homework-jianmu/source/libs/sync/inc/sync_raft_progress.h

259 lines
9.9 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2019 TAOS Data, Inc. <cli@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http: *www.gnu.org/licenses/>.
*/
#ifndef TD_SYNC_RAFT_PROGRESS_H
#define TD_SYNC_RAFT_PROGRESS_H
#include "sync_type.h"
#include "sync_raft_inflights.h"
#include "thash.h"
/**
* State defines how the leader should interact with the follower.
*
* When in PROGRESS_STATE_PROBE, leader sends at most one replication message
* per heartbeat interval. It also probes actual progress of the follower.
*
* When in PROGRESS_STATE_REPLICATE, leader optimistically increases next
* to the latest entry sent after sending replication message. This is
* an optimized state for fast replicating log entries to the follower.
*
* When in PROGRESS_STATE_SNAPSHOT, leader should have sent out snapshot
* before and stops sending any replication message.
*
* PROGRESS_STATE_PROBE is the initial state.
**/
typedef enum ESyncRaftProgressState {
/**
* StateProbe indicates a follower whose last index isn't known. Such a
* follower is "probed" (i.e. an append sent periodically) to narrow down
* its last index. In the ideal (and common) case, only one round of probing
* is necessary as the follower will react with a hint. Followers that are
* probed over extended periods of time are often offline.
**/
PROGRESS_STATE_PROBE = 0,
/**
* StateReplicate is the state steady in which a follower eagerly receives
* log entries to append to its log.
**/
PROGRESS_STATE_REPLICATE,
/**
* StateSnapshot indicates a follower that needs log entries not available
* from the leader's Raft log. Such a follower needs a full snapshot to
* return to StateReplicate.
**/
PROGRESS_STATE_SNAPSHOT,
} ESyncRaftProgressState;
static const char* kProgressStateString[] = {
"Probe",
"Replicate",
"Snapshot",
};
// Progress represents a followers progress in the view of the leader. Leader
// maintains progresses of all followers, and sends entries to the follower
// based on its progress.
//
// NB(tbg): Progress is basically a state machine whose transitions are mostly
// strewn around `*raft.raft`. Additionally, some fields are only used when in a
// certain State. All of this isn't ideal.
struct SSyncRaftProgress {
SyncGroupId groupId;
SyncNodeId id;
int16_t refCount;
SyncIndex nextIndex;
SyncIndex matchIndex;
// State defines how the leader should interact with the follower.
//
// When in StateProbe, leader sends at most one replication message
// per heartbeat interval. It also probes actual progress of the follower.
//
// When in StateReplicate, leader optimistically increases next
// to the latest entry sent after sending replication message. This is
// an optimized state for fast replicating log entries to the follower.
//
// When in StateSnapshot, leader should have sent out snapshot
// before and stops sending any replication message.
ESyncRaftProgressState state;
// PendingSnapshot is used in StateSnapshot.
// If there is a pending snapshot, the pendingSnapshot will be set to the
// index of the snapshot. If pendingSnapshot is set, the replication process of
// this Progress will be paused. raft will not resend snapshot until the pending one
// is reported to be failed.
SyncIndex pendingSnapshotIndex;
// RecentActive is true if the progress is recently active. Receiving any messages
// from the corresponding follower indicates the progress is active.
// RecentActive can be reset to false after an election timeout.
//
// TODO(tbg): the leader should always have this set to true.
bool recentActive;
// ProbeSent is used while this follower is in StateProbe. When ProbeSent is
// true, raft should pause sending replication message to this peer until
// ProbeSent is reset. See ProbeAcked() and IsPaused().
bool probeSent;
// Inflights is a sliding window for the inflight messages.
// Each inflight message contains one or more log entries.
// The max number of entries per message is defined in raft config as MaxSizePerMsg.
// Thus inflight effectively limits both the number of inflight messages
// and the bandwidth each Progress can use.
// When inflights is Full, no more message should be sent.
// When a leader sends out a message, the index of the last
// entry should be added to inflights. The index MUST be added
// into inflights in order.
// When a leader receives a reply, the previous inflights should
// be freed by calling inflights.FreeLE with the index of the last
// received entry.
SSyncRaftInflights* inflights;
// IsLearner is true if this progress is tracked for a learner.
bool isLearner;
};
struct SSyncRaftProgressMap {
// map nodeId -> SSyncRaftProgress*
SHashObj* progressMap;
};
static FORCE_INLINE const char* syncRaftProgressStateString(const SSyncRaftProgress* progress) {
return kProgressStateString[progress->state];
}
void syncRaftResetProgress(SSyncRaft* pRaft, SSyncRaftProgress* progress);
// BecomeProbe transitions into StateProbe. Next is reset to Match+1 or,
// optionally and if larger, the index of the pending snapshot.
void syncRaftProgressBecomeProbe(SSyncRaftProgress* progress);
// BecomeReplicate transitions into StateReplicate, resetting Next to Match+1.
