diff --git a/docs/zh/06-advanced/06-TDgpt/04-forecast/index.md b/docs/zh/06-advanced/06-TDgpt/04-forecast/index.md index 63479ae3ea..456899e47b 100644 --- a/docs/zh/06-advanced/06-TDgpt/04-forecast/index.md +++ b/docs/zh/06-advanced/06-TDgpt/04-forecast/index.md @@ -5,7 +5,7 @@ description: 预测算法 import fc_result from '../pic/fc-result.png'; -时序数据预测处理以持续一个时间段的时序数据作为输入,预测接下来一个连续时间区间内时间序列数据趋势。用户可以指定输出的(预测)时间序列数据点的数量,因此其输出的结果行数不确定。为此,TDengine 使用新 SQL 函数 `FORECAST` 提供时序数据预测服务。基础数据(用于预测的历史时间序列数据)是该函数的输入,预测结果是该函数的输出。用户可以通过 `FORECAST` 函数调用 Anode 提供的预测算法提供的服务。 +时序数据预测处理以持续一个时间段的时序数据作为输入,预测接下来一个连续时间区间内时间序列数据趋势。用户可以指定输出的(预测)时间序列数据点的数量,因此其输出的结果行数不确定。为此,TDengine 引入新 SQL 函数 `FORECAST` 提供预测分析功能。基础数据(用于预测的历史时间序列数据)是该函数的输入,预测结果是该函数的输出。用户可以通过 `FORECAST` 函数调用 Anode 提供的预测算法提供的服务。预测分析通常只能针对超级表的子表或者不同表中同一个时间序列。 在后续章节中,使用时序数据表 `foo` 作为示例,介绍预测和异常检测算法的使用方式,`foo` 表的模式如下: @@ -63,7 +63,8 @@ algo=expr1 3. `EVERY`:可以与输入数据的采样频率不同。采样频率只能低于或等于输入数据采样频率,不能**高于**输入数据的采样频率。 4. 对于某些不需要计算置信区间的算法,即使指定了置信区间,返回的结果中其上下界退化成为一个点。 5. rows 的最大输出值是 1024,即只能预测 1024 个值。超过输出范围的参数会被自动设置为 1024。 -6. +6. 预测分析的输入数据行数最大值是 40000 行,即用于预测分析的历史数据不能超过 40000 行。针对部分分析模型,输入限制更严格。 + ### 示例