1264 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1264 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
/* Extended regular expression matching and search library.
 | 
						||
   Copyright (C) 2002, 2003 Free Software Foundation, Inc.
 | 
						||
   This file is part of the GNU C Library.
 | 
						||
   Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
 | 
						||
 | 
						||
   The GNU C Library is free software; you can redistribute it and/or
 | 
						||
   modify it under the terms of the GNU Lesser General Public
 | 
						||
   License as published by the Free Software Foundation; either
 | 
						||
   version 2.1 of the License, or (at your option) any later version.
 | 
						||
 | 
						||
   The GNU C Library is distributed in the hope that it will be useful,
 | 
						||
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						||
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						||
   Lesser General Public License for more details.
 | 
						||
 | 
						||
   You should have received a copy of the GNU Lesser General Public
 | 
						||
   License along with the GNU C Library; if not, write to the Free
 | 
						||
   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 | 
						||
   MA 02110-1301 USA.  */
 | 
						||
 | 
						||
static void re_string_construct_common (const char *str, int len,
 | 
						||
					re_string_t *pstr,
 | 
						||
					RE_TRANSLATE_TYPE trans, int icase);
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
static int re_string_skip_chars (re_string_t *pstr, int new_raw_idx,
 | 
						||
				 wint_t *last_wc);
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
static re_dfastate_t *create_newstate_common (re_dfa_t *dfa,
 | 
						||
					      const re_node_set *nodes,
 | 
						||
					      unsigned int hash);
 | 
						||
static reg_errcode_t register_state (re_dfa_t *dfa, re_dfastate_t *newstate,
 | 
						||
				     unsigned int hash);
 | 
						||
static re_dfastate_t *create_ci_newstate (re_dfa_t *dfa,
 | 
						||
					  const re_node_set *nodes,
 | 
						||
					  unsigned int hash);
 | 
						||
static re_dfastate_t *create_cd_newstate (re_dfa_t *dfa,
 | 
						||
					  const re_node_set *nodes,
 | 
						||
					  unsigned int context,
 | 
						||
					  unsigned int hash);
 | 
						||
static unsigned int inline calc_state_hash (const re_node_set *nodes,
 | 
						||
					    unsigned int context);
 | 
						||
 | 
						||
/* Functions for string operation.  */
 | 
						||
 | 
						||
/* This function allocate the buffers.  It is necessary to call
 | 
						||
   re_string_reconstruct before using the object.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_string_allocate (pstr, str, len, init_len, trans, icase)
 | 
						||
     re_string_t *pstr;
 | 
						||
     const char *str;
 | 
						||
     int len, init_len, icase;
 | 
						||
     RE_TRANSLATE_TYPE trans;
 | 
						||
{
 | 
						||
  reg_errcode_t ret;
 | 
						||
  int init_buf_len = (len + 1 < init_len) ? len + 1: init_len;
 | 
						||
  re_string_construct_common (str, len, pstr, trans, icase);
 | 
						||
  pstr->stop = pstr->len;
 | 
						||
 | 
						||
  ret = re_string_realloc_buffers (pstr, init_buf_len);
 | 
						||
  if (BE (ret != REG_NOERROR, 0))
 | 
						||
    return ret;
 | 
						||
 | 
						||
  pstr->mbs_case = (MBS_CASE_ALLOCATED (pstr) ? pstr->mbs_case
 | 
						||
		    : (unsigned char *) str);
 | 
						||
  pstr->mbs = MBS_ALLOCATED (pstr) ? pstr->mbs : pstr->mbs_case;
 | 
						||
  pstr->valid_len = (MBS_CASE_ALLOCATED (pstr) || MBS_ALLOCATED (pstr)
 | 
						||
		     || MB_CUR_MAX > 1) ? pstr->valid_len : len;
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* This function allocate the buffers, and initialize them.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_string_construct (pstr, str, len, trans, icase)
 | 
						||
     re_string_t *pstr;
 | 
						||
     const char *str;
 | 
						||
     int len, icase;
 | 
						||
     RE_TRANSLATE_TYPE trans;
 | 
						||
{
 | 
						||
  reg_errcode_t ret;
 | 
						||
  re_string_construct_common (str, len, pstr, trans, icase);
 | 
						||
  pstr->stop = pstr->len;
 | 
						||
  /* Set 0 so that this function can initialize whole buffers.  */
 | 
						||
  pstr->valid_len = 0;
 | 
						||
 | 
						||
  if (len > 0)
 | 
						||
    {
 | 
						||
      ret = re_string_realloc_buffers (pstr, len + 1);
 | 
						||
      if (BE (ret != REG_NOERROR, 0))
 | 
						||
	return ret;
 | 
						||
    }
 | 
						||
  pstr->mbs_case = (MBS_CASE_ALLOCATED (pstr) ? pstr->mbs_case
 | 
						||
		    : (unsigned char *) str);
 | 
						||
  pstr->mbs = MBS_ALLOCATED (pstr) ? pstr->mbs : pstr->mbs_case;
 | 
						||
 | 
						||
  if (icase)
 | 
						||
    {
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      if (MB_CUR_MAX > 1)
 | 
						||
	build_wcs_upper_buffer (pstr);
 | 
						||
      else
 | 
						||
#endif /* RE_ENABLE_I18N  */
 | 
						||
	build_upper_buffer (pstr);
 | 
						||
    }
 | 
						||
  else
 | 
						||
    {
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      if (MB_CUR_MAX > 1)
 | 
						||
	build_wcs_buffer (pstr);
 | 
						||
      else
 | 
						||
#endif /* RE_ENABLE_I18N  */
 | 
						||
	{
 | 
						||
	  if (trans != NULL)
 | 
						||
	    re_string_translate_buffer (pstr);
 | 
						||
	  else
 | 
						||
	    pstr->valid_len = len;
 | 
						||
	}
 | 
						||
    }
 | 
						||
 | 
						||
  /* Initialized whole buffers, then valid_len == bufs_len.  */
 | 
						||
  pstr->valid_len = pstr->bufs_len;
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Helper functions for re_string_allocate, and re_string_construct.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_string_realloc_buffers (pstr, new_buf_len)
 | 
						||
     re_string_t *pstr;
 | 
						||
     int new_buf_len;
 | 
						||
{
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  if (MB_CUR_MAX > 1)
 | 
						||
    {
 | 
						||
      wint_t *new_array = re_realloc (pstr->wcs, wint_t, new_buf_len);
 | 
						||
      if (BE (new_array == NULL, 0))
 | 
						||
	return REG_ESPACE;
 | 
						||
      pstr->wcs = new_array;
 | 
						||
    }
 | 
						||
#endif /* RE_ENABLE_I18N  */
 | 
						||
  if (MBS_ALLOCATED (pstr))
 | 
						||
    {
 | 
						||
      unsigned char *new_array = re_realloc (pstr->mbs, unsigned char,
 | 
						||
					     new_buf_len);
 | 
						||
      if (BE (new_array == NULL, 0))
 | 
						||
	return REG_ESPACE;
 | 
						||
      pstr->mbs = new_array;
 | 
						||
    }
 | 
						||
  if (MBS_CASE_ALLOCATED (pstr))
 | 
						||
    {
 | 
						||
      unsigned char *new_array = re_realloc (pstr->mbs_case, unsigned char,
 | 
						||
					     new_buf_len);
 | 
						||
      if (BE (new_array == NULL, 0))
 | 
						||
	return REG_ESPACE;
 | 
						||
      pstr->mbs_case = new_array;
 | 
						||
      if (!MBS_ALLOCATED (pstr))
 | 
						||
	pstr->mbs = pstr->mbs_case;
 | 
						||
    }
 | 
						||
  pstr->bufs_len = new_buf_len;
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
static void
 | 
						||
re_string_construct_common (str, len, pstr, trans, icase)
 | 
						||
     const char *str;
 | 
						||
     int len;
 | 
						||
     re_string_t *pstr;
 | 
						||
     RE_TRANSLATE_TYPE trans;
 | 
						||
     int icase;
 | 
						||
{
 | 
						||
  memset (pstr, '\0', sizeof (re_string_t));
 | 
						||
  pstr->raw_mbs = (const unsigned char *) str;
 | 
						||
  pstr->len = len;
 | 
						||
  pstr->trans = trans;
 | 
						||
  pstr->icase = icase ? 1 : 0;
 | 
						||
}
 | 
						||
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
 | 
						||
/* Build wide character buffer PSTR->WCS.
