homework-jianmu/source/libs/executor/src/tsimplehash.c

310 lines
8.5 KiB
C

/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "os.h"
#include "tsimplehash.h"
#include "taoserror.h"
#define SHASH_DEFAULT_LOAD_FACTOR 0.75
#define HASH_MAX_CAPACITY (1024*1024*16)
#define SHASH_NEED_RESIZE(_h) ((_h)->size >= (_h)->capacity * SHASH_DEFAULT_LOAD_FACTOR)
#define GET_SHASH_NODE_KEY(_n, _dl) ((char*)(_n) + sizeof(SHNode) + (_dl))
#define GET_SHASH_NODE_DATA(_n) ((char*)(_n) + sizeof(SHNode))
#define HASH_INDEX(v, c) ((v) & ((c)-1))
#define HASH_NEED_RESIZE(_h) ((_h)->size >= (_h)->capacity * SHASH_DEFAULT_LOAD_FACTOR)
#define FREE_HASH_NODE(_n) \
do { \
taosMemoryFreeClear(_n); \
} while (0);
typedef struct SHNode {
struct SHNode *next;
char data[];
} SHNode;
struct SSHashObj {
SHNode **hashList;
size_t capacity; // number of slots
int64_t size; // number of elements in hash table
_hash_fn_t hashFp; // hash function
_equal_fn_t equalFp; // equal function
int32_t keyLen;
int32_t dataLen;
};
static FORCE_INLINE int32_t taosHashCapacity(int32_t length) {
int32_t len = (length < HASH_MAX_CAPACITY ? length : HASH_MAX_CAPACITY);
int32_t i = 4;
while (i < len) i = (i << 1u);
return i;
}
SSHashObj *tSimpleHashInit(size_t capacity, _hash_fn_t fn, size_t keyLen, size_t dataLen) {
ASSERT(fn != NULL);
if (capacity == 0) {
capacity = 4;
}
SSHashObj* pHashObj = (SSHashObj*) taosMemoryCalloc(1, sizeof(SSHashObj));
if (pHashObj == NULL) {
terrno = TSDB_CODE_OUT_OF_MEMORY;
return NULL;
}
// the max slots is not defined by user
pHashObj->capacity = taosHashCapacity((int32_t)capacity);
pHashObj->equalFp = memcmp;
pHashObj->hashFp = fn;
ASSERT((pHashObj->capacity & (pHashObj->capacity - 1)) == 0);
pHashObj->keyLen = keyLen;
pHashObj->dataLen = dataLen;
pHashObj->hashList = (SHNode **)taosMemoryCalloc(pHashObj->capacity, sizeof(void *));
if (pHashObj->hashList == NULL) {
taosMemoryFree(pHashObj);
terrno = TSDB_CODE_OUT_OF_MEMORY;
return NULL;
}
return pHashObj;
}
int32_t tSimpleHashGetSize(const SSHashObj *pHashObj) {
if (pHashObj == NULL) {
return 0;
}
return (int32_t)atomic_load_64((int64_t*)&pHashObj->size);
}
static SHNode *doCreateHashNode(const void *key, size_t keyLen, const void *pData, size_t dsize, uint32_t hashVal) {
SHNode *pNewNode = taosMemoryMalloc(sizeof(SHNode) + keyLen + dsize);
if (pNewNode == NULL) {
terrno = TSDB_CODE_OUT_OF_MEMORY;
return NULL;
}
pNewNode->next = NULL;
memcpy(GET_SHASH_NODE_DATA(pNewNode), pData, dsize);
memcpy(GET_SHASH_NODE_KEY(pNewNode, dsize), key, keyLen);
return pNewNode;
}
static void taosHashTableResize(SSHashObj *pHashObj) {
if (!HASH_NEED_RESIZE(pHashObj)) {
return;
}
int32_t newCapacity = (int32_t)(pHashObj->capacity << 1u);
if (newCapacity > HASH_MAX_CAPACITY) {
// uDebug("current capacity:%zu, maximum capacity:%d, no resize applied due to limitation is reached",
// pHashObj->capacity, HASH_MAX_CAPACITY);
return;
}
int64_t st = taosGetTimestampUs();
void *pNewEntryList = taosMemoryRealloc(pHashObj->hashList, sizeof(void *) * newCapacity);
if (pNewEntryList == NULL) {
// qWarn("hash resize failed due to out of memory, capacity remain:%zu", pHashObj->capacity);
return;
}
size_t inc = newCapacity - pHashObj->capacity;
memset((char*)pNewEntryList + pHashObj->capacity * sizeof(void*), 0, inc);
pHashObj->hashList = pNewEntryList;
pHashObj->capacity = newCapacity;
for (int32_t idx = 0; idx < pHashObj->capacity; ++idx) {
SHNode* pNode = pHashObj->hashList[idx];
SHNode *pNext;
SHNode *pPrev = NULL;
if (pNode == NULL) {
continue;
}
while (pNode != NULL) {
void* key = GET_SHASH_NODE_KEY(pNode, pHashObj->dataLen);
uint32_t hashVal = (*pHashObj->hashFp)(key, (uint32_t)pHashObj->dataLen);
