docs: read through and fix minor problems 02

This commit is contained in:
Pan YANG 2022-08-29 23:28:21 +08:00
parent f478cb4f78
commit d53400085e
2 changed files with 98 additions and 97 deletions

View File

@ -12,32 +12,32 @@ This section introduces the major features, competitive advantages, typical use-
The major features are listed below:
1. Insert data
* supports [using SQL to insert](../develop/insert-data/sql-writing).
* supports [schemaless writing](../reference/schemaless/) just like NoSQL databases. It also supports standard protocols like [InfluxDB LINE](../develop/insert-data/influxdb-line)[OpenTSDB Telnet](../develop/insert-data/opentsdb-telnet), [OpenTSDB JSON ](../develop/insert-data/opentsdb-json) among others.
* supports seamless integration with third-party tools like [Telegraf](../third-party/telegraf/), [Prometheus](../third-party/prometheus/), [collectd](../third-party/collectd/), [StatsD](../third-party/statsd/), [TCollector](../third-party/tcollector/) and [icinga2/](../third-party/icinga2/), they can write data into TDengine with simple configuration and without a single line of code.
- supports [using SQL to insert](../develop/insert-data/sql-writing).
- supports [schemaless writing](../reference/schemaless/) just like NoSQL databases. It also supports standard protocols like [InfluxDB LINE](../develop/insert-data/influxdb-line)[OpenTSDB Telnet](../develop/insert-data/opentsdb-telnet), [OpenTSDB JSON ](../develop/insert-data/opentsdb-json) among others.
- supports seamless integration with third-party tools like [Telegraf](../third-party/telegraf/), [Prometheus](../third-party/prometheus/), [collectd](../third-party/collectd/), [StatsD](../third-party/statsd/), [TCollector](../third-party/tcollector/) and [icinga2/](../third-party/icinga2/), they can write data into TDengine with simple configuration and without a single line of code.
2. Query data
* supports standard [SQL](../taos-sql/), including nested query.
* supports [time series specific functions](../taos-sql/function/#time-series-extensions) and [time series specific queries](../taos-sql/distinguished), like downsampling, interpolation, cumulated sum, time weighted average, state window, session window and many others.
* supports [user defined functions](../taos-sql/udf).
- supports standard [SQL](../taos-sql/), including nested query.
- supports [time series specific functions](../taos-sql/function/#time-series-extensions) and [time series specific queries](../taos-sql/distinguished), like downsampling, interpolation, cumulated sum, time weighted average, state window, session window and many others.
- supports [user defined functions](../taos-sql/udf).
3. [Caching](../develop/cache/): TDengine always saves the last data point in cache, so Redis is not needed for time-series data processing.
4. [Stream Processing](../develop/stream/): not only is the continuous query is supported, but TDengine also supports even driven stream processing, so Flink or spark is not needed for time-series daata processing.
5. [Data Dubscription](../develop/tmq/): application can subscribe a table or a set of tables. API is the same as Kafka, but you can specify filter conditions.
4. [Stream Processing](../develop/stream/): not only is the continuous query is supported, but TDengine also supports even driven stream processing, so Flink or spark is not needed for time-series data processing.
5. [Data Subscription](../develop/tmq/): application can subscribe a table or a set of tables. API is the same as Kafka, but you can specify filter conditions.
6. Visualization
* supports seamless integration with [Grafana](../third-party/grafana/) for visualization.
* supports seamless integration with Google Data Studio.
- supports seamless integration with [Grafana](../third-party/grafana/) for visualization.
- supports seamless integration with Google Data Studio.
7. Cluster
* supports [cluster](../deployment/) with the capability of increasing processing power by adding more nodes.
* supports [deployment on Kubernetes](../deployment/k8s/)
* supports high availability via data replication.
- supports [cluster](../deployment/) with the capability of increasing processing power by adding more nodes.
- supports [deployment on Kubernetes](../deployment/k8s/)
- supports high availability via data replication.
8. Administration
* provides [monitoring](../operation/monitor) on running instances of TDengine.
* provides many ways to [import](../operation/import) and [export](../operation/export) data.