 | 
						||
   If the byte sequence of the string are:
 | 
						||
     <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3>
 | 
						||
   Then wide character buffer will be:
 | 
						||
     <wc1>   , WEOF    , <wc2>   , WEOF    , <wc3>
 | 
						||
   We use WEOF for padding, they indicate that the position isn't
 | 
						||
   a first byte of a multibyte character.
 | 
						||
 | 
						||
   Note that this function assumes PSTR->VALID_LEN elements are already
 | 
						||
   built and starts from PSTR->VALID_LEN.  */
 | 
						||
 | 
						||
static void
 | 
						||
build_wcs_buffer (pstr)
 | 
						||
     re_string_t *pstr;
 | 
						||
{
 | 
						||
  mbstate_t prev_st;
 | 
						||
  int byte_idx, end_idx, mbclen, remain_len;
 | 
						||
  /* Build the buffers from pstr->valid_len to either pstr->len or
 | 
						||
     pstr->bufs_len.  */
 | 
						||
  end_idx = (pstr->bufs_len > pstr->len)? pstr->len : pstr->bufs_len;
 | 
						||
  for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
 | 
						||
    {
 | 
						||
      wchar_t wc;
 | 
						||
      remain_len = end_idx - byte_idx;
 | 
						||
      prev_st = pstr->cur_state;
 | 
						||
      mbclen = mbrtowc (&wc, ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx
 | 
						||
			      + byte_idx), remain_len, &pstr->cur_state);
 | 
						||
      if (BE (mbclen == (size_t) -2, 0))
 | 
						||
	{
 | 
						||
	  /* The buffer doesn't have enough space, finish to build.  */
 | 
						||
	  pstr->cur_state = prev_st;
 | 
						||
	  break;
 | 
						||
	}
 | 
						||
      else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0))
 | 
						||
	{
 | 
						||
	  /* We treat these cases as a singlebyte character.  */
 | 
						||
	  mbclen = 1;
 | 
						||
	  wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
 | 
						||
	  pstr->cur_state = prev_st;
 | 
						||
	}
 | 
						||
 | 
						||
      /* Apply the translateion if we need.  */
 | 
						||
      if (pstr->trans != NULL && mbclen == 1)
 | 
						||
	{
 | 
						||
	  int ch = pstr->trans[pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]];
 | 
						||
	  pstr->mbs_case[byte_idx] = ch;
 | 
						||
	}
 | 
						||
      /* Write wide character and padding.  */
 | 
						||
      pstr->wcs[byte_idx++] = wc;
 | 
						||
      /* Write paddings.  */
 | 
						||
      for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
 | 
						||
	pstr->wcs[byte_idx++] = WEOF;
 | 
						||
    }
 | 
						||
  pstr->valid_len = byte_idx;
 | 
						||
}
 | 
						||
 | 
						||
/* Build wide character buffer PSTR->WCS like build_wcs_buffer,
 | 
						||
   but for REG_ICASE.  */
 | 
						||
 | 
						||
static void
 | 
						||
build_wcs_upper_buffer (pstr)
 | 
						||
     re_string_t *pstr;
 | 
						||
{
 | 
						||
  mbstate_t prev_st;
 | 
						||
  int byte_idx, end_idx, mbclen, remain_len;
 | 
						||
  /* Build the buffers from pstr->valid_len to either pstr->len or
 | 
						||
     pstr->bufs_len.  */
 | 
						||
  end_idx = (pstr->bufs_len > pstr->len)? pstr->len : pstr->bufs_len;
 | 
						||
  for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
 | 
						||
    {
 | 
						||
      wchar_t wc;
 | 
						||
      remain_len = end_idx - byte_idx;
 | 
						||
      prev_st = pstr->cur_state;
 | 
						||
      mbclen = mbrtowc (&wc, ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx
 | 
						||
			      + byte_idx), remain_len, &pstr->cur_state);
 | 
						||
      if (BE (mbclen == (size_t) -2, 0))
 | 
						||
	{
 | 
						||
	  /* The buffer doesn't have enough space, finish to build.  */
 | 
						||
	  pstr->cur_state = prev_st;
 | 
						||
	  break;
 | 
						||
	}
 | 
						||
      else if (mbclen == 1 || mbclen == (size_t) -1 || mbclen == 0)
 | 
						||
	{
 | 
						||
	  /* In case of a singlebyte character.  */
 | 
						||
	  int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
 | 
						||
	  /* Apply the translateion if we need.  */
 | 
						||
	  if (pstr->trans != NULL && mbclen == 1)
 | 
						||
	    {
 | 
						||
	      ch = pstr->trans[ch];
 | 
						||
	      pstr->mbs_case[byte_idx] = ch;
 | 
						||
	    }
 | 
						||
	  pstr->wcs[byte_idx] = iswlower (wc) ? toupper (wc) : wc;
 | 
						||
	  pstr->mbs[byte_idx++] = islower (ch) ? toupper (ch) : ch;
 | 
						||
	  if (BE (mbclen == (size_t) -1, 0))
 | 
						||
	    pstr->cur_state = prev_st;
 | 
						||
	}
 | 
						||
      else /* mbclen > 1 */
 | 
						||
	{
 | 
						||
	  if (iswlower (wc))
 | 
						||
	    wcrtomb ((char *) pstr->mbs + byte_idx, towupper (wc), &prev_st);
 | 
						||
	  else
 | 
						||
	    memcpy (pstr->mbs + byte_idx,
 | 
						||
		    pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen);
 | 
						||
	  pstr->wcs[byte_idx++] = iswlower (wc) ? toupper (wc) : wc;
 | 
						||
	  /* Write paddings.  */
 | 
						||
	  for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
 | 
						||
	    pstr->wcs[byte_idx++] = WEOF;
 | 
						||
	}
 | 
						||
    }
 | 
						||
  pstr->valid_len = byte_idx;
 | 
						||
}
 | 
						||
 | 
						||
/* Skip characters until the index becomes greater than NEW_RAW_IDX.
