token)
 | 
						||
     bracket_elem_t *elem;
 | 
						||
     re_string_t *regexp;
 | 
						||
     re_token_t *token;
 | 
						||
{
 | 
						||
  unsigned char ch, delim = token->opr.c;
 | 
						||
  int i = 0;
 | 
						||
  for (;; ++i)
 | 
						||
    {
 | 
						||
      if (re_string_eoi(regexp) || i >= BRACKET_NAME_BUF_SIZE)
 | 
						||
	return REG_EBRACK;
 | 
						||
      if (token->type == OP_OPEN_CHAR_CLASS)
 | 
						||
	ch = re_string_fetch_byte_case (regexp);
 | 
						||
      else
 | 
						||
	ch = re_string_fetch_byte (regexp);
 | 
						||
      if (ch == delim && re_string_peek_byte (regexp, 0) == ']')
 | 
						||
	break;
 | 
						||
      elem->opr.name[i] = ch;
 | 
						||
    }
 | 
						||
  re_string_skip_bytes (regexp, 1);
 | 
						||
  elem->opr.name[i] = '\0';
 | 
						||
  switch (token->type)
 | 
						||
    {
 | 
						||
    case OP_OPEN_COLL_ELEM:
 | 
						||
      elem->type = COLL_SYM;
 | 
						||
      break;
 | 
						||
    case OP_OPEN_EQUIV_CLASS:
 | 
						||
      elem->type = EQUIV_CLASS;
 | 
						||
      break;
 | 
						||
    case OP_OPEN_CHAR_CLASS:
 | 
						||
      elem->type = CHAR_CLASS;
 | 
						||
      break;
 | 
						||
    default:
 | 
						||
      break;
 | 
						||
    }
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
  /* Helper function for parse_bracket_exp.
 | 
						||
     Build the equivalence class which is represented by NAME.
 | 
						||
     The result are written to MBCSET and SBCSET.
 | 
						||
     EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes,
 | 
						||
     is a pointer argument sinse we may update it.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
build_equiv_class (sbcset, mbcset, equiv_class_alloc, name)
 | 
						||
     re_charset_t *mbcset;
 | 
						||
     int *equiv_class_alloc;
 | 
						||
#else /* not RE_ENABLE_I18N */
 | 
						||
build_equiv_class (sbcset, name)
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
     re_bitset_ptr_t sbcset;
 | 
						||
     const unsigned char *name;
 | 
						||
{
 | 
						||
#if defined _LIBC && defined RE_ENABLE_I18N
 | 
						||
  uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
 | 
						||
  if (nrules != 0)
 | 
						||
    {
 | 
						||
      const int32_t *table, *indirect;
 | 
						||
      const unsigned char *weights, *extra, *cp;
 | 
						||
      unsigned char char_buf[2];
 | 
						||
      int32_t idx1, idx2;
 | 
						||
      unsigned int ch;
 | 
						||
      size_t len;
 | 
						||
      /* This #include defines a local function!  */
 | 
						||
# include <locale/weight.h>
 | 
						||
      /* Calculate the index for equivalence class.  */
 | 
						||
      cp = name;
 | 
						||
      table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
 | 
						||
      weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
 | 
						||
					       _NL_COLLATE_WEIGHTMB);
 | 
						||
      extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
 | 
						||
						   _NL_COLLATE_EXTRAMB);
 | 
						||
      indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE,
 | 
						||
						_NL_COLLATE_INDIRECTMB);
 | 
						||
      idx1 = findidx (&cp);
 | 
						||
      if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0))
 | 
						||
	/* This isn't a valid character.  */
 | 
						||
	return REG_ECOLLATE;
 | 
						||
 | 
						||
      /* Build single byte matcing table for this equivalence class.  */
 | 
						||
      char_buf[1] = (unsigned char) '\0';
 | 
						||
      len = weights[idx1];
 | 
						||
      for (ch = 0; ch < SBC_MAX; ++ch)
 | 
						||
	{
 | 
						||
	  char_buf[0] = ch;
 | 
						||
	  cp = char_buf;
 | 
						||
	  idx2 = findidx (&cp);
 | 
						||
/*
 | 
						||
	  idx2 = table[ch];
 | 
						||
*/
 | 
						||
