homework-jianmu/source/libs/function/src/builtinsimpl.c

1989 lines
62 KiB
C

/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "builtinsimpl.h"
#include "cJSON.h"
#include "function.h"
#include "querynodes.h"
#include "taggfunction.h"
#include "tdatablock.h"
#include "tpercentile.h"
#define HISTOGRAM_MAX_BINS_NUM 100
typedef struct SSumRes {
union {
int64_t isum;
uint64_t usum;
double dsum;
};
} SSumRes;
typedef struct SAvgRes {
double result;
SSumRes sum;
int64_t count;
} SAvgRes;
typedef struct STopBotResItem {
SVariant v;
uint64_t uid; // it is a table uid, used to extract tag data during building of the final result for the tag data
struct {
int32_t pageId;
int32_t offset;
} tuplePos; // tuple data of this chosen row
} STopBotResItem;
typedef struct STopBotRes {
STopBotResItem* pItems;
} STopBotRes;
typedef struct SStddevRes {
double result;
int64_t count;
union {
double quadraticDSum;
int64_t quadraticISum;
};
union {
double dsum;
int64_t isum;
};
} SStddevRes;
typedef struct SPercentileInfo {
double result;
tMemBucket* pMemBucket;
int32_t stage;
double minval;
double maxval;
int64_t numOfElems;
} SPercentileInfo;
typedef struct SDiffInfo {
bool hasPrev;
bool includeNull;
bool ignoreNegative; // replace the ignore with case when
bool firstOutput;
union {
int64_t i64;
double d64;
} prev;
int64_t prevTs;
} SDiffInfo;
typedef struct SSpreadInfo {
double result;
bool hasResult;
double min;
double max;
} SSpreadInfo;
typedef struct SHistoFuncBin {
double lower;
double upper;
union {
int64_t count;
double percentage;
};
} SHistoFuncBin;
typedef struct SHistoFuncInfo {
int32_t numOfBins;
bool normalized;
SHistoFuncBin bins[];
} SHistoFuncInfo;
typedef enum {
UNKNOWN_BIN = 0,
USER_INPUT_BIN,
LINEAR_BIN,
LOG_BIN
} EHistoBinType;
#define SET_VAL(_info, numOfElem, res) \
do { \
if ((numOfElem) <= 0) { \
break; \
} \
(_info)->numOfRes = (res); \
} while (0)
#define GET_TS_LIST(x) ((TSKEY*)((x)->ptsList))
#define GET_TS_DATA(x, y) (GET_TS_LIST(x)[(y)])
#define DO_UPDATE_TAG_COLUMNS_WITHOUT_TS(ctx) \
do { \
for (int32_t _i = 0; _i < (ctx)->tagInfo.numOfTagCols; ++_i) { \
SqlFunctionCtx* __ctx = (ctx)->tagInfo.pTagCtxList[_i]; \
__ctx->fpSet.process(__ctx); \
} \
} while (0);
#define UPDATE_DATA(ctx, left, right, num, sign, _ts) \
do { \
if (((left) < (right)) ^ (sign)) { \
(left) = (right); \
DO_UPDATE_SUBSID_RES(ctx, _ts); \
(num) += 1; \
} \
} while (0)
#define LOOPCHECK_N(val, _col, ctx, _t, _nrow, _start, sign, num) \
do { \
_t* d = (_t*)((_col)->pData); \
for (int32_t i = (_start); i < (_nrow) + (_start); ++i) { \
if (((_col)->hasNull) && colDataIsNull_f((_col)->nullbitmap, i)) { \
continue; \
} \
TSKEY ts = (ctx)->ptsList != NULL ? GET_TS_DATA(ctx, i) : 0; \
UPDATE_DATA(ctx, val, d[i], num, sign, ts); \
} \
} while (0)
bool functionSetup(SqlFunctionCtx* pCtx, SResultRowEntryInfo* pResultInfo) {
if (pResultInfo->initialized) {
return false;
}
if (pCtx->pOutput != NULL) {
memset(pCtx->pOutput, 0, (size_t)pCtx->resDataInfo.bytes);
}
initResultRowEntry(pResultInfo, pCtx->resDataInfo.interBufSize);
return true;
}
int32_t functionFinalize(SqlFunctionCtx* pCtx, SSDataBlock* pBlock) {
int32_t slotId = pCtx->pExpr->base.resSchema.slotId;
SColumnInfoData* pCol = taosArrayGet(pBlock->pDataBlock, slotId);
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
pResInfo->isNullRes = (pResInfo->numOfRes == 0) ? 1 : 0;
/*cleanupResultRowEntry(pResInfo);*/
char* in = GET_ROWCELL_INTERBUF(pResInfo);
colDataAppend(pCol, pBlock->info.rows, in, pResInfo->isNullRes);
return pResInfo->numOfRes;
}
int32_t functionFinalizeWithResultBuf(SqlFunctionCtx* pCtx, SSDataBlock* pBlock, char* finalResult) {
int32_t slotId = pCtx->pExpr->base.resSchema.slotId;
SColumnInfoData* pCol = taosArrayGet(pBlock->pDataBlock, slotId);
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
pResInfo->isNullRes = (pResInfo->numOfRes == 0) ? 1 : 0;
cleanupResultRowEntry(pResInfo);
char* in = finalResult;
colDataAppend(pCol, pBlock->info.rows, in, pResInfo->isNullRes);
return pResInfo->numOfRes;
}
EFuncDataRequired countDataRequired(SFunctionNode* pFunc, STimeWindow* pTimeWindow) {
SNode* pParam = nodesListGetNode(pFunc->pParameterList, 0);
if (QUERY_NODE_COLUMN == nodeType(pParam) && PRIMARYKEY_TIMESTAMP_COL_ID == ((SColumnNode*)pParam)->colId) {
return FUNC_DATA_REQUIRED_NOT_LOAD;
}
return FUNC_DATA_REQUIRED_STATIS_LOAD;
}
bool getCountFuncEnv(SFunctionNode* UNUSED_PARAM(pFunc), SFuncExecEnv* pEnv) {
pEnv->calcMemSize = sizeof(int64_t);
return true;
}
/*
* count function does need the finalize, if data is missing, the default value, which is 0, is used
* count function does not use the pCtx->interResBuf to keep the intermediate buffer
*/
int32_t countFunction(SqlFunctionCtx* pCtx) {
int32_t numOfElem = 0;
/*
* 1. column data missing (schema modified) causes pInputCol->hasNull == true. pInput->colDataAggIsSet == true;
* 2. for general non-primary key columns, pInputCol->hasNull may be true or false, pInput->colDataAggIsSet == true;
* 3. for primary key column, pInputCol->hasNull always be false, pInput->colDataAggIsSet == false;
*/
SInputColumnInfoData* pInput = &pCtx->input;
SColumnInfoData* pInputCol = pInput->pData[0];
if (pInput->colDataAggIsSet && pInput->totalRows == pInput->numOfRows) {
numOfElem = pInput->numOfRows - pInput->pColumnDataAgg[0]->numOfNull;
ASSERT(numOfElem >= 0);
} else {
if (pInputCol->hasNull) {
for (int32_t i = pInput->startRowIndex; i < pInput->startRowIndex + pInput->numOfRows; ++i) {
if (colDataIsNull(pInputCol, pInput->totalRows, i, NULL)) {
continue;
}
numOfElem += 1;
}
} else {
// when counting on the primary time stamp column and no statistics data is presented, use the size value
// directly.
