add TSZ and ADT-FSE algorithm

This commit is contained in:
lx1zhong 2023-09-15 14:30:23 +08:00
parent 5a556ef33a
commit 6da4088012
123 changed files with 63174 additions and 10 deletions

View File

@ -83,6 +83,16 @@ ELSE ()
SET(TAOS_LIB taos)
ENDIF ()
# build TSZ by default
IF ("${TSZ_ENABLED}" MATCHES "false")
set(VAR_TSZ "" CACHE INTERNAL "global variant empty" )
ELSE()
# define add
MESSAGE(STATUS "build with TSZ enabled")
ADD_DEFINITIONS(-DTD_TSZ)
set(VAR_TSZ "TSZ" CACHE INTERNAL "global variant tsz" )
ENDIF()
IF (TD_WINDOWS)
MESSAGE("${Yellow} set compiler flag for Windows! ${ColourReset}")
SET(COMMON_FLAGS "/w /D_WIN32 /DWIN32 /Zi /MTd")

View File

@ -163,6 +163,7 @@ extern double tsFPrecision;
extern double tsDPrecision;
extern uint32_t tsMaxRange;
extern uint32_t tsCurRange;
extern bool tsIfAdtFse;
extern char tsCompressor[];
// tfs

51
include/td_sz.h Normal file
View File

@ -0,0 +1,51 @@
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _TD_SZ_H
#define _TD_SZ_H
#include "defines.h"
#ifdef __cplusplus
extern "C" {
#endif
void cost_start();
double cost_end(const char* tag);
//
// Init success return 1 else 0
//
void tdszInit(double fPrecision, double dPrecision, unsigned int maxIntervals, unsigned int intervals, int ifAdtFse, const char* compressor);
//
// compress interface to tdengine return value is count of output with bytes
//
int tdszCompress(int type, const char * input, const int nelements, const char * output);
//
// decompress interface to tdengine return value is count of output with bytes
//
int tdszDecompress(int type, const char * input, int compressedSize, const int nelements, const char * output);
//
// Exit call
//
void tdszExit();
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _SZ_H ----- */

View File

@ -57,6 +57,11 @@ extern bool lossyDouble;
int32_t tsCompressInit();
void tsCompressExit();
int32_t tsCompressFloatLossyImp(const char *const input, const int32_t nelements, char *const output);
int32_t tsDecompressFloatLossyImp(const char *const input, int32_t compressedSize, const int32_t nelements, char *const output);
int32_t tsCompressDoubleLossyImp(const char *const input, const int32_t nelements, char *const output);
int32_t tsDecompressDoubleLossyImp(const char *const input, int32_t compressedSize, const int32_t nelements, char *const output);
static FORCE_INLINE int32_t tsCompressFloatLossy(const char *const input, int32_t inputSize, const int32_t nelements,
char *const output, int32_t outputSize, char algorithm,
char *const buffer, int32_t bufferSize) {

View File

@ -43,6 +43,7 @@ typedef enum {
CFG_DTYPE_INT32,
CFG_DTYPE_INT64,
CFG_DTYPE_FLOAT,
CFG_DTYPE_DOUBLE,
CFG_DTYPE_STRING,
CFG_DTYPE_DIR,
CFG_DTYPE_LOCALE,
@ -64,6 +65,7 @@ typedef struct SConfigItem {
union {
bool bval;
float fval;
double dval;
int32_t i32;
int64_t i64;
char *str;
@ -102,6 +104,7 @@ int32_t cfgAddBool(SConfig *pCfg, const char *name, bool defaultVal, int8_t scop
int32_t cfgAddInt32(SConfig *pCfg, const char *name, int32_t defaultVal, int64_t minval, int64_t maxval, int8_t scope);
int32_t cfgAddInt64(SConfig *pCfg, const char *name, int64_t defaultVal, int64_t minval, int64_t maxval, int8_t scope);
int32_t cfgAddFloat(SConfig *pCfg, const char *name, float defaultVal, double minval, double maxval, int8_t scope);
int32_t cfgAddDouble(SConfig *pCfg, const char *name, double defaultVal, double minval, double maxval, int8_t scope);
int32_t cfgAddString(SConfig *pCfg, const char *name, const char *defaultVal, int8_t scope);
int32_t cfgAddDir(SConfig *pCfg, const char *name, const char *defaultVal, int8_t scope);
int32_t cfgAddLocale(SConfig *pCfg, const char *name, const char *defaultVal, int8_t scope);

View File

@ -20,6 +20,7 @@
#include "tgrant.h"
#include "tlog.h"
#include "tmisce.h"
#include "defines.h"
#if defined(CUS_NAME) || defined(CUS_PROMPT) || defined(CUS_EMAIL)
#include "cus_name.h"
@ -211,14 +212,15 @@ int64_t tsTickPerMin[] = {60000L, 60000000L, 60000000000L};
*/
int64_t tsTickPerHour[] = {3600000L, 3600000000L, 3600000000000L};
// lossy compress 6
// lossy compress 7
char tsLossyColumns[32] = ""; // "float|double" means all float and double columns can be lossy compressed. set empty
// can close lossy compress.
// below option can take effect when tsLossyColumns not empty
double tsFPrecision = 1E-8; // float column precision
double tsDPrecision = 1E-16; // double column precision
uint32_t tsMaxRange = 500; // max range
uint32_t tsCurRange = 100; // range
uint32_t tsMaxRange = 500; // max quantization intervals
uint32_t tsCurRange = 100; // current quantization intervals
bool tsIfAdtFse = true; // ADT-FSE algorithom or original huffman algorithom
char tsCompressor[32] = "ZSTD_COMPRESSOR"; // ZSTD_COMPRESSOR or GZIP_COMPRESSOR
// udf
@ -646,6 +648,14 @@ static int32_t taosAddServerCfg(SConfig *pCfg) {
if (cfgAddInt32(pCfg, "cacheLazyLoadThreshold", tsCacheLazyLoadThreshold, 0, 100000, CFG_SCOPE_SERVER) != 0)
return -1;
if (cfgAddString(pCfg, "LossyColumns", tsLossyColumns, CFG_SCOPE_SERVER) != 0) return -1;
if (cfgAddDouble(pCfg, "FPrecision", tsFPrecision, 0.0f, 1000000.0f, CFG_SCOPE_SERVER) != 0) return -1;
if (cfgAddDouble(pCfg, "DPrecision", tsDPrecision, 0.0f, 1000000.0f, CFG_SCOPE_SERVER) != 0) return -1;
if (cfgAddInt32(pCfg, "MaxRange", tsMaxRange, 0, 65536, CFG_SCOPE_SERVER) != 0) return -1;
if (cfgAddInt32(pCfg, "CurRange", tsCurRange, 0, 65536, CFG_SCOPE_SERVER) != 0) return -1;
if (cfgAddBool(pCfg, "IfAdtFse", tsIfAdtFse, CFG_SCOPE_SERVER) != 0) return -1;
if (cfgAddString(pCfg, "Compressor", tsCompressor, CFG_SCOPE_SERVER) != 0) return -1;
if (cfgAddBool(pCfg, "filterScalarMode", tsFilterScalarMode, CFG_SCOPE_SERVER) != 0) return -1;
if (cfgAddInt32(pCfg, "keepTimeOffset", tsKeepTimeOffset, 0, 23, CFG_SCOPE_SERVER) != 0) return -1;
if (cfgAddInt32(pCfg, "maxStreamBackendCache", tsMaxStreamBackendCache, 16, 1024, CFG_SCOPE_SERVER) != 0) return -1;
@ -1060,6 +1070,15 @@ static int32_t taosSetServerCfg(SConfig *pCfg) {
tsCacheLazyLoadThreshold = cfgGetItem(pCfg, "cacheLazyLoadThreshold")->i32;
tstrncpy(tsLossyColumns, cfgGetItem(pCfg, "LossyColumns")->str, sizeof(tsLossyColumns));
tsFPrecision = cfgGetItem(pCfg, "FPrecision")->fval;
tsDPrecision = cfgGetItem(pCfg, "DPrecision")->dval;
tsMaxRange = cfgGetItem(pCfg, "MaxRange")->i32;
tsCurRange = cfgGetItem(pCfg, "CurRange")->i32;
tsIfAdtFse = cfgGetItem(pCfg, "IfAdtFse")->bval;
tstrncpy(tsCompressor, cfgGetItem(pCfg, "Compressor")->str, sizeof(tsCompressor));
tsDisableStream = cfgGetItem(pCfg, "disableStream")->bval;
tsStreamBufferSize = cfgGetItem(pCfg, "streamBufferSize")->i64;

View File

@ -111,6 +111,11 @@ int32_t dmInitDnode(SDnode *pDnode) {
goto _OVER;
}
#ifdef TD_TSZ
// compress module init
tsCompressInit();
#endif
pDnode->wrappers[DNODE].func = dmGetMgmtFunc();
pDnode->wrappers[MNODE].func = mmGetMgmtFunc();
pDnode->wrappers[VNODE].func = vmGetMgmtFunc();
@ -180,6 +185,12 @@ void dmCleanupDnode(SDnode *pDnode) {
streamMetaCleanup();
indexCleanup();
taosConvDestroy();
#ifdef TD_TSZ
// compress destroy
tsCompressExit();
#endif
dDebug("dnode is closed, ptr:%p", pDnode);
}

View File

@ -18,12 +18,13 @@ target_include_directories(
PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}/inc"
PRIVATE "${TD_SOURCE_DIR}/include/common"
PRIVATE "${GRANT_CFG_INCLUDE_DIR}"
PRIVATE "${TD_SOURCE_DIR}/utils/TSZ/sz/inc"
)
target_link_libraries(
util
PUBLIC os
PUBLIC lz4_static
PUBLIC api cjson geos_c
PUBLIC api cjson geos_c TSZ
)
if(${BUILD_TEST})

View File

@ -52,6 +52,7 @@
#include "lz4.h"
#include "tRealloc.h"
#include "tlog.h"
#include "tglobal.h"
#ifdef TD_TSZ
#include "td_sz.h"
@ -72,18 +73,18 @@ bool lossyDouble = false;
// init call
int32_t tsCompressInit() {
// config
if (lossyColumns[0] == 0) {
if (tsLossyColumns[0] == 0) {
lossyFloat = false;
lossyDouble = false;
return 0;
}
lossyFloat = strstr(lossyColumns, "float") != NULL;
lossyDouble = strstr(lossyColumns, "double") != NULL;
lossyFloat = strstr(tsLossyColumns, "float") != NULL;
lossyDouble = strstr(tsLossyColumns, "double") != NULL;
if (lossyFloat == false && lossyDouble == false) return 0;
tdszInit(fPrecision, dPrecision, maxRange, curRange, Compressor);
tdszInit(tsFPrecision, tsDPrecision, tsMaxRange, tsCurRange, (int)tsIfAdtFse, tsCompressor);
if (lossyFloat) uTrace("lossy compression float is opened. ");
if (lossyDouble) uTrace("lossy compression double is opened. ");
return 1;
@ -2377,7 +2378,7 @@ int32_t tsCompressFloat(void *pIn, int32_t nIn, int32_t nEle, void *pOut, int32_
int32_t tsDecompressFloat(void *pIn, int32_t nIn, int32_t nEle, void *pOut, int32_t nOut, uint8_t cmprAlg, void *pBuf,
int32_t nBuf) {
#ifdef TD_TSZ
if (HEAD_ALGO(pIn[0]) == ALGO_SZ_LOSSY) {
if (HEAD_ALGO(((uint8_t *)pIn)[0]) == ALGO_SZ_LOSSY) {
// decompress lossy
return tsDecompressFloatLossyImp(pIn, nIn, nEle, pOut);
} else {
@ -2424,7 +2425,7 @@ int32_t tsCompressDouble(void *pIn, int32_t nIn, int32_t nEle, void *pOut, int32
int32_t tsDecompressDouble(void *pIn, int32_t nIn, int32_t nEle, void *pOut, int32_t nOut, uint8_t cmprAlg, void *pBuf,
int32_t nBuf) {
#ifdef TD_TSZ
if (HEAD_ALGO(input[0]) == ALGO_SZ_LOSSY) {
if (HEAD_ALGO(((uint8_t *)pIn)[0]) == ALGO_SZ_LOSSY) {
// decompress lossy
return tsDecompressDoubleLossyImp(pIn, nIn, nEle, pOut);
} else {

View File

@ -415,6 +415,16 @@ int32_t cfgAddFloat(SConfig *pCfg, const char *name, float defaultVal, double mi
return cfgAddItem(pCfg, &item, name);
}
int32_t cfgAddDouble(SConfig *pCfg, const char *name, double defaultVal, double minval, double maxval, int8_t scope) {
if (defaultVal < minval || defaultVal > maxval) {
terrno = TSDB_CODE_OUT_OF_RANGE;
return -1;
}
SConfigItem item = {.dtype = CFG_DTYPE_DOUBLE, .fval = defaultVal, .fmin = minval, .fmax = maxval, .scope = scope};
return cfgAddItem(pCfg, &item, name);
}
int32_t cfgAddString(SConfig *pCfg, const char *name, const char *defaultVal, int8_t scope) {
SConfigItem item = {.dtype = CFG_DTYPE_STRING, .scope = scope};
item.str = taosStrdup(defaultVal);

View File

@ -2,3 +2,7 @@
ADD_SUBDIRECTORY(tsim)
ADD_SUBDIRECTORY(test/c)
#ADD_SUBDIRECTORY(comparisonTest/tdengine)
IF (NOT "${TSZ_ENABLED}" MATCHES "false")
ADD_SUBDIRECTORY(TSZ)
ENDIF()

27
utils/TSZ/CMakeLists.txt Normal file
View File

@ -0,0 +1,27 @@
CMAKE_MINIMUM_REQUIRED(VERSION 3.0)
PROJECT(TDengine)
# include
INCLUDE_DIRECTORIES(sz/inc)
INCLUDE_DIRECTORIES(zstd/)
INCLUDE_DIRECTORIES(zstd/common/)
# source
AUX_SOURCE_DIRECTORY(sz/src SRC1)
AUX_SOURCE_DIRECTORY(zstd/dictBuilder SRC2)
AUX_SOURCE_DIRECTORY(zstd/common SRC3)
AUX_SOURCE_DIRECTORY(zstd/compress SRC4)
AUX_SOURCE_DIRECTORY(zstd/decompress SRC5)
AUX_SOURCE_DIRECTORY(zstd/deprecated SRC6)
AUX_SOURCE_DIRECTORY(zstd/legacy SRC7)
# archive
ADD_LIBRARY(TSZ STATIC ${SRC1} ${SRC2} ${SRC3} ${SRC4} ${SRC5} ${SRC6} ${SRC7})
TARGET_INCLUDE_DIRECTORIES(TSZ PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/sz/inc ${TD_SOURCE_DIR}/include)
# windows ignore warning
IF (TD_WINDOWS)
SET_TARGET_PROPERTIES(TSZ PROPERTIES COMPILE_FLAGS -w)
ENDIF ()

29
utils/TSZ/LICENSE Normal file
View File

@ -0,0 +1,29 @@
BSD 3-Clause License
Copyright (c) 2021, taosdata
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

39
utils/TSZ/README.md Normal file
View File

@ -0,0 +1,39 @@
# TSZ
Error-bounded Lossy Data Compressor For Float/Double
TSZ algorithm is come from SZ algorithm, Github url is https://github.com/szcompressor.
Bellow is aspect of improvement :
1) Better speed and size
SZ head size about 24 bytes, we are reduced to 2 bytes.
we delete some no use code and some unnecessary function could be droped.
2) Support multi-threads, interface is thread-safety.
3) Remove 2D 3D 4D 5D function, only 1D be remained.
4) Remove int8 int16 int32 and other datatype, only float double be remained.
5) Optimize code speed
6) Other optimize...
After modify, TSZ become faster、smaller and independent. TSZ more suitable for small block data compression.
## ADT-FSE
ADT-FSE is an optimization algorithm of TSZ based on timeseries database scenario, which can provide higher compression rate and faster compression and decompression speed for small files.
Usage:
By default, ADT-FSE algorithm is enabled. Control it by `ifAdtFse` configuration.
Citation:
```
@inproceedings{
adtfse_sc2023,
author = {Tao Lu, Yu Zhong, Zibin Sun, Xiang Chen, You Zhou, Fei Wu, Ying Yang, Yunxin Huang, and Yafei Yang},
title = {ADT-FSE: A New Encoder for SZ},
year = {2023},
publisher = {IEEE Press},
booktitle = {Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis},
location = {Denver, Colorado},
series = {SC'23}
}
```

View File

@ -0,0 +1,47 @@
/**
* @file ByteToolkit.h
* @author Sheng Di
* @date July, 2017
* @brief Header file for the ByteToolkit.c.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _ByteToolkit_H
#define _ByteToolkit_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdio.h>
int bytesToInt_bigEndian(unsigned char* bytes);
void intToBytes_bigEndian(unsigned char *b, unsigned int num);
long bytesToLong_bigEndian(unsigned char* b);
void longToBytes_bigEndian(unsigned char *b, long num);
short getExponent_float(float value);
short getPrecisionReqLength_float(float precision);
short getExponent_double(double value);
short getPrecisionReqLength_double(double precision);
float bytesToFloat(unsigned char* bytes);
void floatToBytes(unsigned char *b, float num);
double bytesToDouble(unsigned char* bytes);
void doubleToBytes(unsigned char *b, double num);
int getMaskRightCode(int m);
int getLeftMovingCode(int kMod8);
int getRightMovingSteps(int kMod8, int resiBitLength);
int getRightMovingCode(int kMod8, int resiBitLength);
size_t bytesToSize(unsigned char* bytes, int size_type);
void sizeToBytes(unsigned char* outBytes, size_t size, int size_type);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _ByteToolkit_H ----- */

View File

@ -0,0 +1,75 @@
/**
* @file CompressElement.h
* @author Sheng Di
* @date April, 2016
* @brief Header file for Compress Elements such as DoubleCompressELement.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdint.h>
#ifndef _CompressElement_H
#define _CompressElement_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct DoubleValueCompressElement
{
double data;
long curValue;
unsigned char curBytes[8]; //big_endian
int reqBytesLength;
int resiBitsLength;
} DoubleValueCompressElement;
typedef struct FloatValueCompressElement
{
float data; // diffValue + medianValue
int curValue; // diff int value
unsigned char curBytes[4]; // dif bytes value diffValue->iValue big_endian
int reqBytesLength;
int resiBitsLength;
} FloatValueCompressElement;
typedef struct LossyCompressionElement
{
int leadingZeroBytes; //0,1,2,or 3
unsigned char integerMidBytes[8];
int integerMidBytes_Length; //they are mid_bits actually
//char curBytes[8];
//int curBytes_Length; //4 for single_precision or 8 for double_precision
int resMidBitsLength;
int residualMidBits;
} LossyCompressionElement;
short computeGroupNum_float(float value);
short computeGroupNum_double(double value);
void listAdd_double(double last3CmprsData[3], double value);
void listAdd_float(float last3CmprsData[3], float value);
void listAdd_int(int64_t last3CmprsData[3], int64_t value);
void listAdd_int32(int32_t last3CmprsData[3], int32_t value);
void listAdd_float_group(float *groups, int *flags, char groupNum, float oriValue, float decValue, char* curGroupID);
void listAdd_double_group(double *groups, int *flags, char groupNum, double oriValue, double decValue, char* curGroupID);
int validPrediction_double(double minErr, double precision);
int validPrediction_float(float minErr, float precision);
double* generateGroupErrBounds(int errorBoundMode, double realPrecision, double pwrErrBound);
int generateGroupMaxIntervalCount(double* groupErrBounds);
void new_LossyCompressionElement(LossyCompressionElement *lce, int leadingNum, unsigned char* intMidBytes,
int intMidBytes_Length, int resiMidBitsLength, int resiBits);
void updateLossyCompElement_Double(unsigned char* curBytes, unsigned char* preBytes,
int reqBytesLength, int resiBitsLength, LossyCompressionElement *lce);
void updateLossyCompElement_Float(unsigned char* curBytes, unsigned char* preBytes,
int reqBytesLength, int resiBitsLength, LossyCompressionElement *lce);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _CompressElement_H ----- */

View File

@ -0,0 +1,36 @@
/**
* @file DynamicByteArray.h
* @author Sheng Di
* @date April, 2016
* @brief Header file for Dynamic Byte Array.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _DynamicByteArray_H
#define _DynamicByteArray_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdio.h>
typedef struct DynamicByteArray
{
unsigned char* array;
size_t size;
size_t capacity;
} DynamicByteArray;
void new_DBA(DynamicByteArray **dba, size_t cap);
void convertDBAtoBytes(DynamicByteArray *dba, unsigned char** bytes);
void free_DBA(DynamicByteArray *dba);
unsigned char getDBA_Data(DynamicByteArray *dba, size_t pos);
void addDBA_Data(DynamicByteArray *dba, unsigned char value);
void memcpyDBA_Data(DynamicByteArray *dba, unsigned char* data, size_t length);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _DynamicByteArray_H ----- */

View File

@ -0,0 +1,35 @@
/**
* @file DynamicIntArray.h
* @author Sheng Di
* @date April, 2016
* @brief Header file for Dynamic Int Array.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _DynamicIntArray_H
#define _DynamicIntArray_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdio.h>
typedef struct DynamicIntArray
{
unsigned char* array; //char* (one byte) is enough, don't have to be int*
size_t size;
size_t capacity;
} DynamicIntArray;
void new_DIA(DynamicIntArray **dia, size_t cap);
void convertDIAtoInts(DynamicIntArray *dia, unsigned char **data);
void free_DIA(DynamicIntArray *dia);
int getDIA_Data(DynamicIntArray *dia, size_t pos);
void addDIA_Data(DynamicIntArray *dia, int value);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _DynamicIntArray_H ----- */