	  if (idx2 == 0)
 | 
						||
	    /* This isn't a valid character.  */
 | 
						||
	    continue;
 | 
						||
	  if (len == weights[idx2])
 | 
						||
	    {
 | 
						||
	      int cnt = 0;
 | 
						||
	      while (cnt <= len &&
 | 
						||
		     weights[idx1 + 1 + cnt] == weights[idx2 + 1 + cnt])
 | 
						||
		++cnt;
 | 
						||
 | 
						||
	      if (cnt > len)
 | 
						||
		bitset_set (sbcset, ch);
 | 
						||
	    }
 | 
						||
	}
 | 
						||
      /* Check whether the array has enough space.  */
 | 
						||
      if (*equiv_class_alloc == mbcset->nequiv_classes)
 | 
						||
	{
 | 
						||
	  /* Not enough, realloc it.  */
 | 
						||
	  /* +1 in case of mbcset->nequiv_classes is 0.  */
 | 
						||
	  *equiv_class_alloc = 2 * mbcset->nequiv_classes + 1;
 | 
						||
	  /* Use realloc since the array is NULL if *alloc == 0.  */
 | 
						||
	  mbcset->equiv_classes = re_realloc (mbcset->equiv_classes, int32_t,
 | 
						||
					      *equiv_class_alloc);
 | 
						||
	  if (BE (mbcset->equiv_classes == NULL, 0))
 | 
						||
	    return REG_ESPACE;
 | 
						||
	}
 | 
						||
      mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1;
 | 
						||
    }
 | 
						||
  else
 | 
						||
#endif /* _LIBC && RE_ENABLE_I18N */
 | 
						||
    {
 | 
						||
      if (BE (strlen ((const char *) name) != 1, 0))
 | 
						||
	return REG_ECOLLATE;
 | 
						||
      bitset_set (sbcset, *name);
 | 
						||
    }
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
  /* Helper function for parse_bracket_exp.
 | 
						||
     Build the character class which is represented by NAME.
 | 
						||
     The result are written to MBCSET and SBCSET.
 | 
						||
     CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes,
 | 
						||
     is a pointer argument sinse we may update it.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
build_charclass (sbcset, mbcset, char_class_alloc, class_name, syntax)
 | 
						||
     re_charset_t *mbcset;
 | 
						||
     int *char_class_alloc;
 | 
						||
#else /* not RE_ENABLE_I18N */
 | 
						||
build_charclass (sbcset, class_name, syntax)
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
     re_bitset_ptr_t sbcset;
 | 
						||
     const unsigned char *class_name;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
{
 | 
						||
  int i;
 | 
						||
  const char *name = (const char *) class_name;
 | 
						||
 | 
						||
  /* In case of REG_ICASE "upper" and "lower" match the both of
 | 
						||
     upper and lower cases.  */
 | 
						||
  if ((syntax & RE_ICASE)
 | 
						||
      && (strcmp (name, "upper") == 0 || strcmp (name, "lower") == 0))
 | 
						||
    name = "alpha";
 | 
						||
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  /* Check the space of the arrays.  */
 | 
						||
  if (*char_class_alloc == mbcset->nchar_classes)
 | 
						||
    {
 | 
						||
      /* Not enough, realloc it.  */
 | 
						||
      /* +1 in case of mbcset->nchar_classes is 0.  */
 | 
						||
      *char_class_alloc = 2 * mbcset->nchar_classes + 1;
 | 
						||
      /* Use realloc since array is NULL if *alloc == 0.  */
 | 
						||
      mbcset->char_classes = re_realloc (mbcset->char_classes, wctype_t,
 | 
						||
					 *char_class_alloc);
 | 
						||
      if (BE (mbcset->char_classes == NULL, 0))
 | 
						||
	return REG_ESPACE;
 | 
						||
    }
 | 
						||
  mbcset->char_classes[mbcset->nchar_classes++] = __wctype (name);
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
 | 
						||
#define BUILD_CHARCLASS_LOOP(ctype_func)\
 | 
						||
    for (i = 0; i < SBC_MAX; ++i)	\
 | 
						||
      {					\
 | 
						||
	if (ctype_func (i))		\
 | 
						||
	  bitset_set (sbcset, i);	\
 | 
						||
      }
 | 
						||
 | 
						||