numOfElem = pInput->numOfRows;
}
}
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
char* buf = GET_ROWCELL_INTERBUF(pResInfo);
*((int64_t*)buf) += numOfElem;
SET_VAL(pResInfo, numOfElem, 1);
return TSDB_CODE_SUCCESS;
}
#define LIST_ADD_N(_res, _col, _start, _rows, _t, numOfElem) \
do { \
_t* d = (_t*)(_col->pData); \
for (int32_t i = (_start); i < (_rows) + (_start); ++i) { \
if (((_col)->hasNull) && colDataIsNull_f((_col)->nullbitmap, i)) { \
continue; \
}; \
(_res) += (d)[i]; \
(numOfElem)++; \
} \
} while (0)
int32_t sumFunction(SqlFunctionCtx* pCtx) {
int32_t numOfElem = 0;
// Only the pre-computing information loaded and actual data does not loaded
SInputColumnInfoData* pInput = &pCtx->input;
SColumnDataAgg* pAgg = pInput->pColumnDataAgg[0];
int32_t type = pInput->pData[0]->info.type;
SSumRes* pSumRes = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
if (pInput->colDataAggIsSet) {
numOfElem = pInput->numOfRows - pAgg->numOfNull;
ASSERT(numOfElem >= 0);
if (IS_SIGNED_NUMERIC_TYPE(type)) {
pSumRes->isum += pAgg->sum;
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)) {
pSumRes->usum += pAgg->sum;
} else if (IS_FLOAT_TYPE(type)) {
pSumRes->dsum += GET_DOUBLE_VAL((const char*)&(pAgg->sum));
}
} else { // computing based on the true data block
SColumnInfoData* pCol = pInput->pData[0];
int32_t start = pInput->startRowIndex;
int32_t numOfRows = pInput->numOfRows;
if (IS_SIGNED_NUMERIC_TYPE(type) || type == TSDB_DATA_TYPE_BOOL) {
if (type == TSDB_DATA_TYPE_TINYINT || type == TSDB_DATA_TYPE_BOOL) {
LIST_ADD_N(pSumRes->isum, pCol, start, numOfRows, int8_t, numOfElem);
} else if (type == TSDB_DATA_TYPE_SMALLINT) {
LIST_ADD_N(pSumRes->isum, pCol, start, numOfRows, int16_t, numOfElem);
} else if (type == TSDB_DATA_TYPE_INT) {
LIST_ADD_N(pSumRes->isum, pCol, start, numOfRows, int32_t, numOfElem);
} else if (type == TSDB_DATA_TYPE_BIGINT) {
LIST_ADD_N(pSumRes->isum, pCol, start, numOfRows, int64_t, numOfElem);
}
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)) {
if (type == TSDB_DATA_TYPE_UTINYINT) {
LIST_ADD_N(pSumRes->usum, pCol, start, numOfRows, uint8_t, numOfElem);
} else if (type == TSDB_DATA_TYPE_USMALLINT) {
LIST_ADD_N(pSumRes->usum, pCol, start, numOfRows, uint16_t, numOfElem);
} else if (type == TSDB_DATA_TYPE_UINT) {
LIST_ADD_N(pSumRes->usum, pCol, start, numOfRows, uint32_t, numOfElem);
} else if (type == TSDB_DATA_TYPE_UBIGINT) {
LIST_ADD_N(pSumRes->usum, pCol, start, numOfRows, uint64_t, numOfElem);
}
} else if (type == TSDB_DATA_TYPE_DOUBLE) {
LIST_ADD_N(pSumRes->dsum, pCol, start, numOfRows, double, numOfElem);
} else if (type == TSDB_DATA_TYPE_FLOAT) {
LIST_ADD_N(pSumRes->dsum, pCol, start, numOfRows, float, numOfElem);
}
}
// data in the check operation are all null, not output
SET_VAL(GET_RES_INFO(pCtx), numOfElem, 1);
return TSDB_CODE_SUCCESS;
}
bool getSumFuncEnv(SFunctionNode* UNUSED_PARAM(pFunc), SFuncExecEnv* pEnv) {
pEnv->calcMemSize = sizeof(SSumRes);
return true;
}
bool getAvgFuncEnv(SFunctionNode* UNUSED_PARAM(pFunc), SFuncExecEnv* pEnv) {
pEnv->calcMemSize = sizeof(double);
return true;
}
bool avgFunctionSetup(SqlFunctionCtx* pCtx, SResultRowEntryInfo* pResultInfo) {
if (!functionSetup(pCtx, pResultInfo)) {
return false;
}
SAvgRes* pRes = GET_ROWCELL_INTERBUF(pResultInfo);
memset(pRes, 0, sizeof(SAvgRes));
return true;
}
int32_t avgFunction(SqlFunctionCtx* pCtx) {
int32_t numOfElem = 0;
// Only the pre-computing information loaded and actual data does not loaded
SInputColumnInfoData* pInput = &pCtx->input;
int32_t type = pInput->pData[0]->info.type;
SAvgRes* pAvgRes = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
// computing based on the true data block
SColumnInfoData* pCol = pInput->pData[0];
int32_t start = pInput->startRowIndex;
int32_t numOfRows = pInput->numOfRows;
switch (type) {
case TSDB_DATA_TYPE_TINYINT: {
int8_t* plist = (int8_t*)pCol->pData;
for (int32_t i = start; i < numOfRows + pInput->startRowIndex; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pAvgRes->count += 1;
pAvgRes->sum.isum += plist[i];
}
break;
}
case TSDB_DATA_TYPE_SMALLINT: {
int16_t* plist = (int16_t*)pCol->pData;
for (int32_t i = start; i < numOfRows + pInput->startRowIndex; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pAvgRes->count += 1;
pAvgRes->sum.isum += plist[i];
}
break;
}
case TSDB_DATA_TYPE_INT: {
int32_t* plist = (int32_t*)pCol->pData;
for (int32_t i = start; i < numOfRows + pInput->startRowIndex; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pAvgRes->count += 1;
pAvgRes->sum.isum += plist[i];
}
break;
}
case TSDB_DATA_TYPE_BIGINT: {
int64_t* plist = (int64_t*)pCol->pData;
for (int32_t i = start; i < numOfRows + pInput->startRowIndex; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pAvgRes->count += 1;
pAvgRes->sum.isum += plist[i];
}
break;
}
case TSDB_DATA_TYPE_FLOAT: {
float* plist = (float*)pCol->pData;
for (int32_t i = start; i < numOfRows + pInput->startRowIndex; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pAvgRes->count += 1;
pAvgRes->sum.dsum += plist[i];
}
break;
}
case TSDB_DATA_TYPE_DOUBLE: {
double* plist = (double*)pCol->pData;
for (int32_t i = start; i < numOfRows + pInput->startRowIndex; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pAvgRes->count += 1;
pAvgRes->sum.dsum += plist[i];
}
break;
}
default:
break;
}
// data in the check operation are all null, not output
SET_VAL(GET_RES_INFO(pCtx), numOfElem, 1);
return TSDB_CODE_SUCCESS;
}
int32_t avgFinalize(SqlFunctionCtx* pCtx, SSDataBlock* pBlock) {
SInputColumnInfoData* pInput = &pCtx->input;
int32_t type = pInput->pData[0]->info.type;
SAvgRes* pAvgRes = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
if (IS_INTEGER_TYPE(type)) {
pAvgRes->result = pAvgRes->sum.isum / ((double)pAvgRes->count);
} else {
pAvgRes->result = pAvgRes->sum.dsum / ((double)pAvgRes->count);
}
return functionFinalize(pCtx, pBlock);
}
EFuncDataRequired statisDataRequired(SFunctionNode* pFunc, STimeWindow* pTimeWindow) {
return FUNC_DATA_REQUIRED_STATIS_LOAD;
}
bool maxFunctionSetup(SqlFunctionCtx* pCtx, SResultRowEntryInfo* pResultInfo) {
if (!functionSetup(pCtx, pResultInfo)) {
return false;
}
char* buf = GET_ROWCELL_INTERBUF(pResultInfo);
switch (pCtx->resDataInfo.type) {
case TSDB_DATA_TYPE_INT:
*((int32_t*)buf) = INT32_MIN;
break;
case TSDB_DATA_TYPE_UINT:
*((uint32_t*)buf) = 0;
break;
case TSDB_DATA_TYPE_FLOAT:
*((float*)buf) = -FLT_MAX;
break;
case TSDB_DATA_TYPE_DOUBLE:
SET_DOUBLE_VAL(((double*)buf), -DBL_MAX);
break;
case TSDB_DATA_TYPE_BIGINT:
*((int64_t*)buf) = INT64_MIN;
break;
case TSDB_DATA_TYPE_UBIGINT:
*((uint64_t*)buf) = 0;
break;
case TSDB_DATA_TYPE_SMALLINT:
*((int16_t*)buf) = INT16_MIN;
break;
case TSDB_DATA_TYPE_USMALLINT:
*((uint16_t*)buf) = 0;
break;
case TSDB_DATA_TYPE_TINYINT:
*((int8_t*)buf) = INT8_MIN;
break;
case TSDB_DATA_TYPE_UTINYINT:
*((uint8_t*)buf) = 0;
break;
case TSDB_DATA_TYPE_BOOL:
*((int8_t*)buf) = 0;
break;
default:
assert(0);
}
return true;
}
bool minFunctionSetup(SqlFunctionCtx* pCtx, SResultRowEntryInfo* pResultInfo) {
if (!functionSetup(pCtx, pResultInfo)) {
return false; // not initialized since it has been initialized
}
char* buf = GET_ROWCELL_INTERBUF(pResultInfo);
