feat(gpt): support lstm and do some internal refactor, add sample autoencoder model.

This commit is contained in:
Haojun Liao 2025-03-18 09:27:04 +08:00
parent 895e013343
commit c25981cb0d
3 changed files with 103 additions and 28 deletions

View File

@ -4,6 +4,7 @@
import os.path
import joblib
import keras
import numpy as np
import pandas as pd
@ -13,8 +14,8 @@ from taosanalytics.util import create_sequences
class _AutoEncoderDetectionService(AbstractAnomalyDetectionService):
name = 'ad_encoder'
desc = "anomaly detection based on auto encoder"
name = 'sample_ad_model'
desc = "sample anomaly detection model based on auto encoder"
def __init__(self):
super().__init__()
@ -25,7 +26,7 @@ class _AutoEncoderDetectionService(AbstractAnomalyDetectionService):
self.threshold = None
self.time_interval = None
self.model = None
self.dir = 'ad_autoencoder'
self.dir = 'sample-ad-autoencoder'
self.root_path = conf.get_model_directory()
@ -61,11 +62,6 @@ class _AutoEncoderDetectionService(AbstractAnomalyDetectionService):
# Detect all the samples which are anomalies.
anomalies = mae > self.threshold
# syslogger.log_inst(
# "Number of anomaly samples: %f, Indices of anomaly samples:{}".
# format(np.sum(anomalies), np.where(anomalies))
# )
# data i is an anomaly if samples [(i - timesteps + 1) to (i)] are anomalies
ad_indices = []
for data_idx in range(self.time_interval - 1,
@ -82,13 +78,13 @@ class _AutoEncoderDetectionService(AbstractAnomalyDetectionService):
name = params['model']
module_file_path = f'{self.root_path}/{name}.dat'
module_file_path = f'{self.root_path}/{name}.keras'
module_info_path = f'{self.root_path}/{name}.info'
app_logger.log_inst.info("try to load module:%s", module_file_path)
if os.path.exists(module_file_path):
self.model = joblib.load(module_file_path)
self.model = keras.models.load_model(module_file_path)
else:
app_logger.log_inst.error("failed to load autoencoder model file: %s", module_file_path)
raise FileNotFoundError(f"{module_file_path} not found")

View File

@ -0,0 +1,81 @@
# encoding:utf-8
# pylint: disable=c0103
""" auto encoder algorithms to detect anomaly for time series data"""
import os.path
import keras
from taosanalytics.algo.forecast import insert_ts_list
from taosanalytics.conf import app_logger, conf
from taosanalytics.service import AbstractForecastService
class _LSTMService(AbstractForecastService):
name = 'sample_forecast_model'
desc = "sample forecast model based on LSTM"
def __init__(self):
super().__init__()
self.table_name = None
self.mean = None
self.std = None
self.threshold = None
self.time_interval = None
self.model = None
self.dir = 'sample-fc-lstm'
self.root_path = conf.get_model_directory()
self.root_path = self.root_path + f'/{self.dir}/'
if not os.path.exists(self.root_path):
app_logger.log_inst.error(
"%s ad algorithm failed to locate default module directory:"
"%s, not active", self.__class__.__name__, self.root_path)
else:
app_logger.log_inst.info("%s ad algorithm root path is: %s", self.__class__.__name__,
self.root_path)
def execute(self):
if self.input_is_empty():
return []
if self.model is None:
raise FileNotFoundError("not load autoencoder model yet, or load model failed")
res = self.model.predict(self.list)
insert_ts_list(res, self.start_ts, self.time_step, self.fc_rows)
if self.return_conf:
res1 = [res.tolist(), res.tolist(), res.tolist()], None
else:
res1 = [res.tolist()], None
# add the conf range if required
return {
"mse": None,
"res": res1
}
def set_params(self, params):
if "model" not in params:
raise ValueError("model needs to be specified")
name = params['model']
module_file_path = f'{self.root_path}/{name}.keras'
# module_info_path = f'{self.root_path}/{name}.info'
app_logger.log_inst.info("try to load module:%s", module_file_path)
if os.path.exists(module_file_path):
self.model = keras.models.load_model(module_file_path)
else:
app_logger.log_inst.error("failed to load LSTM model file: %s", module_file_path)
raise FileNotFoundError(f"{module_file_path} not found")
def get_params(self):
return {"dir": self.dir + '/*'}

View File

@ -141,25 +141,23 @@ class AnomalyDetectionTest(unittest.TestCase):
def test_autoencoder_ad(self):
"""for local test only, disabled it in github action"""
pass
data = self.__load_remote_data_for_ad()
# data = self.__load_remote_data_for_ad()
#
# s = loader.get_service("ad_encoder")
# s.set_input_list(data)
#
# try:
# s.set_params({"model": "ad_encoder_"})
# except ValueError as e:
# app_logger.log_inst.error(f"failed to set the param for auto_encoder algorithm, reason:{e}")
# return
#
# r = s.execute()
#
# num_of_error = -(sum(filter(lambda x: x == -1, r)))
# self.assertEqual(num_of_error, 109)
#
# draw_ad_results(data, r, "autoencoder")
s = loader.get_service("sample_ad_model")
s.set_input_list(data)
try:
s.set_params({"model": "sample-ad-autoencoder"})
except ValueError as e:
app_logger.log_inst.error(f"failed to set the param for auto_encoder algorithm, reason:{e}")
return
r = s.execute()
num_of_error = -(sum(filter(lambda x: x == -1, r)))
draw_ad_results(data, r, "autoencoder")
self.assertEqual(num_of_error, 109)
def test_get_all_services(self):
"""Test get all services"""