 | 
						||
   Return the index.  */
 | 
						||
 | 
						||
static int
 | 
						||
re_string_skip_chars (pstr, new_raw_idx, last_wc)
 | 
						||
     re_string_t *pstr;
 | 
						||
     int new_raw_idx;
 | 
						||
     wint_t *last_wc;
 | 
						||
{
 | 
						||
  mbstate_t prev_st;
 | 
						||
  int rawbuf_idx, mbclen;
 | 
						||
  wchar_t wc = 0;
 | 
						||
 | 
						||
  /* Skip the characters which are not necessary to check.  */
 | 
						||
  for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_len;
 | 
						||
       rawbuf_idx < new_raw_idx;)
 | 
						||
    {
 | 
						||
      int remain_len;
 | 
						||
      remain_len = pstr->len - rawbuf_idx;
 | 
						||
      prev_st = pstr->cur_state;
 | 
						||
      mbclen = mbrtowc (&wc, (const char *) pstr->raw_mbs + rawbuf_idx,
 | 
						||
			remain_len, &pstr->cur_state);
 | 
						||
      if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0))
 | 
						||
	{
 | 
						||
	  /* We treat these cases as a singlebyte character.  */
 | 
						||
	  mbclen = 1;
 | 
						||
	  pstr->cur_state = prev_st;
 | 
						||
	}
 | 
						||
      /* Then proceed the next character.  */
 | 
						||
      rawbuf_idx += mbclen;
 | 
						||
    }
 | 
						||
  *last_wc = (wint_t) wc;
 | 
						||
  return rawbuf_idx;
 | 
						||
}
 | 
						||
#endif /* RE_ENABLE_I18N  */
 | 
						||
 | 
						||
/* Build the buffer PSTR->MBS, and apply the translation if we need.
 | 
						||
   This function is used in case of REG_ICASE.  */
 | 
						||
 | 
						||
static void
 | 
						||
build_upper_buffer (pstr)
 | 
						||
     re_string_t *pstr;
 | 
						||
{
 | 
						||
  int char_idx, end_idx;
 | 
						||
  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
 | 
						||
 | 
						||
  for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx)
 | 
						||
    {
 | 
						||
      int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx];
 | 
						||
      if (pstr->trans != NULL)
 | 
						||
	{
 | 
						||
	  ch =  pstr->trans[ch];
 | 
						||
	  pstr->mbs_case[char_idx] = ch;
 | 
						||
	}
 | 
						||
      if (islower (ch))
 | 
						||
	pstr->mbs[char_idx] = toupper (ch);
 | 
						||
      else
 | 
						||
	pstr->mbs[char_idx] = ch;
 | 
						||
    }
 | 
						||
  pstr->valid_len = char_idx;
 | 
						||
}
 | 
						||
 | 
						||
/* Apply TRANS to the buffer in PSTR.  */
 | 
						||
 | 
						||
static void
 | 
						||
re_string_translate_buffer (pstr)
 | 
						||
     re_string_t *pstr;
 | 
						||
{
 | 
						||
  int buf_idx, end_idx;
 | 
						||
  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
 | 
						||
 | 
						||
  for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx)
 | 
						||
    {
 | 
						||
      int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx];
 | 
						||
      pstr->mbs_case[buf_idx] = pstr->trans[ch];
 | 
						||
    }
 | 
						||
 | 
						||
  pstr->valid_len = buf_idx;
 | 
						||
}
 | 
						||
 | 
						||
/* This function re-construct the buffers.
 | 
						||
   Concretely, convert to wide character in case of MB_CUR_MAX > 1,
 | 
						||
   convert to upper case in case of REG_ICASE, apply translation.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_string_reconstruct (pstr, idx, eflags, newline)
 | 
						||
     re_string_t *pstr;
 | 
						||
     int idx, eflags, newline;
 | 
						||
{
 | 
						||
  int offset = idx - pstr->raw_mbs_idx;
 | 
						||
  if (offset < 0)
 | 
						||
    {
 | 
						||
      /* Reset buffer.  */
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      if (MB_CUR_MAX > 1)
 | 
						||
	memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
      pstr->len += pstr->raw_mbs_idx;
 | 
						||
      pstr->stop += pstr->raw_mbs_idx;
 | 
						||
      pstr->valid_len = pstr->raw_mbs_idx = 0;
 | 
						||
      pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
 | 
						||
			   : CONTEXT_NEWLINE | CONTEXT_BEGBUF);
 | 
						||
      if (!MBS_CASE_ALLOCATED (pstr))
 | 
						||
	pstr->mbs_case = (unsigned char *) pstr->raw_mbs;
 | 
						||
      if (!MBS_ALLOCATED (pstr) && !MBS_CASE_ALLOCATED (pstr))
 | 
						||
	pstr->mbs = (unsigned char *) pstr->raw_mbs;
 | 
						||
      offset = idx;
 | 
						||
    }
 | 
						||
 | 
						||
  if (offset != 0)
 | 
						||
    {
 | 
						||
      /* Are the characters which are already checked remain?  */
 | 
						||
      if (offset < pstr->valid_len)
 | 
						||
	{
 | 
						||
	  /* Yes, move them to the front of the buffer.  */
 | 
						||
	  pstr->tip_context = re_string_context_at (pstr, offset - 1, eflags,
 | 
						||
						    newline);
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
	  if (MB_CUR_MAX > 1)
 | 
						||
	    memmove (pstr->wcs, pstr->wcs + offset,
 | 
						||
		     (pstr->valid_len - offset) * sizeof (wint_t));
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
	  if (MBS_ALLOCATED (pstr))
 | 
						||
	    memmove (pstr->mbs, pstr->mbs + offset,
 | 
						||
		     pstr->valid_len - offset);
 | 
						||
	  if (MBS_CASE_ALLOCATED (pstr))
 | 
						||
	    memmove (pstr->mbs_case, pstr->mbs_case + offset,
 | 
						||
		     pstr->valid_len - offset);
 | 
						||
	  pstr->valid_len -= offset;
 | 
						||
#if DEBUG
 | 
						||
	  assert (pstr->valid_len > 0);
 | 
						||
#endif
 | 
						||
	}
 | 
						||
      else
 | 
						||
	{
 | 
						||
	  /* No, skip all characters until IDX.  */
 | 
						||
	  pstr->valid_len = 0;
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
	  if (MB_CUR_MAX > 1)
 | 
						||
	    {
 | 
						||
	      int wcs_idx;
 | 
						||
	      wint_t wc;
 | 
						||
	      pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx;
 | 
						||
	      for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx)
 | 
						||
		pstr->wcs[wcs_idx] = WEOF;
 | 
						||
	      if (pstr->trans && wc <= 0xff)
 | 
						||
		wc = pstr->trans[wc];
 | 
						||
	      pstr->tip_context = (IS_WIDE_WORD_CHAR (wc) ? CONTEXT_WORD
 | 
						||
				   : ((newline && IS_WIDE_NEWLINE (wc))
 | 
						||
				      ? CONTEXT_NEWLINE : 0));
 | 
						||
	    }
 | 
						||
	  else
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
	    {
 | 
						||
	      int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1];