switch (pCtx->resDataInfo.type) {
case TSDB_DATA_TYPE_TINYINT:
*((int8_t*)buf) = INT8_MAX;
break;
case TSDB_DATA_TYPE_UTINYINT:
*(uint8_t*)buf = UINT8_MAX;
break;
case TSDB_DATA_TYPE_SMALLINT:
*((int16_t*)buf) = INT16_MAX;
break;
case TSDB_DATA_TYPE_USMALLINT:
*((uint16_t*)buf) = UINT16_MAX;
break;
case TSDB_DATA_TYPE_INT:
*((int32_t*)buf) = INT32_MAX;
break;
case TSDB_DATA_TYPE_UINT:
*((uint32_t*)buf) = UINT32_MAX;
break;
case TSDB_DATA_TYPE_BIGINT:
*((int64_t*)buf) = INT64_MAX;
break;
case TSDB_DATA_TYPE_UBIGINT:
*((uint64_t*)buf) = UINT64_MAX;
break;
case TSDB_DATA_TYPE_FLOAT:
*((float*)buf) = FLT_MAX;
break;
case TSDB_DATA_TYPE_DOUBLE:
SET_DOUBLE_VAL(((double*)buf), DBL_MAX);
break;
case TSDB_DATA_TYPE_BOOL:
*((int8_t*)buf) = 1;
break;
default:
assert(0);
}
return true;
}
bool getMinmaxFuncEnv(SFunctionNode* UNUSED_PARAM(pFunc), SFuncExecEnv* pEnv) {
pEnv->calcMemSize = sizeof(int64_t);
return true;
}
#define GET_TS_LIST(x) ((TSKEY*)((x)->ptsList))
#define GET_TS_DATA(x, y) (GET_TS_LIST(x)[(y)])
#define DO_UPDATE_TAG_COLUMNS_WITHOUT_TS(ctx) \
do { \
for (int32_t _i = 0; _i < (ctx)->tagInfo.numOfTagCols; ++_i) { \
SqlFunctionCtx* __ctx = (ctx)->tagInfo.pTagCtxList[_i]; \
__ctx->fpSet.process(__ctx); \
} \
} while (0);
#define DO_UPDATE_SUBSID_RES(ctx, ts) \
do { \
for (int32_t _i = 0; _i < (ctx)->subsidiaries.num; ++_i) { \
SqlFunctionCtx* __ctx = (ctx)->subsidiaries.pCtx[_i]; \
if (__ctx->functionId == FUNCTION_TS_DUMMY) { \
__ctx->tag.i = (ts); \
__ctx->tag.nType = TSDB_DATA_TYPE_BIGINT; \
} \
__ctx->fpSet.process(__ctx); \
} \
} while (0)
#define UPDATE_DATA(ctx, left, right, num, sign, _ts) \
do { \
if (((left) < (right)) ^ (sign)) { \
(left) = (right); \
DO_UPDATE_SUBSID_RES(ctx, _ts); \
(num) += 1; \
} \
} while (0)
#define LOOPCHECK_N(val, _col, ctx, _t, _nrow, _start, sign, num) \
do { \
_t* d = (_t*)((_col)->pData); \
for (int32_t i = (_start); i < (_nrow) + (_start); ++i) { \
if (((_col)->hasNull) && colDataIsNull_f((_col)->nullbitmap, i)) { \
continue; \
} \
TSKEY ts = (ctx)->ptsList != NULL ? GET_TS_DATA(ctx, i) : 0; \
UPDATE_DATA(ctx, val, d[i], num, sign, ts); \
} \
} while (0)
int32_t doMinMaxHelper(SqlFunctionCtx* pCtx, int32_t isMinFunc) {
int32_t numOfElems = 0;
SInputColumnInfoData* pInput = &pCtx->input;
SColumnDataAgg* pAgg = pInput->pColumnDataAgg[0];
SColumnInfoData* pCol = pInput->pData[0];
int32_t type = pCol->info.type;
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
char* buf = GET_ROWCELL_INTERBUF(pResInfo);
// data in current data block are qualified to the query
if (pInput->colDataAggIsSet) {
numOfElems = pInput->numOfRows - pAgg->numOfNull;
ASSERT(pInput->numOfRows == pInput->totalRows && numOfElems >= 0);
if (numOfElems == 0) {
return numOfElems;
}
void* tval = NULL;
int16_t index = 0;
if (isMinFunc) {
tval = &pInput->pColumnDataAgg[0]->min;
index = pInput->pColumnDataAgg[0]->minIndex;
} else {
tval = &pInput->pColumnDataAgg[0]->max;
index = pInput->pColumnDataAgg[0]->maxIndex;
}
// the index is the original position, not the relative position
TSKEY key = (pCtx->ptsList != NULL) ? pCtx->ptsList[index] : TSKEY_INITIAL_VAL;
if (IS_SIGNED_NUMERIC_TYPE(type)) {
int64_t prev = 0;
GET_TYPED_DATA(prev, int64_t, type, buf);
int64_t val = GET_INT64_VAL(tval);
if ((prev < val) ^ isMinFunc) {
*(int64_t*)buf = val;
for (int32_t i = 0; i < (pCtx)->subsidiaries.num; ++i) {
SqlFunctionCtx* __ctx = pCtx->subsidiaries.pCtx[i];
if (__ctx->functionId == FUNCTION_TS_DUMMY) { // TODO refactor
__ctx->tag.i = key;
__ctx->tag.nType = TSDB_DATA_TYPE_BIGINT;
}
__ctx->fpSet.process(__ctx);
}
}
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)) {
uint64_t prev = 0;
GET_TYPED_DATA(prev, uint64_t, type, buf);
uint64_t val = GET_UINT64_VAL(tval);
if ((prev < val) ^ isMinFunc) {
*(uint64_t*)buf = val;
for (int32_t i = 0; i < (pCtx)->subsidiaries.num; ++i) {
SqlFunctionCtx* __ctx = pCtx->subsidiaries.pCtx[i];
if (__ctx->functionId == FUNCTION_TS_DUMMY) { // TODO refactor
__ctx->tag.i = key;
__ctx->tag.nType = TSDB_DATA_TYPE_BIGINT;
}
__ctx->fpSet.process(__ctx);
}
}
} else if (type == TSDB_DATA_TYPE_DOUBLE) {
double val = GET_DOUBLE_VAL(tval);
UPDATE_DATA(pCtx, *(double*)buf, val, numOfElems, isMinFunc, key);
} else if (type == TSDB_DATA_TYPE_FLOAT) {
double val = GET_DOUBLE_VAL(tval);
UPDATE_DATA(pCtx, *(float*)buf, val, numOfElems, isMinFunc, key);
}
return numOfElems;
}
int32_t start = pInput->startRowIndex;
int32_t numOfRows = pInput->numOfRows;
if (IS_SIGNED_NUMERIC_TYPE(type) || type == TSDB_DATA_TYPE_BOOL) {
if (type == TSDB_DATA_TYPE_TINYINT || type == TSDB_DATA_TYPE_BOOL) {
LOOPCHECK_N(*(int8_t*)buf, pCol, pCtx, int8_t, numOfRows, start, isMinFunc, numOfElems);
} else if (type == TSDB_DATA_TYPE_SMALLINT) {
LOOPCHECK_N(*(int16_t*)buf, pCol, pCtx, int16_t, numOfRows, start, isMinFunc, numOfElems);
} else if (type == TSDB_DATA_TYPE_INT) {
int32_t* pData = (int32_t*)pCol->pData;
int32_t* val = (int32_t*)buf;
for (int32_t i = start; i < start + numOfRows; ++i) {
if ((pCol->hasNull) && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
if ((*val < pData[i]) ^ isMinFunc) {
*val = pData[i];
TSKEY ts = (pCtx->ptsList != NULL) ? GET_TS_DATA(pCtx, i) : 0;
DO_UPDATE_SUBSID_RES(pCtx, ts);
}
numOfElems += 1;
}
#if defined(_DEBUG_VIEW)
qDebug("max value updated:%d", *retVal);
#endif
} else if (type == TSDB_DATA_TYPE_BIGINT) {
LOOPCHECK_N(*(int64_t*)buf, pCol, pCtx, int64_t, numOfRows, start, isMinFunc, numOfElems);
}
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)) {
if (type == TSDB_DATA_TYPE_UTINYINT) {
LOOPCHECK_N(*(uint8_t*)buf, pCol, pCtx, uint8_t, numOfRows, start, isMinFunc, numOfElems);
} else if (type == TSDB_DATA_TYPE_USMALLINT) {
LOOPCHECK_N(*(uint16_t*)buf, pCol, pCtx, uint16_t, numOfRows, start, isMinFunc, numOfElems);
} else if (type == TSDB_DATA_TYPE_UINT) {
LOOPCHECK_N(*(uint32_t*)buf, pCol, pCtx, uint32_t, numOfRows, start, isMinFunc, numOfElems);
} else if (type == TSDB_DATA_TYPE_UBIGINT) {
LOOPCHECK_N(*(uint64_t*)buf, pCol, pCtx, uint64_t, numOfRows, start, isMinFunc, numOfElems);
}
} else if (type == TSDB_DATA_TYPE_DOUBLE) {
LOOPCHECK_N(*(double*)buf, pCol, pCtx, double, numOfRows, start, isMinFunc, numOfElems);
} else if (type == TSDB_DATA_TYPE_FLOAT) {
LOOPCHECK_N(*(float*)buf, pCol, pCtx, float, numOfRows, start, isMinFunc, numOfElems);
}
return numOfElems;
}
int32_t minFunction(SqlFunctionCtx* pCtx) {
int32_t numOfElems = doMinMaxHelper(pCtx, 1);
SET_VAL(GET_RES_INFO(pCtx), numOfElems, 1);
return TSDB_CODE_SUCCESS;
}
int32_t maxFunction(SqlFunctionCtx* pCtx) {
int32_t numOfElems = doMinMaxHelper(pCtx, 0);
SET_VAL(GET_RES_INFO(pCtx), numOfElems, 1);
return TSDB_CODE_SUCCESS;
}
bool getStddevFuncEnv(SFunctionNode* pFunc, SFuncExecEnv* pEnv) {
pEnv->calcMemSize = sizeof(SStddevRes);
return true;
}
bool stddevFunctionSetup(SqlFunctionCtx* pCtx, SResultRowEntryInfo* pResultInfo) {
if (!functionSetup(pCtx, pResultInfo)) {
return false;
}
SStddevRes* pRes = GET_ROWCELL_INTERBUF(pResultInfo);
memset(pRes, 0, sizeof(SStddevRes));
return true;
}
int32_t stddevFunction(SqlFunctionCtx* pCtx) {
int32_t numOfElem = 0;
// Only the pre-computing information loaded and actual data does not loaded
SInputColumnInfoData* pInput = &pCtx->input;
