feat(gpt): add sample autoencoder anomaly detection model, and some internal refactor. (#30227)

* fix(stream): support packaging enterprise edition.

* feat(gpt): support lstm and do some internal refactor, add sample autoencoder model.

* feat(gpt): support lstm and do some internal refactor, add sample autoencoder model.

* test(gpt): disable model case.

* test(gpt): disable model case.

* doc: fix title error in doc.
This commit is contained in:
Haojun Liao 2025-03-18 13:34:17 +08:00 committed by GitHub
parent 394f64a5a5
commit 8f89aec7cb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 127 additions and 36 deletions

View File

@ -0,0 +1,31 @@
---
title: "LSTM"
sidebar_label: "LSTM"
---
本节说明 LSTM 模型的使用方法。
## 功能概述
LSTM模型即长短期记忆网络(Long Short Term Memory),是一种特殊的循环神经网络,适用于处理时间序列数据、自然语言处理等任务,通过其独特的门控机制,能够有效捕捉长期依赖关系,
解决传统RNN的梯度消失问题从而对序列数据进行准确预测不过它不直接提供计算的置信区间范围结果。
完整的调用SQL语句如下
```SQL
SELECT _frowts, FORECAST(i32, "algo=lstm,alpha=95,period=10,start_p=1,max_p=5,start_q=1,max_q=5") from foo
```
```json5
{
"rows": fc_rows, // 返回结果的行数
"period": period, // 返回结果的周期性,同输入
"alpha": alpha, // 返回结果的置信区间,同输入
"algo": "lstm", // 返回结果使用的算法
"mse": mse, // 拟合输入时间序列时候生成模型的最小均方误差(MSE)
"res": res // 列模式的结果
}
```
### 参考文献
- [1] Hochreiter S. Long Short-term Memory[J]. Neural Computation MIT-Press, 1997.