 | 
						||
	      if (pstr->trans)
 | 
						||
		c = pstr->trans[c];
 | 
						||
	      pstr->tip_context = (IS_WORD_CHAR (c) ? CONTEXT_WORD
 | 
						||
				   : ((newline && IS_NEWLINE (c))
 | 
						||
				      ? CONTEXT_NEWLINE : 0));
 | 
						||
	    }
 | 
						||
	}
 | 
						||
      if (!MBS_CASE_ALLOCATED (pstr))
 | 
						||
	{
 | 
						||
	  pstr->mbs_case += offset;
 | 
						||
	  /* In case of !MBS_ALLOCATED && !MBS_CASE_ALLOCATED.  */
 | 
						||
	  if (!MBS_ALLOCATED (pstr))
 | 
						||
	    pstr->mbs += offset;
 | 
						||
	}
 | 
						||
    }
 | 
						||
  pstr->raw_mbs_idx = idx;
 | 
						||
  pstr->len -= offset;
 | 
						||
  pstr->stop -= offset;
 | 
						||
 | 
						||
  /* Then build the buffers.  */
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  if (MB_CUR_MAX > 1)
 | 
						||
    {
 | 
						||
      if (pstr->icase)
 | 
						||
	build_wcs_upper_buffer (pstr);
 | 
						||
      else
 | 
						||
	build_wcs_buffer (pstr);
 | 
						||
    }
 | 
						||
  else
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
    {
 | 
						||
      if (pstr->icase)
 | 
						||
	build_upper_buffer (pstr);
 | 
						||
      else if (pstr->trans != NULL)
 | 
						||
	re_string_translate_buffer (pstr);
 | 
						||
    }
 | 
						||
  pstr->cur_idx = 0;
 | 
						||
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
static void
 | 
						||
re_string_destruct (pstr)
 | 
						||
     re_string_t *pstr;
 | 
						||
{
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  re_free (pstr->wcs);
 | 
						||
#endif /* RE_ENABLE_I18N  */
 | 
						||
  if (MBS_ALLOCATED (pstr))
 | 
						||
    re_free (pstr->mbs);
 | 
						||
  if (MBS_CASE_ALLOCATED (pstr))
 | 
						||
    re_free (pstr->mbs_case);
 | 
						||
}
 | 
						||
 | 
						||
/* Return the context at IDX in INPUT.  */
 | 
						||
 | 
						||
static unsigned int
 | 
						||
re_string_context_at (input, idx, eflags, newline_anchor)
 | 
						||
     const re_string_t *input;
 | 
						||
     int idx, eflags, newline_anchor;
 | 
						||
{
 | 
						||
  int c;
 | 
						||
  if (idx < 0 || idx == input->len)
 | 
						||
    {
 | 
						||
      if (idx < 0)
 | 
						||
	/* In this case, we use the value stored in input->tip_context,
 | 
						||
	   since we can't know the character in input->mbs[-1] here.  */
 | 
						||
	return input->tip_context;
 | 
						||
      else /* (idx == input->len) */
 | 
						||
	return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF
 | 
						||
		: CONTEXT_NEWLINE | CONTEXT_ENDBUF);
 | 
						||
    }
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
  if (MB_CUR_MAX > 1)
 | 
						||
    {
 | 
						||
      wint_t wc;
 | 
						||
      int wc_idx = idx;
 | 
						||
      while(input->wcs[wc_idx] == WEOF)
 | 
						||
	{
 | 
						||
#ifdef DEBUG
 | 
						||
	  /* It must not happen.  */
 | 
						||
	  assert (wc_idx >= 0);
 | 
						||
#endif
 | 
						||
	  --wc_idx;
 | 
						||
	  if (wc_idx < 0)
 | 
						||
	    return input->tip_context;
 | 
						||
	}
 | 
						||
      wc = input->wcs[wc_idx];
 | 
						||
      if (IS_WIDE_WORD_CHAR (wc))
 | 
						||
	return CONTEXT_WORD;
 | 
						||
      return (newline_anchor && IS_WIDE_NEWLINE (wc)) ? CONTEXT_NEWLINE : 0;
 | 
						||
    }
 | 
						||
  else
 | 
						||
#endif
 | 
						||
    {
 | 
						||
      c = re_string_byte_at (input, idx);
 | 
						||
      if (IS_WORD_CHAR (c))
 | 
						||
	return CONTEXT_WORD;
 | 
						||
      return (newline_anchor && IS_NEWLINE (c)) ? CONTEXT_NEWLINE : 0;
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
/* Functions for set operation.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_node_set_alloc (set, size)
 | 
						||
     re_node_set *set;
 | 
						||
     int size;
 | 
						||
{
 | 
						||
  set->alloc = size;
 | 
						||
  set->nelem = 0;
 | 
						||
  set->elems = re_malloc (int, size);
 | 
						||
  if (BE (set->elems == NULL, 0))
 | 
						||
    return REG_ESPACE;
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_node_set_init_1 (set, elem)
 | 
						||
     re_node_set *set;
 | 
						||
     int elem;
 | 
						||
{
 | 
						||
  set->alloc = 1;
 | 
						||
  set->nelem = 1;
 | 
						||
  set->elems = re_malloc (int, 1);
 | 
						||
  if (BE (set->elems == NULL, 0))
 | 
						||
    {
 | 
						||
      set->alloc = set->nelem = 0;
 | 
						||
      return REG_ESPACE;
 | 
						||
    }
 | 
						||
  set->elems[0] = elem;
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_node_set_init_2 (set, elem1, elem2)
 | 
						||
     re_node_set *set;
 | 
						||
     int elem1, elem2;
 | 
						||
{
 | 
						||
  set->alloc = 2;
 | 
						||
  set->elems = re_malloc (int, 2);
 | 
						||
  if (BE (set->elems == NULL, 0))
 | 
						||
    return REG_ESPACE;
 | 
						||
  if (elem1 == elem2)
 | 
						||
    {
 | 
						||
      set->nelem = 1;
 | 
						||
      set->elems[0] = elem1;
 | 
						||
    }
 | 
						||
  else
 | 
						||
    {
 | 
						||
      set->nelem = 2;
 | 
						||
      if (elem1 < elem2)
 | 
						||
	{
 | 
						||
	  set->elems[0] = elem1;
 | 
						||
	  set->elems[1] = elem2;
 | 
						||
	}
 | 
						||
      else
 | 
						||
	{
 | 
						||
	  set->elems[0] = elem2;
 | 
						||
	  set->elems[1] = elem1;
 | 
						||
	}
 | 
						||
    }
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_node_set_init_copy (dest, src)
 | 
						||
     re_node_set *dest;
 | 
						||
     const re_node_set *src;
 | 
						||
{
 | 
						||
  dest->nelem = src->nelem;
 | 
						||
  if (src->nelem > 0)
 | 
						||
    {
 | 
						||
      dest->alloc = dest->nelem;
 | 
						||
      dest->elems = re_malloc (int, dest->alloc);
 | 
						||
      if (BE (dest->elems == NULL, 0))
 | 
						||
	{
 | 
						||
	  dest->alloc = dest->nelem = 0;
 | 
						||
	  return REG_ESPACE;
 | 
						||
	}
 | 
						||
      memcpy (dest->elems, src->elems, src->nelem * sizeof (int));
 | 
						||
    }
 | 
						||
  else
 | 
						||
    re_node_set_init_empty (dest);
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Calculate the intersection of the sets SRC1 and SRC2. And merge it to
 | 
						||
   DEST. Return value indicate the error code or REG_NOERROR if succeeded.