void syncRaftProgressBecomeReplicate(SSyncRaftProgress* progress);
// MaybeUpdate is called when an MsgAppResp arrives from the follower, with the
// index acked by it. The method returns false if the given n index comes from
// an outdated message. Otherwise it updates the progress and returns true.
bool syncRaftProgressMaybeUpdate(SSyncRaftProgress* progress, SyncIndex lastIndex);
// OptimisticUpdate signals that appends all the way up to and including index n
// are in-flight. As a result, Next is increased to n+1.
static FORCE_INLINE void syncRaftProgressOptimisticNextIndex(SSyncRaftProgress* progress, SyncIndex nextIndex) {
progress->nextIndex = nextIndex + 1;
}
// MaybeDecrTo adjusts the Progress to the receipt of a MsgApp rejection. The
// arguments are the index of the append message rejected by the follower, and
// the hint that we want to decrease to.
//
// Rejections can happen spuriously as messages are sent out of order or
// duplicated. In such cases, the rejection pertains to an index that the
// Progress already knows were previously acknowledged, and false is returned
// without changing the Progress.
//
// If the rejection is genuine, Next is lowered sensibly, and the Progress is
// cleared for sending log entries.
bool syncRaftProgressMaybeDecrTo(SSyncRaftProgress* progress,
SyncIndex rejected, SyncIndex matchHint);
// IsPaused returns whether sending log entries to this node has been throttled.
// This is done when a node has rejected recent MsgApps, is currently waiting
// for a snapshot, or has reached the MaxInflightMsgs limit. In normal
// operation, this is false. A throttled node will be contacted less frequently
// until it has reached a state in which it's able to accept a steady stream of
// log entries again.
bool syncRaftProgressIsPaused(SSyncRaftProgress* progress);
static FORCE_INLINE SyncIndex syncRaftProgressNextIndex(SSyncRaftProgress* progress) {
return progress->nextIndex;
}
static FORCE_INLINE ESyncRaftProgressState syncRaftProgressInReplicate(SSyncRaftProgress* progress) {
return progress->state == PROGRESS_STATE_REPLICATE;
}
static FORCE_INLINE ESyncRaftProgressState syncRaftProgressInSnapshot(SSyncRaftProgress* progress) {
return progress->state == PROGRESS_STATE_SNAPSHOT;
}
static FORCE_INLINE ESyncRaftProgressState syncRaftProgressInProbe(SSyncRaftProgress* progress) {
return progress->state == PROGRESS_STATE_PROBE;
}
static FORCE_INLINE bool syncRaftProgressRecentActive(SSyncRaftProgress* progress) {
return progress->recentActive;
}
void syncRaftInitProgressMap(SSyncRaftProgressMap* progressMap);
void syncRaftFreeProgressMap(SSyncRaftProgressMap* progressMap);
void syncRaftClearProgressMap(SSyncRaftProgressMap* progressMap);
void syncRaftCopyProgressMap(SSyncRaftProgressMap* from, SSyncRaftProgressMap* to);
SSyncRaftProgress* syncRaftFindProgressByNodeId(const SSyncRaftProgressMap* progressMap, SyncNodeId id);
int syncRaftAddToProgressMap(SSyncRaftProgressMap* progressMap, SSyncRaftProgress* progress);
void syncRaftRemoveFromProgressMap(SSyncRaftProgressMap* progressMap, SyncNodeId id);
bool syncRaftIsInProgressMap(SSyncRaftProgressMap* progressMap, SyncNodeId id);
/**
* return true if progress's log is up-todate
**/
bool syncRaftProgressIsUptodate(SSyncRaft* pRaft, SSyncRaftProgress* progress);
// BecomeSnapshot moves the Progress to StateSnapshot with the specified pending
// snapshot index.
void syncRaftProgressBecomeSnapshot(SSyncRaftProgress* progress, SyncIndex snapshotIndex);
void syncRaftCopyProgress(const SSyncRaftProgress* from, SSyncRaftProgress* to);
// return true if reach the end
bool syncRaftIterateProgressMap(const SSyncRaftProgressMap* progressMap, SSyncRaftProgress *pProgress);
bool syncRaftVisitProgressMap(SSyncRaftProgressMap* progressMap, visitProgressFp fp, void* arg);
#if 0
void syncRaftProgressAbortSnapshot(SSyncRaft* pRaft, int i);
SyncIndex syncRaftProgressMatchIndex(SSyncRaft* pRaft, int i);
void syncRaftProgressUpdateLastSend(SSyncRaft* pRaft, int i);
void syncRaftProgressUpdateSnapshotLastSend(SSyncRaft* pRaft, int i);
bool syncRaftProgressResetRecentRecv(SSyncRaft* pRaft, int i);
void syncRaftProgressMarkRecentRecv(SSyncRaft* pRaft, int i);
void syncRaftProgressAbortSnapshot(SSyncRaft* pRaft, int i);
#endif
#endif /* TD_SYNC_RAFT_PROGRESS_H */