- provides [monitoring](../operation/monitor) on running instances of TDengine.
- provides many ways to [import](../operation/import) and [export](../operation/export) data.
9. Tools
* provides an interactive [command-line interface](../reference/taos-shell) for management, maintenance and ad-hoc queries.
* provides a tool [taosBenchmark](../reference/taosbenchmark/) for testing the performance of TDengine.
- provides an interactive [command-line interface](../reference/taos-shell) for management, maintenance and ad-hoc queries.
- provides a tool [taosBenchmark](../reference/taosbenchmark/) for testing the performance of TDengine.
10. Programming
* provides [connectors](../reference/connector/) for [C/C++](../reference/connector/cpp), [Java](../reference/connector/java), [Python](../reference/connector/python), [Go](../reference/connector/go), [Rust](../reference/connector/rust), [Node.js](../reference/connector/node) and other programming languages.
* provides a [REST API](../reference/rest-api/).
- provides [connectors](../reference/connector/) for [C/C++](../reference/connector/cpp), [Java](../reference/connector/java), [Python](../reference/connector/python), [Go](../reference/connector/go), [Rust](../reference/connector/rust), [Node.js](../reference/connector/node) and other programming languages.
- provides a [REST API](../reference/rest-api/).
For more details on features, please read through the entire documentation.
@ -52,7 +52,7 @@ By making full use of [characteristics of time series data](https://tdengine.com
- **[Cloud Native](https://tdengine.com/tdengine/cloud-native-time-series-database/)**: Through native distributed design, sharding and partitioning, separation of compute and storage, RAFT, support for kubernetes deployment and full observability, TDengine is a cloud native Time-Series Database and can be deployed on public, private or hybrid clouds.
- **[Ease of Use](https://tdengine.com/tdengine/easy-time-series-data-platform/)**: For administrators, TDengine significantly reduces the effort to[
](https://tdengine.com/tdengine/easy-time-series-data-platform/) deploy and maintain. For developers, it provides a simple interface, simplified solution and seamless integrations for third party tools. For data users, it gives easy data access.
](https://tdengine.com/tdengine/easy-time-series-data-platform/) deploy and maintain. For developers, it provides a simple interface, simplified solution and seamless integrations for third party tools. For data users, it gives easy data access.
- **[Easy Data Analytics](https://tdengine.com/tdengine/time-series-data-analytics-made-easy/)**: Through super tables, storage and compute separation, data partitioning by time interval, pre-computation and other means, TDengine makes it easy to explore, format, and get access to data in a highly efficient way.
@ -61,6 +61,7 @@ By making full use of [characteristics of time series data](https://tdengine.com
With TDengine, the total cost of ownership of your time-series data platform can be greatly reduced. 1: With its superior performance, the computing and storage resources are reduced significantly2: With SQL support, it can be seamlessly integrated with many third party tools, and learning costs/migration costs are reduced significantly3: With its simplified solution and nearly zero management, the operation and maintenance costs are reduced significantly.
