homework-jianmu/source/util/src/tdes.c

459 lines
14 KiB
C

/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define _DEFAULT_SOURCE
#include "tdes.h"
#define ENCRYPTION_MODE 1
#define DECRYPTION_MODE 0
typedef struct {
uint8_t k[8];
uint8_t c[4];
uint8_t d[4];
} key_set;
void generate_key(uint8_t* key);
void generate_sub_keys(uint8_t* main_key, key_set* key_sets);
void process_message(uint8_t* message_piece, uint8_t* processed_piece, key_set* key_sets, int32_t mode);
#if 0
int64_t taosDesGenKey() {
uint32_t iseed = (uint32_t)time(NULL);
taosSeedRand(iseed);
uint8_t key[8] = {0};
generate_key(key);
return *((int64_t*)key);
}
#endif
char* taosDesImp(uint8_t* key, char* src, uint32_t len, int32_t process_mode) {
uint32_t number_of_blocks = len / 8;
uint8_t data_block[9] = {0};
uint8_t processed_block[9] = {0};
key_set key_sets[17];
memset(key_sets, 0, sizeof(key_sets));
char* dest = calloc(len + 1, 1);
generate_sub_keys(key, key_sets);
for (uint32_t block_count = 0; block_count < number_of_blocks; block_count++) {
memset(processed_block, 0, 8);
memcpy(data_block, src + block_count * 8, 8);
process_message(data_block, processed_block, key_sets, process_mode);
memcpy(dest + block_count * 8, processed_block, 8);
}
return dest;
}
char* taosDesEncode(int64_t key, char* src, int32_t len) {
if (len % 8 != 0) return NULL;
uint8_t* keyStr = (uint8_t*)(&key);
return taosDesImp(keyStr, src, len, ENCRYPTION_MODE);
}
char* taosDesDecode(int64_t key, char* src, int32_t len) {
uint8_t* keyStr = (uint8_t*)(&key);
char* temp = calloc(len + 8, 1);
memcpy(temp, src, len);
len += 8;
char* decode = taosDesImp(keyStr, temp, len, DECRYPTION_MODE);
free(temp);
return decode;
}
int32_t initial_key_permutaion[] = {57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43,
35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54,
46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4};
int32_t initial_message_permutation[] = {58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7};
int32_t key_shift_sizes[] = {-1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
int32_t sub_key_permutation[] = {14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4,
26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40,
51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32};
int32_t message_expansion[] = {32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11,
12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21,
22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1};
int32_t S1[] = {14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2,
13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7,
3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13};
int32_t S2[] = {15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2,
8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6,
9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9};
int32_t S3[] = {10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4,
6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12,
5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12};
int32_t S4[] = {7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15,
0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14,
5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14};
int32_t S5[] = {2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7,
13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5,
6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3};
int32_t S6[] = {12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12,
9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10,
1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13};