  if (strcmp (name, "alnum") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (isalnum)
 | 
						||
  else if (strcmp (name, "cntrl") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (iscntrl)
 | 
						||
  else if (strcmp (name, "lower") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (islower)
 | 
						||
  else if (strcmp (name, "space") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (isspace)
 | 
						||
  else if (strcmp (name, "alpha") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (isalpha)
 | 
						||
  else if (strcmp (name, "digit") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (isdigit)
 | 
						||
  else if (strcmp (name, "print") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (isprint)
 | 
						||
  else if (strcmp (name, "upper") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (isupper)
 | 
						||
  else if (strcmp (name, "blank") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (isblank)
 | 
						||
  else if (strcmp (name, "graph") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (isgraph)
 | 
						||
  else if (strcmp (name, "punct") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (ispunct)
 | 
						||
  else if (strcmp (name, "xdigit") == 0)
 | 
						||
    BUILD_CHARCLASS_LOOP (isxdigit)
 | 
						||
  else
 | 
						||
    return REG_ECTYPE;
 | 
						||
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
static bin_tree_t *
 | 
						||
build_word_op (dfa, not, err)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     int not;
 | 
						||
     reg_errcode_t *err;
 | 
						||
{
 | 
						||
  re_bitset_ptr_t sbcset;
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  re_charset_t *mbcset;
 | 
						||
  int alloc = 0;
 | 
						||
#else /* not RE_ENABLE_I18N */
 | 
						||
  int non_match = 0;
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
  reg_errcode_t ret;
 | 
						||
  re_token_t br_token;
 | 
						||
  bin_tree_t *tree;
 | 
						||
  int new_idx;
 | 
						||
 | 
						||
  sbcset = (re_bitset_ptr_t) calloc (sizeof (unsigned int), BITSET_UINTS);
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  if (BE (sbcset == NULL || mbcset == NULL, 0))
 | 
						||
#else /* not RE_ENABLE_I18N */
 | 
						||
  if (BE (sbcset == NULL, 0))
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
    {
 | 
						||
      *err = REG_ESPACE;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
 | 
						||
  if (not)
 | 
						||
    {
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      int i;
 | 
						||
      /*
 | 
						||
      if (syntax & RE_HAT_LISTS_NOT_NEWLINE)
 | 
						||
	bitset_set(cset->sbcset, '\0');
 | 
						||
      */
 | 
						||
      mbcset->non_match = 1;
 | 
						||
      if (MB_CUR_MAX > 1)
 | 
						||
	for (i = 0; i < SBC_MAX; ++i)
 | 
						||
	  if (__btowc (i) == WEOF)
 | 
						||
	    bitset_set (sbcset, i);
 | 
						||
#else /* not RE_ENABLE_I18N */
 | 
						||
      non_match = 1;
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
    }
 | 
						||
 | 
						||
  /* We don't care the syntax in this case.  */
 | 
						||
  ret = build_charclass (sbcset,
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
			 mbcset, &alloc,
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
			 (const unsigned char *) "alpha", 0);
 | 
						||
 | 
						||
  if (BE (ret != REG_NOERROR, 0))
 | 
						||
    {
 | 
						||
      re_free (sbcset);
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      free_charset (mbcset);
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
      *err = ret;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
  /* \w match '_' also.  */
 | 
						||
  bitset_set (sbcset, '_');
 | 
						||
 | 
						||
  /* If it is non-matching list.  */
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  if (mbcset->non_match)
 | 