View File

@ -0,0 +1,71 @@
/**
* @file Huffman.h
* @author Sheng Di
* @date Aug., 2016
* @brief Header file for the exponential segment constructor.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _Huffman_H
#define _Huffman_H
#ifdef __cplusplus
extern "C" {
#endif
//Note: when changing the following settings, intvCapacity in sz.h should be changed as well.
//#define allNodes 131072
//#define stateNum 65536
typedef struct node_t {
struct node_t *left, *right;
size_t freq;
char t; //in_node:0; otherwise:1
unsigned int c;
} *node;
typedef struct HuffmanTree {
unsigned int stateNum;
unsigned int allNodes;
struct node_t* pool;
node *qqq, *qq; //the root node of the HuffmanTree is qq[1]
int n_nodes; //n_nodes is for compression
int qend;
unsigned long **code;
unsigned char *cout;
int n_inode; //n_inode is for decompression
int maxBitCount;
} HuffmanTree;
HuffmanTree* createHuffmanTree(int stateNum);
HuffmanTree* createDefaultHuffmanTree();
node new_node(HuffmanTree *huffmanTree, size_t freq, unsigned int c, node a, node b);
node new_node2(HuffmanTree *huffmanTree, unsigned int c, unsigned char t);
void qinsert(HuffmanTree *huffmanTree, node n);
node qremove(HuffmanTree *huffmanTree);
void build_code(HuffmanTree *huffmanTree, node n, int len, unsigned long out1, unsigned long out2);
void init(HuffmanTree *huffmanTree, int *s, size_t length);
void init_static(HuffmanTree *huffmanTree, int *s, size_t length);
void encode(HuffmanTree *huffmanTree, int *s, size_t length, unsigned char *out, size_t *outSize);
void decode(unsigned char *s, size_t targetLength, node t, int *out);
void pad_tree_uchar(HuffmanTree* huffmanTree, unsigned char* L, unsigned char* R, unsigned int* C, unsigned char* t, unsigned int i, node root);
void pad_tree_ushort(HuffmanTree* huffmanTree, unsigned short* L, unsigned short* R, unsigned int* C, unsigned char* t, unsigned int i, node root);
void pad_tree_uint(HuffmanTree* huffmanTree, unsigned int* L, unsigned int* R, unsigned int* C, unsigned char* t, unsigned int i, node root);
unsigned int convert_HuffTree_to_bytes_anyStates(HuffmanTree* huffmanTree, int nodeCount, unsigned char** out);
void unpad_tree_uchar(HuffmanTree* huffmanTree, unsigned char* L, unsigned char* R, unsigned int* C, unsigned char *t, unsigned int i, node root);
void unpad_tree_ushort(HuffmanTree* huffmanTree, unsigned short* L, unsigned short* R, unsigned int* C, unsigned char* t, unsigned int i, node root);
void unpad_tree_uint(HuffmanTree* huffmanTree, unsigned int* L, unsigned int* R, unsigned int* C, unsigned char* t, unsigned int i, node root);
node reconstruct_HuffTree_from_bytes_anyStates(HuffmanTree *huffmanTree, unsigned char* bytes, int nodeCount);
void encode_withTree(HuffmanTree* huffmanTree, int *s, size_t length, unsigned char **out, size_t *outSize);
void decode_withTree(HuffmanTree* huffmanTree, unsigned char *s, size_t targetLength, int *out);
void SZ_ReleaseHuffman(HuffmanTree* huffmanTree);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,92 @@
/**
* @file TightDataPointStorageD.h
* @author Sheng Di
* @date April, 2016
* @brief Header file for the tight data point storage (TDPS).
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _TightDataPointStorageD_H
#define _TightDataPointStorageD_H
#include <stdbool.h>
#include "pub.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct TightDataPointStorageD
{
int ifAdtFse;
size_t dataSeriesLength;
int allSameData;
double realPrecision;
double medianValue;
char reqLength;
char radExpo; //used to compute reqLength based on segmented precisions in "pw_rel_compression"
double minLogValue;
int stateNum;
int allNodes;
size_t exactDataNum;
double reservedValue;
unsigned char* FseCode; // fse code of tp_code
size_t FseCode_size;
unsigned char* transCodeBits; // extra bitstream of transcoding
size_t transCodeBits_size;
unsigned char* typeArray; //its size is dataSeriesLength/4 (or xxx/4+1)
size_t typeArray_size;
unsigned char* leadNumArray; //its size is exactDataNum/4 (or exactDataNum/4+1)
size_t leadNumArray_size;
unsigned char* exactMidBytes;
size_t exactMidBytes_size;
unsigned char* residualMidBits;
size_t residualMidBits_size;
unsigned int intervals;
unsigned char isLossless; //a mark to denote whether it's lossless compression (1 is yes, 0 is no)
size_t segment_size;
unsigned char* raBytes;
size_t raBytes_size;
unsigned char plus_bits;
unsigned char max_bits;
} TightDataPointStorageD;
void new_TightDataPointStorageD_Empty(TightDataPointStorageD **self);
int new_TightDataPointStorageD_fromFlatBytes(TightDataPointStorageD **self, unsigned char* flatBytes, size_t flatBytesLength, sz_exedata* pde_exe, sz_params* pde_params);
void new_TightDataPointStorageD(TightDataPointStorageD **self,
size_t dataSeriesLength, size_t exactDataNum,
int* type, unsigned char* exactMidBytes, size_t exactMidBytes_size,
unsigned char* leadNumIntArray, //leadNumIntArray contains readable numbers....
unsigned char* resiMidBits, size_t resiMidBits_size,
unsigned char resiBitLength,
double realPrecision, double medianValue, char reqLength,
unsigned int intervals, unsigned char radExpo);
void convertTDPStoBytes_double(TightDataPointStorageD* tdps, unsigned char* bytes, unsigned char* dsLengthBytes, unsigned char sameByte);
bool convertTDPStoFlatBytes_double(TightDataPointStorageD *tdps, unsigned char* bytes, size_t *size);
void free_TightDataPointStorageD(TightDataPointStorageD *tdps);
void free_TightDataPointStorageD2(TightDataPointStorageD *tdps);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _TightDataPointStorageD_H ----- */

View File

@ -0,0 +1,97 @@
/**
* @file TightDataPointStorageF.h
* @author Sheng Di and Dingwen Tao
* @date Aug, 2016
* @brief Header file for the tight data point storage (TDPS).
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _TightDataPointStorageF_H
#define _TightDataPointStorageF_H
#include <stdio.h>
#include <stdbool.h>
#include "pub.h"
#include "bitstream.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct TightDataPointStorageF
{
int ifAdtFse;
size_t dataSeriesLength;
int allSameData;
double realPrecision; //it's used as the pwrErrBoundRatio when errBoundMode==PW_REL
float medianValue;
char reqLength;
char radExpo; //used to compute reqLength based on segmented precisions in "pw_rel_compression"
int stateNum;
int allNodes;
size_t exactDataNum;
float reservedValue;
float minLogValue;
unsigned char* FseCode; // fse code of tp_code
size_t FseCode_size;
unsigned char* transCodeBits; // extra bitstream of transcoding
size_t transCodeBits_size;
unsigned char* typeArray; //its size is dataSeriesLength/4 (or xxx/4+1)
size_t typeArray_size;
unsigned char* leadNumArray; //its size is exactDataNum/4 (or exactDataNum/4+1)
size_t leadNumArray_size;
unsigned char* exactMidBytes;
size_t exactMidBytes_size;
unsigned char* residualMidBits;
size_t residualMidBits_size;
unsigned int intervals; //quantization_intervals
unsigned char isLossless; //a mark to denote whether it's lossless compression (1 is yes, 0 is no)
size_t segment_size;
unsigned char* raBytes;
size_t raBytes_size;
unsigned char plus_bits;
unsigned char max_bits;
} TightDataPointStorageF;
void new_TightDataPointStorageF_Empty(TightDataPointStorageF **self);
int new_TightDataPointStorageF_fromFlatBytes(TightDataPointStorageF **self, unsigned char* flatBytes, size_t flatBytesLength, sz_exedata* pde_exe, sz_params* pde_params);
void new_TightDataPointStorageF(TightDataPointStorageF **self,
size_t dataSeriesLength, size_t exactDataNum,
int* type, unsigned char* exactMidBytes, size_t exactMidBytes_size,
unsigned char* leadNumIntArray, //leadNumIntArray contains readable numbers....
unsigned char* resiMidBits, size_t resiMidBits_size,
unsigned char resiBitLength,
double realPrecision, float medianValue, char reqLength, unsigned int intervals,
unsigned char radExpo);
void convertTDPStoBytes_float(TightDataPointStorageF* tdps, unsigned char* bytes, unsigned char* dsLengthBytes, unsigned char sameByte);
bool convertTDPStoFlatBytes_float(TightDataPointStorageF *tdps, unsigned char* bytes, size_t *size);
void free_TightDataPointStorageF(TightDataPointStorageF *tdps);
void free_TightDataPointStorageF2(TightDataPointStorageF *tdps);
void printTDPS(TightDataPointStorageF *tdps);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _TightDataPointStorageF_H ----- */

View File

@ -0,0 +1,33 @@
/**
* @file TypeManager.h
* @author Sheng Di
* @date July, 2017
* @brief Header file for the TypeManager.c.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _TypeManager_H
#define _TypeManager_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdio.h>
#include <stdint.h>
//TypeManager.c
void convertByteArray2IntArray_fast_2b(size_t stepLength, unsigned char* byteArray, size_t byteArrayLength, unsigned char **intArray);
size_t convertIntArray2ByteArray_fast_2b(unsigned char* timeStepType, size_t timeStepTypeLength, unsigned char **result);
int getLeftMovingSteps(size_t k, unsigned char resiBitLength);
size_t convertIntArray2ByteArray_fast_dynamic(unsigned char* timeStepType, unsigned char resiBitLength, size_t nbEle, unsigned char **bytes);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _TypeManager_H ----- */

39
utils/TSZ/sz/inc/conf.h Normal file
View File

@ -0,0 +1,39 @@
/**
* @file conf.h
* @author Sheng Di
* @date July, 2017
* @brief Header file for the conf.c.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _Conf_H
#define _Conf_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdio.h>
//
// set default value
//
void setDefaulParams(sz_exedata* exedata, sz_params* params);
//conf.c
void updateQuantizationInfo(int quant_intervals);
int SZ_ReadConf(const char* sz_cfgFile);
int SZ_LoadConf(const char* sz_cfgFile);
unsigned int roundUpToPowerOf2(unsigned int base);
double computeABSErrBoundFromPSNR(double psnr, double threshold, double value_range);
double computeABSErrBoundFromNORM_ERR(double normErr, size_t nbEle);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _Conf_H ----- */

View File

@ -0,0 +1,79 @@
/**
* @file dataCompression.h
* @author Sheng Di
* @date July, 2017
* @brief Header file for the dataCompression.c.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _DataCompression_H
#define _DataCompression_H
#ifdef __cplusplus
extern "C" {
#endif
#include "sz.h"
#include <stdio.h>
#include <stdbool.h>
#define computeMinMax(data) \
for(i=1;i<size;i++)\
{\
data_ = data[i];\
if(min>data_)\
min = data_;\
else if(max<data_)\
max = data_;\
}\
//dataCompression.c
double computeRangeSize_double(double* oriData, size_t size, double* valueRangeSize, double* medianValue);
float computeRangeSize_float(float* oriData, size_t size, float* valueRangeSize, float* medianValue);
double min_d(double a, double b);
double max_d(double a, double b);
float min_f(float a, float b);
float max_f(float a, float b);
double getRealPrecision_double(double valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status);
double getRealPrecision_float(float valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status);
double getRealPrecision_int(long valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status);
void symTransform_8bytes(unsigned char data[8]);
void symTransform_2bytes(unsigned char data[2]);
void symTransform_4bytes(unsigned char data[4]);
void compressSingleFloatValue(FloatValueCompressElement *vce, float tgtValue, float precision, float medianValue,
int reqLength, int reqBytesLength, int resiBitsLength);
void compressSingleDoubleValue(DoubleValueCompressElement *vce, double tgtValue, double precision, double medianValue,
int reqLength, int reqBytesLength, int resiBitsLength);
int compIdenticalLeadingBytesCount_double(unsigned char* preBytes, unsigned char* curBytes);
int compIdenticalLeadingBytesCount_float(unsigned char* preBytes, unsigned char* curBytes);
void addExactData(DynamicByteArray *exactMidByteArray, DynamicIntArray *exactLeadNumArray,
DynamicIntArray *resiBitArray, LossyCompressionElement *lce);
int getPredictionCoefficients(int layers, int dimension, int **coeff_array, int *status);
int computeBlockEdgeSize_3D(int segmentSize);
int computeBlockEdgeSize_2D(int segmentSize);
int generateLossyCoefficients_float(float* oriData, double precision, size_t nbEle, int* reqBytesLength, int* resiBitsLength, float* medianValue, float* decData);
int compressExactDataArray_float(float* oriData, double precision, size_t nbEle, unsigned char** leadArray, unsigned char** midArray, unsigned char** resiArray,
int reqLength, int reqBytesLength, int resiBitsLength, float medianValue);
void decompressExactDataArray_float(unsigned char* leadNum, unsigned char* exactMidBytes, unsigned char* residualMidBits, size_t nbEle, int reqLength, float medianValue, float** decData);
int generateLossyCoefficients_double(double* oriData, double precision, size_t nbEle, int* reqBytesLength, int* resiBitsLength, double* medianValue, double* decData);
int compressExactDataArray_double(double* oriData, double precision, size_t nbEle, unsigned char** leadArray, unsigned char** midArray, unsigned char** resiArray,
int reqLength, int reqBytesLength, int resiBitsLength, double medianValue);
void decompressExactDataArray_double(unsigned char* leadNum, unsigned char* exactMidBytes, unsigned char* residualMidBits, size_t nbEle, int reqLength, double medianValue, double** decData);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _DataCompression_H ----- */

108
utils/TSZ/sz/inc/defines.h Normal file
View File

@ -0,0 +1,108 @@
/**
* @file defines.h
* @author Sheng Di
* @date July, 2019
* @brief Header file for the dataCompression.c.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _SZ_DEFINES_H
#define _SZ_DEFINES_H
// define data format version
#define DATA_FROMAT_VER1 1 // curretn version
#define PASTRI 103
// #define HZ 102 //deprecated
#define SZ 101
#define SZ_Transpose 104
//prediction mode of temporal dimension based compression
#define SZ_PREVIOUS_VALUE_ESTIMATE 0
#define MIN_NUM_OF_ELEMENTS 10 //if the # elements <= 20, skip the compression
#define SZ_ABS 0
#define REL 1
#define VR_REL 1 //alternative name to REL
#define ABS_AND_REL 2
#define ABS_OR_REL 3
#define PSNR 4
#define NORM 5
#define PW_REL 10
#define ABS_AND_PW_REL 11
#define ABS_OR_PW_REL 12
#define REL_AND_PW_REL 13
#define REL_OR_PW_REL 14
#define SZ_FLOAT 0
#define SZ_DOUBLE 1
#define SZ_UINT8 2
#define SZ_INT8 3
#define SZ_UINT16 4
#define SZ_INT16 5
#define SZ_UINT32 6
#define SZ_INT32 7
#define SZ_UINT64 8
#define SZ_INT64 9
#define LITTLE_ENDIAN_DATA 0 //refers to the endian type of the data read from the disk
#define BIG_ENDIAN_DATA 1 //big_endian (ppc, max, etc.) ; little_endian (x86, x64, etc.)
#define LITTLE_ENDIAN_SYSTEM 0 //refers to the endian type of the system
#define BIG_ENDIAN_SYSTEM 1
#define DynArrayInitLen 1024
#define MIN_ZLIB_DEC_ALLOMEM_BYTES 1000000
//#define maxRangeRadius 32768
//#define maxRangeRadius 1048576//131072
#define SZ_BEST_SPEED 0
#define SZ_BEST_COMPRESSION 1
#define SZ_DEFAULT_COMPRESSION 2
#define SZ_TEMPORAL_COMPRESSION 3
#define SZ_NO_REGRESSION 0
#define SZ_WITH_LINEAR_REGRESSION 1
#define SZ_PWR_MIN_TYPE 0
#define SZ_PWR_AVG_TYPE 1
#define SZ_PWR_MAX_TYPE 2
#define SZ_FORCE_SNAPSHOT_COMPRESSION 0
#define SZ_FORCE_TEMPORAL_COMPRESSION 1
#define SZ_PERIO_TEMPORAL_COMPRESSION 2
//SUCCESS returning status
#define SZ_SUCCESS 0 //successful
#define SZ_FAILED -1 //Not successful
#define SZ_FERR -2 //Failed to open input file
#define SZ_TERR -3 //wrong data type (should be only float or double)
#define SZ_DERR -4 //dimension error
#define SZ_MERR -5 //sz_mode error
#define SZ_BERR -6 //bound-mode error (should be only SZ_ABS, REL, ABS_AND_REL, ABS_OR_REL, or PW_REL)
#define SZ_LITTER_ELEMENT -7
#define SZ_ALGORITHM_ERR -8
#define SZ_FORMAT_ERR -9
#define SZ_MAINTAIN_VAR_DATA 0
#define SZ_DESTROY_WHOLE_VARSET 1
#define GROUP_COUNT 16 //2^{16}=65536
// metaData remove some by tickduan
#define MetaDataByteLength 2 // original is 28 bytes
#define MetaDataByteLength_double 2 // original is 36 bytes
#define numOfBufferedSteps 1 //the number of time steps in the buffer
#define GZIP_COMPRESSOR 0 //i.e., ZLIB_COMPRSSOR
#define ZSTD_COMPRESSOR 1
#endif /* _SZ_DEFINES_H */