int32_t type = pInput->pData[0]->info.type;
SStddevRes* pStddevRes = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
// computing based on the true data block
SColumnInfoData* pCol = pInput->pData[0];
int32_t start = pInput->startRowIndex;
int32_t numOfRows = pInput->numOfRows;
switch (type) {
case TSDB_DATA_TYPE_TINYINT: {
int8_t* plist = (int8_t*)pCol->pData;
for (int32_t i = start; i < numOfRows + start; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pStddevRes->count += 1;
pStddevRes->isum += plist[i];
pStddevRes->quadraticISum += plist[i] * plist[i];
}
break;
}
case TSDB_DATA_TYPE_SMALLINT: {
int16_t* plist = (int16_t*)pCol->pData;
for (int32_t i = start; i < numOfRows + pInput->startRowIndex; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pStddevRes->count += 1;
pStddevRes->isum += plist[i];
pStddevRes->quadraticISum += plist[i] * plist[i];
}
break;
}
case TSDB_DATA_TYPE_INT: {
int32_t* plist = (int32_t*)pCol->pData;
for (int32_t i = start; i < numOfRows + pInput->startRowIndex; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pStddevRes->count += 1;
pStddevRes->isum += plist[i];
pStddevRes->quadraticISum += plist[i] * plist[i];
}
break;
}
case TSDB_DATA_TYPE_BIGINT: {
int64_t* plist = (int64_t*)pCol->pData;
for (int32_t i = start; i < numOfRows + pInput->startRowIndex; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pStddevRes->count += 1;
pStddevRes->isum += plist[i];
pStddevRes->quadraticISum += plist[i] * plist[i];
}
break;
}
case TSDB_DATA_TYPE_FLOAT: {
float* plist = (float*)pCol->pData;
for (int32_t i = start; i < numOfRows + pInput->startRowIndex; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pStddevRes->count += 1;
pStddevRes->dsum += plist[i];
pStddevRes->quadraticDSum += plist[i] * plist[i];
}
break;
}
case TSDB_DATA_TYPE_DOUBLE: {
double* plist = (double*)pCol->pData;
for (int32_t i = start; i < numOfRows + pInput->startRowIndex; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElem += 1;
pStddevRes->count += 1;
pStddevRes->dsum += plist[i];
pStddevRes->quadraticDSum += plist[i] * plist[i];
}
break;
}
default:
break;
}
// data in the check operation are all null, not output
SET_VAL(GET_RES_INFO(pCtx), numOfElem, 1);
return TSDB_CODE_SUCCESS;
}
int32_t stddevFinalize(SqlFunctionCtx* pCtx, SSDataBlock* pBlock) {
SInputColumnInfoData* pInput = &pCtx->input;
int32_t type = pInput->pData[0]->info.type;
SStddevRes* pStddevRes = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
double avg;
if (IS_INTEGER_TYPE(type)) {
avg = pStddevRes->isum / ((double)pStddevRes->count);
pStddevRes->result = sqrt(pStddevRes->quadraticISum / ((double)pStddevRes->count) - avg * avg);
} else {
avg = pStddevRes->dsum / ((double)pStddevRes->count);
pStddevRes->result = sqrt(pStddevRes->quadraticDSum / ((double)pStddevRes->count) - avg * avg);
}
return functionFinalize(pCtx, pBlock);
}
bool getPercentileFuncEnv(SFunctionNode* pFunc, SFuncExecEnv* pEnv) {
pEnv->calcMemSize = sizeof(SPercentileInfo);
return true;
}
bool percentileFunctionSetup(SqlFunctionCtx* pCtx, SResultRowEntryInfo* pResultInfo) {
if (!functionSetup(pCtx, pResultInfo)) {
return false;
}
// in the first round, get the min-max value of all involved data
SPercentileInfo* pInfo = GET_ROWCELL_INTERBUF(pResultInfo);
SET_DOUBLE_VAL(&pInfo->minval, DBL_MAX);
SET_DOUBLE_VAL(&pInfo->maxval, -DBL_MAX);
pInfo->numOfElems = 0;
return true;
}
int32_t percentileFunction(SqlFunctionCtx* pCtx) {
int32_t notNullElems = 0;
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
SInputColumnInfoData* pInput = &pCtx->input;
SColumnDataAgg* pAgg = pInput->pColumnDataAgg[0];
SColumnInfoData* pCol = pInput->pData[0];
int32_t type = pCol->info.type;
SPercentileInfo* pInfo = GET_ROWCELL_INTERBUF(pResInfo);
if (pCtx->currentStage == REPEAT_SCAN && pInfo->stage == 0) {
pInfo->stage += 1;
// all data are null, set it completed
if (pInfo->numOfElems == 0) {
pResInfo->complete = true;
return 0;
} else {
pInfo->pMemBucket = tMemBucketCreate(pCtx->inputBytes, pCtx->inputType, pInfo->minval, pInfo->maxval);
}
}
// the first stage, only acquire the min/max value
if (pInfo->stage == 0) {
if (pCtx->input.colDataAggIsSet) {
double tmin = 0.0, tmax = 0.0;
if (IS_SIGNED_NUMERIC_TYPE(type)) {
tmin = (double)GET_INT64_VAL(&pAgg->min);
tmax = (double)GET_INT64_VAL(&pAgg->max);
} else if (IS_FLOAT_TYPE(type)) {
tmin = GET_DOUBLE_VAL(&pAgg->min);
tmax = GET_DOUBLE_VAL(&pAgg->max);
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)) {
tmin = (double)GET_UINT64_VAL(&pAgg->min);
tmax = (double)GET_UINT64_VAL(&pAgg->max);
}
if (GET_DOUBLE_VAL(&pInfo->minval) > tmin) {
SET_DOUBLE_VAL(&pInfo->minval, tmin);
}
if (GET_DOUBLE_VAL(&pInfo->maxval) < tmax) {
SET_DOUBLE_VAL(&pInfo->maxval, tmax);
}
pInfo->numOfElems += (pInput->numOfRows - pAgg->numOfNull);
} else {
// check the valid data one by one
int32_t start = pInput->startRowIndex;
for (int32_t i = start; i < pInput->numOfRows + start; ++i) {
if (colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
char* data = colDataGetData(pCol, i);
double v = 0;
GET_TYPED_DATA(v, double, pCtx->inputType, data);
if (v < GET_DOUBLE_VAL(&pInfo->minval)) {
SET_DOUBLE_VAL(&pInfo->minval, v);
}
if (v > GET_DOUBLE_VAL(&pInfo->maxval)) {
SET_DOUBLE_VAL(&pInfo->maxval, v);
}
pInfo->numOfElems += 1;
}
}
return 0;
}
// the second stage, calculate the true percentile value
int32_t start = pInput->startRowIndex;
for (int32_t i = start; i < pInput->numOfRows + start; ++i) {
if (colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
char* data = colDataGetData(pCol, i);
notNullElems += 1;
tMemBucketPut(pInfo->pMemBucket, data, 1);
}
SET_VAL(pResInfo, notNullElems, 1);
return TSDB_CODE_SUCCESS;
}
int32_t percentileFinalize(SqlFunctionCtx* pCtx, SSDataBlock* pBlock) {
SVariant* pVal = &pCtx->param[1].param;
double v = pVal->nType == TSDB_DATA_TYPE_INT ? pVal->i : pVal->d;
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
SPercentileInfo* ppInfo = (SPercentileInfo*)GET_ROWCELL_INTERBUF(pResInfo);
tMemBucket* pMemBucket = ppInfo->pMemBucket;
if (pMemBucket != NULL && pMemBucket->total > 0) { // check for null
SET_DOUBLE_VAL(&ppInfo->result, getPercentile(pMemBucket, v));
}
tMemBucketDestroy(pMemBucket);
return functionFinalize(pCtx, pBlock);
}
bool getFirstLastFuncEnv(SFunctionNode* pFunc, SFuncExecEnv* pEnv) {
SColumnNode* pNode = nodesListGetNode(pFunc->pParameterList, 0);
pEnv->calcMemSize = pNode->node.resType.bytes + sizeof(int64_t);
return true;
}
static FORCE_INLINE TSKEY getRowPTs(SColumnInfoData* pTsColInfo, int32_t rowIndex) {
if (pTsColInfo == NULL) {
return 0;
}
return *(TSKEY*)colDataGetData(pTsColInfo, rowIndex);
}
// This ordinary first function does not care if current scan is ascending order or descending order scan
// the OPTIMIZED version of first function will only handle the ascending order scan
int32_t firstFunction(SqlFunctionCtx* pCtx) {
int32_t numOfElems = 0;
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
char* buf = GET_ROWCELL_INTERBUF(pResInfo);
SInputColumnInfoData* pInput = &pCtx->input;
SColumnInfoData* pInputCol = pInput->pData[0];
int32_t bytes = pInputCol->info.bytes;
// All null data column, return directly.