						||
#else /* not RE_ENABLE_I18N */
 | 
						||
  if (non_match)
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
    bitset_not (sbcset);
 | 
						||
 | 
						||
  /* Build a tree for simple bracket.  */
 | 
						||
  br_token.type = SIMPLE_BRACKET;
 | 
						||
  br_token.opr.sbcset = sbcset;
 | 
						||
  new_idx = re_dfa_add_node (dfa, br_token, 0);
 | 
						||
  tree = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
  if (BE (new_idx == -1 || tree == NULL, 0))
 | 
						||
    goto build_word_op_espace;
 | 
						||
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  if (MB_CUR_MAX > 1)
 | 
						||
    {
 | 
						||
      re_token_t alt_token;
 | 
						||
      bin_tree_t *mbc_tree;
 | 
						||
      /* Build a tree for complex bracket.  */
 | 
						||
      br_token.type = COMPLEX_BRACKET;
 | 
						||
      br_token.opr.mbcset = mbcset;
 | 
						||
      dfa->has_mb_node = 1;
 | 
						||
      new_idx = re_dfa_add_node (dfa, br_token, 0);
 | 
						||
      mbc_tree = create_tree (NULL, NULL, 0, new_idx);
 | 
						||
      if (BE (new_idx == -1 || mbc_tree == NULL, 0))
 | 
						||
	goto build_word_op_espace;
 | 
						||
      /* Then join them by ALT node.  */
 | 
						||
      alt_token.type = OP_ALT;
 | 
						||
      new_idx = re_dfa_add_node (dfa, alt_token, 0);
 | 
						||
      tree = create_tree (tree, mbc_tree, 0, new_idx);
 | 
						||
      if (BE (new_idx != -1 && mbc_tree != NULL, 1))
 | 
						||
	return tree;
 | 
						||
    }
 | 
						||
  else
 | 
						||
    {
 | 
						||
      free_charset (mbcset);
 | 
						||
      return tree;
 | 
						||
    }
 | 
						||
#else /* not RE_ENABLE_I18N */
 | 
						||
  return tree;
 | 
						||
#endif /* not RE_ENABLE_I18N */
 | 
						||
 | 
						||
 build_word_op_espace:
 | 
						||
  re_free (sbcset);
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  free_charset (mbcset);
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
  *err = REG_ESPACE;
 | 
						||
  return NULL;
 | 
						||
}
 | 
						||
 | 
						||
/* This is intended for the expressions like "a{1,3}".
 | 
						||
   Fetch a number from `input', and return the number.
 | 
						||
   Return -1, if the number field is empty like "{,1}".
 | 
						||
   Return -2, If an error is occured.  */
 | 
						||
 | 
						||
static int
 | 
						||
fetch_number (input, token, syntax)
 | 
						||
     re_string_t *input;
 | 
						||
     re_token_t *token;
 | 
						||
     reg_syntax_t syntax;
 | 
						||
{
 | 
						||
  int num = -1;
 | 
						||
  unsigned char c;
 | 
						||
  while (1)
 | 
						||
    {
 | 
						||
      *token = fetch_token (input, syntax);
 | 
						||
      c = token->opr.c;
 | 
						||
      if (BE (token->type == END_OF_RE, 0))
 | 
						||
	return -2;
 | 
						||
      if (token->type == OP_CLOSE_DUP_NUM || c == ',')
 | 
						||
	break;
 | 
						||
      num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2)
 | 
						||
	     ? -2 : ((num == -1) ? c - '0' : num * 10 + c - '0'));
 | 
						||
      num = (num > RE_DUP_MAX) ? -2 : num;
 | 
						||
    }
 | 
						||
  return num;
 | 
						||
}
 | 
						||
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
static void
 | 
						||
free_charset (re_charset_t *cset)
 | 
						||
{
 | 
						||
  re_free (cset->mbchars);
 | 
						||
# ifdef _LIBC
 | 
						||
  re_free (cset->coll_syms);
 | 
						||
  re_free (cset->equiv_classes);
 | 
						||
  re_free (cset->range_starts);
 | 
						||
  re_free (cset->range_ends);
 | 
						||
# endif
 | 
						||
  re_free (cset->char_classes);
 | 
						||
  re_free (cset);
 | 
						||
}
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
 | 
						||
/* Functions for binary tree operation.  */
 | 
						||
 | 
						||
/* Create a node of tree.