View File

@ -0,0 +1,171 @@
/*-------------------------------------------------------------------------*/
/**
@file dictionary.h
@author N. Devillard
@brief Implements a dictionary for string variables.
This module implements a simple dictionary object, i.e. a list
of string/string associations. This object is useful to store e.g.
informations retrieved from a configuration file (ini files).
*/
/*--------------------------------------------------------------------------*/
#ifndef _DICTIONARY_H_
#define _DICTIONARY_H_
/*---------------------------------------------------------------------------
Includes
---------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/*---------------------------------------------------------------------------
New types
---------------------------------------------------------------------------*/
#ifdef __cplusplus
extern "C" {
#endif
/*-------------------------------------------------------------------------*/
/**
@brief Dictionary object
This object contains a list of string/string associations. Each
association is identified by a unique string key. Looking up values
in the dictionary is speeded up by the use of a (hopefully collision-free)
hash function.
*/
/*-------------------------------------------------------------------------*/
typedef struct _dictionary_ {
int n ; /** Number of entries in dictionary */
int size ; /** Storage size */
char ** val ; /** List of string values */
char ** key ; /** List of string keys */
unsigned * hash ; /** List of hash values for keys */
} dictionary ;
/*---------------------------------------------------------------------------
Function prototypes
---------------------------------------------------------------------------*/
/*-------------------------------------------------------------------------*/
/**
@brief Compute the hash key for a string.
@param key Character string to use for key.
@return 1 unsigned int on at least 32 bits.
This hash function has been taken from an Article in Dr Dobbs Journal.
This is normally a collision-free function, distributing keys evenly.
The key is stored anyway in the struct so that collision can be avoided
by comparing the key itself in last resort.
*/
/*--------------------------------------------------------------------------*/
unsigned dictionary_hash(const char * key);
/*-------------------------------------------------------------------------*/
/**
@brief Create a new dictionary object.
@param size Optional initial size of the dictionary.
@return 1 newly allocated dictionary objet.
This function allocates a new dictionary object of given size and returns
it. If you do not know in advance (roughly) the number of entries in the
dictionary, give size=0.
*/
/*--------------------------------------------------------------------------*/
dictionary * dictionary_new(int size);
/*-------------------------------------------------------------------------*/
/**
@brief Delete a dictionary object
@param d dictionary object to deallocate.
@return void
Deallocate a dictionary object and all memory associated to it.
*/
/*--------------------------------------------------------------------------*/
void dictionary_del(dictionary * vd);
/*-------------------------------------------------------------------------*/
/**
@brief Get a value from a dictionary.
@param d dictionary object to search.
@param key Key to look for in the dictionary.
@param def Default value to return if key not found.
@return 1 pointer to internally allocated character string.
This function locates a key in a dictionary and returns a pointer to its
value, or the passed 'def' pointer if no such key can be found in
dictionary. The returned character pointer points to data internal to the
dictionary object, you should not try to free it or modify it.
*/
/*--------------------------------------------------------------------------*/
char * dictionary_get(dictionary * d, const char * key, char * def);
/*-------------------------------------------------------------------------*/
/**
@brief Set a value in a dictionary.
@param d dictionary object to modify.
@param key Key to modify or add.
@param val Value to add.
@return int 0 if Ok, anything else otherwise
If the given key is found in the dictionary, the associated value is
replaced by the provided one. If the key cannot be found in the
dictionary, it is added to it.
It is Ok to provide a NULL value for val, but NULL values for the dictionary
or the key are considered as errors: the function will return immediately
in such a case.
Notice that if you dictionary_set a variable to NULL, a call to
dictionary_get will return a NULL value: the variable will be found, and
its value (NULL) is returned. In other words, setting the variable
content to NULL is equivalent to deleting the variable from the
dictionary. It is not possible (in this implementation) to have a key in
the dictionary without value.
This function returns non-zero in case of failure.
*/
/*--------------------------------------------------------------------------*/
int dictionary_set(dictionary * vd, const char * key, const char * val);
/*-------------------------------------------------------------------------*/
/**
@brief Delete a key in a dictionary
@param d dictionary object to modify.
@param key Key to remove.
@return void
This function deletes a key in a dictionary. Nothing is done if the
key cannot be found.
*/
/*--------------------------------------------------------------------------*/
void dictionary_unset(dictionary * d, const char * key);
/*-------------------------------------------------------------------------*/
/**
@brief Dump a dictionary to an opened file pointer.
@param d Dictionary to dump
@param f Opened file pointer.
@return void
Dumps a dictionary onto an opened file pointer. Key pairs are printed out
as @c [Key]=[Value], one per line. It is Ok to provide stdout or stderr as
output file pointers.
*/
/*--------------------------------------------------------------------------*/
void dictionary_dump(dictionary * d, FILE * out);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,321 @@
/*-------------------------------------------------------------------------*/
/**
@file iniparser.h
@author N. Devillard
@brief Parser for ini files.
*/
/*--------------------------------------------------------------------------*/
#ifndef _INIPARSER_H_
#define _INIPARSER_H_
/*---------------------------------------------------------------------------
Includes
---------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/*
* The following #include is necessary on many Unixes but not Linux.
* It is not needed for Windows platforms.
* Uncomment it if needed.
*/
/* #include <unistd.h> */
#include "dictionary.h"
/*-------------------------------------------------------------------------*/
/**
@brief Get number of sections in a dictionary
@param d Dictionary to examine
@return int Number of sections found in dictionary
This function returns the number of sections found in a dictionary.
The test to recognize sections is done on the string stored in the
dictionary: a section name is given as "section" whereas a key is
stored as "section:key", thus the test looks for entries that do not
contain a colon.
This clearly fails in the case a section name contains a colon, but
this should simply be avoided.
This function returns -1 in case of error.
*/
/*--------------------------------------------------------------------------*/
int iniparser_getnsec(dictionary * d);
/*-------------------------------------------------------------------------*/
/**
@brief Get name for section n in a dictionary.
@param d Dictionary to examine
@param n Section number (from 0 to nsec-1).
@return Pointer to char string
This function locates the n-th section in a dictionary and returns
its name as a pointer to a string statically allocated inside the
dictionary. Do not free or modify the returned string!
This function returns NULL in case of error.
*/
/*--------------------------------------------------------------------------*/
char * iniparser_getsecname(dictionary * d, int n);
/*-------------------------------------------------------------------------*/
/**
@brief Save a dictionary to a loadable ini file
@param d Dictionary to dump
@param f Opened file pointer to dump to
@return void
This function dumps a given dictionary into a loadable ini file.
It is Ok to specify @c stderr or @c stdout as output files.
*/
/*--------------------------------------------------------------------------*/
void iniparser_dump_ini(dictionary * d, FILE * f);
/*-------------------------------------------------------------------------*/
/**
@brief Save a dictionary section to a loadable ini file
@param d Dictionary to dump
@param s Section name of dictionary to dump
@param f Opened file pointer to dump to
@return void
This function dumps a given section of a given dictionary into a loadable ini
file. It is Ok to specify @c stderr or @c stdout as output files.
*/
/*--------------------------------------------------------------------------*/
void iniparser_dumpsection_ini(dictionary * d, char * s, FILE * f);
/*-------------------------------------------------------------------------*/
/**
@brief Dump a dictionary to an opened file pointer.
@param d Dictionary to dump.
@param f Opened file pointer to dump to.
@return void
This function prints out the contents of a dictionary, one element by
line, onto the provided file pointer. It is OK to specify @c stderr
or @c stdout as output files. This function is meant for debugging
purposes mostly.
*/
/*--------------------------------------------------------------------------*/
void iniparser_dump(dictionary * d, FILE * f);
/*-------------------------------------------------------------------------*/
/**
@brief Get the number of keys in a section of a dictionary.
@param d Dictionary to examine
@param s Section name of dictionary to examine
@return Number of keys in section
*/
/*--------------------------------------------------------------------------*/
int iniparser_getsecnkeys(dictionary * d, char * s);
/*-------------------------------------------------------------------------*/
/**
@brief Get the number of keys in a section of a dictionary.
@param d Dictionary to examine
@param s Section name of dictionary to examine
@return pointer to statically allocated character strings
This function queries a dictionary and finds all keys in a given section.
Each pointer in the returned char pointer-to-pointer is pointing to
a string allocated in the dictionary; do not free or modify them.
This function returns NULL in case of error.
*/
/*--------------------------------------------------------------------------*/
char ** iniparser_getseckeys(dictionary * d, char * s);
/*-------------------------------------------------------------------------*/
/**
@brief Get the string associated to a key
@param d Dictionary to search
@param key Key string to look for
@param def Default value to return if key not found.
@return pointer to statically allocated character string
This function queries a dictionary for a key. A key as read from an
ini file is given as "section:key". If the key cannot be found,
the pointer passed as 'def' is returned.
The returned char pointer is pointing to a string allocated in
the dictionary, do not free or modify it.
*/
/*--------------------------------------------------------------------------*/
char * iniparser_getstring(dictionary * d, const char * key, char * def);
/*-------------------------------------------------------------------------*/
/**
@brief Get the string associated to a key, convert to an int
@param d Dictionary to search
@param key Key string to look for
@param notfound Value to return in case of error
@return integer
This function queries a dictionary for a key. A key as read from an
ini file is given as "section:key". If the key cannot be found,
the notfound value is returned.
Supported values for integers include the usual C notation
so decimal, octal (starting with 0) and hexadecimal (starting with 0x)
are supported. Examples:
- "42" -> 42
- "042" -> 34 (octal -> decimal)
- "0x42" -> 66 (hexa -> decimal)
Warning: the conversion may overflow in various ways. Conversion is
totally outsourced to strtol(), see the associated man page for overflow
handling.
Credits: Thanks to A. Becker for suggesting strtol()
*/
/*--------------------------------------------------------------------------*/
int iniparser_getint(dictionary * d, const char * key, int notfound);
/*-------------------------------------------------------------------------*/
/**
@brief Get the string associated to a key, convert to a long
@param d Dictionary to search
@param key Key string to look for
@param notfound Value to return in case of error
@return long
Credits: This function bases completely on int iniparser_getint and was
slightly modified to return long instead of int.
*/
/*--------------------------------------------------------------------------*/
long iniparser_getlint(dictionary * d, const char * key, int notfound);
/*-------------------------------------------------------------------------*/
/**
@brief Get the string associated to a key, convert to a double
@param d Dictionary to search
@param key Key string to look for
@param notfound Value to return in case of error
@return double
This function queries a dictionary for a key. A key as read from an
ini file is given as "section:key". If the key cannot be found,
the notfound value is returned.
*/
/*--------------------------------------------------------------------------*/
double iniparser_getdouble(dictionary * d, const char * key, double notfound);
/*-------------------------------------------------------------------------*/
/**
@brief Get the string associated to a key, convert to a boolean
@param d Dictionary to search
@param key Key string to look for
@param notfound Value to return in case of error
@return integer
This function queries a dictionary for a key. A key as read from an
ini file is given as "section:key". If the key cannot be found,
the notfound value is returned.
A true boolean is found if one of the following is matched:
- A string starting with 'y'
- A string starting with 'Y'
- A string starting with 't'
- A string starting with 'T'
- A string starting with '1'
A false boolean is found if one of the following is matched:
- A string starting with 'n'
- A string starting with 'N'
- A string starting with 'f'
- A string starting with 'F'
- A string starting with '0'
The notfound value returned if no boolean is identified, does not
necessarily have to be 0 or 1.
*/
/*--------------------------------------------------------------------------*/
int iniparser_getboolean(dictionary * d, const char * key, int notfound);
/*-------------------------------------------------------------------------*/
/**
@brief Set an entry in a dictionary.
@param ini Dictionary to modify.
@param entry Entry to modify (entry name)
@param val New value to associate to the entry.
@return int 0 if Ok, -1 otherwise.
If the given entry can be found in the dictionary, it is modified to
contain the provided value. If it cannot be found, -1 is returned.
It is Ok to set val to NULL.
*/
/*--------------------------------------------------------------------------*/
int iniparser_set(dictionary * ini, const char * entry, const char * val);
/*-------------------------------------------------------------------------*/
/**
@brief Delete an entry in a dictionary
@param ini Dictionary to modify
@param entry Entry to delete (entry name)
@return void
If the given entry can be found, it is deleted from the dictionary.
*/
/*--------------------------------------------------------------------------*/
void iniparser_unset(dictionary * ini, const char * entry);
/*-------------------------------------------------------------------------*/
/**
@brief Finds out if a given entry exists in a dictionary
@param ini Dictionary to search
@param entry Name of the entry to look for
@return integer 1 if entry exists, 0 otherwise
Finds out if a given entry exists in the dictionary. Since sections
are stored as keys with NULL associated values, this is the only way
of querying for the presence of sections in a dictionary.
*/
/*--------------------------------------------------------------------------*/
int iniparser_find_entry(dictionary * ini, const char * entry) ;
/*-------------------------------------------------------------------------*/
/**
@brief Parse an ini file and return an allocated dictionary object
@param ininame Name of the ini file to read.
@return Pointer to newly allocated dictionary
This is the parser for ini files. This function is called, providing
the name of the file to be read. It returns a dictionary object that
should not be accessed directly, but through accessor functions
instead.
The returned dictionary must be freed using iniparser_freedict().
*/
/*--------------------------------------------------------------------------*/
dictionary * iniparser_load(const char * ininame);
/*-------------------------------------------------------------------------*/
/**
@brief Free all memory associated to an ini dictionary
@param d Dictionary to free
@return void
Free all memory associated to an ini dictionary.
It is mandatory to call this function before the dictionary object
gets out of the current context.
*/
/*--------------------------------------------------------------------------*/
void iniparser_freedict(dictionary * d);
#endif

72
utils/TSZ/sz/inc/pub.h Normal file
View File

@ -0,0 +1,72 @@
/**
* @file sz.h
* @author Sheng Di
* @date April, 2015
* @brief Header file for the whole compressor.
* (C) 2015 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _PUB_H
#define _PUB_H
#include <stdio.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/* array meta data and compression parameters for SZ_Init_Params() */
typedef struct sz_params
{
int dataType;
int ifAdtFse; // 0 (ADT-FSE algorithm) or 1 (original Huffman encoding)
unsigned int max_quant_intervals; //max number of quantization intervals for quantization
unsigned int quantization_intervals;
unsigned int maxRangeRadius;
int sol_ID;// it's SZ or SZ_Transpose, unless the setting is PASTRI compression mode (./configure --enable-pastri)
int losslessCompressor;
int sampleDistance; //2 bytes
float predThreshold; // 2 bytes
int szMode; //* 0 (best speed) or 1 (better compression with Zstd/Gzip) or 3 temporal-dimension based compression
int errorBoundMode; //4bits (0.5byte), //SZ_ABS, REL, ABS_AND_REL, or ABS_OR_REL, PSNR, or PW_REL, PSNR
double absErrBound; //absolute error bound for float
double absErrBoundDouble; // for double
double relBoundRatio; //value range based relative error bound ratio
double psnr; //PSNR
double normErr;
double pw_relBoundRatio; //point-wise relative error bound
int segment_size; //only used for 2D/3D data compression with pw_relBoundRatio (deprecated)
int pwr_type; //only used for 2D/3D data compression with pw_relBoundRatio
int protectValueRange; //0 or 1
float fmin, fmax;
double dmin, dmax;
int snapshotCmprStep; //perform single-snapshot-based compression if time_step == snapshotCmprStep
int predictionMode;
int accelerate_pw_rel_compression;
int plus_bits;
int randomAccess;
int withRegression;
} sz_params;
typedef struct sz_exedata
{
char optQuantMode; //opt Quantization (0: fixed ; 1: optimized)
int intvCapacity; // the number of intervals for the linear-scaling quantization
int intvRadius; // the number of intervals for the radius of the quantization range (intvRadius=intvCapacity/2)
unsigned int SZ_SIZE_TYPE; //the length (# bytes) of the size_t in the system at runtime //4 or 8: sizeof(size_t)
} sz_exedata;
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _PUB_H ----- */

196
utils/TSZ/sz/inc/sz.h Normal file
View File

@ -0,0 +1,196 @@
/**
* @file sz.h
* @author Sheng Di
* @date April, 2015
* @brief Header file for the whole compressor.
* (C) 2015 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _SZ_H
#define _SZ_H
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <time.h> /* For time(), in seconds */
#include "pub.h"
#include "CompressElement.h"
#include "DynamicByteArray.h"
#include "DynamicIntArray.h"
#include "TightDataPointStorageD.h"
#include "TightDataPointStorageF.h"
#include "conf.h"
#include "dataCompression.h"
#include "ByteToolkit.h"
#include "TypeManager.h"
#include "sz_float.h"
#include "sz_double.h"
#include "szd_float.h"
#include "szd_double.h"
#include "utility.h"
#ifdef _WIN32
#define PATH_SEPARATOR ';'
#define INLINE
#else
#define PATH_SEPARATOR ':'
#define INLINE inline
#endif
#ifdef __cplusplus
extern "C" {
#endif
void cost_start();
double cost_end(const char* tag);
void show_rate( int in_len, int out_len);
//typedef char int8_t;
//typedef unsigned char uint8_t;
//typedef short int16_t;
//typedef unsigned short uint16_t;
//typedef int int32_t;
//typedef unsigned int uint32_t;
//typedef long int64_t;
//typedef unsigned long uint64_t;
#include "defines.h"
//Note: the following setting should be consistent with stateNum in Huffman.h
//#define intvCapacity 65536
//#define intvRadius 32768
//#define intvCapacity 131072
//#define intvRadius 65536
#define SZ_COMPUTE_1D_NUMBER_OF_BLOCKS( COUNT, NUM_BLOCKS, BLOCK_SIZE ) \
if (COUNT <= BLOCK_SIZE){ \
NUM_BLOCKS = 1; \
} \
else{ \
NUM_BLOCKS = COUNT / BLOCK_SIZE; \
} \
#define SZ_COMPUTE_2D_NUMBER_OF_BLOCKS( COUNT, NUM_BLOCKS, BLOCK_SIZE ) \
if (COUNT <= BLOCK_SIZE){ \
NUM_BLOCKS = 1; \
} \
else{ \
NUM_BLOCKS = COUNT / BLOCK_SIZE; \
} \
#define SZ_COMPUTE_3D_NUMBER_OF_BLOCKS( COUNT, NUM_BLOCKS, BLOCK_SIZE ) \
if (COUNT <= BLOCK_SIZE){ \
NUM_BLOCKS = 1; \
} \
else{ \
NUM_BLOCKS = COUNT / BLOCK_SIZE; \
} \
#define SZ_COMPUTE_BLOCKCOUNT( COUNT, NUM_BLOCKS, SPLIT_INDEX, \
EARLY_BLOCK_COUNT, LATE_BLOCK_COUNT ) \
EARLY_BLOCK_COUNT = LATE_BLOCK_COUNT = COUNT / NUM_BLOCKS; \
SPLIT_INDEX = COUNT % NUM_BLOCKS; \
if (0 != SPLIT_INDEX) { \
EARLY_BLOCK_COUNT = EARLY_BLOCK_COUNT + 1; \
} \
//typedef unsigned long unsigned long;
//typedef unsigned int uint;
typedef union lint16
{
unsigned short usvalue;
short svalue;
unsigned char byte[2];
} lint16;
typedef union lint32
{
int ivalue;
unsigned int uivalue;
unsigned char byte[4];
} lint32;
typedef union lint64
{
long lvalue;
unsigned long ulvalue;
unsigned char byte[8];
} lint64;
typedef union ldouble
{
double value;
unsigned long lvalue;
unsigned char byte[8];
} ldouble;
typedef union lfloat
{
float value;
unsigned int ivalue;
unsigned char byte[4];
} lfloat;
typedef struct sz_metadata
{
unsigned char ver; //only used for checking the version by calling SZ_GetMetaData()
int isConstant; //only used for checking if the data are constant values by calling SZ_GetMetaData()
int isLossless; //only used for checking if the data compression was lossless, used only by calling SZ_GetMetaData()
int sizeType; //only used for checking whether the size type is "int" or "long" in the compression, used only by calling SZ_GetMetaData()
size_t dataSeriesLength; //# number of data points in the dataset
int defactoNBBins; //real number of quantization bins
struct sz_params* conf_params; //configuration parameters
} sz_metadata;
/*We use a linked list to maintain time-step meta info for time-step based compression*/
typedef struct sz_tsc_metainfo
{
int totalNumOfSteps;
int currentStep;
char metadata_filename[256];
FILE *metadata_file;
unsigned char* bit_array; //sihuan added
size_t intersect_size; //sihuan added
int64_t* hist_index; //sihuan added: prestep index
} sz_tsc_metadata;
extern unsigned char versionNumber;
//-------------------key global variables--------------
extern int dataEndianType; //*endian type of the data read from disk
extern int sysEndianType; //*sysEndianType is actually set automatically.
extern sz_params *confparams_cpr;
extern sz_exedata *exe_params;
void SZ_Finalize();
int SZ_Init(const char *configFilePath);
int SZ_Init_Params(sz_params *params);
//
// compress output data to outData and return outSize
//
size_t SZ_compress_args(int dataType, void *data, size_t r1, unsigned char* outData, sz_params* params);
//
// decompress output data to outData and return outSize
//
size_t SZ_decompress(int dataType, unsigned char *bytes, size_t byteLength, size_t r1, unsigned char* outData);
void convertSZParamsToBytes(sz_params* params, unsigned char* result, char optQuantMode);
void convertBytesToSZParams(unsigned char* bytes, sz_params* params, sz_exedata* pde_exe);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _SZ_H ----- */

View File

@ -0,0 +1,47 @@
/**
* @file sz_double.h
* @author Sheng Di
* @date July, 2017
* @brief Header file for the sz_double.c.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _SZ_Double_H
#define _SZ_Double_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdio.h>
#include <stdbool.h>
unsigned char* SZ_skip_compress_double(double* data, size_t dataLength, size_t* outSize);
void computeReqLength_double(double realPrecision, short radExpo, int* reqLength, double* medianValue);
unsigned int optimize_intervals_double_1D(double *oriData, size_t dataLength, double realPrecision);
unsigned int optimize_intervals_double_1D_opt(double *oriData, size_t dataLength, double realPrecision);
TightDataPointStorageD* SZ_compress_double_1D_MDQ(double *oriData,
size_t dataLength, double realPrecision, double valueRangeSize, double medianValue_d);
void SZ_compress_args_double_StoreOriData(double* oriData, size_t dataLength, unsigned char* newByteData, size_t *outSize);
bool SZ_compress_args_double_NoCkRngeNoGzip_1D( unsigned char* newByteData, double *oriData, size_t dataLength, double realPrecision, size_t *outSize, double valueRangeSize, double medianValue_d);
void SZ_compress_args_double_withinRange(unsigned char* newByteData, double *oriData, size_t dataLength, size_t *outSize);
int SZ_compress_args_double(double *oriData, size_t r1, unsigned char* newByteData, size_t *outSize, sz_params* params);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _SZ_Double_H ----- */

View File

@ -0,0 +1,40 @@
/**
* @file sz_float.h
* @author Sheng Di
* @date July, 2017
* @brief Header file for the sz_float.c.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _SZ_Float_H
#define _SZ_Float_H
#ifdef __cplusplus
extern "C" {
#endif
void computeReqLength_float(double realPrecision, short radExpo, int* reqLength, float* medianValue);
unsigned int optimize_intervals_float_1D(float *oriData, size_t dataLength, double realPrecision);
unsigned int optimize_intervals_float_1D_opt(float *oriData, size_t dataLength, double realPrecision);
TightDataPointStorageF* SZ_compress_float_1D_MDQ(float *oriData,
size_t dataLength, float realPrecision, float valueRangeSize, float medianValue_f);
bool SZ_compress_args_float_NoCkRngeNoGzip_1D( unsigned char* newByteData, float *oriData,
size_t dataLength, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f);
void SZ_compress_args_float_withinRange(unsigned char* newByteData, float *oriData, size_t dataLength, size_t *outSize);
int SZ_compress_args_float(float *oriData, size_t r1, unsigned char* newByteData, size_t *outSize, sz_params* params);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _SZ_Float_H ----- */

View File

@ -0,0 +1,29 @@
/**
* @file szd_double.h
* @author Sheng Di
* @date July, 2017
* @brief Header file for the szd_double.c.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _SZD_Double_H
#define _SZD_Double_H
#ifdef __cplusplus
extern "C" {
#endif
#include "TightDataPointStorageD.h"
void decompressDataSeries_double_1D(double* data, size_t dataSeriesLength, double* hist_data, TightDataPointStorageD* tdps);
void getSnapshotData_double_1D(double* data, size_t dataSeriesLength, TightDataPointStorageD* tdps, int errBoundMode, int compressionType, double* hist_data, sz_params* pde_params);
int SZ_decompress_args_double(double* newData, size_t r1, unsigned char* cmpBytes, size_t cmpSize, int compressionType, double* hist_data, sz_exedata* pde_exe, sz_params* pde_params);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _SZD_Double_H ----- */