if (pInput->colDataAggIsSet && (pInput->pColumnDataAgg[0]->numOfNull == pInput->totalRows)) {
ASSERT(pInputCol->hasNull == true);
return 0;
}
SColumnDataAgg* pColAgg = (pInput->colDataAggIsSet) ? pInput->pColumnDataAgg[0] : NULL;
TSKEY startKey = getRowPTs(pInput->pPTS, 0);
TSKEY endKey = getRowPTs(pInput->pPTS, pInput->totalRows - 1);
int32_t blockDataOrder = (startKey <= endKey) ? TSDB_ORDER_ASC : TSDB_ORDER_DESC;
if (blockDataOrder == TSDB_ORDER_ASC) {
// filter according to current result firstly
if (pResInfo->numOfRes > 0) {
TSKEY ts = *(TSKEY*)(buf + bytes);
if (ts < startKey) {
return TSDB_CODE_SUCCESS;
}
}
for (int32_t i = pInput->startRowIndex; i < pInput->startRowIndex + pInput->numOfRows; ++i) {
if (pInputCol->hasNull && colDataIsNull(pInputCol, pInput->totalRows, i, pColAgg)) {
continue;
}
numOfElems++;
char* data = colDataGetData(pInputCol, i);
TSKEY cts = getRowPTs(pInput->pPTS, i);
if (pResInfo->numOfRes == 0 || *(TSKEY*)(buf + bytes) > cts) {
memcpy(buf, data, bytes);
*(TSKEY*)(buf + bytes) = cts;
// DO_UPDATE_TAG_COLUMNS(pCtx, ts);
pResInfo->numOfRes = 1;
break;
}
}
} else {
// in case of descending order time stamp serial, which usually happens as the results of the nest query,
// all data needs to be check.
if (pResInfo->numOfRes > 0) {
TSKEY ts = *(TSKEY*)(buf + bytes);
if (ts < endKey) {
return TSDB_CODE_SUCCESS;
}
}
for (int32_t i = pInput->numOfRows + pInput->startRowIndex - 1; i >= pInput->startRowIndex; --i) {
if (pInputCol->hasNull && colDataIsNull(pInputCol, pInput->totalRows, i, pColAgg)) {
continue;
}
numOfElems++;
char* data = colDataGetData(pInputCol, i);
TSKEY cts = getRowPTs(pInput->pPTS, i);
if (pResInfo->numOfRes == 0 || *(TSKEY*)(buf + bytes) > cts) {
memcpy(buf, data, bytes);
*(TSKEY*)(buf + bytes) = cts;
// DO_UPDATE_TAG_COLUMNS(pCtx, ts);
pResInfo->numOfRes = 1;
break;
}
}
}
SET_VAL(pResInfo, numOfElems, 1);
return TSDB_CODE_SUCCESS;
}
int32_t lastFunction(SqlFunctionCtx* pCtx) {
int32_t numOfElems = 0;
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
char* buf = GET_ROWCELL_INTERBUF(pResInfo);
SInputColumnInfoData* pInput = &pCtx->input;
SColumnInfoData* pInputCol = pInput->pData[0];
int32_t bytes = pInputCol->info.bytes;
// All null data column, return directly.
if (pInput->colDataAggIsSet && (pInput->pColumnDataAgg[0]->numOfNull == pInput->totalRows)) {
ASSERT(pInputCol->hasNull == true);
return 0;
}
SColumnDataAgg* pColAgg = (pInput->colDataAggIsSet) ? pInput->pColumnDataAgg[0] : NULL;
TSKEY startKey = getRowPTs(pInput->pPTS, 0);
TSKEY endKey = getRowPTs(pInput->pPTS, pInput->totalRows - 1);
int32_t blockDataOrder = (startKey <= endKey) ? TSDB_ORDER_ASC : TSDB_ORDER_DESC;
if (blockDataOrder == TSDB_ORDER_ASC) {
for (int32_t i = pInput->numOfRows + pInput->startRowIndex - 1; i >= pInput->startRowIndex; --i) {
if (pInputCol->hasNull && colDataIsNull(pInputCol, pInput->totalRows, i, pColAgg)) {
continue;
}
numOfElems++;
char* data = colDataGetData(pInputCol, i);
TSKEY cts = getRowPTs(pInput->pPTS, i);
if (pResInfo->numOfRes == 0 || *(TSKEY*)(buf + bytes) < cts) {
memcpy(buf, data, bytes);
*(TSKEY*)(buf + bytes) = cts;
// DO_UPDATE_TAG_COLUMNS(pCtx, ts);
pResInfo->numOfRes = 1;
}
break;
}
} else { // descending order
for (int32_t i = pInput->startRowIndex; i < pInput->numOfRows + pInput->startRowIndex; ++i) {
if (pInputCol->hasNull && colDataIsNull(pInputCol, pInput->totalRows, i, pColAgg)) {
continue;
}
numOfElems++;
char* data = colDataGetData(pInputCol, i);
TSKEY cts = getRowPTs(pInput->pPTS, i);
if (pResInfo->numOfRes == 0 || *(TSKEY*)(buf + bytes) < cts) {
memcpy(buf, data, bytes);
*(TSKEY*)(buf + bytes) = cts;
pResInfo->numOfRes = 1;
// DO_UPDATE_TAG_COLUMNS(pCtx, ts);
}
break;
}
}
SET_VAL(pResInfo, numOfElems, 1);
return TSDB_CODE_SUCCESS;
}
bool getDiffFuncEnv(SFunctionNode* UNUSED_PARAM(pFunc), SFuncExecEnv* pEnv) {
pEnv->calcMemSize = sizeof(SDiffInfo);
return true;
}
bool diffFunctionSetup(SqlFunctionCtx* pCtx, SResultRowEntryInfo* pResInfo) {
if (!functionSetup(pCtx, pResInfo)) {
return false;
}
SDiffInfo* pDiffInfo = GET_ROWCELL_INTERBUF(pResInfo);
pDiffInfo->hasPrev = false;
pDiffInfo->prev.i64 = 0;
pDiffInfo->ignoreNegative = pCtx->param[1].param.i; // TODO set correct param
pDiffInfo->includeNull = false;
pDiffInfo->firstOutput = false;
return true;
}
static void doSetPrevVal(SDiffInfo* pDiffInfo, int32_t type, const char* pv) {
switch(type) {
case TSDB_DATA_TYPE_BOOL:
case TSDB_DATA_TYPE_TINYINT:
pDiffInfo->prev.i64 = *(int8_t*) pv; break;
case TSDB_DATA_TYPE_INT:
pDiffInfo->prev.i64 = *(int32_t*) pv; break;
case TSDB_DATA_TYPE_SMALLINT:
pDiffInfo->prev.i64 = *(int16_t*) pv; break;
case TSDB_DATA_TYPE_BIGINT:
pDiffInfo->prev.i64 = *(int64_t*) pv; break;
case TSDB_DATA_TYPE_FLOAT:
pDiffInfo->prev.d64 = *(float *) pv; break;
case TSDB_DATA_TYPE_DOUBLE:
pDiffInfo->prev.d64 = *(double*) pv; break;
default:
ASSERT(0);
}
}
static void doHandleDiff(SDiffInfo* pDiffInfo, int32_t type, const char* pv, SColumnInfoData* pOutput, int32_t pos, int32_t order) {
int32_t factor = (order == TSDB_ORDER_ASC)? 1:-1;
switch (type) {
case TSDB_DATA_TYPE_INT: {
int32_t v = *(int32_t*)pv;
int32_t delta = factor*(v - pDiffInfo->prev.i64); // direct previous may be null
if (delta < 0 && pDiffInfo->ignoreNegative) {
colDataSetNull_f(pOutput->nullbitmap, pos);
} else {
colDataAppendInt32(pOutput, pos, &delta);
}
pDiffInfo->prev.i64 = v;
break;
}
case TSDB_DATA_TYPE_BOOL:
case TSDB_DATA_TYPE_TINYINT: {
int8_t v = *(int8_t*)pv;
int8_t delta = factor*(v - pDiffInfo->prev.i64); // direct previous may be null
if (delta < 0 && pDiffInfo->ignoreNegative) {
colDataSetNull_f(pOutput->nullbitmap, pos);
} else {
colDataAppendInt8(pOutput, pos, &delta);
}
pDiffInfo->prev.i64 = v;
break;
}
case TSDB_DATA_TYPE_SMALLINT: {
int16_t v = *(int16_t*)pv;
int16_t delta = factor*(v - pDiffInfo->prev.i64); // direct previous may be null
if (delta < 0 && pDiffInfo->ignoreNegative) {
colDataSetNull_f(pOutput->nullbitmap, pos);
} else {
colDataAppendInt16(pOutput, pos, &delta);
}
pDiffInfo->prev.i64 = v;
break;
}
case TSDB_DATA_TYPE_BIGINT: {
int64_t v = *(int64_t*)pv;
int64_t delta = factor*(v - pDiffInfo->prev.i64); // direct previous may be null
if (delta < 0 && pDiffInfo->ignoreNegative) {
colDataSetNull_f(pOutput->nullbitmap, pos);
} else {
colDataAppendInt64(pOutput, pos, &delta);
}
pDiffInfo->prev.i64 = v;
break;
}
case TSDB_DATA_TYPE_FLOAT: {
float v = *(float*)pv;
