Update index.md
This commit is contained in:
parent
4bdc1dd5f7
commit
e1a8d7a5f0
|
@ -7,7 +7,7 @@ title: 开发指南
|
|||
2. 根据自己的应用场景,确定数据模型。根据数据特征,决定建立一个还是多个库;分清静态标签、采集量,建立正确的超级表,建立子表。
|
||||
3. 决定插入数据的方式。TDengine支持使用标准的SQL写入,但同时也支持schemaless模式写入,这样不用手工建表,可以将数据直接写入。
|
||||
4. 根据业务要求,看需要撰写哪些SQL查询语句。
|
||||
5. 如果你要基于时序数据做实时的统计分析,包括各种监测看板,那么建议你采用TDengine的连续查询功能,而不用上线Spark, Flink等复杂的流式计算系统。
|
||||
5. 如果你要基于时序数据做轻量级的实时统计分析,包括各种监测看板,那么建议你采用 TDengine 3.0 的流式计算功能,而不用额外部署 Spark, Flink 等复杂的流式计算系统。
|
||||
6. 如果你的应用有模块需要消费插入的数据,希望有新的数据插入时,就能获取通知,那么建议你采用TDengine提供的数据订阅功能,而无需专门部署Kafka或其他消息队列软件。
|
||||
7. 在很多场景下(如车辆管理),应用需要获取每个数据采集点的最新状态,那么建议你采用TDengine的cache功能,而不用单独部署Redis等缓存软件。
|
||||
8. 如果你发现TDengine的函数无法满足你的要求,那么你可以使用用户自定义函数来解决问题。
|
||||
|
|
Loading…
Reference in New Issue