 | 
						||
   Note: We assume dest->elems is NULL, when dest->alloc is 0.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_node_set_add_intersect (dest, src1, src2)
 | 
						||
     re_node_set *dest;
 | 
						||
     const re_node_set *src1, *src2;
 | 
						||
{
 | 
						||
  int i1, i2, id;
 | 
						||
  if (src1->nelem > 0 && src2->nelem > 0)
 | 
						||
    {
 | 
						||
      if (src1->nelem + src2->nelem + dest->nelem > dest->alloc)
 | 
						||
	{
 | 
						||
	  dest->alloc = src1->nelem + src2->nelem + dest->nelem;
 | 
						||
	  dest->elems = re_realloc (dest->elems, int, dest->alloc);
 | 
						||
	  if (BE (dest->elems == NULL, 0))
 | 
						||
	    return REG_ESPACE;
 | 
						||
	}
 | 
						||
    }
 | 
						||
  else
 | 
						||
    return REG_NOERROR;
 | 
						||
 | 
						||
  for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
 | 
						||
    {
 | 
						||
      if (src1->elems[i1] > src2->elems[i2])
 | 
						||
	{
 | 
						||
	  ++i2;
 | 
						||
	  continue;
 | 
						||
	}
 | 
						||
      if (src1->elems[i1] == src2->elems[i2])
 | 
						||
	{
 | 
						||
	  while (id < dest->nelem && dest->elems[id] < src2->elems[i2])
 | 
						||
	    ++id;
 | 
						||
	  if (id < dest->nelem && dest->elems[id] == src2->elems[i2])
 | 
						||
	    ++id;
 | 
						||
	  else
 | 
						||
	    {
 | 
						||
	      memmove (dest->elems + id + 1, dest->elems + id,
 | 
						||
		       sizeof (int) * (dest->nelem - id));
 | 
						||
	      dest->elems[id++] = src2->elems[i2++];
 | 
						||
	      ++dest->nelem;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
      ++i1;
 | 
						||
    }
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Calculate the union set of the sets SRC1 and SRC2. And store it to
 | 
						||
   DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_node_set_init_union (dest, src1, src2)
 | 
						||
     re_node_set *dest;
 | 
						||
     const re_node_set *src1, *src2;
 | 
						||
{
 | 
						||
  int i1, i2, id;
 | 
						||
  if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0)
 | 
						||
    {
 | 
						||
      dest->alloc = src1->nelem + src2->nelem;
 | 
						||
      dest->elems = re_malloc (int, dest->alloc);
 | 
						||
      if (BE (dest->elems == NULL, 0))
 | 
						||
	return REG_ESPACE;
 | 
						||
    }
 | 
						||
  else
 | 
						||
    {
 | 
						||
      if (src1 != NULL && src1->nelem > 0)
 | 
						||
	return re_node_set_init_copy (dest, src1);
 | 
						||
      else if (src2 != NULL && src2->nelem > 0)
 | 
						||
	return re_node_set_init_copy (dest, src2);
 | 
						||
      else
 | 
						||
	re_node_set_init_empty (dest);
 | 
						||
      return REG_NOERROR;
 | 
						||
    }
 | 
						||
  for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
 | 
						||
    {
 | 
						||
      if (src1->elems[i1] > src2->elems[i2])
 | 
						||
	{
 | 
						||
	  dest->elems[id++] = src2->elems[i2++];
 | 
						||
	  continue;
 | 
						||
	}
 | 
						||
      if (src1->elems[i1] == src2->elems[i2])
 | 
						||
	++i2;
 | 
						||
      dest->elems[id++] = src1->elems[i1++];
 | 
						||
    }
 | 
						||
  if (i1 < src1->nelem)
 | 
						||
    {
 | 
						||
      memcpy (dest->elems + id, src1->elems + i1,
 | 
						||
	     (src1->nelem - i1) * sizeof (int));
 | 
						||
      id += src1->nelem - i1;
 | 
						||
    }
 | 
						||
  else if (i2 < src2->nelem)
 | 
						||
    {
 | 
						||
      memcpy (dest->elems + id, src2->elems + i2,
 | 
						||
	     (src2->nelem - i2) * sizeof (int));
 | 
						||
      id += src2->nelem - i2;
 | 
						||
    }
 | 
						||
  dest->nelem = id;
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Calculate the union set of the sets DEST and SRC. And store it to
 | 
						||
   DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
re_node_set_merge (dest, src)
 | 
						||
     re_node_set *dest;
 | 
						||
     const re_node_set *src;
 | 
						||
{
 | 
						||
  int si, di;
 | 
						||
  if (src == NULL || src->nelem == 0)
 | 
						||
    return REG_NOERROR;
 | 
						||
  if (dest->alloc < src->nelem + dest->nelem)
 | 
						||
    {
 | 
						||
      int *new_buffer;
 | 
						||
      dest->alloc = 2 * (src->nelem + dest->alloc);
 | 
						||
      new_buffer = re_realloc (dest->elems, int, dest->alloc);
 | 
						||
      if (BE (new_buffer == NULL, 0))
 | 
						||
	return REG_ESPACE;
 | 
						||
      dest->elems = new_buffer;
 | 
						||
    }
 | 
						||
 | 
						||
  for (si = 0, di = 0 ; si < src->nelem && di < dest->nelem ;)
 | 
						||
    {
 | 
						||
      int cp_from, ncp, mid, right, src_elem = src->elems[si];
 | 
						||
      /* Binary search the spot we will add the new element.  */
 | 
						||
      right = dest->nelem;
 | 
						||
      while (di < right)
 | 
						||
	{
 | 
						||
	  mid = (di + right) / 2;
 | 
						||
	  if (dest->elems[mid] < src_elem)
 | 
						||
	    di = mid + 1;
 | 
						||
	  else
 | 
						||
	    right = mid;
 | 
						||
	}
 | 
						||
      if (di >= dest->nelem)
 | 
						||
	break;
 | 
						||
 | 
						||
      if (dest->elems[di] == src_elem)
 | 
						||
	{
 | 
						||
	  /* Skip since, DEST already has the element.  */
 | 
						||
	  ++di;
 | 
						||
	  ++si;
 | 
						||
	  continue;
 | 
						||
	}
 | 
						||
 | 
						||
      /* Skip the src elements which are less than dest->elems[di].  */
 | 
						||
      cp_from = si;
 | 
						||
      while (si < src->nelem && src->elems[si] < dest->elems[di])
 | 
						||
	++si;
 | 
						||
      /* Copy these src elements.  */
 | 
						||
      ncp = si - cp_from;
 | 
						||
      memmove (dest->elems + di + ncp, dest->elems + di,
 | 
						||
	       sizeof (int) * (dest->nelem - di));
 | 
						||
      memcpy (dest->elems + di, src->elems + cp_from,
 | 
						||
	      sizeof (int) * ncp);
 | 
						||
      /* Update counters.  */
 | 
						||
      di += ncp;
 | 
						||
      dest->nelem += ncp;
 | 
						||
    }
 | 
						||
 | 
						||
  /* Copy remaining src elements.  */
 | 
						||
  if (si < src->nelem)
 | 
						||
    {
 | 
						||
      memcpy (dest->elems + di, src->elems + si,
 | 
						||
	      sizeof (int) * (src->nelem - si));
 | 
						||
      dest->nelem += src->nelem - si;
 | 
						||
    }
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Insert the new element ELEM to the re_node_set* SET.