View File

@ -0,0 +1,32 @@
/**
* @file szd_float.h
* @author Sheng Di
* @date July, 2017
* @brief Header file for the szd_float.c.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _SZD_Float_H
#define _SZD_Float_H
#ifdef __cplusplus
extern "C" {
#endif
#include "TightDataPointStorageF.h"
void decompressDataSeries_float_1D(float* data, size_t dataSeriesLength, float* hist_data, TightDataPointStorageF* tdps);
void getSnapshotData_float_1D(float* data, size_t dataSeriesLength, TightDataPointStorageF* tdps, int errBoundMode, int compressionType, float* hist_data, sz_params* pde_params);
int SZ_decompress_args_float(float* newData, size_t r1, unsigned char* cmpBytes, size_t cmpSize, int compressionType, float* hist_data, sz_exedata* pde_exe, sz_params* pde_params);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _SZD_Float_H ----- */

View File

@ -0,0 +1,117 @@
/**
* @file transcode.h
* @author Yu Zhong (lx1zhong@qq.com)
* @brief Header file for ADT-FSE algorithm
* @date 2022-08-25
*
* @copyright Copyright (c) 2022
*
*/
#ifndef _Transcode_H
#define _Transcode_H
#include "sz.h"
#include "mem.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* dict = {
0: [0,0], 1:[1,0], 2:[2,0], 3:[3,0],
4: [4,0], 5:[5,0], 6:[6,0], 7:[7,0],
8: [8,0], 9:[9,0], 10:[10,0], 11:[11,0],
12: [12,0], 13:[13,0], 14:[14,0], 15:[15,0],
16: [16,1], 18:[17,1], 20:[18,1], 22:[19,1],
24: [20,2], 28:[21,2], 32:[22,3], 40:[23,3],
48: [24,4], 64:[25,6], 128:[26,7], 256:[27,8],
512: [28,9], 1024:[29,10], 2048:[30,11], 4096:[31,12],
8192: [32,13], 16384:[33,14],
-8192: [35,13], -16384:[34,14],
-512: [39,9], -1024:[38,10], -2048:[37,11], -4096:[36,12],
-48: [43,4], -64:[42,6], -128:[41,7], -256:[40,8],
-24: [47,2], -28:[46,2], -32:[45,3], -40:[44,3],
-16: [51,1], -18:[50,1], -20:[49,1], -22:[48,1],
-12: [55,0], -13:[54,0], -14:[53,0], -15:[52,0],
-8: [59,0], -9:[58,0], -10:[57,0], -11:[56,0],
-4: [63,0], -5:[62,0], -6:[61,0], -7:[60,0],
-1:[66,0], -2:[65,0], -3:[64,0],
#-16384:[67,0]
}
*
*/
MEM_STATIC int Int2code(int factor)
{
static const uint8_t Ft_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 16, 17, 17, 18, 18, 19, 19,
20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22,
23, 23, 23, 23, 23, 23, 23, 23,
24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24 };
if (factor >= 0)
return (factor > 63) ? 50 - __builtin_clz(factor) : Ft_Code[factor];
else {
factor = -factor;
return (factor > 63) ? 17 + __builtin_clz(factor) : 67 - Ft_Code[factor];
}
}
/**
* reverse_dict = {
0: [0,0], 1:[1,0], 2:[2,0], 3:[3,0],
4: [4,0], 5:[5,0], 6:[6,0], 7:[7,0],
8: [8,0], 9:[9,0], 10:[10,0], 11:[11,0],
12: [12,0], 13:[13,0], 14:[14,0], 15:[15,0],
16: [16,1], 17:[18,1], 18:[20,1], 19:[22,1],
20: [24,2], 21:[28,2], 22:[32,3], 23:[40,3],
24: [48,4], 25:[64,6], 26:[128,7], 27:[256,8],
28: [512,9], 29:[1024,10], 30:[2048,11], 31:[4096,12],
32: [8192,13], 33:[16384,14],
35:[-8192,13], 34:[-16384,14],
39:[-512,9], 38:[-1024,10], 37:[-2048,11], 36:[-4096,12],
43:[-48,4], 42:[-64,6], 41:[-128,7], 40:[-256,8],
47:[-24,2], 46:[-28,2], 45:[-32,3], 44:[-40,3],
51:[-16,1], 50:[-18,1], 49:[-20,1], 48:[-22,1],
55:[-12,0], 54:[-13,0], 53:[-14,0], 52:[-15,0],
59:[-8,0], 58:[-9,0], 57:[-10,0], 56:[-11,0],
63:[-4,0], 62:[-5,0], 61:[-6,0], 60:[-7,0],
66:[-1,0], 65:[-2,0], 64:[-3,0],
#67:[-16384,0]
}
*
*/
static const int code2int[67][2] = { {0,0},{1,0},{2,0},{3,0},
{4,0},{5,0},{6,0},{7,0},
{8,0},{9,0},{10,0},{11,0},
{12,0},{13,0},{14,0},{15,0},
{16,1},{18,1},{20,1},{22,1},
{24,2},{28,2},{32,3},{40,3},
{48,4},{64,6},{128,7},{256,8},
{512,9},{1024,10},{2048,11},{4096,12},
{8192,13},{16384,14},
{-16384,14}, {-8192,13},
{-4096,12},{-2048,11},{-1024,10},{-512,9},
{-256,8},{-128,7},{-64,6},{-48,4},
{-40,3},{-32,3},{-28,2},{-24,2},
{-22,1},{-20,1},{-18,1},{-16,1},
{-15,0},{-14,0},{-13,0},{-12,0},
{-11,0},{-10,0},{-9,0},{-8,0},
{-7,0},{-6,0},{-5,0},{-4,0},
{-3,0},{-2,0},{-1,0} };
void encode_with_fse(int *type, size_t dataSeriesLength, unsigned int intervals,
unsigned char **FseCode, size_t *FseCode_size,
unsigned char **transCodeBits, size_t *transCodeBits_size);
void decode_with_fse(int *type, size_t dataSeriesLength, unsigned int intervals,
unsigned char *FseCode, size_t FseCode_size,
unsigned char *transCodeBits, size_t transCodeBits_size);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,29 @@
/**
* @file utility.h
* @author Sheng Di, Sihuan Li
* @date July, 2018
* @brief Header file for the utility.c.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef _UTILITY_H
#define _UTILITY_H
#include "sz.h"
#ifdef __cplusplus
extern "C" {
#endif
int is_lossless_compressed_data(unsigned char* compressedBytes, size_t cmpSize);
unsigned long sz_lossless_compress(int losslessCompressor, unsigned char* data, unsigned long dataLength, unsigned char* compressBytes);
unsigned long sz_lossless_decompress(int losslessCompressor, unsigned char* compressBytes, unsigned long cmpSize, unsigned char** oriData, unsigned long targetOriSize);
#ifdef __cplusplus
}
#endif
#endif /* ----- #ifndef _UTILITY_H ----- */

View File

@ -0,0 +1,298 @@
/**
* @file ByteToolkit.c
* @author Sheng Di
* @date April, 2016
* @brief Byte Toolkit
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdlib.h>
#include <string.h>
#include "sz.h"
INLINE int bytesToInt_bigEndian(unsigned char* bytes)
{
int res;
unsigned char* des = (unsigned char*)&res;
des[0] = bytes[3];
des[1] = bytes[2];
des[2] = bytes[1];
des[3] = bytes[0];
return res;
}
/**
* @unsigned char *b the variable to store the converted bytes (length=4)
* @unsigned int num
* */
INLINE void intToBytes_bigEndian(unsigned char *b, unsigned int num)
{
unsigned char* sou =(unsigned char*)&num;
b[0] = sou[3];
b[1] = sou[2];
b[2] = sou[1];
b[3] = sou[0];
}
/**
* @endianType: refers to the endian_type of unsigned char* b.
* */
INLINE long bytesToLong_bigEndian(unsigned char* b) {
long temp = 0;
long res = 0;
res <<= 8;
temp = b[0] & 0xff;
res |= temp;
res <<= 8;
temp = b[1] & 0xff;
res |= temp;
res <<= 8;
temp = b[2] & 0xff;
res |= temp;
res <<= 8;
temp = b[3] & 0xff;
res |= temp;
res <<= 8;
temp = b[4] & 0xff;
res |= temp;
res <<= 8;
temp = b[5] & 0xff;
res |= temp;
res <<= 8;
temp = b[6] & 0xff;
res |= temp;
res <<= 8;
temp = b[7] & 0xff;
res |= temp;
return res;
}
INLINE void longToBytes_bigEndian(unsigned char *b, long num)
{
unsigned char* sou = (unsigned char*)&num;
#if defined(_TD_LINUX_64) || defined(_TD_ARM_64) || defined(_TD_DARWIN_64)
// 8 bytes
b[7] = sou[0];
b[6] = sou[1];
b[5] = sou[2];
b[4] = sou[3];
b[3] = sou[4];
b[2] = sou[5];
b[1] = sou[6];
b[0] = sou[7];
#else
memset(b, 0, 4);
b[7] = sou[0];
b[6] = sou[1];
b[5] = sou[2];
b[4] = sou[3];
#endif
}
//TODO: debug: lfBuf.lvalue could be actually little_endian....
INLINE short getExponent_float(float value)
{
//int ivalue = floatToBigEndianInt(value);
lfloat lbuf;
lbuf.value = value;
int ivalue = lbuf.ivalue;
int expValue = (ivalue & 0x7F800000) >> 23;
expValue -= 127;
return (short)expValue;
}
INLINE short getPrecisionReqLength_float(float precision)
{
lfloat lbuf;
lbuf.value = precision;
int ivalue = lbuf.ivalue;
int expValue = (ivalue & 0x7F800000) >> 23;
expValue -= 127;
return (short)expValue;
}
INLINE short getExponent_double(double value)
{
//long lvalue = doubleToBigEndianLong(value);
ldouble lbuf;
lbuf.value = value;
long lvalue = lbuf.lvalue;
int expValue = (int)((lvalue & 0x7FF0000000000000) >> 52);
expValue -= 1023;
return (short)expValue;
}
INLINE short getPrecisionReqLength_double(double precision)
{
ldouble lbuf;
lbuf.value = precision;
long lvalue = lbuf.lvalue;
int expValue = (int)((lvalue & 0x7FF0000000000000) >> 52);
expValue -= 1023;
// unsigned char the1stManBit = (unsigned char)((lvalue & 0x0008000000000000) >> 51);
// if(the1stManBit==1)
// expValue--;
return (short)expValue;
}
//the byte to input is in the big-endian format
INLINE float bytesToFloat(unsigned char* bytes)
{
lfloat buf;
memcpy(buf.byte, bytes, 4);
if(sysEndianType==LITTLE_ENDIAN_SYSTEM)
symTransform_4bytes(buf.byte);
return buf.value;
}
INLINE void floatToBytes(unsigned char *b, float num)
{
lfloat buf;
buf.value = num;
memcpy(b, buf.byte, 4);
if(sysEndianType==LITTLE_ENDIAN_SYSTEM)
symTransform_4bytes(b);
}
//the byte to input is in the big-endian format
INLINE double bytesToDouble(unsigned char* bytes)
{
ldouble buf;
memcpy(buf.byte, bytes, 8);
if(sysEndianType==LITTLE_ENDIAN_SYSTEM)
symTransform_8bytes(buf.byte);
return buf.value;
}
INLINE void doubleToBytes(unsigned char *b, double num)
{
ldouble buf;
buf.value = num;
memcpy(b, buf.byte, 8);
if(sysEndianType==LITTLE_ENDIAN_SYSTEM)
symTransform_8bytes(b);
}
INLINE int getMaskRightCode(int m) {
switch (m) {
case 1:
return 0x01;
case 2:
return 0x03;
case 3:
return 0x07;
case 4:
return 0x0F;
case 5:
return 0x1F;
case 6:
return 0x3F;
case 7:
return 0X7F;
case 8:
return 0XFF;
default:
return 0;
}
}
INLINE int getLeftMovingCode(int kMod8)
{
return getMaskRightCode(8 - kMod8);
}
INLINE int getRightMovingSteps(int kMod8, int resiBitLength) {
return 8 - kMod8 - resiBitLength;
}
INLINE int getRightMovingCode(int kMod8, int resiBitLength)
{
int rightMovingSteps = 8 - kMod8 - resiBitLength;
if(rightMovingSteps < 0)
{
switch(-rightMovingSteps)
{
case 1:
return 0x80;
case 2:
return 0xC0;
case 3:
return 0xE0;
case 4:
return 0xF0;
case 5:
return 0xF8;
case 6:
return 0xFC;
case 7:
return 0XFE;
default:
return 0;
}
}
else //if(rightMovingSteps >= 0)
{
int a = getMaskRightCode(8 - kMod8);
int b = getMaskRightCode(8 - kMod8 - resiBitLength);
int c = a - b;
return c;
}
}
INLINE size_t bytesToSize(unsigned char* bytes, int size_type)
{
size_t result = 0;
if(size_type == 4)
result = bytesToInt_bigEndian(bytes);//4
else
result = bytesToLong_bigEndian(bytes);//8
return result;
}
INLINE void sizeToBytes(unsigned char* outBytes, size_t size, int size_type)
{
if(size_type == 4)
intToBytes_bigEndian(outBytes, (unsigned int)size);//4
else
longToBytes_bigEndian(outBytes, (unsigned long)size);//8
}
void convertSZParamsToBytes(sz_params* params, unsigned char* result, char optQuantMode)
{
//unsigned char* result = (unsigned char*)malloc(16);
unsigned char buf = 0;
buf = optQuantMode;
buf = (buf << 1) | dataEndianType;
buf = (buf << 1) | sysEndianType;
buf = (buf << 2) | params->szMode;
result[0] = buf;
}
void convertBytesToSZParams(unsigned char* bytes, sz_params* params, sz_exedata* pde_exe)
{
unsigned char flag1 = bytes[0];
pde_exe->optQuantMode = (flag1 & 0x40) >> 6;
dataEndianType = (flag1 & 0x20) >> 5;
params->szMode = (flag1 & 0x0c) >> 2;
}

View File

@ -0,0 +1,237 @@
/**
* @file CompressElement.c
* @author Sheng Di
* @date May, 2016
* @brief Functions of CompressElement
* (C) 2015 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#ifndef WINDOWS
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wchar-subscripts"
#endif
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "sz.h"
#include "CompressElement.h"
INLINE short computeGroupNum_float(float value)
{
short expo = getExponent_float(value);
if(expo < 0)
expo = -1;
return expo;
}
INLINE short computeGroupNum_double(double value)
{
short expo = getExponent_double(value);
if(expo < 0)
expo = -1;
return expo;
}
/**
* Add preceding neighbor values to a buffer.
* @param last3CmprsData buffer
* @param value the value to be added to the buffer
* */
INLINE void listAdd_double(double last3CmprsData[3], double value)
{
last3CmprsData[2] = last3CmprsData[1];
last3CmprsData[1] = last3CmprsData[0];
last3CmprsData[0] = value;
}
INLINE void listAdd_float(float last3CmprsData[3], float value)
{
last3CmprsData[2] = last3CmprsData[1];
last3CmprsData[1] = last3CmprsData[0];
last3CmprsData[0] = value;
}
INLINE void listAdd_int(int64_t last3CmprsData[3], int64_t value)
{
last3CmprsData[2] = last3CmprsData[1];
last3CmprsData[1] = last3CmprsData[0];
last3CmprsData[0] = value;
}
INLINE void listAdd_int32(int32_t last3CmprsData[3], int32_t value)
{
last3CmprsData[2] = last3CmprsData[1];
last3CmprsData[1] = last3CmprsData[0];
last3CmprsData[0] = value;
}
INLINE void listAdd_float_group(float *groups, int *flags, char groupNum, float oriValue, float decValue, char* curGroupID)
{
if(groupNum>=0)
{
if(flags[groupNum]==0)
flags[groupNum] = 1;
groups[groupNum] = decValue;
}
else
{
groups[0] = decValue;
flags[0] = 1;
}
if(oriValue>=0)
*curGroupID = groupNum+2; //+[-1,0,1,2,3,....,16] is mapped to [1,2,....,18]
else
*curGroupID = -(groupNum+2); //-[-1,0,1,2,3,....,16] is mapped to [-1,-2,....,-18]
}
INLINE void listAdd_double_group(double *groups, int *flags, char groupNum, double oriValue, double decValue, char* curGroupID)
{
if(groupNum>=0)
{
if(flags[groupNum]==0)
flags[groupNum] = 1;
groups[groupNum] = decValue;
}
else
{
groups[0] = decValue;
flags[0] = 1;
}
if(oriValue>=0)
*curGroupID = groupNum+2; //+[-1,0,1,2,3,....,16] is mapped to [1,2,....,18]
else
*curGroupID = -(groupNum+2); //-[-1,0,1,2,3,....,16] is mapped to [-1,-2,....,-18]
}
/**
* Determine whether the prediction value minErr is valid.
*
* */
INLINE int validPrediction_double(double minErr, double precision)
{
if(minErr<=precision)
return 1;
else
return 0;
}
INLINE int validPrediction_float(float minErr, float precision)
{
if(minErr<=precision)
return 1;
else
return 0;
}
double* generateGroupErrBounds(int errorBoundMode, double realPrecision, double pwrErrBound)
{
double pwrError;
double* result = (double*)malloc(GROUP_COUNT*sizeof(double));
int i = 0;
for(i=0;i<GROUP_COUNT;i++)
{
pwrError = ((double)pow(2, i))*pwrErrBound;
switch(errorBoundMode)
{
case ABS_AND_PW_REL:
case REL_AND_PW_REL:
result[i] = pwrError<realPrecision?pwrError:realPrecision;
break;
case ABS_OR_PW_REL:
case REL_OR_PW_REL:
result[i] = pwrError<realPrecision?realPrecision:pwrError;
break;
case PW_REL:
result[i] = pwrError;
break;
}
}
return result;
}
int generateGroupMaxIntervalCount(double* groupErrBounds)
{
int i = 0;
int maxCount = 0, count = 0;
for(i=0;i<GROUP_COUNT;i++)
{
count = (int)(pow(2, i)/groupErrBounds[i] + 0.5);
if(maxCount<count)
maxCount = count;
}
return maxCount;
}
void new_LossyCompressionElement(LossyCompressionElement *lce, int leadingNum, unsigned char* intMidBytes,
int intMidBytes_Length, int resiMidBitsLength, int resiBits)
{
lce->leadingZeroBytes = leadingNum; //0,1,2,or 3
memcpy(lce->integerMidBytes,intMidBytes,intMidBytes_Length);
lce->integerMidBytes_Length = intMidBytes_Length; //they are mid_bits actually
lce->resMidBitsLength = resiMidBitsLength;
lce->residualMidBits = resiBits;
}
void updateLossyCompElement_Double(unsigned char* curBytes, unsigned char* preBytes,
int reqBytesLength, int resiBitsLength, LossyCompressionElement *lce)
{
int resiIndex, intMidBytes_Length = 0;
int leadingNum = compIdenticalLeadingBytesCount_double(preBytes, curBytes); //in fact, float is enough for both single-precision and double-precisiond ata.
int fromByteIndex = leadingNum;
int toByteIndex = reqBytesLength; //later on: should use "< toByteIndex" to tarverse....
if(fromByteIndex < toByteIndex)
{
intMidBytes_Length = reqBytesLength - leadingNum;
memcpy(lce->integerMidBytes, &(curBytes[fromByteIndex]), intMidBytes_Length);
}
int resiBits = 0;
if(resiBitsLength!=0)
{
resiIndex = reqBytesLength;
if(resiIndex < 8)
resiBits = (curBytes[resiIndex] & 0xFF) >> (8-resiBitsLength);
}
lce->leadingZeroBytes = leadingNum;
lce->integerMidBytes_Length = intMidBytes_Length;
lce->resMidBitsLength = resiBitsLength;
lce->residualMidBits = resiBits;
}
INLINE void updateLossyCompElement_Float(unsigned char* diffBytes, unsigned char* preDiffBytes,
int reqBytesLength, int resiBitsLength, LossyCompressionElement *lce)
{
int resiIndex, intMidBytes_Length = 0;
int leadingNum = compIdenticalLeadingBytesCount_float(preDiffBytes, diffBytes); //in fact, float is enough for both single-precision and double-precisiond ata.
int fromByteIndex = leadingNum;
int toByteIndex = reqBytesLength; //later on: should use "< toByteIndex" to tarverse....
if(fromByteIndex < toByteIndex)
{
intMidBytes_Length = reqBytesLength - leadingNum;
// set lce mid data
memcpy(lce->integerMidBytes, &(diffBytes[fromByteIndex]), intMidBytes_Length);
}
int resiBits = 0;
if(resiBitsLength!=0)
{
resiIndex = reqBytesLength;
if(resiIndex < 8)
resiBits = (diffBytes[resiIndex] & 0xFF) >> (8-resiBitsLength);
}
// set lce
lce->leadingZeroBytes = leadingNum;
lce->integerMidBytes_Length = intMidBytes_Length;
lce->resMidBitsLength = resiBitsLength;
lce->residualMidBits = resiBits;
}
#ifndef WINDOWS
#pragma GCC diagnostic pop
#endif