float delta = factor*(v - pDiffInfo->prev.d64); // direct previous may be null
if (delta < 0 && pDiffInfo->ignoreNegative) {
colDataSetNull_f(pOutput->nullbitmap, pos);
} else {
colDataAppendFloat(pOutput, pos, &delta);
}
pDiffInfo->prev.d64 = v;
break;
}
case TSDB_DATA_TYPE_DOUBLE: {
double v = *(double*)pv;
double delta = factor*(v - pDiffInfo->prev.d64); // direct previous may be null
if (delta < 0 && pDiffInfo->ignoreNegative) {
colDataSetNull_f(pOutput->nullbitmap, pos);
} else {
colDataAppendDouble(pOutput, pos, &delta);
}
pDiffInfo->prev.d64 = v;
break;
}
default:
ASSERT(0);
}
}
int32_t diffFunction(SqlFunctionCtx* pCtx) {
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
SDiffInfo* pDiffInfo = GET_ROWCELL_INTERBUF(pResInfo);
SInputColumnInfoData* pInput = &pCtx->input;
SColumnInfoData* pInputCol = pInput->pData[0];
SColumnInfoData* pTsOutput = pCtx->pTsOutput;
int32_t numOfElems = 0;
TSKEY* tsList = (int64_t*)pInput->pPTS->pData;
int32_t startOffset = pCtx->offset;
SColumnInfoData* pOutput = (SColumnInfoData*)pCtx->pOutput;
if (pCtx->order == TSDB_ORDER_ASC) {
for (int32_t i = pInput->startRowIndex; i < pInput->numOfRows + pInput->startRowIndex; i += 1) {
int32_t pos = startOffset + numOfElems;
if (colDataIsNull_f(pInputCol->nullbitmap, i)) {
if (pDiffInfo->includeNull) {
colDataSetNull_f(pOutput->nullbitmap, pos);
if (tsList != NULL) {
colDataAppendInt64(pTsOutput, pos, &tsList[i]);
}
numOfElems += 1;
}
continue;
}
char* pv = colDataGetData(pInputCol, i);
if (pDiffInfo->hasPrev) {
doHandleDiff(pDiffInfo, pInputCol->info.type, pv, pOutput, pos, pCtx->order);
if (pTsOutput != NULL) {
colDataAppendInt64(pTsOutput, pos, &tsList[i]);
}
numOfElems++;
} else {
doSetPrevVal(pDiffInfo, pInputCol->info.type, pv);
}
pDiffInfo->hasPrev = true;
}
} else {
for (int32_t i = pInput->startRowIndex; i < pInput->numOfRows + pInput->startRowIndex; i += 1) {
int32_t pos = startOffset + numOfElems;
if (colDataIsNull_f(pInputCol->nullbitmap, i)) {
if (pDiffInfo->includeNull) {
colDataSetNull_f(pOutput->nullbitmap, pos);
if (tsList != NULL) {
colDataAppendInt64(pTsOutput, pos, &tsList[i]);
}
numOfElems += 1;
}
continue;
}
char* pv = colDataGetData(pInputCol, i);
// there is a row of previous data block to be handled in the first place.
if (pDiffInfo->hasPrev) {
doHandleDiff(pDiffInfo, pInputCol->info.type, pv, pOutput, pos, pCtx->order);
if (pTsOutput != NULL) {
colDataAppendInt64(pTsOutput, pos, &pDiffInfo->prevTs);
}
numOfElems++;
} else {
doSetPrevVal(pDiffInfo, pInputCol->info.type, pv);
}
pDiffInfo->hasPrev = true;
if (pTsOutput != NULL) {
pDiffInfo->prevTs = tsList[i];
}
}
}
// initial value is not set yet
return numOfElems;
}
bool getTopBotFuncEnv(SFunctionNode* pFunc, SFuncExecEnv* pEnv) {
SValueNode* pkNode = (SValueNode*)nodesListGetNode(pFunc->pParameterList, 1);
pEnv->calcMemSize = sizeof(STopBotRes) + pkNode->datum.i * sizeof(STopBotResItem);
return true;
}
static STopBotRes* getTopBotOutputInfo(SqlFunctionCtx* pCtx) {
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
STopBotRes* pRes = GET_ROWCELL_INTERBUF(pResInfo);
pRes->pItems = (STopBotResItem*)((char*)pRes + sizeof(STopBotRes));
return pRes;
}
static void doAddIntoResult(SqlFunctionCtx* pCtx, void* pData, int32_t rowIndex, SSDataBlock* pSrcBlock, uint16_t type,
uint64_t uid, SResultRowEntryInfo* pEntryInfo);
static void saveTupleData(SqlFunctionCtx* pCtx, int32_t rowIndex, const SSDataBlock* pSrcBlock, STopBotResItem* pItem);
static void copyTupleData(SqlFunctionCtx* pCtx, int32_t rowIndex, const SSDataBlock* pSrcBlock, STopBotResItem* pItem);
int32_t topFunction(SqlFunctionCtx* pCtx) {
int32_t numOfElems = 0;
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
// if ((void *)pRes->res[0] != (void *)((char *)pRes + sizeof(STopBotRes) + POINTER_BYTES * pCtx->param[0].i)) {
// buildTopBotStruct(pRes, pCtx);
// }
SInputColumnInfoData* pInput = &pCtx->input;
SColumnInfoData* pCol = pInput->pData[0];
int32_t type = pInput->pData[0]->info.type;
int32_t start = pInput->startRowIndex;
int32_t numOfRows = pInput->numOfRows;
for (int32_t i = start; i < numOfRows + start; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElems++;
char* data = colDataGetData(pCol, i);
doAddIntoResult(pCtx, data, i, pCtx->pSrcBlock, type, pInput->uid, pResInfo);
}
return TSDB_CODE_SUCCESS;
}
static int32_t topBotResComparFn(const void* p1, const void* p2, const void* param) {
uint16_t type = *(uint16_t*)param;
STopBotResItem* val1 = (STopBotResItem*)p1;
STopBotResItem* val2 = (STopBotResItem*)p2;
if (IS_SIGNED_NUMERIC_TYPE(type)) {
if (val1->v.i == val2->v.i) {
return 0;
}
return (val1->v.i > val2->v.i) ? 1 : -1;
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)) {
if (val1->v.u == val2->v.u) {
return 0;
}
return (val1->v.u > val2->v.u) ? 1 : -1;
}
if (val1->v.d == val2->v.d) {
return 0;
}
return (val1->v.d > val2->v.d) ? 1 : -1;
}
void doAddIntoResult(SqlFunctionCtx* pCtx, void* pData, int32_t rowIndex, SSDataBlock* pSrcBlock, uint16_t type,
uint64_t uid, SResultRowEntryInfo* pEntryInfo) {
STopBotRes* pRes = getTopBotOutputInfo(pCtx);
int32_t maxSize = pCtx->param[1].param.i;
SVariant val = {0};
taosVariantCreateFromBinary(&val, pData, tDataTypes[type].bytes, type);
STopBotResItem* pItems = pRes->pItems;
assert(pItems != NULL);
// not full yet
if (pEntryInfo->numOfRes < maxSize) {
STopBotResItem* pItem = &pItems[pEntryInfo->numOfRes];
pItem->v = val;
pItem->uid = uid;
// save the data of this tuple
saveTupleData(pCtx, rowIndex, pSrcBlock, pItem);
// allocate the buffer and keep the data of this row into the new allocated buffer
pEntryInfo->numOfRes++;
taosheapsort((void*)pItems, sizeof(STopBotResItem), pEntryInfo->numOfRes, (const void*)&type, topBotResComparFn,
false);
} else { // replace the minimum value in the result
if ((IS_SIGNED_NUMERIC_TYPE(type) && val.i > pItems[0].v.i) ||
(IS_UNSIGNED_NUMERIC_TYPE(type) && val.u > pItems[0].v.u) || (IS_FLOAT_TYPE(type) && val.d > pItems[0].v.d)) {
// replace the old data and the coresponding tuple data
STopBotResItem* pItem = &pItems[0];
pItem->v = val;
pItem->uid = uid;
// save the data of this tuple by over writing the old data
copyTupleData(pCtx, rowIndex, pSrcBlock, pItem);
taosheapadjust((void*)pItems, sizeof(STopBotResItem), 0, pEntryInfo->numOfRes - 1, (const void*)&type,
topBotResComparFn, NULL, false);
}
}
}
void saveTupleData(SqlFunctionCtx* pCtx, int32_t rowIndex, const SSDataBlock* pSrcBlock, STopBotResItem* pItem) {