 | 
						||
   return 0 if SET already has ELEM,
 | 
						||
   return -1 if an error is occured, return 1 otherwise.  */
 | 
						||
 | 
						||
static int
 | 
						||
re_node_set_insert (set, elem)
 | 
						||
     re_node_set *set;
 | 
						||
     int elem;
 | 
						||
{
 | 
						||
  int idx, right, mid;
 | 
						||
  /* In case of the set is empty.  */
 | 
						||
  if (set->elems == NULL || set->alloc == 0)
 | 
						||
    {
 | 
						||
      if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1))
 | 
						||
	return 1;
 | 
						||
      else
 | 
						||
	return -1;
 | 
						||
    }
 | 
						||
 | 
						||
  /* Binary search the spot we will add the new element.  */
 | 
						||
  idx = 0;
 | 
						||
  right = set->nelem;
 | 
						||
  while (idx < right)
 | 
						||
    {
 | 
						||
      mid = (idx + right) / 2;
 | 
						||
      if (set->elems[mid] < elem)
 | 
						||
	idx = mid + 1;
 | 
						||
      else
 | 
						||
	right = mid;
 | 
						||
    }
 | 
						||
 | 
						||
  /* Realloc if we need.  */
 | 
						||
  if (set->alloc < set->nelem + 1)
 | 
						||
    {
 | 
						||
      int *new_array;
 | 
						||
      set->alloc = set->alloc * 2;
 | 
						||
      new_array = re_malloc (int, set->alloc);
 | 
						||
      if (BE (new_array == NULL, 0))
 | 
						||
	return -1;
 | 
						||
      /* Copy the elements they are followed by the new element.  */
 | 
						||
      if (idx > 0)
 | 
						||
	memcpy (new_array, set->elems, sizeof (int) * (idx));
 | 
						||
      /* Copy the elements which follows the new element.  */
 | 
						||
      if (set->nelem - idx > 0)
 | 
						||
	memcpy (new_array + idx + 1, set->elems + idx,
 | 
						||
		sizeof (int) * (set->nelem - idx));
 | 
						||
      re_free (set->elems);
 | 
						||
      set->elems = new_array;
 | 
						||
    }
 | 
						||
  else
 | 
						||
    {
 | 
						||
      /* Move the elements which follows the new element.  */
 | 
						||
      if (set->nelem - idx > 0)
 | 
						||
	memmove (set->elems + idx + 1, set->elems + idx,
 | 
						||
		 sizeof (int) * (set->nelem - idx));
 | 
						||
    }
 | 
						||
  /* Insert the new element.  */
 | 
						||
  set->elems[idx] = elem;
 | 
						||
  ++set->nelem;
 | 
						||
  return 1;
 | 
						||
}
 | 
						||
 | 
						||
/* Compare two node sets SET1 and SET2.
 | 
						||
   return 1 if SET1 and SET2 are equivalent, retrun 0 otherwise.  */
 | 
						||
 | 
						||
static int
 | 
						||
re_node_set_compare (set1, set2)
 | 
						||
     const re_node_set *set1, *set2;
 | 
						||
{
 | 
						||
  int i;
 | 
						||
  if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem)
 | 
						||
    return 0;
 | 
						||
  for (i = 0 ; i < set1->nelem ; i++)
 | 
						||
    if (set1->elems[i] != set2->elems[i])
 | 
						||
      return 0;
 | 
						||
  return 1;
 | 
						||
}
 | 
						||
 | 
						||
/* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise.  */
 | 
						||
 | 
						||
static int
 | 
						||
re_node_set_contains (set, elem)
 | 
						||
     const re_node_set *set;
 | 
						||
     int elem;
 | 
						||
{
 | 
						||
  int idx, right, mid;
 | 
						||
  if (set->nelem <= 0)
 | 
						||
    return 0;
 | 
						||
 | 
						||
  /* Binary search the element.  */
 | 
						||
  idx = 0;
 | 
						||
  right = set->nelem - 1;
 | 
						||
  while (idx < right)
 | 
						||
    {
 | 
						||
      mid = (idx + right) / 2;
 | 
						||
      if (set->elems[mid] < elem)
 | 
						||
	idx = mid + 1;
 | 
						||
      else
 | 
						||
	right = mid;
 | 
						||
    }
 | 
						||
  return set->elems[idx] == elem ? idx + 1 : 0;
 | 
						||
}
 | 
						||
 | 
						||
static void
 | 
						||
re_node_set_remove_at (set, idx)
 | 
						||
     re_node_set *set;
 | 
						||
     int idx;
 | 
						||
{
 | 
						||
  if (idx < 0 || idx >= set->nelem)
 | 
						||
    return;
 | 
						||
  if (idx < set->nelem - 1)
 | 
						||
    memmove (set->elems + idx, set->elems + idx + 1,
 | 
						||
	     sizeof (int) * (set->nelem - idx - 1));
 | 
						||
  --set->nelem;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/* Add the token TOKEN to dfa->nodes, and return the index of the token.