View File

@ -0,0 +1,72 @@
/**
* @file DynamicByteArray.c
* @author Sheng Di
* @date May, 2016
* @brief Dynamic Byte Array
* (C) 2015 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "DynamicByteArray.h"
#include "sz.h"
void new_DBA(DynamicByteArray **dba, size_t cap) {
*dba = (DynamicByteArray *)malloc(sizeof(DynamicByteArray));
(*dba)->size = 0;
(*dba)->capacity = cap;
(*dba)->array = (unsigned char*)malloc(sizeof(unsigned char)*cap);
}
void convertDBAtoBytes(DynamicByteArray *dba, unsigned char** bytes)
{
size_t size = dba->size;
if(size>0)
*bytes = (unsigned char*)malloc(size * sizeof(unsigned char));
else
{
*bytes = NULL;
return ;
}
memcpy(*bytes, dba->array, size*sizeof(unsigned char));
}
void free_DBA(DynamicByteArray *dba)
{
free(dba->array);
free(dba);
}
INLINE unsigned char getDBA_Data(DynamicByteArray *dba, size_t pos)
{
if(pos>=dba->size)
{
printf("Error: wrong position of DBA (impossible case unless bugs elsewhere in the code?).\n");
exit(0);
}
return dba->array[pos];
}
INLINE void addDBA_Data(DynamicByteArray *dba, unsigned char value)
{
if(dba->size==dba->capacity)
{
dba->capacity = dba->capacity << 1;
dba->array = (unsigned char *)realloc(dba->array, dba->capacity*sizeof(unsigned char));
}
dba->array[dba->size] = value;
dba->size ++;
}
INLINE void memcpyDBA_Data(DynamicByteArray *dba, unsigned char* data, size_t length)
{
if(dba->size + length > dba->capacity)
{
dba->capacity = dba->size + length;
dba->array = (unsigned char *)realloc(dba->array, dba->capacity*sizeof(unsigned char));
}
memcpy(&(dba->array[dba->size]), data, length);
dba->size += length;
}

View File

@ -0,0 +1,58 @@
/**
* @file DynamicIntArray.c
* @author Sheng Di
* @date May, 2016
* @brief Dynamic Int Array
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "DynamicIntArray.h"
#include "sz.h"
void new_DIA(DynamicIntArray **dia, size_t cap) {
*dia = (DynamicIntArray *)malloc(sizeof(DynamicIntArray));
(*dia)->size = 0;
(*dia)->capacity = cap;
(*dia)->array = (unsigned char*)malloc(sizeof(unsigned char)*cap);
}
void convertDIAtoInts(DynamicIntArray *dia, unsigned char **data)
{
size_t size = dia->size;
if(size>0)
*data = (unsigned char*)malloc(size * sizeof(char));
else
*data = NULL;
memcpy(*data, dia->array, size*sizeof(unsigned char));
}
void free_DIA(DynamicIntArray *dia)
{
free(dia->array);
free(dia);
}
int getDIA_Data(DynamicIntArray *dia, size_t pos)
{
if(pos>=dia->size)
{
printf("Error: wrong position of DIA.\n");
exit(0);
}
return dia->array[pos];
}
INLINE void addDIA_Data(DynamicIntArray *dia, int value)
{
if(dia->size==dia->capacity)
{
dia->capacity = dia->capacity << 1;
dia->array = (unsigned char *)realloc(dia->array, dia->capacity*sizeof(unsigned char));
}
dia->array[dia->size] = (unsigned char)value;
dia->size ++;
}

765
utils/TSZ/sz/src/Huffman.c Normal file
View File

@ -0,0 +1,765 @@
/**
* @file Huffman.c
* @author Sheng Di
* @date Aug., 2016
* @brief Customized Huffman Encoding, Compression and Decompression functions
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "Huffman.h"
#include "sz.h"
HuffmanTree* createHuffmanTree(int stateNum)
{
HuffmanTree *huffmanTree = (HuffmanTree*)malloc(sizeof(HuffmanTree));
memset(huffmanTree, 0, sizeof(HuffmanTree));
huffmanTree->stateNum = stateNum;
huffmanTree->allNodes = 2*stateNum;
huffmanTree->pool = (struct node_t*)malloc(huffmanTree->allNodes*2*sizeof(struct node_t));
huffmanTree->qqq = (node*)malloc(huffmanTree->allNodes*2*sizeof(node));
huffmanTree->code = (unsigned long**)malloc(huffmanTree->stateNum*sizeof(unsigned long*));
huffmanTree->cout = (unsigned char *)malloc(huffmanTree->stateNum*sizeof(unsigned char));
memset(huffmanTree->pool, 0, huffmanTree->allNodes*2*sizeof(struct node_t));
memset(huffmanTree->qqq, 0, huffmanTree->allNodes*2*sizeof(node));
memset(huffmanTree->code, 0, huffmanTree->stateNum*sizeof(unsigned long*));
memset(huffmanTree->cout, 0, huffmanTree->stateNum*sizeof(unsigned char));
huffmanTree->qq = huffmanTree->qqq - 1;
huffmanTree->n_nodes = 0;
huffmanTree->n_inode = 0;
huffmanTree->qend = 1;
return huffmanTree;
}
HuffmanTree* createDefaultHuffmanTree()
{
int maxRangeRadius = 32768;
int stateNum = maxRangeRadius << 1; //*2
return createHuffmanTree(stateNum);
}
node new_node(HuffmanTree* huffmanTree, size_t freq, unsigned int c, node a, node b)
{
node n = huffmanTree->pool + huffmanTree->n_nodes++;
if (freq)
{
n->c = c;
n->freq = freq;
n->t = 1;
}
else {
n->left = a;
n->right = b;
n->freq = a->freq + b->freq;
n->t = 0;
//n->c = 0;
}
return n;
}
node new_node2(HuffmanTree *huffmanTree, unsigned int c, unsigned char t)
{
huffmanTree->pool[huffmanTree->n_nodes].c = c;
huffmanTree->pool[huffmanTree->n_nodes].t = t;
return huffmanTree->pool + huffmanTree->n_nodes++;
}
/* priority queue */
void qinsert(HuffmanTree *huffmanTree, node n)
{
int j, i = huffmanTree->qend++;
while ((j = (i>>1))) //j=i/2
{
if (huffmanTree->qq[j]->freq <= n->freq) break;
huffmanTree->qq[i] = huffmanTree->qq[j], i = j;
}
huffmanTree->qq[i] = n;
}
node qremove(HuffmanTree* huffmanTree)
{
int i, l;
node n = huffmanTree->qq[i = 1];
node p;
if (huffmanTree->qend < 2) return 0;
huffmanTree->qend --;
huffmanTree->qq[i] = huffmanTree->qq[huffmanTree->qend];
while ((l = (i<<1)) < huffmanTree->qend) //l=(i*2)
{
if (l + 1 < huffmanTree->qend && huffmanTree->qq[l + 1]->freq < huffmanTree->qq[l]->freq) l++;
if(huffmanTree->qq[i]->freq > huffmanTree->qq[l]->freq)
{
p = huffmanTree->qq[i];
huffmanTree->qq[i] = huffmanTree->qq[l];
huffmanTree->qq[l] = p;
i = l;
}
else
{
break;
}
}
return n;
}
/* walk the tree and put 0s and 1s */
/**
* @out1 should be set to 0.
* @out2 should be 0 as well.
* @index: the index of the byte
* */
void build_code(HuffmanTree *huffmanTree, node n, int len, unsigned long out1, unsigned long out2)
{
if (n->t) {
huffmanTree->code[n->c] = (unsigned long*)malloc(2*sizeof(unsigned long));
if(len<=64)
{
(huffmanTree->code[n->c])[0] = out1 << (64 - len);
(huffmanTree->code[n->c])[1] = out2;
}
else
{
(huffmanTree->code[n->c])[0] = out1;
(huffmanTree->code[n->c])[1] = out2 << (128 - len);
}
huffmanTree->cout[n->c] = (unsigned char)len;
return;
}
int index = len >> 6; //=len/64
if(index == 0)
{
out1 = out1 << 1;
out1 = out1 | 0;
build_code(huffmanTree, n->left, len + 1, out1, 0);
out1 = out1 | 1;
build_code(huffmanTree, n->right, len + 1, out1, 0);
}
else
{
if(len%64!=0)
out2 = out2 << 1;
out2 = out2 | 0;
build_code(huffmanTree, n->left, len + 1, out1, out2);
out2 = out2 | 1;
build_code(huffmanTree, n->right, len + 1, out1, out2);
}
}
/**
* Compute the frequency of the data and build the Huffman tree
* @param HuffmanTree* huffmanTree (output)
* @param int *s (input)
* @param size_t length (input)
* */
void init(HuffmanTree* huffmanTree, int *s, size_t length)
{
size_t i, index;
size_t *freq = (size_t *)malloc(huffmanTree->allNodes*sizeof(size_t));
memset(freq, 0, huffmanTree->allNodes*sizeof(size_t));
for(i = 0;i < length;i++)
{
index = s[i];
freq[index]++;
}
for (i = 0; i < huffmanTree->allNodes; i++)
if (freq[i])
qinsert(huffmanTree, new_node(huffmanTree, freq[i], i, 0, 0));
while (huffmanTree->qend > 2)
qinsert(huffmanTree, new_node(huffmanTree, 0, 0, qremove(huffmanTree), qremove(huffmanTree)));
build_code(huffmanTree, huffmanTree->qq[1], 0, 0, 0);
free(freq);
}
void init_static(HuffmanTree* huffmanTree, int *s, size_t length)
{
size_t i;
size_t *freq = (size_t *)malloc(huffmanTree->allNodes*sizeof(size_t));
memset(freq, 0, huffmanTree->allNodes*sizeof(size_t));
for (i = 0; i < huffmanTree->allNodes; i++)
if (freq[i])
qinsert(huffmanTree, new_node(huffmanTree, freq[i], i, 0, 0));
while (huffmanTree->qend > 2)
qinsert(huffmanTree, new_node(huffmanTree, 0, 0, qremove(huffmanTree), qremove(huffmanTree)));
build_code(huffmanTree, huffmanTree->qq[1], 0, 0, 0);
free(freq);
}
void encode(HuffmanTree *huffmanTree, int *s, size_t length, unsigned char *out, size_t *outSize)
{
size_t i = 0;
unsigned char bitSize = 0, byteSize, byteSizep;
int state;
unsigned char *p = out;
int lackBits = 0;
//long totalBitSize = 0, maxBitSize = 0, bitSize21 = 0, bitSize32 = 0;
for (i = 0;i<length;i++)
{
state = s[i];
bitSize = huffmanTree->cout[state];
//printf("%d %d : %d %u\n",i, state, bitSize, (code[state])[0] >> (64-cout[state]));
//debug: compute the average bitSize and the count that is over 32...
/*if(bitSize>=21)
bitSize21++;
if(bitSize>=32)
bitSize32++;
if(maxBitSize<bitSize)
maxBitSize = bitSize;
totalBitSize+=bitSize;*/
if(lackBits==0)
{
byteSize = bitSize%8==0 ? bitSize/8 : bitSize/8+1; //it's equal to the number of bytes involved (for *outSize)
byteSizep = bitSize/8; //it's used to move the pointer p for next data
if(byteSize<=8)
{
longToBytes_bigEndian(p, (huffmanTree->code[state])[0]);
p += byteSizep;
}
else //byteSize>8
{
longToBytes_bigEndian(p, (huffmanTree->code[state])[0]);
p += 8;
longToBytes_bigEndian(p, (huffmanTree->code[state])[1]);
p += (byteSizep - 8);
}
*outSize += byteSize;
lackBits = bitSize%8==0 ? 0 : 8 - bitSize%8;
}
else
{
*p = (*p) | (unsigned char)((huffmanTree->code[state])[0] >> (64 - lackBits));
if(lackBits < bitSize)
{
p++;
//(*outSize)++;
long newCode = (huffmanTree->code[state])[0] << lackBits;
longToBytes_bigEndian(p, newCode);
if(bitSize<=64)
{
bitSize -= lackBits;
byteSize = bitSize%8==0 ? bitSize/8 : bitSize/8+1;
byteSizep = bitSize/8;
p += byteSizep;
(*outSize)+=byteSize;
lackBits = bitSize%8==0 ? 0 : 8 - bitSize%8;
}
else //bitSize > 64
{
byteSizep = 7; //must be 7 bytes, because lackBits!=0
p+=byteSizep;
(*outSize)+=byteSize;
bitSize -= 64;
if(lackBits < bitSize)
{
*p = (*p) | (unsigned char)((huffmanTree->code[state])[0] >> (64 - lackBits));
p++;
//(*outSize)++;
newCode = (huffmanTree->code[state])[1] << lackBits;
longToBytes_bigEndian(p, newCode);
bitSize -= lackBits;
byteSize = bitSize%8==0 ? bitSize/8 : bitSize/8+1;
byteSizep = bitSize/8;
p += byteSizep;
(*outSize)+=byteSize;
lackBits = bitSize%8==0 ? 0 : 8 - bitSize%8;
}
else //lackBits >= bitSize
{
*p = (*p) | (unsigned char)((huffmanTree->code[state])[0] >> (64 - bitSize));
lackBits -= bitSize;
}
}
}
else //lackBits >= bitSize
{
lackBits -= bitSize;
if(lackBits==0)
p++;
}
}
}
// for(i=0;i<stateNum;i++)
// if(code[i]!=NULL) free(code[i]);
/*printf("max bitsize = %d\n", maxBitSize);
printf("bitSize21 ratio = %f\n", ((float)bitSize21)/length);
printf("bitSize32 ratio = %f\n", ((float)bitSize32)/length);
printf("avg bit size = %f\n", ((float)totalBitSize)/length);*/
}
void decode(unsigned char *s, size_t targetLength, node t, int *out)
{
size_t i = 0, byteIndex = 0, count = 0;
int r;
node n = t;
if(n->t) //root->t==1 means that all state values are the same (constant)
{
for(count=0;count<targetLength;count++)
out[count] = n->c;
return;
}
for(i=0;count<targetLength;i++)
{
byteIndex = i>>3; //i/8
r = i%8;
if(((s[byteIndex] >> (7-r)) & 0x01) == 0)
n = n->left;
else
n = n->right;
if (n->t) {
//putchar(n->c);
out[count] = n->c;
n = t;
count++;
}
}
// putchar('\n');
if (t != n) printf("garbage input\n");
return;
}
void pad_tree_uchar(HuffmanTree* huffmanTree, unsigned char* L, unsigned char* R, unsigned int* C, unsigned char* t, unsigned int i, node root)
{
C[i] = root->c;
t[i] = root->t;
node lroot = root->left;
if(lroot!=0)
{
huffmanTree->n_inode++;
L[i] = huffmanTree->n_inode;
pad_tree_uchar(huffmanTree, L,R,C,t, huffmanTree->n_inode, lroot);
}
node rroot = root->right;
if(rroot!=0)
{
huffmanTree->n_inode++;
R[i] = huffmanTree->n_inode;
pad_tree_uchar(huffmanTree, L,R,C,t, huffmanTree->n_inode, rroot);
}
}
void pad_tree_ushort(HuffmanTree* huffmanTree, unsigned short* L, unsigned short* R, unsigned int* C, unsigned char* t, unsigned int i, node root)
{
C[i] = root->c;
t[i] = root->t;
node lroot = root->left;
if(lroot!=0)
{
huffmanTree->n_inode++;
L[i] = huffmanTree->n_inode;
pad_tree_ushort(huffmanTree,L,R,C,t,huffmanTree->n_inode, lroot);
}
node rroot = root->right;
if(rroot!=0)
{
huffmanTree->n_inode++;
R[i] = huffmanTree->n_inode;
pad_tree_ushort(huffmanTree,L,R,C,t,huffmanTree->n_inode, rroot);
}
}
void pad_tree_uint(HuffmanTree* huffmanTree, unsigned int* L, unsigned int* R, unsigned int* C, unsigned char* t, unsigned int i, node root)
{
C[i] = root->c;
t[i] = root->t;
node lroot = root->left;
if(lroot!=0)
{
huffmanTree->n_inode++;
L[i] = huffmanTree->n_inode;
pad_tree_uint(huffmanTree,L,R,C,t,huffmanTree->n_inode, lroot);
}
node rroot = root->right;
if(rroot!=0)
{
huffmanTree->n_inode++;
R[i] = huffmanTree->n_inode;
pad_tree_uint(huffmanTree,L,R,C,t,huffmanTree->n_inode, rroot);
}
}
unsigned int convert_HuffTree_to_bytes_anyStates(HuffmanTree* huffmanTree, int nodeCount, unsigned char** out)
{
if(nodeCount<=256)
{
unsigned char* L = (unsigned char*)malloc(nodeCount*sizeof(unsigned char));
memset(L, 0, nodeCount*sizeof(unsigned char));
unsigned char* R = (unsigned char*)malloc(nodeCount*sizeof(unsigned char));
memset(R, 0, nodeCount*sizeof(unsigned char));
unsigned int* C = (unsigned int*)malloc(nodeCount*sizeof(unsigned int));
memset(C, 0, nodeCount*sizeof(unsigned int));
unsigned char* t = (unsigned char*)malloc(nodeCount*sizeof(unsigned char));
memset(t, 0, nodeCount*sizeof(unsigned char));
pad_tree_uchar(huffmanTree,L,R,C,t,0,huffmanTree->qq[1]);
unsigned int totalSize = 1+3*nodeCount*sizeof(unsigned char)+nodeCount*sizeof(unsigned int);
*out = (unsigned char*)malloc(totalSize*sizeof(unsigned char));
(*out)[0] = (unsigned char)sysEndianType;
memcpy(*out+1, L, nodeCount*sizeof(unsigned char));
memcpy((*out)+1+nodeCount*sizeof(unsigned char),R,nodeCount*sizeof(unsigned char));
memcpy((*out)+1+2*nodeCount*sizeof(unsigned char),C,nodeCount*sizeof(unsigned int));
memcpy((*out)+1+2*nodeCount*sizeof(unsigned char)+nodeCount*sizeof(unsigned int), t, nodeCount*sizeof(unsigned char));
free(L);
free(R);
free(C);
free(t);
return totalSize;
}
else if(nodeCount<=65536)
{
unsigned short* L = (unsigned short*)malloc(nodeCount*sizeof(unsigned short));
memset(L, 0, nodeCount*sizeof(unsigned short));
unsigned short* R = (unsigned short*)malloc(nodeCount*sizeof(unsigned short));
memset(R, 0, nodeCount*sizeof(unsigned short));
unsigned int* C = (unsigned int*)malloc(nodeCount*sizeof(unsigned int));
memset(C, 0, nodeCount*sizeof(unsigned int));
unsigned char* t = (unsigned char*)malloc(nodeCount*sizeof(unsigned char));
memset(t, 0, nodeCount*sizeof(unsigned char));
pad_tree_ushort(huffmanTree,L,R,C,t,0,huffmanTree->qq[1]);
unsigned int totalSize = 1+2*nodeCount*sizeof(unsigned short)+nodeCount*sizeof(unsigned char) + nodeCount*sizeof(unsigned int);
*out = (unsigned char*)malloc(totalSize);
(*out)[0] = (unsigned char)sysEndianType;
memcpy(*out+1, L, nodeCount*sizeof(unsigned short));
memcpy((*out)+1+nodeCount*sizeof(unsigned short),R,nodeCount*sizeof(unsigned short));
memcpy((*out)+1+2*nodeCount*sizeof(unsigned short),C,nodeCount*sizeof(unsigned int));
memcpy((*out)+1+2*nodeCount*sizeof(unsigned short)+nodeCount*sizeof(unsigned int),t,nodeCount*sizeof(unsigned char));
free(L);
free(R);
free(C);
free(t);
return totalSize;
}
else //nodeCount>65536
{
unsigned int* L = (unsigned int*)malloc(nodeCount*sizeof(unsigned int));
memset(L, 0, nodeCount*sizeof(unsigned int));
unsigned int* R = (unsigned int*)malloc(nodeCount*sizeof(unsigned int));
memset(R, 0, nodeCount*sizeof(unsigned int));
unsigned int* C = (unsigned int*)malloc(nodeCount*sizeof(unsigned int));
memset(C, 0, nodeCount*sizeof(unsigned int));
unsigned char* t = (unsigned char*)malloc(nodeCount*sizeof(unsigned char));
memset(t, 0, nodeCount*sizeof(unsigned char));
pad_tree_uint(huffmanTree, L,R,C,t,0,huffmanTree->qq[1]);
//debug
//node root = new_node2(0,0);
//unpad_tree_uint(L,R,C,t,0,root);
unsigned int totalSize = 1+3*nodeCount*sizeof(unsigned int)+nodeCount*sizeof(unsigned char);
*out = (unsigned char*)malloc(totalSize);
(*out)[0] = (unsigned char)sysEndianType;
memcpy(*out+1, L, nodeCount*sizeof(unsigned int));
memcpy((*out)+1+nodeCount*sizeof(unsigned int),R,nodeCount*sizeof(unsigned int));
memcpy((*out)+1+2*nodeCount*sizeof(unsigned int),C,nodeCount*sizeof(unsigned int));
memcpy((*out)+1+3*nodeCount*sizeof(unsigned int),t,nodeCount*sizeof(unsigned char));
free(L);
free(R);
free(C);
free(t);
return totalSize;
}
}
void unpad_tree_uchar(HuffmanTree* huffmanTree, unsigned char* L, unsigned char* R, unsigned int* C, unsigned char *t, unsigned int i, node root)
{
//root->c = C[i];
if(root->t==0)
{
unsigned char l, r;
l = L[i];
if(l!=0)
{
node lroot = new_node2(huffmanTree,C[l],t[l]);
root->left = lroot;
unpad_tree_uchar(huffmanTree,L,R,C,t,l,lroot);
}
r = R[i];
if(r!=0)
{
node rroot = new_node2(huffmanTree,C[r],t[r]);
root->right = rroot;
unpad_tree_uchar(huffmanTree,L,R,C,t,r,rroot);
}
}
}
void unpad_tree_ushort(HuffmanTree* huffmanTree, unsigned short* L, unsigned short* R, unsigned int* C, unsigned char* t, unsigned int i, node root)
{
//root->c = C[i];
if(root->t==0)
{
unsigned short l, r;
l = L[i];
if(l!=0)
{
node lroot = new_node2(huffmanTree,C[l],t[l]);
root->left = lroot;
unpad_tree_ushort(huffmanTree,L,R,C,t,l,lroot);
}
r = R[i];
if(r!=0)
{
node rroot = new_node2(huffmanTree,C[r],t[r]);
root->right = rroot;
unpad_tree_ushort(huffmanTree,L,R,C,t,r,rroot);
}
}
}
void unpad_tree_uint(HuffmanTree* huffmanTree, unsigned int* L, unsigned int* R, unsigned int* C, unsigned char* t, unsigned int i, node root)
{
//root->c = C[i];
if(root->t==0)
{
unsigned int l, r;
l = L[i];
if(l!=0)
{
node lroot = new_node2(huffmanTree,C[l],t[l]);
root->left = lroot;
unpad_tree_uint(huffmanTree,L,R,C,t,l,lroot);
}
r = R[i];
if(r!=0)
{
node rroot = new_node2(huffmanTree,C[r],t[r]);
root->right = rroot;
unpad_tree_uint(huffmanTree,L,R,C,t,r,rroot);
}
}
}
node reconstruct_HuffTree_from_bytes_anyStates(HuffmanTree *huffmanTree, unsigned char* bytes, int nodeCount)
{
if(nodeCount<=256)
{
unsigned char* L = (unsigned char*)malloc(nodeCount*sizeof(unsigned char));
memset(L, 0, nodeCount*sizeof(unsigned char));
unsigned char* R = (unsigned char*)malloc(nodeCount*sizeof(unsigned char));
memset(R, 0, nodeCount*sizeof(unsigned char));
unsigned int* C = (unsigned int*)malloc(nodeCount*sizeof(unsigned int));
memset(C, 0, nodeCount*sizeof(unsigned int));
unsigned char* t = (unsigned char*)malloc(nodeCount*sizeof(unsigned char));
memset(t, 0, nodeCount*sizeof(unsigned char));
unsigned char cmpSysEndianType = bytes[0];
if(cmpSysEndianType!=(unsigned char)sysEndianType)
{
unsigned char* p = (unsigned char*)(bytes+1+2*nodeCount*sizeof(unsigned char));
size_t i = 0, size = nodeCount*sizeof(unsigned int);
while(1)
{
symTransform_4bytes(p);
i+=sizeof(unsigned int);
if(i<size)
p+=sizeof(unsigned int);
else
break;
}
}
memcpy(L, bytes+1, nodeCount*sizeof(unsigned char));
memcpy(R, bytes+1+nodeCount*sizeof(unsigned char), nodeCount*sizeof(unsigned char));
memcpy(C, bytes+1+2*nodeCount*sizeof(unsigned char), nodeCount*sizeof(unsigned int));
memcpy(t, bytes+1+2*nodeCount*sizeof(unsigned char)+nodeCount*sizeof(unsigned int), nodeCount*sizeof(unsigned char));
node root = new_node2(huffmanTree, C[0],t[0]);
unpad_tree_uchar(huffmanTree,L,R,C,t,0,root);
free(L);
free(R);
free(C);
free(t);
return root;
}
else if(nodeCount<=65536)
{
unsigned short* L = (unsigned short*)malloc(nodeCount*sizeof(unsigned short));
memset(L, 0, nodeCount*sizeof(unsigned short));
unsigned short* R = (unsigned short*)malloc(nodeCount*sizeof(unsigned short));
memset(R, 0, nodeCount*sizeof(unsigned short));
unsigned int* C = (unsigned int*)malloc(nodeCount*sizeof(unsigned int));
memset(C, 0, nodeCount*sizeof(unsigned int));
unsigned char* t = (unsigned char*)malloc(nodeCount*sizeof(unsigned char));
memset(t, 0, nodeCount*sizeof(unsigned char));
unsigned char cmpSysEndianType = bytes[0];
if(cmpSysEndianType!=(unsigned char)sysEndianType)
{
unsigned char* p = (unsigned char*)(bytes+1);
size_t i = 0, size = 2*nodeCount*sizeof(unsigned short);
while(1)
{
symTransform_2bytes(p);
i+=sizeof(unsigned short);
if(i<size)
p+=sizeof(unsigned short);
else
break;
}
size = nodeCount*sizeof(unsigned int);
while(1)
{
symTransform_4bytes(p);
i+=sizeof(unsigned int);
if(i<size)
p+=sizeof(unsigned int);
else
break;
}
}
memcpy(L, bytes+1, nodeCount*sizeof(unsigned short));
memcpy(R, bytes+1+nodeCount*sizeof(unsigned short), nodeCount*sizeof(unsigned short));
memcpy(C, bytes+1+2*nodeCount*sizeof(unsigned short), nodeCount*sizeof(unsigned int));
memcpy(t, bytes+1+2*nodeCount*sizeof(unsigned short)+nodeCount*sizeof(unsigned int), nodeCount*sizeof(unsigned char));
node root = new_node2(huffmanTree,0,0);
unpad_tree_ushort(huffmanTree,L,R,C,t,0,root);
free(L);
free(R);
free(C);
free(t);
return root;
}
else //nodeCount>65536
{
unsigned int* L = (unsigned int*)malloc(nodeCount*sizeof(unsigned int));
memset(L, 0, nodeCount*sizeof(unsigned int));
unsigned int* R = (unsigned int*)malloc(nodeCount*sizeof(unsigned int));
memset(R, 0, nodeCount*sizeof(unsigned int));
unsigned int* C = (unsigned int*)malloc(nodeCount*sizeof(unsigned int));
memset(C, 0, nodeCount*sizeof(unsigned int));
unsigned char* t = (unsigned char*)malloc(nodeCount*sizeof(unsigned char));
memset(t, 0, nodeCount*sizeof(unsigned char));
unsigned char cmpSysEndianType = bytes[0];
if(cmpSysEndianType!=(unsigned char)sysEndianType)
{
unsigned char* p = (unsigned char*)(bytes+1);
size_t i = 0, size = 3*nodeCount*sizeof(unsigned int);
while(1)
{
symTransform_4bytes(p);
i+=sizeof(unsigned int);
if(i<size)
p+=sizeof(unsigned int);
else
break;
}
}
memcpy(L, bytes+1, nodeCount*sizeof(unsigned int));
memcpy(R, bytes+1+nodeCount*sizeof(unsigned int), nodeCount*sizeof(unsigned int));
memcpy(C, bytes+1+2*nodeCount*sizeof(unsigned int), nodeCount*sizeof(unsigned int));
memcpy(t, bytes+1+3*nodeCount*sizeof(unsigned int), nodeCount*sizeof(unsigned char));
node root = new_node2(huffmanTree,0,0);
unpad_tree_uint(huffmanTree,L,R,C,t,0,root);
free(L);
free(R);
free(C);
free(t);
return root;
}
}
void encode_withTree(HuffmanTree* huffmanTree, int *s, size_t length, unsigned char **out, size_t *outSize)
{
size_t i;
int nodeCount = 0;
unsigned char *treeBytes, buffer[4];
init(huffmanTree, s, length);
for (i = 0; i < huffmanTree->stateNum; i++)
if (huffmanTree->code[i]) nodeCount++;
nodeCount = nodeCount*2-1;
unsigned int treeByteSize = convert_HuffTree_to_bytes_anyStates(huffmanTree,nodeCount, &treeBytes);
//printf("treeByteSize = %d\n", treeByteSize);
*out = (unsigned char*)malloc(length*sizeof(int)+treeByteSize);
intToBytes_bigEndian(buffer, nodeCount);
memcpy(*out, buffer, 4);
intToBytes_bigEndian(buffer, huffmanTree->stateNum/2); //real number of intervals
memcpy(*out+4, buffer, 4);
memcpy(*out+8, treeBytes, treeByteSize);
free(treeBytes);
size_t enCodeSize = 0;
encode(huffmanTree, s, length, *out+8+treeByteSize, &enCodeSize);
*outSize = 8+treeByteSize+enCodeSize;
}
/**
* @par *out rememmber to allocate targetLength short_type data for it beforehand.
*
* */
void decode_withTree(HuffmanTree* huffmanTree, unsigned char *s, size_t targetLength, int *out)
{
size_t encodeStartIndex;
size_t nodeCount = bytesToInt_bigEndian(s);
node root = reconstruct_HuffTree_from_bytes_anyStates(huffmanTree,s+8, nodeCount);
//sdi: Debug
/* build_code(root, 0, 0, 0);
int i;
unsigned long code_1, code_2;
for (i = 0; i < stateNum; i++)
if (code[i])
{
printf("%d: %lu,%lu ; %u\n", i, (code[i])[0],(code[i])[1], cout[i]);
//code_1 = (code[i])[0];
}*/
if(nodeCount<=256)
encodeStartIndex = 1+3*nodeCount*sizeof(unsigned char)+nodeCount*sizeof(unsigned int);
else if(nodeCount<=65536)
encodeStartIndex = 1+2*nodeCount*sizeof(unsigned short)+nodeCount*sizeof(unsigned char)+nodeCount*sizeof(unsigned int);
else
encodeStartIndex = 1+3*nodeCount*sizeof(unsigned int)+nodeCount*sizeof(unsigned char);
decode(s+8+encodeStartIndex, targetLength, root, out);
}
void SZ_ReleaseHuffman(HuffmanTree* huffmanTree)
{
size_t i;
free(huffmanTree->pool);
huffmanTree->pool = NULL;
free(huffmanTree->qqq);
huffmanTree->qqq = NULL;
for(i=0;i<huffmanTree->stateNum;i++)
{
if(huffmanTree->code[i]!=NULL)
free(huffmanTree->code[i]);
}
free(huffmanTree->code);
huffmanTree->code = NULL;
free(huffmanTree->cout);
huffmanTree->cout = NULL;
free(huffmanTree);
huffmanTree = NULL;
}