## Technical Ecosystem
This is how TDengine would be situated, in a typical time-series data processing platform:
![TDengine Database Technical Ecosystem ](eco_system.webp)
@ -76,15 +77,15 @@ As a high-performance, scalable and SQL supported time-series database, TDengine
### Characteristics and Requirements of Data Sources
| **Data Source Characteristics and Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| -------------------------------------------------------- | ------------------ | ----------------------- | ------------------- | :----------------------------------------------------------- |
| A massive amount of total data | | | √ | TDengine provides excellent scale-out functions in terms of capacity, and has a storage structure with matching high compression ratio to achieve the best storage efficiency in the industry.|
| ------------------------------------------------ | ------------------ | ----------------------- | ------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| A massive amount of total data | | | √ | TDengine provides excellent scale-out functions in terms of capacity, and has a storage structure with matching high compression ratio to achieve the best storage efficiency in the industry. |
| Data input velocity is extremely high | | | √ | TDengine's performance is much higher than that of other similar products. It can continuously process larger amounts of input data in the same hardware environment, and provides a performance evaluation tool that can easily run in the user environment. |
| A huge number of data sources | | | √ | TDengine is optimized specifically for a huge number of data sources. It is especially suitable for efficiently ingesting, writing and querying data from billions of data sources. |
### System Architecture Requirements
| **System Architecture Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| ------------------------------------------------- | ------------------ | ----------------------- | ------------------- | ------------------------------------------------------------ |
| ----------------------------------------- | ------------------ | ----------------------- | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| A simple and reliable system architecture | | | √ | TDengine's system architecture is very simple and reliable, with its own message queue, cache, stream computing, monitoring and other functions. There is no need to integrate any additional third-party products. |
| Fault-tolerance and high-reliability | | | √ | TDengine has cluster functions to automatically provide high-reliability and high-availability functions such as fault tolerance and disaster recovery. |
| Standardization support | | | √ | TDengine supports standard SQL and provides SQL extensions for time-series data analysis. |
@ -92,25 +93,25 @@ As a high-performance, scalable and SQL supported time-series database, TDengine
### System Function Requirements
| **System Function Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| ------------------------------------------------- | ------------------ | ----------------------- | ------------------- | ------------------------------------------------------------ |
| Complete data processing algorithms built-in | | √ | | While TDengine implements various general data processing algorithms, industry specific algorithms and special types of processing will need to be implemented at the application level.|