int32_t newIdx = HASH_INDEX(hashVal, pHashObj->capacity);
pNext = pNode->next;
if (newIdx != idx) {
if (pPrev == NULL) {
pHashObj->hashList[idx] = pNext;
} else {
pPrev->next = pNext;
}
pNode->next = pHashObj->hashList[newIdx];
pHashObj->hashList[newIdx] = pNode;
} else {
pPrev = pNode;
}
pNode = pNext;
}
}
int64_t et = taosGetTimestampUs();
// uDebug("hash table resize completed, new capacity:%d, load factor:%f, elapsed time:%fms", (int32_t)pHashObj->capacity,
// ((double)pHashObj->size) / pHashObj->capacity, (et - st) / 1000.0);
}
int32_t tSimpleHashPut(SSHashObj *pHashObj, const void *key, const void *data) {
if (pHashObj == NULL || key == NULL) {
return -1;
}
uint32_t hashVal = (*pHashObj->hashFp)(key, (uint32_t)pHashObj->keyLen);
// need the resize process, write lock applied
if (SHASH_NEED_RESIZE(pHashObj)) {
taosHashTableResize(pHashObj);
}
int32_t slot = HASH_INDEX(hashVal, pHashObj->capacity);
SHNode *pNode = pHashObj->hashList[slot];
if (pNode == NULL) {
SHNode *pNewNode = doCreateHashNode(key, pHashObj->keyLen, data, pHashObj->size, hashVal);
if (pNewNode == NULL) {
return -1;
}
pHashObj->hashList[slot] = pNewNode;
return 0;
}
while (pNode) {
if ((*(pHashObj->equalFp))(GET_SHASH_NODE_KEY(pNode, pHashObj->dataLen), key, pHashObj->keyLen) == 0) {
break;
}
pNode = pNode->next;
}
if (pNode == NULL) {
SHNode *pNewNode = doCreateHashNode(key, pHashObj->keyLen, data, pHashObj->size, hashVal);
if (pNewNode == NULL) {
return -1;
}
pNewNode->next = pHashObj->hashList[slot];
pHashObj->hashList[slot] = pNewNode;
atomic_add_fetch_64(&pHashObj->size, 1);
} else { //update data
memcpy(GET_SHASH_NODE_DATA(pNode), data, pHashObj->dataLen);
}
return 0;
}
static FORCE_INLINE SHNode *doSearchInEntryList(SSHashObj *pHashObj, const void *key, int32_t index) {
SHNode *pNode = pHashObj->hashList[index];
while (pNode) {
if ((*(pHashObj->equalFp))(GET_SHASH_NODE_KEY(pNode, pHashObj->dataLen), key, pHashObj->keyLen) == 0) {
break;
}
pNode = pNode->next;
}
return pNode;
}
static FORCE_INLINE bool taosHashTableEmpty(const SSHashObj *pHashObj) {
return tSimpleHashGetSize(pHashObj) == 0;
}
void *tSimpleHashGet(SSHashObj *pHashObj, const void *key) {
if (pHashObj == NULL || taosHashTableEmpty(pHashObj) || key == NULL) {
return NULL;
}
uint32_t hashVal = (*pHashObj->hashFp)(key, (uint32_t)pHashObj->keyLen);
int32_t slot = HASH_INDEX(hashVal, pHashObj->capacity);
SHNode *pNode = pHashObj->hashList[slot];
if (pNode == NULL) {
return NULL;
}
char *data = NULL;
pNode = doSearchInEntryList(pHashObj, key, slot);
if (pNode != NULL) {
data = GET_SHASH_NODE_DATA(pNode);
}
return data;
}
int32_t tSimpleHashRemove(SSHashObj *pHashObj, const void *key) {
// todo
return TSDB_CODE_SUCCESS;
}
void tSimpleHashClear(SSHashObj *pHashObj) {
if (pHashObj == NULL) {
return;
}
SHNode *pNode, *pNext;
for (int32_t i = 0; i < pHashObj->capacity; ++i) {
pNode = pHashObj->hashList[i];
if (pNode == NULL) {
continue;
}
while (pNode) {
pNext = pNode->next;
FREE_HASH_NODE(pNode);
pNode = pNext;
}
}
pHashObj->size = 0;
}
void tSimpleHashCleanup(SSHashObj *pHashObj) {
if (pHashObj == NULL) {
return;
}
tSimpleHashClear(pHashObj);
taosMemoryFreeClear(pHashObj->hashList);
}
size_t tSimpleHashGetMemSize(const SSHashObj *pHashObj) {
if (pHashObj == NULL) {
return 0;
}
return (pHashObj->capacity * sizeof(void *)) + sizeof(SHNode) * tSimpleHashGetSize(pHashObj) + sizeof(SSHashObj);
}
void *tSimpleHashGetKey(const SSHashObj* pHashObj, void *data, size_t* keyLen) {
int32_t offset = offsetof(SHNode, data);
SHNode *node = ((SHNode*)(char*)data - offset);
if (keyLen != NULL) {
*keyLen = pHashObj->keyLen;
}
return GET_SHASH_NODE_KEY(node, pHashObj->dataLen);
}