int32_t S7[] = {4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9,
1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8,
0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12};
int32_t S8[] = {13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3,
7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13,
15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11};
int32_t right_sub_message_permutation[] = {16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25};
int32_t final_message_permutation[] = {40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25};
void print_char_as_binary(char input) {
int32_t i;
for (i = 0; i < 8; i++) {
char shift_byte = 0x01 << (7 - i);
if (shift_byte & input) {
printf("1");
} else {
printf("0");
}
}
}
void generate_key(uint8_t* key) {
int32_t i;
for (i = 0; i < 8; i++) {
key[i] = taosRand() % 255;
}
}
void print_key_set(key_set _key_set) {
int32_t i;
printf("K: \n");
for (i = 0; i < 8; i++) {
printf("%02X : ", _key_set.k[i]);
print_char_as_binary(_key_set.k[i]);
printf("\n");
}
printf("\nC: \n");
for (i = 0; i < 4; i++) {
printf("%02X : ", _key_set.c[i]);
print_char_as_binary(_key_set.c[i]);
printf("\n");
}
printf("\nD: \n");
for (i = 0; i < 4; i++) {
printf("%02X : ", _key_set.d[i]);
print_char_as_binary(_key_set.d[i]);
printf("\n");
}
printf("\n");
}
void generate_sub_keys(uint8_t* main_key, key_set* key_sets) {
int32_t i, j;
int32_t shift_size;
uint8_t shift_byte, first_shift_bits, second_shift_bits, third_shift_bits, fourth_shift_bits;
for (i = 0; i < 8; i++) {
key_sets[0].k[i] = 0;
}
for (i = 0; i < 56; i++) {
shift_size = initial_key_permutaion[i];
shift_byte = 0x80 >> ((shift_size - 1) % 8);
shift_byte &= main_key[(shift_size - 1) / 8];
shift_byte <<= ((shift_size - 1) % 8);
key_sets[0].k[i / 8] |= (shift_byte >> i % 8);
}
for (i = 0; i < 3; i++) {
key_sets[0].c[i] = key_sets[0].k[i];
}
key_sets[0].c[3] = key_sets[0].k[3] & 0xF0;
for (i = 0; i < 3; i++) {
key_sets[0].d[i] = (key_sets[0].k[i + 3] & 0x0F) << 4;
key_sets[0].d[i] |= (key_sets[0].k[i + 4] & 0xF0) >> 4;
}
key_sets[0].d[3] = (key_sets[0].k[6] & 0x0F) << 4;
for (i = 1; i < 17; i++) {
for (j = 0; j < 4; j++) {
key_sets[i].c[j] = key_sets[i - 1].c[j];
key_sets[i].d[j] = key_sets[i - 1].d[j];
}
shift_size = key_shift_sizes[i];
if (shift_size == 1) {
shift_byte = 0x80;
} else {
shift_byte = 0xC0;
}
// Process C
first_shift_bits = shift_byte & key_sets[i].c[0];
second_shift_bits = shift_byte & key_sets[i].c[1];
third_shift_bits = shift_byte & key_sets[i].c[2];
fourth_shift_bits = shift_byte & key_sets[i].c[3];
key_sets[i].c[0] <<= shift_size;
key_sets[i].c[0] |= (second_shift_bits >> (8 - shift_size));
key_sets[i].c[1] <<= shift_size;
key_sets[i].c[1] |= (third_shift_bits >> (8 - shift_size));
key_sets[i].c[2] <<= shift_size;
key_sets[i].c[2] |= (fourth_shift_bits >> (8 - shift_size));
key_sets[i].c[3] <<= shift_size;
key_sets[i].c[3] |= (first_shift_bits >> (4 - shift_size));
// Process D
first_shift_bits = shift_byte & key_sets[i].d[0];
second_shift_bits = shift_byte & key_sets[i].d[1];
third_shift_bits = shift_byte & key_sets[i].d[2];
fourth_shift_bits = shift_byte & key_sets[i].d[3];
key_sets[i].d[0] <<= shift_size;
key_sets[i].d[0] |= (second_shift_bits >> (8 - shift_size));
key_sets[i].d[1] <<= shift_size;
key_sets[i].d[1] |= (third_shift_bits >> (8 - shift_size));
key_sets[i].d[2] <<= shift_size;
key_sets[i].d[2] |= (fourth_shift_bits >> (8 - shift_size));
key_sets[i].d[3] <<= shift_size;
key_sets[i].d[3] |= (first_shift_bits >> (4 - shift_size));
for (j = 0; j < 48; j++) {
shift_size = sub_key_permutation[j];
if (shift_size <= 28) {
shift_byte = 0x80 >> ((shift_size - 1) % 8);
shift_byte &= key_sets[i].c[(shift_size - 1) / 8];