SFilePage* pPage = NULL;
int32_t completeRowSize = pSrcBlock->info.rowSize + pSrcBlock->info.numOfCols * sizeof(bool);
if (pCtx->curBufPage == -1) {
pPage = getNewBufPage(pCtx->pBuf, 0, &pCtx->curBufPage);
pPage->num = sizeof(SFilePage);
} else {
pPage = getBufPage(pCtx->pBuf, pCtx->curBufPage);
if (pPage->num + completeRowSize > getBufPageSize(pCtx->pBuf)) {
pPage = getNewBufPage(pCtx->pBuf, 0, &pCtx->curBufPage);
pPage->num = sizeof(SFilePage);
}
}
pItem->tuplePos.pageId = pCtx->curBufPage;
// keep the current row data, extract method
int32_t offset = 0;
bool* nullList = (bool*)((char*)pPage + pPage->num);
char* pStart = (char*)(nullList + sizeof(bool) * pSrcBlock->info.numOfCols);
for (int32_t i = 0; i < pSrcBlock->info.numOfCols; ++i) {
SColumnInfoData* pCol = taosArrayGet(pSrcBlock->pDataBlock, i);
bool isNull = colDataIsNull_s(pCol, rowIndex);
if (isNull) {
nullList[i] = true;
continue;
}
char* p = colDataGetData(pCol, rowIndex);
if (IS_VAR_DATA_TYPE(pCol->info.type)) {
memcpy(pStart + offset, p, varDataTLen(p));
} else {
memcpy(pStart + offset, p, pCol->info.bytes);
}
offset += pCol->info.bytes;
}
pItem->tuplePos.offset = pPage->num;
pPage->num += completeRowSize;
setBufPageDirty(pPage, true);
releaseBufPage(pCtx->pBuf, pPage);
}
void copyTupleData(SqlFunctionCtx* pCtx, int32_t rowIndex, const SSDataBlock* pSrcBlock, STopBotResItem* pItem) {
SFilePage* pPage = getBufPage(pCtx->pBuf, pItem->tuplePos.pageId);
bool* nullList = (bool*)((char*)pPage + pItem->tuplePos.offset);
char* pStart = (char*)(nullList + pSrcBlock->info.numOfCols * sizeof(bool));
int32_t offset = 0;
for (int32_t i = 0; i < pSrcBlock->info.numOfCols; ++i) {
SColumnInfoData* pCol = taosArrayGet(pSrcBlock->pDataBlock, i);
if ((nullList[i] = colDataIsNull_s(pCol, rowIndex)) == true) {
continue;
}
char* p = colDataGetData(pCol, rowIndex);
if (IS_VAR_DATA_TYPE(pCol->info.type)) {
memcpy(pStart + offset, p, varDataTLen(p));
} else {
memcpy(pStart + offset, p, pCol->info.bytes);
}
offset += pCol->info.bytes;
}
setBufPageDirty(pPage, true);
releaseBufPage(pCtx->pBuf, pPage);
}
int32_t topBotFinalize(SqlFunctionCtx* pCtx, SSDataBlock* pBlock) {
SResultRowEntryInfo* pEntryInfo = GET_RES_INFO(pCtx);
STopBotRes* pRes = GET_ROWCELL_INTERBUF(pEntryInfo);
pEntryInfo->complete = true;
int32_t type = pCtx->input.pData[0]->info.type;
int32_t slotId = pCtx->pExpr->base.resSchema.slotId;
SColumnInfoData* pCol = taosArrayGet(pBlock->pDataBlock, slotId);
// todo assign the tag value and the corresponding row data
int32_t currentRow = pBlock->info.rows;
switch (type) {
case TSDB_DATA_TYPE_INT: {
for (int32_t i = 0; i < pEntryInfo->numOfRes; ++i) {
STopBotResItem* pItem = &pRes->pItems[i];
colDataAppendInt32(pCol, currentRow, (int32_t*)&pItem->v.i);
int32_t pageId = pItem->tuplePos.pageId;
int32_t offset = pItem->tuplePos.offset;
if (pItem->tuplePos.pageId != -1) {
SFilePage* pPage = getBufPage(pCtx->pBuf, pageId);
bool* nullList = (bool*)((char*)pPage + offset);
char* pStart = (char*)(nullList + pCtx->pSrcBlock->info.numOfCols * sizeof(bool));
// todo set the offset value to optimize the performance.
for (int32_t j = 0; j < pCtx->subsidiaries.num; ++j) {
SqlFunctionCtx* pc = pCtx->subsidiaries.pCtx[j];
SFunctParam* pFuncParam = &pc->pExpr->base.pParam[0];
int32_t srcSlotId = pFuncParam->pCol->slotId;
int32_t dstSlotId = pCtx->pExpr->base.resSchema.slotId;
int32_t ps = 0;
for (int32_t k = 0; k < srcSlotId; ++k) {
SColumnInfoData* pSrcCol = taosArrayGet(pCtx->pSrcBlock->pDataBlock, k);
ps += pSrcCol->info.bytes;
}
SColumnInfoData* pDstCol = taosArrayGet(pBlock->pDataBlock, dstSlotId);
if (nullList[srcSlotId]) {
colDataAppendNULL(pDstCol, currentRow);
} else {
colDataAppend(pDstCol, currentRow, (pStart + ps), false);
}
}
}
currentRow += 1;
}
break;
}
}
return pEntryInfo->numOfRes;
}
bool getSpreadFuncEnv(SFunctionNode* UNUSED_PARAM(pFunc), SFuncExecEnv* pEnv) {
pEnv->calcMemSize = sizeof(SSpreadInfo);
return true;
}
bool spreadFunctionSetup(SqlFunctionCtx *pCtx, SResultRowEntryInfo* pResultInfo) {
if (!functionSetup(pCtx, pResultInfo)) {
return false;
}
SSpreadInfo* pInfo = GET_ROWCELL_INTERBUF(pResultInfo);
SET_DOUBLE_VAL(&pInfo->min, DBL_MAX);
SET_DOUBLE_VAL(&pInfo->max, -DBL_MAX);
pInfo->hasResult = false;
return true;
}
int32_t spreadFunction(SqlFunctionCtx *pCtx) {
int32_t numOfElems = 0;
// Only the pre-computing information loaded and actual data does not loaded
SInputColumnInfoData* pInput = &pCtx->input;
SColumnDataAgg *pAgg = pInput->pColumnDataAgg[0];
int32_t type = pInput->pData[0]->info.type;
SSpreadInfo* pInfo = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
if (pInput->colDataAggIsSet) {
numOfElems = pInput->numOfRows - pAgg->numOfNull;
if (numOfElems == 0) {
goto _spread_over;
}
double tmin = 0.0, tmax = 0.0;
if (IS_SIGNED_NUMERIC_TYPE(type)) {
tmin = (double)GET_INT64_VAL(&pAgg->min);
tmax = (double)GET_INT64_VAL(&pAgg->max);
} else if (IS_FLOAT_TYPE(type)) {
tmin = GET_DOUBLE_VAL(&pAgg->min);
tmax = GET_DOUBLE_VAL(&pAgg->max);
} else if (IS_UNSIGNED_NUMERIC_TYPE(type)) {
tmin = (double)GET_UINT64_VAL(&pAgg->min);
tmax = (double)GET_UINT64_VAL(&pAgg->max);
}
if (GET_DOUBLE_VAL(&pInfo->min) > tmin) {
SET_DOUBLE_VAL(&pInfo->min, tmin);
}
if (GET_DOUBLE_VAL(&pInfo->max) < tmax) {
SET_DOUBLE_VAL(&pInfo->max, tmax);
}
} else { // computing based on the true data block
SColumnInfoData* pCol = pInput->pData[0];
int32_t start = pInput->startRowIndex;
int32_t numOfRows = pInput->numOfRows;
// check the valid data one by one
for (int32_t i = start; i < pInput->numOfRows + start; ++i) {
if (colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
char *data = colDataGetData(pCol, i);
double v = 0;
GET_TYPED_DATA(v, double, type, data);
if (v < GET_DOUBLE_VAL(&pInfo->min)) {
SET_DOUBLE_VAL(&pInfo->min, v);
}
if (v > GET_DOUBLE_VAL(&pInfo->max)) {
SET_DOUBLE_VAL(&pInfo->max, v);
}
numOfElems += 1;
}
}
_spread_over:
// data in the check operation are all null, not output
SET_VAL(GET_RES_INFO(pCtx), numOfElems, 1);
if (numOfElems > 0) {
pInfo->hasResult = true;
}
return TSDB_CODE_SUCCESS;
}
int32_t spreadFinalize(SqlFunctionCtx* pCtx, SSDataBlock* pBlock) {
SSpreadInfo* pInfo = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
if (pInfo->hasResult == true) {
SET_DOUBLE_VAL(&pInfo->result, pInfo->max - pInfo->min);
}
return functionFinalize(pCtx, pBlock);
}
bool getHistogramFuncEnv(SFunctionNode* UNUSED_PARAM(pFunc), SFuncExecEnv* pEnv) {