| -------------------------------------------- | ------------------ | ----------------------- | ------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Complete data processing algorithms built-in | | √ | | While TDengine implements various general data processing algorithms, industry specific algorithms and special types of processing will need to be implemented at the application level. |
| A large number of crosstab queries | | √ | | This type of processing is better handled by general purpose relational database systems but TDengine can work in concert with relational database systems to provide more complete solutions. |
### System Performance Requirements
| **System Performance Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| ------------------------------------------------- | ------------------ | ----------------------- | ------------------- | ------------------------------------------------------------ |
| ------------------------------------------------- | ------------------ | ----------------------- | ------------------- | --------------------------------------------------------------------------------------------------------------------------- |
| Very large total processing capacity | | | √ | TDengines cluster functions can easily improve processing capacity via multi-server coordination. |
| Extremely high-speed data processing | | | √ | TDengines storage and data processing are optimized for IoT, and can process data many times faster than similar products.|
| Extremely high-speed data processing | | | √ | TDengines storage and data processing are optimized for IoT, and can process data many times faster than similar products. |
| Extremely fast processing of high resolution data | | | √ | TDengine has achieved the same or better performance than other relational and NoSQL data processing systems. |
### System Maintenance Requirements
| **System Maintenance Requirements** | **Not Applicable** | **Might Be Applicable** | **Very Applicable** | **Description** |
| ------------------------------------------------- | ------------------ | ----------------------- | ------------------- | ------------------------------------------------------------ |
| --------------------------------------- | ------------------ | ----------------------- | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| Native high-reliability | | | √ | TDengine has a very robust, reliable and easily configurable system architecture to simplify routine operation. Human errors and accidents are eliminated to the greatest extent, with a streamlined experience for operators. |
| Minimize learning and maintenance costs | | | √ | In addition to being easily configurable, standard SQL support and the TDengine CLI for ad hoc queries makes maintenance simpler, allows reuse and reduces learning costs.|
| Abundant talent supply | √ | | | Given the above, and given the extensive training and professional services provided by TDengine, it is easy to migrate from existing solutions or create a new and lasting solution based on TDengine.|
| Minimize learning and maintenance costs | | | √ | In addition to being easily configurable, standard SQL support and the TDengine CLI for ad hoc queries makes maintenance simpler, allows reuse and reduces learning costs. |
| Abundant talent supply | √ | | | Given the above, and given the extensive training and professional services provided by TDengine, it is easy to migrate from existing solutions or create a new and lasting solution based on TDengine. |
## Comparison with other databases

View File

@ -4,18 +4,18 @@ description: 简要介绍 TDengine 的主要功能