shift_byte <<= ((shift_size - 1) % 8);
} else {
shift_byte = 0x80 >> ((shift_size - 29) % 8);
shift_byte &= key_sets[i].d[(shift_size - 29) / 8];
shift_byte <<= ((shift_size - 29) % 8);
}
key_sets[i].k[j / 8] |= (shift_byte >> j % 8);
}
}
}
void process_message(uint8_t* message_piece, uint8_t* processed_piece, key_set* key_sets, int32_t mode) {
int32_t i, k;
int32_t shift_size;
uint8_t shift_byte;
uint8_t initial_permutation[8];
memset(initial_permutation, 0, 8);
memset(processed_piece, 0, 8);
for (i = 0; i < 64; i++) {
shift_size = initial_message_permutation[i];
shift_byte = 0x80 >> ((shift_size - 1) % 8);
shift_byte &= message_piece[(shift_size - 1) / 8];
shift_byte <<= ((shift_size - 1) % 8);
initial_permutation[i / 8] |= (shift_byte >> i % 8);
}
uint8_t l[4], r[4];
for (i = 0; i < 4; i++) {
l[i] = initial_permutation[i];
r[i] = initial_permutation[i + 4];
}
uint8_t ln[4], rn[4], er[6], ser[4];
int32_t key_index;
for (k = 1; k <= 16; k++) {
memcpy(ln, r, 4);
memset(er, 0, 6);
for (i = 0; i < 48; i++) {
shift_size = message_expansion[i];
shift_byte = 0x80 >> ((shift_size - 1) % 8);
shift_byte &= r[(shift_size - 1) / 8];
shift_byte <<= ((shift_size - 1) % 8);
er[i / 8] |= (shift_byte >> i % 8);
}
if (mode == DECRYPTION_MODE) {
key_index = 17 - k;
} else {
key_index = k;
}
for (i = 0; i < 6; i++) {
er[i] ^= key_sets[key_index].k[i];
}
uint8_t row, column;
for (i = 0; i < 4; i++) {
ser[i] = 0;
}
// 0000 0000 0000 0000 0000 0000
// rccc crrc cccr rccc crrc cccr
// Byte 1
row = 0;
row |= ((er[0] & 0x80) >> 6);
row |= ((er[0] & 0x04) >> 2);
column = 0;
column |= ((er[0] & 0x78) >> 3);
ser[0] |= ((uint8_t)S1[row * 16 + column] << 4);
row = 0;
row |= (er[0] & 0x02);
row |= ((er[1] & 0x10) >> 4);
column = 0;
column |= ((er[0] & 0x01) << 3);
column |= ((er[1] & 0xE0) >> 5);
ser[0] |= (uint8_t)S2[row * 16 + column];
// Byte 2
row = 0;
row |= ((er[1] & 0x08) >> 2);
row |= ((er[2] & 0x40) >> 6);
column = 0;
column |= ((er[1] & 0x07) << 1);
column |= ((er[2] & 0x80) >> 7);
ser[1] |= ((uint8_t)S3[row * 16 + column] << 4);
row = 0;
row |= ((er[2] & 0x20) >> 4);
row |= (er[2] & 0x01);
column = 0;
column |= ((er[2] & 0x1E) >> 1);
ser[1] |= (uint8_t)S4[row * 16 + column];
// Byte 3
row = 0;
row |= ((er[3] & 0x80) >> 6);
row |= ((er[3] & 0x04) >> 2);
column = 0;
column |= ((er[3] & 0x78) >> 3);
ser[2] |= ((uint8_t)S5[row * 16 + column] << 4);
row = 0;
row |= (er[3] & 0x02);
row |= ((er[4] & 0x10) >> 4);
column = 0;
column |= ((er[3] & 0x01) << 3);
column |= ((er[4] & 0xE0) >> 5);
ser[2] |= (uint8_t)S6[row * 16 + column];
// Byte 4
row = 0;
row |= ((er[4] & 0x08) >> 2);
row |= ((er[5] & 0x40) >> 6);
column = 0;
column |= ((er[4] & 0x07) << 1);
column |= ((er[5] & 0x80) >> 7);
ser[3] |= ((uint8_t)S7[row * 16 + column] << 4);
row = 0;
row |= ((er[5] & 0x20) >> 4);
row |= (er[5] & 0x01);
column = 0;
column |= ((er[5] & 0x1E) >> 1);
ser[3] |= (uint8_t)S8[row * 16 + column];
for (i = 0; i < 4; i++) {
rn[i] = 0;
}
for (i = 0; i < 32; i++) {
shift_size = right_sub_message_permutation[i];
shift_byte = 0x80 >> ((shift_size - 1) % 8);
shift_byte &= ser[(shift_size - 1) / 8];
shift_byte <<= ((shift_size - 1) % 8);
rn[i / 8] |= (shift_byte >> i % 8);
}
for (i = 0; i < 4; i++) {
rn[i] ^= l[i];
}
for (i = 0; i < 4; i++) {
l[i] = ln[i];
r[i] = rn[i];
}
}
uint8_t pre_end_permutation[8];
for (i = 0; i < 4; i++) {
pre_end_permutation[i] = r[i];
pre_end_permutation[4 + i] = l[i];
}
for (i = 0; i < 64; i++) {
shift_size = final_message_permutation[i];
shift_byte = 0x80 >> ((shift_size - 1) % 8);
shift_byte &= pre_end_permutation[(shift_size - 1) / 8];
shift_byte <<= ((shift_size - 1) % 8);
processed_piece[i / 8] |= (shift_byte >> i % 8);
}
}