homework-jianmu/source/util/src/theap.c

365 lines
10 KiB
C

/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define _DEFAULT_SOURCE
#include "theap.h"
size_t heapSize(Heap* heap) { return heap->nelts; }
Heap* heapCreate(HeapCompareFn fn) {
Heap* heap = taosMemoryCalloc(1, sizeof(Heap));
if (heap == NULL) {
return NULL;
}
heap->min = NULL;
heap->nelts = 0;
heap->compFn = fn;
return heap;
}
void heapDestroy(Heap* heap) { taosMemoryFree(heap); }
HeapNode* heapMin(const Heap* heap) { return heap->min; }
/* Swap parent with child. Child moves closer to the root, parent moves away. */
static void heapNodeSwap(Heap* heap, HeapNode* parent, HeapNode* child) {
HeapNode* sibling;
HeapNode t;
t = *parent;
*parent = *child;
*child = t;
parent->parent = child;
if (child->left == child) {
child->left = parent;
sibling = child->right;
} else {
child->right = parent;
sibling = child->left;
}
if (sibling != NULL) sibling->parent = child;
if (parent->left != NULL) parent->left->parent = parent;
if (parent->right != NULL) parent->right->parent = parent;
if (child->parent == NULL)
heap->min = child;
else if (child->parent->left == parent)
child->parent->left = child;
else
child->parent->right = child;
}
void heapInsert(Heap* heap, HeapNode* newnode) {
HeapNode** parent;
HeapNode** child;
uint32_t path;
uint32_t n;
uint32_t k;
newnode->left = NULL;
newnode->right = NULL;
newnode->parent = NULL;
/* Calculate the path from the root to the insertion point. This is a min
* heap so we always insert at the left-most free node of the bottom row.
*/
path = 0;
for (k = 0, n = 1 + heap->nelts; n >= 2; k += 1, n /= 2) path = (path << 1) | (n & 1);
/* Now traverse the heap using the path we calculated in the previous step. */
parent = child = &heap->min;
while (k > 0) {
parent = child;
if (path & 1)
child = &(*child)->right;
else
child = &(*child)->left;
path >>= 1;
k -= 1;
}
/* Insert the new node. */
newnode->parent = *parent;
*child = newnode;
heap->nelts += 1;
/* Walk up the tree and check at each node if the heap property holds.
* It's a min heap so parent < child must be true.
*/
while (newnode->parent != NULL && (heap->compFn)(newnode, newnode->parent))
heapNodeSwap(heap, newnode->parent, newnode);
}
void heapRemove(Heap* heap, HeapNode* node) {
HeapNode* smallest;
HeapNode** max;
HeapNode* child;
uint32_t path;
uint32_t k;
uint32_t n;
if (heap->nelts == 0) return;
/* Calculate the path from the min (the root) to the max, the left-most node
* of the bottom row.
*/
path = 0;
for (k = 0, n = heap->nelts; n >= 2; k += 1, n /= 2) path = (path << 1) | (n & 1);
/* Now traverse the heap using the path we calculated in the previous step. */
max = &heap->min;
while (k > 0) {
if (path & 1)
max = &(*max)->right;
else
max = &(*max)->left;
path >>= 1;
k -= 1;
}
heap->nelts -= 1;
/* Unlink the max node. */
child = *max;
*max = NULL;
if (child == node) {
/* We're removing either the max or the last node in the tree. */
if (child == heap->min) {
heap->min = NULL;
}
return;
}
/* Replace the to be deleted node with the max node. */
child->left = node->left;
child->right = node->right;
child->parent = node->parent;
if (child->left != NULL) {
child->left->parent = child;
}
if (child->right != NULL) {
child->right->parent = child;
}
if (node->parent == NULL) {
heap->min = child;
} else if (node->parent->left == node) {
node->parent->left = child;
} else {
node->parent->right = child;
}
/* Walk down the subtree and check at each node if the heap property holds.
* It's a min heap so parent < child must be true. If the parent is bigger,
* swap it with the smallest child.