View File

@ -3,7 +3,9 @@ title: "机器学习算法"
sidebar_label: "机器学习算法"
---
Autoencoder<sup>[1]</sup>: TDgpt 内置使用自编码器Autoencoder的异常检测算法对周期性的时间序列数据具有较好的检测结果。使用该模型需要针对输入时序数据进行预训练同时将训练完成的模型保存在到服务目录 `ad_autoencoder` 中,然后在 SQL 语句中指定调用该算法模型即可使用。
Autoencoder<sup>[1]</sup>: TDgpt 内置使用自编码器Autoencoder的异常检测算法
对周期性的时间序列数据具有较好的检测结果。使用该模型需要针对输入时序数据进行预训练,
同时将训练完成的模型保存在到服务目录 `ad_autoencoder` 中,然后在 SQL 语句中指定调用该算法模型即可使用。
```SQL
--- 在 options 中增加 model 的名称ad_autoencoder_foo 针对 foo 数据集(表)训练的采用自编码器的异常检测模型进行异常检测

View File

@ -4,6 +4,7 @@
import os.path
import joblib
import keras
import numpy as np
import pandas as pd
@ -13,8 +14,8 @@ from taosanalytics.util import create_sequences
class _AutoEncoderDetectionService(AbstractAnomalyDetectionService):
name = 'ad_encoder'
desc = "anomaly detection based on auto encoder"
name = 'sample_ad_model'
desc = "sample anomaly detection model based on auto encoder"
def __init__(self):
super().__init__()
@ -25,7 +26,7 @@ class _AutoEncoderDetectionService(AbstractAnomalyDetectionService):
self.threshold = None
self.time_interval = None
self.model = None
self.dir = 'ad_autoencoder'
self.dir = 'sample-ad-autoencoder'
self.root_path = conf.get_model_directory()
@ -61,11 +62,6 @@ class _AutoEncoderDetectionService(AbstractAnomalyDetectionService):
# Detect all the samples which are anomalies.
anomalies = mae > self.threshold
# syslogger.log_inst(
# "Number of anomaly samples: %f, Indices of anomaly samples:{}".
# format(np.sum(anomalies), np.where(anomalies))
# )
# data i is an anomaly if samples [(i - timesteps + 1) to (i)] are anomalies
ad_indices = []
for data_idx in range(self.time_interval - 1,
@ -82,13 +78,13 @@ class _AutoEncoderDetectionService(AbstractAnomalyDetectionService):
name = params['model']
module_file_path = f'{self.root_path}/{name}.dat'
module_file_path = f'{self.root_path}/{name}.keras'
module_info_path = f'{self.root_path}/{name}.info'
app_logger.log_inst.info("try to load module:%s", module_file_path)
if os.path.exists(module_file_path):
self.model = joblib.load(module_file_path)
self.model = keras.models.load_model(module_file_path)
else:
app_logger.log_inst.error("failed to load autoencoder model file: %s", module_file_path)
raise FileNotFoundError(f"{module_file_path} not found")

View File

@ -68,24 +68,6 @@ class _ArimaService(AbstractForecastService):
fc = model.predict(n_periods=fc_rows, return_conf_int=self.return_conf,
alpha=self.conf)
# plt.plot(source_data, label='training')
# plt.plot(xrange, actual_data, label='actual')
# fc_list = fc.tolist()
# fc_without_diff = restore_from_diff(self.list, fc_list, 2)
# print(fc_without_diff)
# plt.plot(xrange, fc_without_diff, label='fc')
# residuals = pd.DataFrame(model.arima_res_.resid)
# wn = is_white_noise(residuals)
# print("residual is white noise:", wn)
# fig, ax = plt.subplots(1, 2)
# residuals.plot(title="Residuals", ax=ax[0])
# residuals.plot(kind='kde', title='Density', ax=ax[1])
# plt.show()
res1 = [fc[0].tolist(), fc[1][:, 0].tolist(),
fc[1][:, 1].tolist()] if self.return_conf else [fc.tolist()]

View File

@ -0,0 +1,81 @@
# encoding:utf-8
# pylint: disable=c0103
""" auto encoder algorithms to detect anomaly for time series data"""
import os.path
import keras
from taosanalytics.algo.forecast import insert_ts_list
from taosanalytics.conf import app_logger, conf
from taosanalytics.service import AbstractForecastService
class _LSTMService(AbstractForecastService):
name = 'sample_forecast_model'
desc = "sample forecast model based on LSTM"
def __init__(self):
super().__init__()
self.table_name = None
self.mean = None
self.std = None
self.threshold = None
self.time_interval = None
self.model = None
self.dir = 'sample-fc-lstm'
self.root_path = conf.get_model_directory()
self.root_path = self.root_path + f'/{self.dir}/'
if not os.path.exists(self.root_path):
app_logger.log_inst.error(
"%s ad algorithm failed to locate default module directory:"
"%s, not active", self.__class__.__name__, self.root_path)
else:
app_logger.log_inst.info("%s ad algorithm root path is: %s", self.__class__.__name__,
self.root_path)
def execute(self):
if self.input_is_empty():
return []
if self.model is None:
raise FileNotFoundError("not load autoencoder model yet, or load model failed")
res = self.model.predict(self.list)
insert_ts_list(res, self.start_ts, self.time_step, self.fc_rows)
if self.return_conf:
res1 = [res.tolist(), res.tolist(), res.tolist()], None
else:
res1 = [res.tolist()], None
# add the conf range if required
return {
"mse": None,
"res": res1
}
def set_params(self, params):
if "model" not in params:
raise ValueError("model needs to be specified")
name = params['model']
module_file_path = f'{self.root_path}/{name}.keras'
# module_info_path = f'{self.root_path}/{name}.info'
app_logger.log_inst.info("try to load module:%s", module_file_path)
if os.path.exists(module_file_path):
self.model = keras.models.load_model(module_file_path)
else:
app_logger.log_inst.error("failed to load LSTM model file: %s", module_file_path)
raise FileNotFoundError(f"{module_file_path} not found")
def get_params(self):
return {"dir": self.dir + '/*'}

View File

@ -141,15 +141,14 @@ class AnomalyDetectionTest(unittest.TestCase):
def test_autoencoder_ad(self):
"""for local test only, disabled it in github action"""
pass
pass
# data = self.__load_remote_data_for_ad()
#
# s = loader.get_service("ad_encoder")
# s = loader.get_service("sample_ad_model")
# s.set_input_list(data)
#
# try:
# s.set_params({"model": "ad_encoder_"})
# s.set_params({"model": "sample-ad-autoencoder"})
# except ValueError as e:
# app_logger.log_inst.error(f"failed to set the param for auto_encoder algorithm, reason:{e}")
# return
@ -157,9 +156,9 @@ class AnomalyDetectionTest(unittest.TestCase):
# r = s.execute()
#
# num_of_error = -(sum(filter(lambda x: x == -1, r)))
# self.assertEqual(num_of_error, 109)
#
# draw_ad_results(data, r, "autoencoder")
#
# self.assertEqual(num_of_error, 109)
def test_get_all_services(self):
"""Test get all services"""

View File

@ -99,7 +99,7 @@ class ServiceTest(unittest.TestCase):
if item["type"] == "anomaly-detection":
self.assertEqual(len(item["algo"]), 6)
else:
self.assertEqual(len(item["algo"]), 2)
self.assertEqual(len(item["algo"]), 3)
if __name__ == '__main__':