View File

@ -0,0 +1,421 @@
/**
* @file TightPointDataStorageD.c
* @author Sheng Di and Dingwen Tao
* @date Aug, 2016
* @brief The functions used to construct the tightPointDataStorage element for storing compressed bytes.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "TightDataPointStorageD.h"
#include "sz.h"
#include "Huffman.h"
#include "transcode.h"
#include "fse.h"
#include <sys/time.h>
void new_TightDataPointStorageD_Empty(TightDataPointStorageD **this)
{
TightDataPointStorageD* tdps = (TightDataPointStorageD*)malloc(sizeof(TightDataPointStorageD));
memset(tdps, 0, sizeof(TightDataPointStorageD));
*this = tdps;
}
int new_TightDataPointStorageD_fromFlatBytes(TightDataPointStorageD **this, unsigned char* flatBytes, size_t flatBytesLength, sz_exedata* pde_exe, sz_params* pde_params)
{
new_TightDataPointStorageD_Empty(this);
size_t i, index = 0;
unsigned char version = flatBytes[index++]; //3
unsigned char sameRByte = flatBytes[index++]; //1
// parse data format
switch (version)
{
case DATA_FROMAT_VER1:
break;
default:
printf(" error, compressed data format can not be recognised. ver=%d\n ", version);
return SZ_ABS;
}
int same = sameRByte & 0x01;
(*this)->ifAdtFse = (sameRByte & 0x02)>>1; //0000,0010
(*this)->isLossless = (sameRByte & 0x10)>>4;
pde_exe->SZ_SIZE_TYPE = ((sameRByte & 0x40)>>6)==1?8:4;
//pde_params->protectValueRange = (sameRByte & 0x04)>>2;
pde_params->accelerate_pw_rel_compression = (sameRByte & 0x08) >> 3;
int errorBoundMode = SZ_ABS;
convertBytesToSZParams(&(flatBytes[index]), pde_params, pde_exe);
index += MetaDataByteLength_double;
int isRegression = (sameRByte >> 7) & 0x01;
unsigned char dsLengthBytes[8];
for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
dsLengthBytes[i] = flatBytes[index++];
(*this)->dataSeriesLength = bytesToSize(dsLengthBytes, pde_exe->SZ_SIZE_TYPE);
if((*this)->isLossless==1)
{
//(*this)->exactMidBytes = flatBytes+8;
return errorBoundMode;
}
else if(same==1)
{
(*this)->allSameData = 1;
(*this)->exactMidBytes = &(flatBytes[index]);
return errorBoundMode;
}
else
(*this)->allSameData = 0;
if(isRegression == 1)
{
(*this)->raBytes_size = flatBytesLength - 3 - 1 - MetaDataByteLength_double - pde_exe->SZ_SIZE_TYPE;
(*this)->raBytes = &(flatBytes[index]);
return errorBoundMode;
}
unsigned char byteBuf[8];
for (i = 0; i < 4; i++)
byteBuf[i] = flatBytes[index++];
int max_quant_intervals = bytesToInt_bigEndian(byteBuf);// 4
pde_params->maxRangeRadius = max_quant_intervals/2;
for (i = 0; i < 4; i++)
byteBuf[i] = flatBytes[index++];
(*this)->intervals = bytesToInt_bigEndian(byteBuf);// 4
for (i = 0; i < 8; i++)
byteBuf[i] = flatBytes[index++];
(*this)->medianValue = bytesToDouble(byteBuf);//8
(*this)->reqLength = flatBytes[index++]; //1
for (i = 0; i < 8; i++)
byteBuf[i] = flatBytes[index++];
(*this)->realPrecision = bytesToDouble(byteBuf);//8
if ((*this)->ifAdtFse == 0) {
for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
byteBuf[i] = flatBytes[index++];
(*this)->typeArray_size = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);
} else {
for (i = 0; i < exe_params->SZ_SIZE_TYPE; i++)
byteBuf[i] = flatBytes[index++];
(*this)->FseCode_size = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// 4
for (i = 0; i < exe_params->SZ_SIZE_TYPE; i++)
byteBuf[i] = flatBytes[index++];
(*this)->transCodeBits_size = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// 4
}
for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
byteBuf[i] = flatBytes[index++];
(*this)->exactDataNum = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// ST
for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
byteBuf[i] = flatBytes[index++];
(*this)->exactMidBytes_size = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// ST
size_t logicLeadNumBitsNum = (*this)->exactDataNum * 2;
if (logicLeadNumBitsNum % 8 == 0)
{
(*this)->leadNumArray_size = logicLeadNumBitsNum >> 3;
}
else
{
(*this)->leadNumArray_size = (logicLeadNumBitsNum >> 3) + 1;
}
if ((*this)->ifAdtFse == 0) {
(*this)->typeArray = &flatBytes[index];
//retrieve the number of states (i.e., stateNum)
(*this)->allNodes = bytesToInt_bigEndian((*this)->typeArray); //the first 4 bytes store the stateNum
(*this)->stateNum = ((*this)->allNodes+1)/2;
index+=(*this)->typeArray_size;
} else {
(*this)->FseCode = &flatBytes[index];
index+=(*this)->FseCode_size;
(*this)->transCodeBits = &flatBytes[index];
index+=(*this)->transCodeBits_size;
}
// todo need check length
(*this)->residualMidBits_size = flatBytesLength - 1 - 1 - MetaDataByteLength - pde_exe->SZ_SIZE_TYPE - 4 - 4 - 4 - 1 - 8
- pde_exe->SZ_SIZE_TYPE - pde_exe->SZ_SIZE_TYPE
- (*this)->leadNumArray_size - (*this)->exactMidBytes_size;
if ((*this)->ifAdtFse == 0) {
(*this)->residualMidBits_size = (*this)->residualMidBits_size - (*this)->typeArray_size - pde_exe->SZ_SIZE_TYPE ;
} else {
(*this)->residualMidBits_size = (*this)->residualMidBits_size - (*this)->FseCode_size - (*this)->transCodeBits_size - pde_exe->SZ_SIZE_TYPE - pde_exe->SZ_SIZE_TYPE;
}
(*this)->leadNumArray = &flatBytes[index];
index+=(*this)->leadNumArray_size;
(*this)->exactMidBytes = &flatBytes[index];
index+=(*this)->exactMidBytes_size;
(*this)->residualMidBits = &flatBytes[index];
return errorBoundMode;
}
/**
*
* type's length == dataSeriesLength
* exactMidBytes's length == exactMidBytes_size
* leadNumIntArray's length == exactDataNum
* escBytes's length == escBytes_size
* resiBitLength's length == resiBitLengthSize
* */
void new_TightDataPointStorageD(TightDataPointStorageD **this,
size_t dataSeriesLength, size_t exactDataNum,
int* type, unsigned char* exactMidBytes, size_t exactMidBytes_size,
unsigned char* leadNumIntArray, //leadNumIntArray contains readable numbers....
unsigned char* resiMidBits, size_t resiMidBits_size,
unsigned char resiBitLength,
double realPrecision, double medianValue, char reqLength, unsigned int intervals,
unsigned char radExpo)
{
//int i = 0;
*this = (TightDataPointStorageD *)malloc(sizeof(TightDataPointStorageD));
memset(*this, 0, sizeof(TightDataPointStorageD));
(*this)->ifAdtFse = confparams_cpr->ifAdtFse;
(*this)->allSameData = 0;
(*this)->realPrecision = realPrecision;
(*this)->medianValue = medianValue;
(*this)->reqLength = reqLength;
(*this)->dataSeriesLength = dataSeriesLength;
(*this)->exactDataNum = exactDataNum;
if ((*this)->ifAdtFse == 0) {
// huffman
int stateNum = 2 * intervals;
HuffmanTree* huffmanTree = createHuffmanTree(stateNum);
encode_withTree(huffmanTree, type, dataSeriesLength, &(*this)->typeArray, &(*this)->typeArray_size);
SZ_ReleaseHuffman(huffmanTree);
}
else {
// fse
encode_with_fse(type, dataSeriesLength, intervals, &((*this)->FseCode), &((*this)->FseCode_size),
&((*this)->transCodeBits), &((*this)->transCodeBits_size));
}
(*this)->exactMidBytes = exactMidBytes;
(*this)->exactMidBytes_size = exactMidBytes_size;
(*this)->leadNumArray_size = convertIntArray2ByteArray_fast_2b(leadNumIntArray, exactDataNum, &((*this)->leadNumArray));
(*this)->residualMidBits_size = convertIntArray2ByteArray_fast_dynamic(resiMidBits, resiBitLength, exactDataNum, &((*this)->residualMidBits));
(*this)->intervals = intervals;
(*this)->isLossless = 0;
(*this)->radExpo = radExpo;
}
void convertTDPStoBytes_double(TightDataPointStorageD* tdps, unsigned char* bytes, unsigned char* dsLengthBytes, unsigned char sameByte)
{
size_t i, k = 0;
unsigned char intervalsBytes[4];
unsigned char typeArrayLengthBytes[8];
unsigned char exactLengthBytes[8];
unsigned char exactMidBytesLength[8];
unsigned char realPrecisionBytes[8];
unsigned char fsecodeLengthBytes[8];
unsigned char transcodeLengthBytes[8];
unsigned char medianValueBytes[8];
unsigned char max_quant_intervals_Bytes[4];
bytes[k++] = versionNumber;
bytes[k++] = sameByte; //1 byte
convertSZParamsToBytes(confparams_cpr, &(bytes[k]), exe_params->optQuantMode);
k = k + MetaDataByteLength_double;
for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST: 4 or 8 bytes
bytes[k++] = dsLengthBytes[i];
intToBytes_bigEndian(max_quant_intervals_Bytes, confparams_cpr->max_quant_intervals);
for(i = 0;i<4;i++)//4
bytes[k++] = max_quant_intervals_Bytes[i];
intToBytes_bigEndian(intervalsBytes, tdps->intervals);
for(i = 0;i<4;i++)//4
bytes[k++] = intervalsBytes[i];
doubleToBytes(medianValueBytes, tdps->medianValue);
for (i = 0; i < 8; i++)// 8
bytes[k++] = medianValueBytes[i];
bytes[k++] = tdps->reqLength; //1 byte
doubleToBytes(realPrecisionBytes, tdps->realPrecision);
for (i = 0; i < 8; i++)// 8
bytes[k++] = realPrecisionBytes[i];
if (tdps->ifAdtFse == 0) {
sizeToBytes(typeArrayLengthBytes, tdps->typeArray_size, exe_params->SZ_SIZE_TYPE);
for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
bytes[k++] = typeArrayLengthBytes[i];
} else {
sizeToBytes(fsecodeLengthBytes, tdps->FseCode_size, exe_params->SZ_SIZE_TYPE);
for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
bytes[k++] = fsecodeLengthBytes[i];
sizeToBytes(transcodeLengthBytes, tdps->transCodeBits_size, exe_params->SZ_SIZE_TYPE);
for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
bytes[k++] = transcodeLengthBytes[i];
}
sizeToBytes(exactLengthBytes, tdps->exactDataNum, exe_params->SZ_SIZE_TYPE);
for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
bytes[k++] = exactLengthBytes[i];
sizeToBytes(exactMidBytesLength, tdps->exactMidBytes_size, exe_params->SZ_SIZE_TYPE);
for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
bytes[k++] = exactMidBytesLength[i];
if(confparams_cpr->errorBoundMode>=PW_REL)
{
doubleToBytes(exactMidBytesLength, tdps->minLogValue);
for(i = 0;i < 8; i++)
bytes[k++] = exactMidBytesLength[i];
}
// copy data
if (tdps->ifAdtFse == 0) {
memcpy(&(bytes[k]), tdps->typeArray, tdps->typeArray_size);
k += tdps->typeArray_size;
} else {
memcpy(&(bytes[k]), tdps->FseCode, tdps->FseCode_size);
k += tdps->FseCode_size;
memcpy(&(bytes[k]), tdps->transCodeBits, tdps->transCodeBits_size);
k += tdps->transCodeBits_size;
}
memcpy(&(bytes[k]), tdps->leadNumArray, tdps->leadNumArray_size);
k += tdps->leadNumArray_size;
memcpy(&(bytes[k]), tdps->exactMidBytes, tdps->exactMidBytes_size);
k += tdps->exactMidBytes_size;
if(tdps->residualMidBits!=NULL)
{
memcpy(&(bytes[k]), tdps->residualMidBits, tdps->residualMidBits_size);
k += tdps->residualMidBits_size;
}
}
//Convert TightDataPointStorageD to bytes...
bool convertTDPStoFlatBytes_double(TightDataPointStorageD *tdps, unsigned char* bytes, size_t *size)
{
size_t i, k = 0;
unsigned char dsLengthBytes[8];
if(exe_params->SZ_SIZE_TYPE==4)
intToBytes_bigEndian(dsLengthBytes, tdps->dataSeriesLength);//4
else
longToBytes_bigEndian(dsLengthBytes, tdps->dataSeriesLength);//8
unsigned char sameByte = tdps->allSameData==1?(unsigned char)1:(unsigned char)0;
//sameByte = sameByte | (confparams_cpr->szMode << 1);
sameByte = sameByte | (tdps->ifAdtFse << 1); //0000,0010
if(tdps->isLossless)
sameByte = (unsigned char) (sameByte | 0x10);
if(confparams_cpr->errorBoundMode>=PW_REL)
sameByte = (unsigned char) (sameByte | 0x20); // 00100000, the 5th bit
if(exe_params->SZ_SIZE_TYPE==8)
sameByte = (unsigned char) (sameByte | 0x40); // 01000000, the 6th bit
if(confparams_cpr->errorBoundMode == PW_REL && confparams_cpr->accelerate_pw_rel_compression)
sameByte = (unsigned char) (sameByte | 0x08);
if(tdps->allSameData==1)
{
size_t totalByteLength = 1 + 1 + MetaDataByteLength_double + exe_params->SZ_SIZE_TYPE + tdps->exactMidBytes_size;
//bytes = (unsigned char *)malloc(sizeof(unsigned char)*totalByteLength); // comment by tickduan
if(totalByteLength >= tdps->dataSeriesLength * sizeof(double))
{
return false;
}
bytes[k++] = versionNumber;
bytes[k++] = sameByte;
convertSZParamsToBytes(confparams_cpr, &(bytes[k]), exe_params->optQuantMode);
k = k + MetaDataByteLength_double;
for (i = 0; i < exe_params->SZ_SIZE_TYPE; i++)
bytes[k++] = dsLengthBytes[i];
for (i = 0; i < tdps->exactMidBytes_size; i++)
bytes[k++] = tdps->exactMidBytes[i];
*size = totalByteLength;
}
else
{
size_t residualMidBitsLength = tdps->residualMidBits == NULL ? 0 : tdps->residualMidBits_size;
size_t totalByteLength = 1 + 1 + MetaDataByteLength_double + exe_params->SZ_SIZE_TYPE + 4 + 4 + 8 + 1 + 8
+ exe_params->SZ_SIZE_TYPE + exe_params->SZ_SIZE_TYPE
+ tdps->leadNumArray_size
+ tdps->exactMidBytes_size
+ residualMidBitsLength;
if (tdps->ifAdtFse == 0) {
totalByteLength += tdps->typeArray_size + exe_params->SZ_SIZE_TYPE;
} else {
totalByteLength += tdps->FseCode_size + tdps->transCodeBits_size + exe_params->SZ_SIZE_TYPE + exe_params->SZ_SIZE_TYPE;
}
//*bytes = (unsigned char *)malloc(sizeof(unsigned char)*totalByteLength); comment by tickduan
if(totalByteLength >= tdps->dataSeriesLength * sizeof(double))
{
return false;
}
convertTDPStoBytes_double(tdps, bytes, dsLengthBytes, sameByte);
*size = totalByteLength;
}
return true;
}
void free_TightDataPointStorageD(TightDataPointStorageD *tdps)
{
if(tdps->leadNumArray!=NULL)
free(tdps->leadNumArray);
if(tdps->FseCode!=NULL)
free(tdps->FseCode);
if(tdps->transCodeBits!=NULL)
free(tdps->transCodeBits);
if(tdps->exactMidBytes!=NULL)
free(tdps->exactMidBytes);
if(tdps->residualMidBits!=NULL)
free(tdps->residualMidBits);
if(tdps->typeArray)
free(tdps->typeArray);
free(tdps);
}
/**
* to free the memory used in the decompression
* */
void free_TightDataPointStorageD2(TightDataPointStorageD *tdps)
{
free(tdps);
}