*/
for (;;) {
smallest = child;
if (child->left != NULL && (heap->compFn)(child->left, smallest)) smallest = child->left;
if (child->right != NULL && (heap->compFn)(child->right, smallest)) smallest = child->right;
if (smallest == child) break;
heapNodeSwap(heap, child, smallest);
}
/* Walk up the subtree and check that each parent is less than the node
* this is required, because `max` node is not guaranteed to be the
* actual maximum in tree
*/
while (child->parent != NULL && (heap->compFn)(child, child->parent)) heapNodeSwap(heap, child->parent, child);
}
void heapDequeue(Heap* heap) { heapRemove(heap, heap->min); }
struct PriorityQueue {
SArray* container;
pq_comp_fn fn;
FDelete deleteFn;
void* param;
};
PriorityQueue* createPriorityQueue(pq_comp_fn fn, FDelete deleteFn, void* param) {
PriorityQueue* pq = (PriorityQueue*)taosMemoryCalloc(1, sizeof(PriorityQueue));
pq->container = taosArrayInit(1, sizeof(PriorityQueueNode));
pq->fn = fn;
pq->deleteFn = deleteFn;
pq->param = param;
return pq;
}
void taosPQSetFn(PriorityQueue* pq, pq_comp_fn fn) {
pq->fn = fn;
}
void destroyPriorityQueue(PriorityQueue* pq) {
if (pq->deleteFn)
taosArrayDestroyP(pq->container, pq->deleteFn);
else
taosArrayDestroy(pq->container);
taosMemoryFree(pq);
}
static size_t pqParent(size_t i) { return (--i) >> 1; /* (i - 1) / 2 */ }
static size_t pqLeft(size_t i) { return (i << 1) | 1; /* i * 2 + 1 */ }
static size_t pqRight(size_t i) { return (++i) << 1; /* (i + 1) * 2 */}
static void pqSwapPQNode(PriorityQueueNode* a, PriorityQueueNode* b) {
void * tmp = a->data;
a->data = b->data;
b->data = tmp;
}
#define pqContainerGetEle(pq, i) ((PriorityQueueNode*)taosArrayGet((pq)->container, (i)))
#define pqContainerSize(pq) (taosArrayGetSize((pq)->container))
size_t taosPQSize(PriorityQueue* pq) { return pqContainerSize(pq); }
static PriorityQueueNode* pqHeapify(PriorityQueue* pq, size_t from, size_t last) {
size_t largest = from;
do {
from = largest;
size_t l = pqLeft(from);
size_t r = pqRight(from);
if (l < last && pq->fn(pqContainerGetEle(pq, from)->data, pqContainerGetEle(pq, l)->data, pq->param)) {
largest = l;
}
if (r < last && pq->fn(pqContainerGetEle(pq, largest)->data, pqContainerGetEle(pq, r)->data, pq->param)) {
largest = r;
}
if (largest != from) {
pqSwapPQNode(pqContainerGetEle(pq, from), pqContainerGetEle(pq, largest));
}
} while (largest != from);
return pqContainerGetEle(pq, largest);
}
static void pqBuildHeap(PriorityQueue* pq) {
if (pqContainerSize(pq) > 1) {
for (size_t i = pqContainerSize(pq) - 1; i > 0; --i) {
pqHeapify(pq, i, pqContainerSize(pq));
}
pqHeapify(pq, 0, pqContainerSize(pq));
}
}
static PriorityQueueNode* pqReverseHeapify(PriorityQueue* pq, size_t i) {
while (i > 0 && !pq->fn(pqContainerGetEle(pq, i)->data, pqContainerGetEle(pq, pqParent(i))->data, pq->param)) {
size_t parentIdx = pqParent(i);
pqSwapPQNode(pqContainerGetEle(pq, i), pqContainerGetEle(pq, parentIdx));
i = parentIdx;
}
return pqContainerGetEle(pq, i);
}
static void pqUpdate(PriorityQueue* pq, size_t i) {
if (i == 0 || pq->fn(pqContainerGetEle(pq, i)->data, pqContainerGetEle(pq, pqParent(i))->data, pq->param)) {
// if value in pos i is smaller than parent, heapify down from i to the end
pqHeapify(pq, i, pqContainerSize(pq));
} else {
// if value in pos i is big than parent, heapify up from i
pqReverseHeapify(pq, i);
}
}
static void pqRemove(PriorityQueue* pq, size_t i) {
if (i == pqContainerSize(pq) - 1) {
taosArrayPop(pq->container);
return;
}
taosArraySet(pq->container, i, taosArrayGet(pq->container, pqContainerSize(pq) - 1));
taosArrayPop(pq->container);
pqUpdate(pq, i);
}
PriorityQueueNode* taosPQTop(PriorityQueue* pq) {
return pqContainerGetEle(pq, 0);
}
PriorityQueueNode* taosPQPush(PriorityQueue* pq, const PriorityQueueNode* node) {
taosArrayPush(pq->container, node);
return pqReverseHeapify(pq, pqContainerSize(pq) - 1);
}
void taosPQPop(PriorityQueue* pq) {
PriorityQueueNode* top = taosPQTop(pq);
if (pq->deleteFn) pq->deleteFn(top->data);
pqRemove(pq, 0);
}
struct BoundedQueue {
PriorityQueue* queue;
uint32_t maxSize;
};
BoundedQueue* createBoundedQueue(uint32_t maxSize, pq_comp_fn fn, FDelete deleteFn, void* param) {
BoundedQueue* q = (BoundedQueue*)taosMemoryCalloc(1, sizeof(BoundedQueue));
q->queue = createPriorityQueue(fn, deleteFn, param);
taosArrayEnsureCap(q->queue->container, maxSize + 1);
q->maxSize = maxSize;
return q;
}
void taosBQSetFn(BoundedQueue* q, pq_comp_fn fn) {
taosPQSetFn(q->queue, fn);
}
void destroyBoundedQueue(BoundedQueue* q) {
if (!q) return;
destroyPriorityQueue(q->queue);
taosMemoryFree(q);
}
PriorityQueueNode* taosBQPush(BoundedQueue* q, PriorityQueueNode* n) {
if (pqContainerSize(q->queue) == q->maxSize + 1) {
PriorityQueueNode* top = pqContainerGetEle(q->queue, 0);
if (q->queue->fn(top->data, n->data, q->queue->param)) {
return NULL;
} else {
void* p = top->data;
top->data = n->data;
n->data = p;
if (q->queue->deleteFn) q->queue->deleteFn(n->data);
}
return pqHeapify(q->queue, 0, taosBQSize(q));
} else {
return taosPQPush(q->queue, n);
}
}
PriorityQueueNode* taosBQTop(BoundedQueue* q) {
return taosPQTop(q->queue);
}
void taosBQBuildHeap(BoundedQueue *q) {
pqBuildHeap(q->queue);
}
size_t taosBQMaxSize(BoundedQueue* q) {
return q->maxSize;
}
size_t taosBQSize(BoundedQueue* q) {
return taosPQSize(q->queue);
}
void taosBQPop(BoundedQueue* q) {
taosPQPop(q->queue);
}