 | 
						||
   Or return -1, if an error will be occured.  */
 | 
						||
 | 
						||
static int
 | 
						||
re_dfa_add_node (dfa, token, mode)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     re_token_t token;
 | 
						||
     int mode;
 | 
						||
{
 | 
						||
  if (dfa->nodes_len >= dfa->nodes_alloc)
 | 
						||
    {
 | 
						||
      re_token_t *new_array;
 | 
						||
      dfa->nodes_alloc *= 2;
 | 
						||
      new_array = re_realloc (dfa->nodes, re_token_t, dfa->nodes_alloc);
 | 
						||
      if (BE (new_array == NULL, 0))
 | 
						||
	return -1;
 | 
						||
      else
 | 
						||
	dfa->nodes = new_array;
 | 
						||
      if (mode)
 | 
						||
	{
 | 
						||
	  int *new_nexts, *new_indices;
 | 
						||
	  re_node_set *new_edests, *new_eclosures, *new_inveclosures;
 | 
						||
 | 
						||
	  new_nexts = re_realloc (dfa->nexts, int, dfa->nodes_alloc);
 | 
						||
	  new_indices = re_realloc (dfa->org_indices, int, dfa->nodes_alloc);
 | 
						||
	  new_edests = re_realloc (dfa->edests, re_node_set, dfa->nodes_alloc);
 | 
						||
	  new_eclosures = re_realloc (dfa->eclosures, re_node_set,
 | 
						||
				      dfa->nodes_alloc);
 | 
						||
	  new_inveclosures = re_realloc (dfa->inveclosures, re_node_set,
 | 
						||
					 dfa->nodes_alloc);
 | 
						||
	  if (BE (new_nexts == NULL || new_indices == NULL
 | 
						||
		  || new_edests == NULL || new_eclosures == NULL
 | 
						||
		  || new_inveclosures == NULL, 0))
 | 
						||
	    return -1;
 | 
						||
	  dfa->nexts = new_nexts;
 | 
						||
	  dfa->org_indices = new_indices;
 | 
						||
	  dfa->edests = new_edests;
 | 
						||
	  dfa->eclosures = new_eclosures;
 | 
						||
	  dfa->inveclosures = new_inveclosures;
 | 
						||
	}
 | 
						||
    }
 | 
						||
  dfa->nodes[dfa->nodes_len] = token;
 | 
						||
  dfa->nodes[dfa->nodes_len].duplicated = 0;
 | 
						||
  dfa->nodes[dfa->nodes_len].constraint = 0;
 | 
						||
  return dfa->nodes_len++;
 | 
						||
}
 | 
						||
 | 
						||
static unsigned int inline
 | 
						||
calc_state_hash (nodes, context)
 | 
						||
     const re_node_set *nodes;
 | 
						||
     unsigned int context;
 | 
						||
{
 | 
						||
  unsigned int hash = nodes->nelem + context;
 | 
						||
  int i;
 | 
						||
  for (i = 0 ; i < nodes->nelem ; i++)
 | 
						||
    hash += nodes->elems[i];
 | 
						||
  return hash;
 | 
						||
}
 | 
						||
 | 
						||
/* Search for the state whose node_set is equivalent to NODES.
 | 
						||
   Return the pointer to the state, if we found it in the DFA.
 | 
						||
   Otherwise create the new one and return it.  In case of an error
 | 
						||
   return NULL and set the error code in ERR.
 | 
						||
   Note: - We assume NULL as the invalid state, then it is possible that
 | 
						||
	   return value is NULL and ERR is REG_NOERROR.
 | 
						||
	 - We never return non-NULL value in case of any errors, it is for
 | 
						||
	   optimization.  */
 | 
						||
 | 
						||
static re_dfastate_t*
 | 
						||
re_acquire_state (err, dfa, nodes)
 | 
						||
     reg_errcode_t *err;
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     const re_node_set *nodes;
 | 
						||
{
 | 
						||
  unsigned int hash;
 | 
						||
  re_dfastate_t *new_state;
 | 
						||
  struct re_state_table_entry *spot;
 | 
						||
  int i;
 | 
						||
  if (BE (nodes->nelem == 0, 0))
 | 
						||
    {
 | 
						||
      *err = REG_NOERROR;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
  hash = calc_state_hash (nodes, 0);
 | 
						||
  spot = dfa->state_table + (hash & dfa->state_hash_mask);
 | 
						||
 | 
						||
  for (i = 0 ; i < spot->num ; i++)
 | 
						||
    {
 | 
						||
      re_dfastate_t *state = spot->array[i];
 | 
						||
      if (hash != state->hash)
 | 
						||
	continue;
 | 
						||
      if (re_node_set_compare (&state->nodes, nodes))
 | 
						||
	return state;
 | 
						||
    }
 | 
						||
 | 
						||
  /* There are no appropriate state in the dfa, create the new one.  */
 | 
						||
  new_state = create_ci_newstate (dfa, nodes, hash);
 | 
						||
  if (BE (new_state != NULL, 1))
 | 
						||
    return new_state;
 | 
						||
  else
 | 
						||
    {
 | 
						||
      *err = REG_ESPACE;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
/* Search for the state whose node_set is equivalent to NODES and
 | 
						||
   whose context is equivalent to CONTEXT.
 | 
						||
   Return the pointer to the state, if we found it in the DFA.
 | 
						||
   Otherwise create the new one and return it.  In case of an error
 | 
						||
   return NULL and set the error code in ERR.
 | 
						||
   Note: - We assume NULL as the invalid state, then it is possible that
 | 
						||
	   return value is NULL and ERR is REG_NOERROR.
 | 
						||
	 - We never return non-NULL value in case of any errors, it is for
 | 
						||
	   optimization.  */
 | 
						||
 | 
						||
static re_dfastate_t*
 | 
						||
re_acquire_state_context (err, dfa, nodes, context)
 | 
						||
     reg_errcode_t *err;
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     const re_node_set *nodes;
 | 
						||
     unsigned int context;
 | 
						||
{
 | 
						||
  unsigned int hash;
 | 
						||
  re_dfastate_t *new_state;
 | 
						||
  struct re_state_table_entry *spot;
 | 
						||
  int i;
 | 
						||
  if (nodes->nelem == 0)
 | 
						||
    {
 | 
						||
      *err = REG_NOERROR;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
  hash = calc_state_hash (nodes, context);
 | 
						||
  spot = dfa->state_table + (hash & dfa->state_hash_mask);
 | 
						||
 | 
						||
  for (i = 0 ; i < spot->num ; i++)
 | 
						||
    {
 | 
						||
      re_dfastate_t *state = spot->array[i];
 | 
						||
      if (hash != state->hash)
 | 
						||
	continue;
 | 
						||
      if (re_node_set_compare (state->entrance_nodes, nodes)
 | 
						||
	  && state->context == context)
 | 
						||
	return state;
 | 
						||
    }
 | 
						||
  /* There are no appropriate state in `dfa', create the new one.  */
 | 
						||
  new_state = create_cd_newstate (dfa, nodes, context, hash);
 | 
						||
  if (BE (new_state != NULL, 1))
 | 
						||
    return new_state;
 | 
						||
  else
 | 
						||
    {
 | 
						||
      *err = REG_ESPACE;
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
/* Allocate memory for DFA state and initialize common properties.
 | 
						||
   Return the new state if succeeded, otherwise return NULL.  */
 | 
						||
 | 
						||
static re_dfastate_t *
 | 
						||
create_newstate_common (dfa, nodes, hash)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     const re_node_set *nodes;
 | 
						||
     unsigned int hash;
 | 
						||
{
 | 
						||
  re_dfastate_t *newstate;
 | 
						||
  reg_errcode_t err;
 | 
						||
  newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
 | 
						||
  if (BE (newstate == NULL, 0))
 | 
						||
    return NULL;
 | 
						||
  err = re_node_set_init_copy (&newstate->nodes, nodes);
 | 
						||
  if (BE (err != REG_NOERROR, 0))
 | 
						||
    {
 | 
						||
      re_free (newstate);
 | 
						||
      return NULL;
 | 
						||
    }
 | 
						||
  newstate->trtable = NULL;
 | 
						||
  newstate->trtable_search = NULL;
 | 
						||
  newstate->hash = hash;
 | 
						||
  return newstate;
 | 
						||
}
 | 
						||
 | 
						||
/* Store the new state NEWSTATE whose hash value is HASH in appropriate
 | 
						||
   position.  Return value indicate the error code if failed.  */
 | 
						||
 | 
						||
static reg_errcode_t
 | 
						||
register_state (dfa, newstate, hash)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     re_dfastate_t *newstate;
 | 
						||
     unsigned int hash;
 | 
						||
{
 | 
						||
  struct re_state_table_entry *spot;
 | 
						||
  spot = dfa->state_table + (hash & dfa->state_hash_mask);
 | 
						||
 | 
						||
  if (spot->alloc <= spot->num)
 | 
						||
    {
 | 
						||
      re_dfastate_t **new_array;
 | 
						||
      spot->alloc = 2 * spot->num + 2;
 | 
						||
      new_array = re_realloc (spot->array, re_dfastate_t *, spot->alloc);
 | 
						||
      if (BE (new_array == NULL, 0))
 | 
						||
	return REG_ESPACE;
 | 
						||
      spot->array = new_array;
 | 
						||
    }
 | 
						||
  spot->array[spot->num++] = newstate;
 | 
						||
  return REG_NOERROR;
 | 
						||
}
 | 
						||
 | 
						||
/* Create the new state which is independ of contexts.