toc_max_heading_level: 2
---
TDengine 是一款开源、高性能、云原生的[时序数据库](https://tdengine.com/tsdb/),且针对物联网、车联网以及工业互联网进行了优化。TDengine 的代码,包括其集群功能,都在 GNU AGPL v3.0 下开源。除核心的时序数据库功能外TDengine 还提供[缓存](../develop/cache/)、[数据订阅](../develop/tmq)、[流式计算](../develop/stream)等其它功能以降低系统复杂度及研发和运维成本。
TDengine 是一款开源、高性能、云原生的[时序数据库](https://tdengine.com/tsdb/),且针对物联网、车联网、工业互联网、金融、IT 运维等场景进行了优化。TDengine 的代码,包括集群功能,都在 GNU AGPL v3.0 下开源。除核心的时序数据库功能外TDengine 还提供[缓存](../develop/cache/)、[数据订阅](../develop/tmq)、[流式计算](../develop/stream)等其它功能以降低系统复杂度及研发和运维成本。
本章节介绍TDengine的主要功能、竞争优势、适用场景、与其他数据库的对比测试等等让大家对TDengine有个整体的了解。
本章节介绍 TDengine 的主要功能、竞争优势、适用场景、与其他数据库的对比测试等等,让大家对 TDengine 有个整体的了解。
## 主要功能
TDengine的主要功能如下
TDengine 的主要功能如下:
1. 写入数据,支持
- [SQL 写入](../develop/insert-data/sql-writing)
- [Schemaless 写入](../reference/schemaless/),支持多种标准写入协议
- [InfluxDB LINE 协议](../develop/insert-data/influxdb-line)
- [无模式Schemaless写入](../reference/schemaless/),支持多种标准写入协议
- [InfluxDB Line 协议](../develop/insert-data/influxdb-line)
- [OpenTSDB Telnet 协议](../develop/insert-data/opentsdb-telnet)
- [OpenTSDB JSON 协议](../develop/insert-data/opentsdb-json)
- 与多种第三方工具的无缝集成,它们都可以仅通过配置而无需任何代码即可将数据写入 TDengine
@ -23,34 +23,34 @@ TDengine的主要功能如下
- [Prometheus](../third-party/prometheus)
- [StatsD](../third-party/statsd)
- [collectd](../third-party/collectd)
- [icinga2](../third-party/icinga2)
- [Icinga2](../third-party/icinga2)
- [TCollector](../third-party/tcollector)
- [EMQ](../third-party/emq-broker)
- [EMQX](../third-party/emq-broker)
- [HiveMQ](../third-party/hive-mq-broker)
2. 查询数据,支持
- [标准SQL](../taos-sql),含嵌套查询
- [标准 SQL](../taos-sql),含嵌套查询
- [时序数据特色函数](../taos-sql/function/#time-series-extensions)
- [时序顺序特色查询](../taos-sql/distinguished),例如降采样、插值、累加和、时间加权平均、状态窗口、会话窗口等
- [用户自定义函数](../taos-sql/udf)
- [时序数据特色查询](../taos-sql/distinguished),例如降采样、插值、累加和、时间加权平均、状态窗口、会话窗口等
- [用户自定义函数UDF](../taos-sql/udf)
3. [缓存](../develop/cache),将每张表的最后一条记录缓存起来,这样无需 Redis 就能对时序数据进行高效处理
4. [流式计算](../develop/stream)(Stream Processing)TDengine 不仅支持连续查询,还支持事件驱动的流式计算,这样在处理时序数据时就无需 Flink 或 Spark 这样流计算组件
5. [数据订阅](../develop/tmq),应用程序可以订阅一张表或一组表的数据,API 与 Kafka 相同,而且可以指定过滤条件
4. [流式计算Stream Processing](../develop/stream)TDengine 不仅支持连续查询,还支持事件驱动的流式计算,这样在处理时序数据时就无需 Flink 或 Spark 这样流计算组件
5. [数据订阅](../develop/tmq),应用程序可以订阅一张表或一组表的数据,提供与 Kafka 相同的 API,而且可以指定过滤条件
6. 可视化
- 支持与 [Grafana](../third-party/grafana/) 的无缝集成
- 支持与 Google Data Studio 的无缝集成
7. 集群
- 集群部署(../deployment/),可以通过增加节点进行水平扩展以提升处理能力
- 可以通过 [Kubernets 部署 TDengine](../deployment/k8s/)
- [集群部署](../deployment/),可以通过增加节点进行水平扩展以提升处理能力
- 可以通过 [Kubernetes 部署 TDengine](../deployment/k8s/)
- 通过多副本提供高可用能力
8. 管理
- [监控](../operation/monitor)运行中的 TDengine 实例
- 多种[数据导入](../operation/import)方式
- 多种[数据导出](../operation/export)方式
9. 工具
- 提供交互式[命令行程序](../reference/taos-shell),便于管理集群,检查系统状态,做即席查询
- 提供[交互式命令行程序CLI](../reference/taos-shell),便于管理集群,检查系统状态,做即席查询
- 提供压力测试工具[taosBenchmark](../reference/taosbenchmark),用于测试 TDengine 的性能
10. 编程
- 提供各种语言的[连接器](../connector): 如 [C/C++](../connector/cpp), [Java](../connector/java), [Go](../connector/go), [Node.JS](../connector/node), [Rust](../connector/rust), [Python](../connector/python), [C#](../connector/csharp) 等
- 提供各种语言的[连接器Connector](../connector): 如 [C/C++](../connector/cpp)、[Java](../connector/java)、[Go](../connector/go)、[Node.js](../connector/node)、[Rust](../connector/rust)、[Python](../connector/python)、[C#](../connector/csharp) 等
- 支持 [REST 接口](../connector/rest-api/)
更多细节功能,请阅读整个文档。
@ -63,9 +63,9 @@ TDengine的主要功能如下