 | 
						||
   Note: This function automatically free left and right if malloc fails.  */
 | 
						||
 | 
						||
static bin_tree_t *
 | 
						||
create_tree (left, right, type, index)
 | 
						||
     bin_tree_t *left;
 | 
						||
     bin_tree_t *right;
 | 
						||
     re_token_type_t type;
 | 
						||
     int index;
 | 
						||
{
 | 
						||
  bin_tree_t *tree;
 | 
						||
  tree = re_malloc (bin_tree_t, 1);
 | 
						||
  if (BE (tree == NULL, 0))
 | 
						||
    {
 | 
						||
      free_bin_tree (left);
 | 
						||
      free_bin_tree (right);
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
  tree->parent = NULL;
 | 
						||
  tree->left = left;
 | 
						||
  tree->right = right;
 | 
						||
  tree->type = type;
 | 
						||
  tree->node_idx = index;
 | 
						||
  tree->first = -1;
 | 
						||
  tree->next = -1;
 | 
						||
  re_node_set_init_empty (&tree->eclosure);
 | 
						||
 | 
						||
  if (left != NULL)
 | 
						||
    left->parent = tree;
 | 
						||
  if (right != NULL)
 | 
						||
    right->parent = tree;
 | 
						||
  return tree;
 | 
						||
}
 | 
						||
 | 
						||
/* Free the sub tree pointed by TREE.  */
 | 
						||
 | 
						||
static void
 | 
						||
free_bin_tree (tree)
 | 
						||
     bin_tree_t *tree;
 | 
						||
{
 | 
						||
  if (tree == NULL)
 | 
						||
    return;
 | 
						||
  /*re_node_set_free (&tree->eclosure);*/
 | 
						||
  free_bin_tree (tree->left);
 | 
						||
  free_bin_tree (tree->right);
 | 
						||
  re_free (tree);
 | 
						||
}
 | 
						||
 | 
						||
/* Duplicate the node SRC, and return new node.  */
 | 
						||
 | 
						||
static bin_tree_t *
 | 
						||
duplicate_tree (src, dfa)
 | 
						||
     const bin_tree_t *src;
 | 
						||
     re_dfa_t *dfa;
 | 
						||
{
 | 
						||
  bin_tree_t *left = NULL, *right = NULL, *new_tree;
 | 
						||
  int new_node_idx;
 | 
						||
  /* Since node indies must be according to Post-order of the tree,
 | 
						||
     we must duplicate the left at first.  */
 | 
						||
  if (src->left != NULL)
 | 
						||
    {
 | 
						||
      left = duplicate_tree (src->left, dfa);
 | 
						||
      if (left == NULL)
 | 
						||
	return NULL;
 | 
						||
    }
 | 
						||
 | 
						||
  /* Secondaly, duplicate the right.  */
 | 
						||
  if (src->right != NULL)
 | 
						||
    {
 | 
						||
      right = duplicate_tree (src->right, dfa);
 | 
						||
      if (right == NULL)
 | 
						||
	{
 | 
						||
	  free_bin_tree (left);
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
    }
 | 
						||
 | 
						||
  /* At last, duplicate itself.  */
 | 
						||
  if (src->type == NON_TYPE)
 | 
						||
    {
 | 
						||
      new_node_idx = re_dfa_add_node (dfa, dfa->nodes[src->node_idx], 0);
 | 
						||
      dfa->nodes[new_node_idx].duplicated = 1;
 | 
						||
      if (BE (new_node_idx == -1, 0))
 | 
						||
	{
 | 
						||
	  free_bin_tree (left);
 | 
						||
	  free_bin_tree (right);
 | 
						||
	  return NULL;
 | 
						||
	}
 | 
						||
    }
 | 
						||
  else
 | 
						||
    new_node_idx = src->type;
 | 
						||
 | 
						||
  new_tree = create_tree (left, right, src->type, new_node_idx);
 | 
						||
  if (BE (new_tree == NULL, 0))
 | 
						||
    {
 | 
						||
      free_bin_tree (left);
 | 
						||
      free_bin_tree (right);
 | 
						||
    }
 | 
						||
  return new_tree;
 | 
						||
}
 |