View File

@ -0,0 +1,435 @@
/**
* @file TightPointDataStorageF.c
* @author Sheng Di and Dingwen Tao
* @date Aug, 2016
* @brief The functions used to construct the tightPointDataStorage element for storing compressed bytes.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "TightDataPointStorageF.h"
#include "sz.h"
#include "Huffman.h"
#include "transcode.h"
#include "fse.h"
#include <sys/time.h>
void new_TightDataPointStorageF_Empty(TightDataPointStorageF **this)
{
TightDataPointStorageF* tdpf = (TightDataPointStorageF*)malloc(sizeof(TightDataPointStorageF));
memset(tdpf, 0, sizeof(TightDataPointStorageF));
*this = tdpf;
}
int new_TightDataPointStorageF_fromFlatBytes(TightDataPointStorageF **this, unsigned char* flatBytes, size_t flatBytesLength, sz_exedata* pde_exe, sz_params* pde_params)
{
new_TightDataPointStorageF_Empty(this);
size_t i, index = 0;
//
// parse tdps
//
// 1 version(1)
unsigned char version = flatBytes[index++]; //1
unsigned char sameRByte = flatBytes[index++]; //1
// parse data format
switch (version)
{
case DATA_FROMAT_VER1:
break;
default:
printf(" error, float compressed data format can not be recognised. ver=%d\n ", version);
return SZ_ABS;
}
// 2 same(1) //note that 1000,0000 is reserved for regression tag.
int same = sameRByte & 0x01; //0000,0001
(*this)->ifAdtFse = (sameRByte & 0x02)>>1; //0000,0110
(*this)->isLossless = (sameRByte & 0x10)>>4; //0001,0000 //0010,0000
pde_exe->SZ_SIZE_TYPE = ((sameRByte & 0x40)>>6)==1?8:4; //0100,0000
int errorBoundMode = SZ_ABS;
// 3 meta(2)
convertBytesToSZParams(&(flatBytes[index]), pde_params, pde_exe);
index += MetaDataByteLength;
// 4 element count(4)
unsigned char dsLengthBytes[8];
for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
dsLengthBytes[i] = flatBytes[index++];
(*this)->dataSeriesLength = bytesToSize(dsLengthBytes, pde_exe->SZ_SIZE_TYPE);// 4 or 8
if((*this)->isLossless==1)
{
//(*this)->exactMidBytes = flatBytes+8;
return errorBoundMode;
}
else if(same==1)
{
(*this)->allSameData = 1;
(*this)->exactMidBytes = &(flatBytes[index]);
return errorBoundMode;
}
else
(*this)->allSameData = 0;
// regression
int isRegression = (sameRByte >> 7) & 0x01;
if(isRegression == 1)
{
(*this)->raBytes_size = flatBytesLength - 1 - 1 - MetaDataByteLength - pde_exe->SZ_SIZE_TYPE;
(*this)->raBytes = &(flatBytes[index]);
return errorBoundMode;
}
// 5 quant intervals(4)
unsigned char byteBuf[8];
for (i = 0; i < 4; i++)
byteBuf[i] = flatBytes[index++];
int max_quant_intervals = bytesToInt_bigEndian(byteBuf);// 4
pde_params->maxRangeRadius = max_quant_intervals/2;
// 6 intervals
for (i = 0; i < 4; i++)
byteBuf[i] = flatBytes[index++];
(*this)->intervals = bytesToInt_bigEndian(byteBuf);// 4
// 7 median
for (i = 0; i < 4; i++)
byteBuf[i] = flatBytes[index++];
(*this)->medianValue = bytesToFloat(byteBuf); //4
// 8 reqLength
(*this)->reqLength = flatBytes[index++]; //1
// 9 realPrecision(8)
for (i = 0; i < 8; i++)
byteBuf[i] = flatBytes[index++];
(*this)->realPrecision = bytesToDouble(byteBuf);//8
// 10 typeArray_size
if ((*this)->ifAdtFse == 0) {
for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
byteBuf[i] = flatBytes[index++];
(*this)->typeArray_size = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// 4
} else {
for (i = 0; i < exe_params->SZ_SIZE_TYPE; i++)
byteBuf[i] = flatBytes[index++];
(*this)->FseCode_size = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// 4
for (i = 0; i < exe_params->SZ_SIZE_TYPE; i++)
byteBuf[i] = flatBytes[index++];
(*this)->transCodeBits_size = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// 4
}
// 11 exactNum
for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
byteBuf[i] = flatBytes[index++];
(*this)->exactDataNum = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// ST
// 12 mid size
for (i = 0; i < pde_exe->SZ_SIZE_TYPE; i++)
byteBuf[i] = flatBytes[index++];
(*this)->exactMidBytes_size = bytesToSize(byteBuf, pde_exe->SZ_SIZE_TYPE);// STqq
// calc leadNumArray_size
size_t logicLeadNumBitsNum = (*this)->exactDataNum * 2;
if (logicLeadNumBitsNum % 8 == 0)
{
(*this)->leadNumArray_size = logicLeadNumBitsNum >> 3;
}
else
{
(*this)->leadNumArray_size = (logicLeadNumBitsNum >> 3) + 1;
}
// 13 typeArray
if ((*this)->ifAdtFse == 0) {
(*this)->typeArray = &flatBytes[index];
//retrieve the number of states (i.e., stateNum)
(*this)->allNodes = bytesToInt_bigEndian((*this)->typeArray); //the first 4 bytes store the stateNum
(*this)->stateNum = ((*this)->allNodes+1)/2;
index+=(*this)->typeArray_size;
} else {
(*this)->FseCode = &flatBytes[index];
index+=(*this)->FseCode_size;
(*this)->transCodeBits = &flatBytes[index];
index+=(*this)->transCodeBits_size;
}
// 14 leadNumArray
(*this)->leadNumArray = &flatBytes[index];
index += (*this)->leadNumArray_size;
// 15 exactMidBytes
(*this)->exactMidBytes = &flatBytes[index];
index+=(*this)->exactMidBytes_size;
// 16 residualMidBits
(*this)->residualMidBits = &flatBytes[index];
// calc residualMidBits_size
(*this)->residualMidBits_size = flatBytesLength - 1 - 1 - MetaDataByteLength - pde_exe->SZ_SIZE_TYPE - 4 - 4 - 4 - 1 - 8
- pde_exe->SZ_SIZE_TYPE - pde_exe->SZ_SIZE_TYPE
- (*this)->leadNumArray_size - (*this)->exactMidBytes_size;
if ((*this)->ifAdtFse == 0) {
(*this)->residualMidBits_size = (*this)->residualMidBits_size - (*this)->typeArray_size - pde_exe->SZ_SIZE_TYPE ;
} else {
(*this)->residualMidBits_size = (*this)->residualMidBits_size - (*this)->FseCode_size - (*this)->transCodeBits_size - pde_exe->SZ_SIZE_TYPE - pde_exe->SZ_SIZE_TYPE;
}
// printTDPS(*this);
return errorBoundMode;
}
/**
*
* type's length == dataSeriesLength
* exactMidBytes's length == exactMidBytes_size
* leadNumIntArray's length == exactDataNum
* escBytes's length == escBytes_size
* resiBitLength's length == resiBitLengthSize
* */
void new_TightDataPointStorageF(TightDataPointStorageF **this,
size_t dataSeriesLength, size_t exactDataNum,
int* type, unsigned char* exactMidBytes, size_t exactMidBytes_size,
unsigned char* leadNumIntArray, //leadNumIntArray contains readable numbers....
unsigned char* resiMidBits, size_t resiMidBits_size,
unsigned char resiBitLength,
double realPrecision, float medianValue, char reqLength, unsigned int intervals,
unsigned char radExpo) {
*this = (TightDataPointStorageF *)malloc(sizeof(TightDataPointStorageF));
memset(*this, 0, sizeof(TightDataPointStorageF));
(*this)->ifAdtFse = confparams_cpr->ifAdtFse;
(*this)->allSameData = 0;
(*this)->realPrecision = realPrecision;
(*this)->medianValue = medianValue;
(*this)->reqLength = reqLength;
(*this)->dataSeriesLength = dataSeriesLength;
(*this)->exactDataNum = exactDataNum;
if ((*this)->ifAdtFse == 0) {
// huffman
int stateNum = 2 * intervals;
HuffmanTree* huffmanTree = createHuffmanTree(stateNum);
encode_withTree(huffmanTree, type, dataSeriesLength, &(*this)->typeArray, &(*this)->typeArray_size);
SZ_ReleaseHuffman(huffmanTree);
}
else {
// fse
encode_with_fse(type, dataSeriesLength, intervals, &((*this)->FseCode), &((*this)->FseCode_size),
&((*this)->transCodeBits), &((*this)->transCodeBits_size));
}
(*this)->exactMidBytes = exactMidBytes;
(*this)->exactMidBytes_size = exactMidBytes_size;
(*this)->leadNumArray_size = convertIntArray2ByteArray_fast_2b(leadNumIntArray, exactDataNum, &((*this)->leadNumArray));
(*this)->residualMidBits_size = convertIntArray2ByteArray_fast_dynamic(resiMidBits, resiBitLength, exactDataNum, &((*this)->residualMidBits));
(*this)->intervals = intervals;
(*this)->isLossless = 0;
(*this)->radExpo = radExpo;
}
void convertTDPStoBytes_float(TightDataPointStorageF* tdps, unsigned char* bytes, unsigned char* dsLengthBytes, unsigned char sameByte)
{
size_t i, k = 0;
unsigned char intervalsBytes[4];
unsigned char typeArrayLengthBytes[8];
unsigned char exactLengthBytes[8];
unsigned char exactMidBytesLength[8];
unsigned char realPrecisionBytes[8];
unsigned char fsecodeLengthBytes[8];
unsigned char transcodeLengthBytes[8];
unsigned char medianValueBytes[4];
unsigned char max_quant_intervals_Bytes[4];
// 1 version
bytes[k++] = versionNumber;
// 2 same
bytes[k++] = sameByte; //1 byte
// 3 meta
convertSZParamsToBytes(confparams_cpr, &(bytes[k]), exe_params->optQuantMode);
k = k + MetaDataByteLength;
// 4 element count
for(i = 0; i < exe_params->SZ_SIZE_TYPE; i++)//ST: 4 or 8 bytes
bytes[k++] = dsLengthBytes[i];
intToBytes_bigEndian(max_quant_intervals_Bytes, confparams_cpr->max_quant_intervals);
// 5 max_quant_intervals length
for(i = 0;i<4;i++)//4
bytes[k++] = max_quant_intervals_Bytes[i];
// 6 intervals
intToBytes_bigEndian(intervalsBytes, tdps->intervals);
for(i = 0;i<4;i++)//4
bytes[k++] = intervalsBytes[i];
// 7 median
floatToBytes(medianValueBytes, tdps->medianValue);
for (i = 0; i < 4; i++)// 4
bytes[k++] = medianValueBytes[i];
// 8 reqLength
bytes[k++] = tdps->reqLength; //1 byte
// 9 realPrecision
doubleToBytes(realPrecisionBytes, tdps->realPrecision);
for (i = 0; i < 8; i++)// 8
bytes[k++] = realPrecisionBytes[i];
// 10 typeArray size
if (tdps->ifAdtFse == 0) {
sizeToBytes(typeArrayLengthBytes, tdps->typeArray_size, exe_params->SZ_SIZE_TYPE);
for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
bytes[k++] = typeArrayLengthBytes[i];
} else {
sizeToBytes(fsecodeLengthBytes, tdps->FseCode_size, exe_params->SZ_SIZE_TYPE);
for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
bytes[k++] = fsecodeLengthBytes[i];
sizeToBytes(transcodeLengthBytes, tdps->transCodeBits_size, exe_params->SZ_SIZE_TYPE);
for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
bytes[k++] = transcodeLengthBytes[i];
}
// 11 exactDataNum leadNum calc by this , so not save leadNum
sizeToBytes(exactLengthBytes, tdps->exactDataNum, exe_params->SZ_SIZE_TYPE);
for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
bytes[k++] = exactLengthBytes[i];
// 12 Mid size
sizeToBytes(exactMidBytesLength, tdps->exactMidBytes_size, exe_params->SZ_SIZE_TYPE);
for(i = 0;i<exe_params->SZ_SIZE_TYPE;i++)//ST
bytes[k++] = exactMidBytesLength[i];
// 13 typeArray
if (tdps->ifAdtFse == 0) {
memcpy(&(bytes[k]), tdps->typeArray, tdps->typeArray_size);
k += tdps->typeArray_size;
} else {
memcpy(&(bytes[k]), tdps->FseCode, tdps->FseCode_size);
k += tdps->FseCode_size;
memcpy(&(bytes[k]), tdps->transCodeBits, tdps->transCodeBits_size);
k += tdps->transCodeBits_size;
}
// 14 leadNumArray_size
memcpy(&(bytes[k]), tdps->leadNumArray, tdps->leadNumArray_size);
k += tdps->leadNumArray_size;
// 15 mid data
memcpy(&(bytes[k]), tdps->exactMidBytes, tdps->exactMidBytes_size);
k += tdps->exactMidBytes_size;
// 16 residualMidBits
if(tdps->residualMidBits!=NULL)
{
memcpy(&(bytes[k]), tdps->residualMidBits, tdps->residualMidBits_size);
k += tdps->residualMidBits_size;
}
}
//convert TightDataPointStorageD to bytes...
bool convertTDPStoFlatBytes_float(TightDataPointStorageF *tdps, unsigned char* bytes, size_t *size)
{
// printTDPS(tdps);
size_t i, k = 0;
unsigned char dsLengthBytes[8];
if(exe_params->SZ_SIZE_TYPE==4)
intToBytes_bigEndian(dsLengthBytes, tdps->dataSeriesLength);//4
else
longToBytes_bigEndian(dsLengthBytes, tdps->dataSeriesLength);//8
unsigned char sameByte = tdps->allSameData==1?(unsigned char)1:(unsigned char)0; //0000,0001
//sameByte = sameByte | (confparams_cpr->szMode << 1); //0000,0110 (no need because of convertSZParamsToBytes
sameByte = sameByte | (tdps->ifAdtFse << 1); // 0000,0010
if(tdps->isLossless)
sameByte = (unsigned char) (sameByte | 0x10); // 0001,0000
if(confparams_cpr->errorBoundMode>=PW_REL)
sameByte = (unsigned char) (sameByte | 0x20); // 0010,0000, the 5th bit
if(exe_params->SZ_SIZE_TYPE==8)
sameByte = (unsigned char) (sameByte | 0x40); // 0100,0000, the 6th bit
if(confparams_cpr->errorBoundMode == PW_REL && confparams_cpr->accelerate_pw_rel_compression)
sameByte = (unsigned char) (sameByte | 0x08); //0000,1000
//if(confparams_cpr->protectValueRange)
// sameByte = (unsigned char) (sameByte | 0x04); //0000,0100
if(tdps->allSameData == 1 )
{
//
// same format
//
size_t totalByteLength = 1 + 1 + MetaDataByteLength + exe_params->SZ_SIZE_TYPE + tdps->exactMidBytes_size;
//*bytes = (unsigned char *)malloc(sizeof(unsigned char)*totalByteLength); // not need malloc comment by tickduan
// check output buffer enough
if(totalByteLength >= tdps->dataSeriesLength * sizeof(float) )
{
*size = 0;
return false;
}
// 1 version 1 byte
bytes[k++] = versionNumber;
// 2 same flag 1 bytes
bytes[k++] = sameByte;
// 3 metaData 26 bytes
convertSZParamsToBytes(confparams_cpr, &(bytes[k]), exe_params->optQuantMode);
k = k + MetaDataByteLength;
// 4 data Length 4 or 8 bytes
for (i = 0; i < exe_params->SZ_SIZE_TYPE; i++)
bytes[k++] = dsLengthBytes[i];
// 5 exactMidBytes exactMidBytes_size bytes
for (i = 0; i < tdps->exactMidBytes_size; i++)
bytes[k++] = tdps->exactMidBytes[i];
*size = totalByteLength;
}
else
{
//
// not same format
//
size_t residualMidBitsLength = tdps->residualMidBits == NULL ? 0 : tdps->residualMidBits_size;
// version(1) + samebyte(1)
size_t totalByteLength = 1 + 1 + MetaDataByteLength + exe_params->SZ_SIZE_TYPE + 4 + 4 + 4 + 1 + 8
+ exe_params->SZ_SIZE_TYPE + exe_params->SZ_SIZE_TYPE
+ tdps->leadNumArray_size
+ tdps->exactMidBytes_size
+ residualMidBitsLength;
if (tdps->ifAdtFse == 0) {
totalByteLength += tdps->typeArray_size + exe_params->SZ_SIZE_TYPE;
} else {
totalByteLength += tdps->FseCode_size + tdps->transCodeBits_size + exe_params->SZ_SIZE_TYPE + exe_params->SZ_SIZE_TYPE;
}
//*bytes = (unsigned char *)malloc(sizeof(unsigned char)*totalByteLength); // comment by tickduan
if(totalByteLength >= tdps->dataSeriesLength * sizeof(float))
{
*size = 0;
return false;
}
convertTDPStoBytes_float(tdps, bytes, dsLengthBytes, sameByte);
*size = totalByteLength;
return true;
}
return true;
}
/**
* to free the memory used in the compression
* */
void free_TightDataPointStorageF(TightDataPointStorageF *tdps)
{
if(tdps->leadNumArray!=NULL)
free(tdps->leadNumArray);
if(tdps->FseCode!=NULL)
free(tdps->FseCode);
if(tdps->transCodeBits!=NULL)
free(tdps->transCodeBits);
if(tdps->exactMidBytes!=NULL)
free(tdps->exactMidBytes);
if(tdps->residualMidBits!=NULL)
free(tdps->residualMidBits);
if(tdps->typeArray)
free(tdps->typeArray);
free(tdps);
}
/**
* to free the memory used in the decompression
* */
void free_TightDataPointStorageF2(TightDataPointStorageF *tdps)
{
free(tdps);
}