pEnv->calcMemSize = sizeof(SHistoFuncInfo) + HISTOGRAM_MAX_BINS_NUM * sizeof(SHistoFuncBin);
return true;
}
static int8_t getHistogramBinType(char *binTypeStr) {
int8_t binType;
if (strcasecmp(binTypeStr, "user_input") == 0) {
binType = USER_INPUT_BIN;
} else if (strcasecmp(binTypeStr, "linear_bin") == 0) {
binType = LINEAR_BIN;
} else if (strcasecmp(binTypeStr, "log_bin") == 0) {
binType = LOG_BIN;
} else {
binType = UNKNOWN_BIN;
}
return binType;
}
static bool getHistogramBinDesc(SHistoFuncInfo *pInfo, char *binDescStr, int8_t binType, bool normalized) {
cJSON* binDesc = cJSON_Parse(binDescStr);
int32_t numOfBins;
double* intervals;
if (cJSON_IsObject(binDesc)) { /* linaer/log bins */
int32_t numOfParams = cJSON_GetArraySize(binDesc);
int32_t startIndex;
if (numOfParams != 4) {
return false;
}
cJSON* start = cJSON_GetObjectItem(binDesc, "start");
cJSON* factor = cJSON_GetObjectItem(binDesc, "factor");
cJSON* width = cJSON_GetObjectItem(binDesc, "width");
cJSON* count = cJSON_GetObjectItem(binDesc, "count");
cJSON* infinity = cJSON_GetObjectItem(binDesc, "infinity");
if (!cJSON_IsNumber(start) || !cJSON_IsNumber(count) || !cJSON_IsBool(infinity)) {
return false;
}
if (count->valueint <= 0 || count->valueint > 1000) { // limit count to 1000
return false;
}
if (isinf(start->valuedouble) || (width != NULL && isinf(width->valuedouble)) ||
(factor != NULL && isinf(factor->valuedouble)) || (count != NULL && isinf(count->valuedouble))) {
return false;
}
int32_t counter = (int32_t)count->valueint;
if (infinity->valueint == false) {
startIndex = 0;
numOfBins = counter + 1;
} else {
startIndex = 1;
numOfBins = counter + 3;
}
intervals = taosMemoryCalloc(numOfBins, sizeof(double));
if (cJSON_IsNumber(width) && factor == NULL && binType == LINEAR_BIN) {
// linear bin process
if (width->valuedouble == 0) {
taosMemoryFree(intervals);
return false;
}
for (int i = 0; i < counter + 1; ++i) {
intervals[startIndex] = start->valuedouble + i * width->valuedouble;
if (isinf(intervals[startIndex])) {
taosMemoryFree(intervals);
return false;
}
startIndex++;
}
} else if (cJSON_IsNumber(factor) && width == NULL && binType == LOG_BIN) {
// log bin process
if (start->valuedouble == 0) {
taosMemoryFree(intervals);
return false;
}
if (factor->valuedouble < 0 || factor->valuedouble == 0 || factor->valuedouble == 1) {
taosMemoryFree(intervals);
return false;
}
for (int i = 0; i < counter + 1; ++i) {
intervals[startIndex] = start->valuedouble * pow(factor->valuedouble, i * 1.0);
if (isinf(intervals[startIndex])) {
taosMemoryFree(intervals);
return false;
}
startIndex++;
}
} else {
taosMemoryFree(intervals);
return false;
}
if (infinity->valueint == true) {
intervals[0] = -INFINITY;
intervals[numOfBins - 1] = INFINITY;
// in case of desc bin orders, -inf/inf should be swapped
ASSERT(numOfBins >= 4);
if (intervals[1] > intervals[numOfBins - 2]) {
TSWAP(intervals[0], intervals[numOfBins - 1]);
}
}
} else if (cJSON_IsArray(binDesc)) { /* user input bins */
if (binType != USER_INPUT_BIN) {
return false;
}
numOfBins = cJSON_GetArraySize(binDesc);
intervals = taosMemoryCalloc(numOfBins, sizeof(double));
cJSON* bin = binDesc->child;
if (bin == NULL) {
taosMemoryFree(intervals);
return false;
}
int i = 0;
while (bin) {
intervals[i] = bin->valuedouble;
if (!cJSON_IsNumber(bin)) {
taosMemoryFree(intervals);
return false;
}
if (i != 0 && intervals[i] <= intervals[i - 1]) {
taosMemoryFree(intervals);
return false;
}
bin = bin->next;
i++;
}
} else {
return false;
}
pInfo->numOfBins = numOfBins - 1;
pInfo->normalized = normalized;
for (int32_t i = 0; i < pInfo->numOfBins; ++i) {
pInfo->bins[i].lower = intervals[i] < intervals[i + 1] ? intervals[i] : intervals[i + 1];
pInfo->bins[i].upper = intervals[i + 1] > intervals[i] ? intervals[i + 1] : intervals[i];
pInfo->bins[i].count = 0;
}
taosMemoryFree(intervals);
return true;
}
bool histogramFunctionSetup(SqlFunctionCtx *pCtx, SResultRowEntryInfo *pResultInfo) {
if (!functionSetup(pCtx, pResultInfo)) {
return false;
}
SHistoFuncInfo *pInfo = GET_ROWCELL_INTERBUF(pResultInfo);
int8_t binType = getHistogramBinType(varDataVal(pCtx->param[1].param.pz));
if (binType == UNKNOWN_BIN) {
return false;
}
char* binDesc = varDataVal(pCtx->param[2].param.pz);
int64_t normalized = pCtx->param[3].param.i;
if (normalized != 0 && normalized != 1) {
return false;
}
if (!getHistogramBinDesc(pInfo, binDesc, binType, (bool)normalized)) {
return false;
}
return true;
}
int32_t histogramFunction(SqlFunctionCtx *pCtx) {
SHistoFuncInfo* pInfo = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
SInputColumnInfoData* pInput = &pCtx->input;
SColumnInfoData* pCol = pInput->pData[0];
int32_t type = pInput->pData[0]->info.type;
int32_t start = pInput->startRowIndex;
int32_t numOfRows = pInput->numOfRows;
int32_t numOfElems = 0;
int32_t totalElems = 0;
for (int32_t i = start; i < numOfRows + start; ++i) {
if (pCol->hasNull && colDataIsNull_f(pCol->nullbitmap, i)) {
continue;
}
numOfElems++;
char* data = colDataGetData(pCol, i);
double v;
GET_TYPED_DATA(v, double, type, data);
for (int32_t k = 0; k < pInfo->numOfBins; ++k) {
if (v > pInfo->bins[k].lower && v <= pInfo->bins[k].upper) {
pInfo->bins[k].count++;
totalElems++;
break;
}
}
}
if (pInfo->normalized) {
for (int32_t k = 0; k < pInfo->numOfBins; ++k) {
if(totalElems != 0) {
pInfo->bins[k].percentage = pInfo->bins[k].count / (double)totalElems;
} else {
pInfo->bins[k].percentage = 0;
}
}
}
SET_VAL(GET_RES_INFO(pCtx), numOfElems, pInfo->numOfBins);
return TSDB_CODE_SUCCESS;
}
int32_t histogramFinalize(SqlFunctionCtx* pCtx, SSDataBlock* pBlock) {
SResultRowEntryInfo* pResInfo = GET_RES_INFO(pCtx);
SHistoFuncInfo* pInfo = GET_ROWCELL_INTERBUF(GET_RES_INFO(pCtx));
int32_t slotId = pCtx->pExpr->base.resSchema.slotId;
SColumnInfoData* pCol = taosArrayGet(pBlock->pDataBlock, slotId);
int32_t currentRow = pBlock->info.rows;
for (int32_t i = 0; i < pResInfo->numOfRes; ++i) {
int32_t len;
char buf[512] = {0};
if (!pInfo->normalized) {
len = sprintf(buf + VARSTR_HEADER_SIZE, "{\"lower_bin\":%g, \"upper_bin\":%g, \"count\":%"PRId64"}",
pInfo->bins[i].lower, pInfo->bins[i].upper, pInfo->bins[i].count);
} else {
len = sprintf(buf + VARSTR_HEADER_SIZE, "{\"lower_bin\":%g, \"upper_bin\":%g, \"count\":%lf}",
pInfo->bins[i].lower, pInfo->bins[i].upper, pInfo->bins[i].percentage);
}
varDataSetLen(buf, len);
colDataAppend(pCol, currentRow, buf, false);
currentRow++;
}
return pResInfo->numOfRes;
}