 | 
						||
   Return the new state if succeeded, otherwise return NULL.  */
 | 
						||
 | 
						||
static re_dfastate_t *
 | 
						||
create_ci_newstate (dfa, nodes, hash)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     const re_node_set *nodes;
 | 
						||
     unsigned int hash;
 | 
						||
{
 | 
						||
  int i;
 | 
						||
  reg_errcode_t err;
 | 
						||
  re_dfastate_t *newstate;
 | 
						||
  newstate = create_newstate_common (dfa, nodes, hash);
 | 
						||
  if (BE (newstate == NULL, 0))
 | 
						||
    return NULL;
 | 
						||
  newstate->entrance_nodes = &newstate->nodes;
 | 
						||
 | 
						||
  for (i = 0 ; i < nodes->nelem ; i++)
 | 
						||
    {
 | 
						||
      re_token_t *node = dfa->nodes + nodes->elems[i];
 | 
						||
      re_token_type_t type = node->type;
 | 
						||
      if (type == CHARACTER && !node->constraint)
 | 
						||
	continue;
 | 
						||
 | 
						||
      /* If the state has the halt node, the state is a halt state.  */
 | 
						||
      else if (type == END_OF_RE)
 | 
						||
	newstate->halt = 1;
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      else if (type == COMPLEX_BRACKET
 | 
						||
	       || (type == OP_PERIOD && MB_CUR_MAX > 1))
 | 
						||
	newstate->accept_mb = 1;
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
      else if (type == OP_BACK_REF)
 | 
						||
	newstate->has_backref = 1;
 | 
						||
      else if (type == ANCHOR || node->constraint)
 | 
						||
	newstate->has_constraint = 1;
 | 
						||
    }
 | 
						||
  err = register_state (dfa, newstate, hash);
 | 
						||
  if (BE (err != REG_NOERROR, 0))
 | 
						||
    {
 | 
						||
      free_state (newstate);
 | 
						||
      newstate = NULL;
 | 
						||
    }
 | 
						||
  return newstate;
 | 
						||
}
 | 
						||
 | 
						||
/* Create the new state which is depend on the context CONTEXT.
 | 
						||
   Return the new state if succeeded, otherwise return NULL.  */
 | 
						||
 | 
						||
static re_dfastate_t *
 | 
						||
create_cd_newstate (dfa, nodes, context, hash)
 | 
						||
     re_dfa_t *dfa;
 | 
						||
     const re_node_set *nodes;
 | 
						||
     unsigned int context, hash;
 | 
						||
{
 | 
						||
  int i, nctx_nodes = 0;
 | 
						||
  reg_errcode_t err;
 | 
						||
  re_dfastate_t *newstate;
 | 
						||
 | 
						||
  newstate = create_newstate_common (dfa, nodes, hash);
 | 
						||
  if (BE (newstate == NULL, 0))
 | 
						||
    return NULL;
 | 
						||
  newstate->context = context;
 | 
						||
  newstate->entrance_nodes = &newstate->nodes;
 | 
						||
 | 
						||
  for (i = 0 ; i < nodes->nelem ; i++)
 | 
						||
    {
 | 
						||
      unsigned int constraint = 0;
 | 
						||
      re_token_t *node = dfa->nodes + nodes->elems[i];
 | 
						||
      re_token_type_t type = node->type;
 | 
						||
      if (node->constraint)
 | 
						||
	constraint = node->constraint;
 | 
						||
 | 
						||
      if (type == CHARACTER && !constraint)
 | 
						||
	continue;
 | 
						||
      /* If the state has the halt node, the state is a halt state.  */
 | 
						||
      else if (type == END_OF_RE)
 | 
						||
	newstate->halt = 1;
 | 
						||
#ifdef RE_ENABLE_I18N
 | 
						||
      else if (type == COMPLEX_BRACKET
 | 
						||
	       || (type == OP_PERIOD && MB_CUR_MAX > 1))
 | 
						||
	newstate->accept_mb = 1;
 | 
						||
#endif /* RE_ENABLE_I18N */
 | 
						||
      else if (type == OP_BACK_REF)
 | 
						||
	newstate->has_backref = 1;
 | 
						||
      else if (type == ANCHOR)
 | 
						||
	constraint = node->opr.ctx_type;
 | 
						||
 | 
						||
      if (constraint)
 | 
						||
	{
 | 
						||
	  if (newstate->entrance_nodes == &newstate->nodes)
 | 
						||
	    {
 | 
						||
	      newstate->entrance_nodes = re_malloc (re_node_set, 1);
 | 
						||
	      if (BE (newstate->entrance_nodes == NULL, 0))
 | 
						||
		{
 | 
						||
		  free_state (newstate);
 | 
						||
		  return NULL;
 | 
						||
		}
 | 
						||
	      re_node_set_init_copy (newstate->entrance_nodes, nodes);
 | 
						||
	      nctx_nodes = 0;
 | 
						||
	      newstate->has_constraint = 1;
 | 
						||
	    }
 | 
						||
 | 
						||
	  if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context))
 | 
						||
	    {
 | 
						||
	      re_node_set_remove_at (&newstate->nodes, i - nctx_nodes);
 | 
						||
	      ++nctx_nodes;
 | 
						||
	    }
 | 
						||
	}
 | 
						||
    }
 | 
						||
  err = register_state (dfa, newstate, hash);
 | 
						||
  if (BE (err != REG_NOERROR, 0))
 | 
						||
    {
 | 
						||
      free_state (newstate);
 | 
						||
      newstate = NULL;
 | 
						||
    }
 | 
						||
  return  newstate;
 | 
						||
}
 | 
						||
 | 
						||
static void
 | 
						||
free_state (state)
 | 
						||
     re_dfastate_t *state;
 | 
						||
{
 | 
						||
  if (state->entrance_nodes != &state->nodes)
 | 
						||
    {
 | 
						||
      re_node_set_free (state->entrance_nodes);
 | 
						||
      re_free (state->entrance_nodes);
 | 
						||
    }
 | 
						||
  re_node_set_free (&state->nodes);
 | 
						||
  re_free (state->trtable);
 | 
						||
  re_free (state->trtable_search);
 | 
						||
  re_free (state);
 | 
						||
}
 |