- **[极简时序数据平台](https://www.taosdata.com/tdengine/simplified_solution_for_time-series_data_processing)**TDengine 内建缓存、流式计算和数据订阅等功能,为时序数据的处理提供了极简的解决方案,从而大幅降低了业务系统的设计复杂度和运维成本。
- **[云原生](https://www.taosdata.com/tdengine/cloud_native_time-series_database)**通过原生的分布式设计、数据分片和分区、存算分离、RAFT 协议、Kubernets 部署和完整的可观测性TDengine 是一款云原生时序数据库并且能够部署在公有云、私有云和混合云上。
- **[云原生](https://www.taosdata.com/tdengine/cloud_native_time-series_database)**通过原生的分布式设计、数据分片和分区、存算分离、RAFT 协议、Kubernetes 部署和完整的可观测性TDengine 是一款云原生时序数据库并且能够部署在公有云、私有云和混合云上。
- **[简单易用](https://www.taosdata.com/tdengine/ease_of_use)**对系统管理员来说TDengine 大幅降低了管理和维护的代价。对开发者来说, TDengine 提供了简单的接口、极简的解决方案和与第三方工具的无缝集成。对数据分析专家来说TDengine 提供了便捷的数据访问。
- **[简单易用](https://www.taosdata.com/tdengine/ease_of_use)**对系统管理员来说TDengine 大幅降低了管理和维护的代价。对开发者来说, TDengine 提供了简单的接口、极简的解决方案和与第三方工具的无缝集成。对数据分析专家来说TDengine 提供了便捷的数据访问能力
- **[分析能力](https://www.taosdata.com/tdengine/easy_data_analytics)**通过超级表、存储计算分离、分区分片、预计算和其它技术TDengine 能够高效地浏览、格式化和访问数据。
@ -73,13 +73,13 @@ TDengine的主要功能如下
采用 TDengine可将典型的物联网、车联网、工业互联网大数据平台的总拥有成本大幅降低。表现在几个方面
1. 由于其超强性能,它能将系统需的计算资源和存储资源大幅降低
1. 由于其超强性能,它能将系统需的计算资源和存储资源大幅降低
2. 因为支持 SQL能与众多第三方软件无缝集成学习迁移成本大幅下降
3. 因为是一极简的时序数据平台,系统复杂度、研发和运营成本大幅降低
3. 因为是一极简的时序数据平台,系统复杂度、研发和运营成本大幅降低
## 技术生态
在整个时序大数据平台中TDengine 在其中扮演的角色如下:
在整个时序大数据平台中TDengine 扮演的角色如下:
<figure>
@ -88,11 +88,11 @@ TDengine的主要功能如下
</figure>
<center>图 1. TDengine技术生态图</center>
上图中,左侧是各种数据采集或消息队列,包括 OPC-UA、MQTT、Telegraf、也包括 Kafka, 他们的数据将被源源不断的写入到 TDengine。右侧则是可视化、BI 工具、组态软件、应用程序。下侧则是 TDengine 自身提供的命令行程序 (CLI) 以及可视化管理管理
上图中,左侧是各种数据采集或消息队列,包括 OPC-UA、MQTT、Telegraf、也包括 Kafka他们的数据将被源源不断的写入到 TDengine。右侧则是可视化、BI 工具、组态软件、应用程序。下侧则是 TDengine 自身提供的命令行程序CLI以及可视化管理工具
## 典型适用场景
作为一个高性能、分布式、支持 SQL 的时序数据库 Database)TDengine 的典型适用场景包括但不限于 IoT、工业互联网、车联网、IT 运维、能源、金融证券等领域。需要指出的是TDengine 是针对时序数据场景设计的专用数据库和专用大数据处理工具因充分利用了时序大数据的特点它无法用来处理网络爬虫、微博、微信、电商、ERP、CRM 等通用型数据。本文对适用场景做更多详细的分析。
作为一个高性能、分布式、支持 SQL 的时序数据库Database)TDengine 的典型适用场景包括但不限于 IoT、工业互联网、车联网、IT 运维、能源、金融证券等领域。需要指出的是TDengine 是针对时序数据场景设计的专用数据库和专用大数据处理工具,因充分利用了时序大数据的特点它无法用来处理网络爬虫、微博、微信、电商、ERP、CRM 等通用型数据。下面本文对适用场景做更多详细的分析。
### 数据源特点和需求
@ -115,16 +115,16 @@ TDengine的主要功能如下
### 系统功能需求
| 系统功能需求 | 不适用 | 可能适用 | 非常适用 | 简单说明 |
| -------------------------- | ------ | -------- | -------- | --------------------------------------------------------------------------------------------------------------------- |
| 要求完整的内置数据处理算法 | | √ | | TDengine 实现了通用的数据处理算法,但是还没有做到妥善处理各行各业的所有要求,因此特殊类型的处理还需要应用层面处理。 |
| 需要大量的交叉查询处理 | | √ | | 这种类型的处理更多应该用关系型数据系统处理,或者应该考虑 TDengine 和关系型数据系统配合实现系统功能。 |
| -------------------------- | ------ | -------- | -------- | ------------------------------------------------------------------------------------------------------------------------- |
| 要求完整的内置数据处理算法 | | √ | | TDengine 实现了通用的数据处理算法,但是还没有做到妥善处理各行各业的所有需求,因此特殊类型的处理需求还需要在应用层面解决。 |
| 需要大量的交叉查询处理 | | √ | | 这种类型的处理更多应该用关系型数据库处理,或者应该考虑 TDengine 和关系型数据库配合实现系统功能。 |
### 系统性能需求
| 系统性能需求 | 不适用 | 可能适用 | 非常适用 | 简单说明 |
| ---------------------- | ------ | -------- | -------- | ------------------------------------------------------------------------------------------------------ |
| ---------------------- | ------ | -------- | -------- | -------------------------------------------------------------------------------------------------- |
| 要求较大的总体处理能力 | | | √ | TDengine 的集群功能可以轻松地让多服务器配合达成处理能力的提升。 |
| 要求高速处理数据 | | | √ | TDengine 专门为 IoT 优化的存储和数据处理设计,一般可以让系统得到超出同类产品多倍数的处理速度提升。 |
| 要求高速处理数据 | | | √ | TDengine 专门为 IoT 优化的存储和数据处理设计,一般可以让系统得到超出同类产品多倍数的处理速度提升。 |
| 要求快速处理小粒度数据 | | | √ | 这方面 TDengine 性能可以完全对标关系型和 NoSQL 型数据处理系统。 |
### 系统维护需求