View File

@ -0,0 +1,203 @@
/**
* @file TypeManager.c
* @author Sheng Di
* @date May, 2016
* @brief TypeManager is used to manage the type array: parsing of the bytes and other types in between.
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdio.h>
#include <stdlib.h>
#include "DynamicByteArray.h"
#include "sz.h"
//int convertIntArray2ByteArray_fast_8b()
size_t convertIntArray2ByteArray_fast_1b(unsigned char* intArray, size_t intArrayLength, unsigned char **result)
{
size_t byteLength = 0;
size_t i, j;
if(intArrayLength%8==0)
byteLength = intArrayLength/8;
else
byteLength = intArrayLength/8+1;
if(byteLength>0)
*result = (unsigned char*)malloc(byteLength*sizeof(unsigned char));
else
*result = NULL;
size_t n = 0;
int tmp, type;
for(i = 0;i<byteLength;i++)
{
tmp = 0;
for(j = 0;j<8&&n<intArrayLength;j++)
{
type = intArray[n];
if(type == 1)
tmp = (tmp | (1 << (7-j)));
n++;
}
(*result)[i] = (unsigned char)tmp;
}
return byteLength;
}
size_t convertIntArray2ByteArray_fast_1b_to_result(unsigned char* intArray, size_t intArrayLength, unsigned char *result)
{
size_t byteLength = 0;
size_t i, j;
if(intArrayLength%8==0)
byteLength = intArrayLength/8;
else
byteLength = intArrayLength/8+1;
size_t n = 0;
int tmp, type;
for(i = 0;i<byteLength;i++)
{
tmp = 0;
for(j = 0;j<8&&n<intArrayLength;j++)
{
type = intArray[n];
if(type == 1)
tmp = (tmp | (1 << (7-j)));
n++;
}
result[i] = (unsigned char)tmp;
}
return byteLength;
}
void convertByteArray2IntArray_fast_2b(size_t stepLength, unsigned char* byteArray, size_t byteArrayLength, unsigned char **intArray)
{
if(stepLength > byteArrayLength*4)
{
printf("Error: stepLength > byteArray.length*4\n");
printf("stepLength=%zu, byteArray.length=%zu\n", stepLength, byteArrayLength);
exit(0);
}
if(stepLength>0)
*intArray = (unsigned char*)malloc(stepLength*sizeof(unsigned char));
else
*intArray = NULL;
size_t i, n = 0;
for (i = 0; i < byteArrayLength; i++) {
unsigned char tmp = byteArray[i];
(*intArray)[n++] = (tmp & 0xC0) >> 6;
if(n==stepLength)
break;
(*intArray)[n++] = (tmp & 0x30) >> 4;
if(n==stepLength)
break;
(*intArray)[n++] = (tmp & 0x0C) >> 2;
if(n==stepLength)
break;
(*intArray)[n++] = tmp & 0x03;
if(n==stepLength)
break;
}
}
/**
* little endian
* [01|10|11|00|....]-->[01|10|11|00][....]
* @param timeStepType
* @return
*/
size_t convertIntArray2ByteArray_fast_2b(unsigned char* timeStepType, size_t timeStepTypeLength, unsigned char **result)
{
size_t i, j, byteLength = 0;
if(timeStepTypeLength%4==0)
byteLength = timeStepTypeLength*2/8;
else
byteLength = timeStepTypeLength*2/8+1;
if(byteLength>0)
*result = (unsigned char*)malloc(byteLength*sizeof(unsigned char));
else
*result = NULL;
size_t n = 0;
for(i = 0;i<byteLength;i++)
{
int tmp = 0;
for(j = 0;j<4&&n<timeStepTypeLength;j++)
{
int type = timeStepType[n];
switch(type)
{
case 0:
break;
case 1:
tmp = (tmp | (1 << (6-j*2)));
break;
case 2:
tmp = (tmp | (2 << (6-j*2)));
break;
case 3:
tmp = (tmp | (3 << (6-j*2)));
break;
default:
printf("Error: wrong timestep type...: type[%zu]=%d\n", n, type);
exit(0);
}
n++;
}
(*result)[i] = (unsigned char)tmp;
}
return byteLength;
}
INLINE int getLeftMovingSteps(size_t k, unsigned char resiBitLength)
{
return 8 - k%8 - resiBitLength;
}
/**
*
* @param timeStepType is the resiMidBits
* @param resiBitLength is the length of resiMidBits for each element, (the number of resiBitLength == the # of unpredictable elements
* @return
*/
size_t convertIntArray2ByteArray_fast_dynamic(unsigned char* timeStepType, unsigned char resiBitLength, size_t nbEle, unsigned char **bytes)
{
size_t i = 0, j = 0, k = 0;
int value;
DynamicByteArray* dba;
new_DBA(&dba, 1024);
int tmp = 0, leftMovSteps = 0;
for(j = 0;j<nbEle;j++)
{
if(resiBitLength==0)
continue;
value = timeStepType[i];
leftMovSteps = getLeftMovingSteps(k, resiBitLength);
if(leftMovSteps < 0)
{
tmp = tmp | (value >> (-leftMovSteps));
addDBA_Data(dba, (unsigned char)tmp);
tmp = 0 | (value << (8+leftMovSteps));
}
else if(leftMovSteps > 0)
{
tmp = tmp | (value << leftMovSteps);
}
else //==0
{
tmp = tmp | value;
addDBA_Data(dba, (unsigned char)tmp);
tmp = 0;
}
i++;
k += resiBitLength;
}
if(leftMovSteps != 0)
addDBA_Data(dba, (unsigned char)tmp);
convertDBAtoBytes(dba, bytes);
size_t size = dba->size;
free_DBA(dba);
return size;
}

355
utils/TSZ/sz/src/conf.c Normal file
View File

@ -0,0 +1,355 @@
/**
* @file conf.c
* @author Sheng Di (sdi1@anl.gov or disheng222@gmail.com)
* @date 2015.
* @brief Configuration loading functions for the SZ library.
* (C) 2015 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <math.h>
#include "string.h"
#include "sz.h"
#include "iniparser.h"
#include "Huffman.h"
//
// set default value
//
void setDefaulParams(sz_exedata* exedata, sz_params* params)
{
// sz_params
if(params)
{
// first important
params->errorBoundMode = SZ_ABS;
params->absErrBound = 1E-8;
params->absErrBoundDouble = 1E-16;
params->max_quant_intervals = 500;
params->quantization_intervals = 100;
params->losslessCompressor = ZSTD_COMPRESSOR; //other option: GZIP_COMPRESSOR;
// second important
params->sol_ID = SZ;
params->maxRangeRadius = params->max_quant_intervals/2;
params->predThreshold = 0.99;
params->sampleDistance = 100;
params->szMode = SZ_BEST_COMPRESSION;
// other
params->psnr = 90;
params->relBoundRatio = 1E-8;
params->accelerate_pw_rel_compression = 1;
params->pw_relBoundRatio = 1E-3;
params->segment_size = 36;
params->pwr_type = SZ_PWR_MIN_TYPE;
params->snapshotCmprStep = 5;
params->withRegression = SZ_WITH_LINEAR_REGRESSION;
params->randomAccess = 0; //0: no random access , 1: support random access
params->protectValueRange = 0;
params->plus_bits = 3;
}
// sz_exedata
if(exedata)
{
exedata->optQuantMode = 1;
exedata->SZ_SIZE_TYPE = 4;
if(params)
{
exedata->intvCapacity = params->maxRangeRadius*2;
exedata->intvRadius = params->maxRangeRadius;
}
else
{
exedata->intvCapacity = 500;
exedata->intvRadius = 200;
}
}
}
unsigned int roundUpToPowerOf2(unsigned int base)
{
base -= 1;
base = base | (base >> 1);
base = base | (base >> 2);
base = base | (base >> 4);
base = base | (base >> 8);
base = base | (base >> 16);
return base + 1;
}
void updateQuantizationInfo(int quant_intervals)
{
exe_params->intvCapacity = quant_intervals;
exe_params->intvRadius = quant_intervals/2;
}
double computeABSErrBoundFromPSNR(double psnr, double threshold, double value_range)
{
double v1 = psnr + 10 * log10(1-2.0/3.0*threshold);
double v2 = v1/(-20);
double v3 = pow(10, v2);
return value_range * v3;
}
double computeABSErrBoundFromNORM_ERR(double normErr, size_t nbEle)
{
return sqrt(3.0/nbEle)*normErr;
}
/*-------------------------------------------------------------------------*/
/**
*
*
* @return the status of loading conf. file: 1 (success) or 0 (error code);
* */
int SZ_ReadConf(const char* sz_cfgFile) {
// Check access to SZ configuration file and load dictionary
//record the setting in confparams_cpr
if(confparams_cpr == NULL)
confparams_cpr = (sz_params*)malloc(sizeof(sz_params));
if(exe_params == NULL)
exe_params = (sz_exedata*)malloc(sizeof(sz_exedata));
int x = 1;
char sol_name[256];
char *modeBuf;
char *errBoundMode;
char *endianTypeString;
dictionary *ini;
char *par;
char *y = (char*)&x;
if(*y==1)
sysEndianType = LITTLE_ENDIAN_SYSTEM;
else //=0
sysEndianType = BIG_ENDIAN_SYSTEM;
// default option
if(sz_cfgFile == NULL)
{
dataEndianType = LITTLE_ENDIAN_DATA;
setDefaulParams(exe_params, confparams_cpr);
return SZ_SUCCESS;
}
//printf("[SZ] Reading SZ configuration file (%s) ...\n", sz_cfgFile);
ini = iniparser_load(sz_cfgFile);
if (ini == NULL)
{
printf("[SZ] Iniparser failed to parse the conf. file.\n");
return SZ_FAILED;
}
endianTypeString = iniparser_getstring(ini, "ENV:dataEndianType", "LITTLE_ENDIAN_DATA");
if(strcmp(endianTypeString, "LITTLE_ENDIAN_DATA")==0)
dataEndianType = LITTLE_ENDIAN_DATA;
else if(strcmp(endianTypeString, "BIG_ENDIAN_DATA")==0)
dataEndianType = BIG_ENDIAN_DATA;
else
{
printf("Error: Wrong dataEndianType: please set it correctly in sz.config.\n");
iniparser_freedict(ini);
return SZ_FAILED;
}
// Reading/setting detection parameters
par = iniparser_getstring(ini, "ENV:sol_name", NULL);
snprintf(sol_name, 256, "%s", par);
if(strcmp(sol_name, "SZ")==0)
confparams_cpr->sol_ID = SZ;
else if(strcmp(sol_name, "PASTRI")==0)
confparams_cpr->sol_ID = PASTRI;
else if(strcmp(sol_name, "SZ_Transpose")==0)
confparams_cpr->sol_ID = SZ_Transpose;
else{
printf("[SZ] Error: wrong solution name (please check sz.config file), sol=%s\n", sol_name);
iniparser_freedict(ini);
return SZ_FAILED;
}
if(confparams_cpr->sol_ID==SZ || confparams_cpr->sol_ID==SZ_Transpose)
{
int max_quant_intervals = iniparser_getint(ini, "PARAMETER:max_quant_intervals", 65536);
confparams_cpr->max_quant_intervals = max_quant_intervals;
int quantization_intervals = (int)iniparser_getint(ini, "PARAMETER:quantization_intervals", 0);
confparams_cpr->quantization_intervals = quantization_intervals;
if(quantization_intervals>0)
{
updateQuantizationInfo(quantization_intervals);
confparams_cpr->max_quant_intervals = max_quant_intervals = quantization_intervals;
exe_params->optQuantMode = 0;
}
else //==0
{
confparams_cpr->maxRangeRadius = max_quant_intervals/2;
exe_params->intvCapacity = confparams_cpr->maxRangeRadius*2;
exe_params->intvRadius = confparams_cpr->maxRangeRadius;
exe_params->optQuantMode = 1;
}
if(quantization_intervals%2!=0)
{
printf("Error: quantization_intervals must be an even number!\n");
iniparser_freedict(ini);
return SZ_FAILED;
}
confparams_cpr->predThreshold = (float)iniparser_getdouble(ini, "PARAMETER:predThreshold", 0);
confparams_cpr->sampleDistance = (int)iniparser_getint(ini, "PARAMETER:sampleDistance", 0);
modeBuf = iniparser_getstring(ini, "PARAMETER:szMode", NULL);
if(modeBuf==NULL)
{
printf("[SZ] Error: Null szMode setting (please check sz.config file)\n");
iniparser_freedict(ini);
return SZ_FAILED;
}
else if(strcmp(modeBuf, "SZ_BEST_SPEED")==0)
confparams_cpr->szMode = SZ_BEST_SPEED;
else if(strcmp(modeBuf, "SZ_DEFAULT_COMPRESSION")==0)
confparams_cpr->szMode = SZ_DEFAULT_COMPRESSION;
else if(strcmp(modeBuf, "SZ_BEST_COMPRESSION")==0)
confparams_cpr->szMode = SZ_BEST_COMPRESSION;
else
{
printf("[SZ] Error: Wrong szMode setting (please check sz.config file)\n");
iniparser_freedict(ini);
return SZ_FAILED;
}
modeBuf = iniparser_getstring(ini, "PARAMETER:losslessCompressor", "ZSTD_COMPRESSOR");
if(strcmp(modeBuf, "GZIP_COMPRESSOR")==0)
confparams_cpr->losslessCompressor = GZIP_COMPRESSOR;
else if(strcmp(modeBuf, "ZSTD_COMPRESSOR")==0)
confparams_cpr->losslessCompressor = ZSTD_COMPRESSOR;
else
{
printf("[SZ] Error: Wrong losslessCompressor setting (please check sz.config file)\n");\
printf("No Such a lossless compressor: %s\n", modeBuf);
iniparser_freedict(ini);
return SZ_FAILED;
}
modeBuf = iniparser_getstring(ini, "PARAMETER:withLinearRegression", "YES");
if(strcmp(modeBuf, "YES")==0 || strcmp(modeBuf, "yes")==0)
confparams_cpr->withRegression = SZ_WITH_LINEAR_REGRESSION;
else
confparams_cpr->withRegression = SZ_NO_REGRESSION;
modeBuf = iniparser_getstring(ini, "PARAMETER:protectValueRange", "YES");
if(strcmp(modeBuf, "YES")==0)
confparams_cpr->protectValueRange = 1;
else
confparams_cpr->protectValueRange = 0;
confparams_cpr->randomAccess = (int)iniparser_getint(ini, "PARAMETER:randomAccess", 0);
//TODO
confparams_cpr->snapshotCmprStep = (int)iniparser_getint(ini, "PARAMETER:snapshotCmprStep", 5);
errBoundMode = iniparser_getstring(ini, "PARAMETER:errorBoundMode", NULL);
if(errBoundMode==NULL)
{
printf("[SZ] Error: Null error bound setting (please check sz.config file)\n");
iniparser_freedict(ini);
return SZ_FAILED;
}
else if(strcmp(errBoundMode,"ABS")==0||strcmp(errBoundMode,"abs")==0)
confparams_cpr->errorBoundMode=SZ_ABS;
else if(strcmp(errBoundMode, "REL")==0||strcmp(errBoundMode,"rel")==0)
confparams_cpr->errorBoundMode=REL;
else if(strcmp(errBoundMode, "VR_REL")==0||strcmp(errBoundMode, "vr_rel")==0)
confparams_cpr->errorBoundMode=REL;
else if(strcmp(errBoundMode, "ABS_AND_REL")==0||strcmp(errBoundMode, "abs_and_rel")==0)
confparams_cpr->errorBoundMode=ABS_AND_REL;
else if(strcmp(errBoundMode, "ABS_OR_REL")==0||strcmp(errBoundMode, "abs_or_rel")==0)
confparams_cpr->errorBoundMode=ABS_OR_REL;
else if(strcmp(errBoundMode, "PW_REL")==0||strcmp(errBoundMode, "pw_rel")==0)
confparams_cpr->errorBoundMode=PW_REL;
else if(strcmp(errBoundMode, "PSNR")==0||strcmp(errBoundMode, "psnr")==0)
confparams_cpr->errorBoundMode=PSNR;
else if(strcmp(errBoundMode, "ABS_AND_PW_REL")==0||strcmp(errBoundMode, "abs_and_pw_rel")==0)
confparams_cpr->errorBoundMode=ABS_AND_PW_REL;
else if(strcmp(errBoundMode, "ABS_OR_PW_REL")==0||strcmp(errBoundMode, "abs_or_pw_rel")==0)
confparams_cpr->errorBoundMode=ABS_OR_PW_REL;
else if(strcmp(errBoundMode, "REL_AND_PW_REL")==0||strcmp(errBoundMode, "rel_and_pw_rel")==0)
confparams_cpr->errorBoundMode=REL_AND_PW_REL;
else if(strcmp(errBoundMode, "REL_OR_PW_REL")==0||strcmp(errBoundMode, "rel_or_pw_rel")==0)
confparams_cpr->errorBoundMode=REL_OR_PW_REL;
else if(strcmp(errBoundMode, "NORM")==0||strcmp(errBoundMode, "norm")==0)
confparams_cpr->errorBoundMode=NORM;
else
{
printf("[SZ] Error: Wrong error bound mode (please check sz.config file)\n");
iniparser_freedict(ini);
return SZ_FAILED;
}
confparams_cpr->absErrBound = (double)iniparser_getdouble(ini, "PARAMETER:absErrBound", 0);
confparams_cpr->relBoundRatio = (double)iniparser_getdouble(ini, "PARAMETER:relBoundRatio", 0);
confparams_cpr->psnr = (double)iniparser_getdouble(ini, "PARAMETER:psnr", 0);
confparams_cpr->normErr = (double)iniparser_getdouble(ini, "PARAMETER:normErr", 0);
confparams_cpr->pw_relBoundRatio = (double)iniparser_getdouble(ini, "PARAMETER:pw_relBoundRatio", 0);
confparams_cpr->segment_size = (int)iniparser_getint(ini, "PARAMETER:segment_size", 0);
confparams_cpr->accelerate_pw_rel_compression = (int)iniparser_getint(ini, "PARAMETER:accelerate_pw_rel_compression", 1);
modeBuf = iniparser_getstring(ini, "PARAMETER:pwr_type", "MIN");
if(strcmp(modeBuf, "MIN")==0)
confparams_cpr->pwr_type = SZ_PWR_MIN_TYPE;
else if(strcmp(modeBuf, "AVG")==0)
confparams_cpr->pwr_type = SZ_PWR_AVG_TYPE;
else if(strcmp(modeBuf, "MAX")==0)
confparams_cpr->pwr_type = SZ_PWR_MAX_TYPE;
else if(modeBuf!=NULL)
{
printf("[SZ] Error: Wrong pwr_type setting (please check sz.config file).\n");
iniparser_freedict(ini);
return SZ_FAILED;
}
else //by default
confparams_cpr->pwr_type = SZ_PWR_AVG_TYPE;
//initialization for Huffman encoding
//SZ_Reset();
}
iniparser_freedict(ini);
return SZ_SUCCESS;
}
/*-------------------------------------------------------------------------*/
/**
@brief It reads and tests the configuration given.
@return integer 1 if successfull.
This function reads the configuration file. Then test that the
configuration parameters are correct (including directories).
**/
/*-------------------------------------------------------------------------*/
int SZ_LoadConf(const char* sz_cfgFile) {
int res = SZ_ReadConf(sz_cfgFile);
if (res != SZ_SUCCESS)
{
printf("[SZ] ERROR: Impossible to read configuration.\n");
return SZ_FAILED;
}
return SZ_SUCCESS;
}

View File

@ -0,0 +1,653 @@
/**
* @file double_compression.c
* @author Sheng Di, Dingwen Tao, Xin Liang, Xiangyu Zou, Tao Lu, Wen Xia, Xuan Wang, Weizhe Zhang
* @date April, 2016
* @brief Compression Technique for double array
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sz.h"
#include "DynamicByteArray.h"
#include "DynamicIntArray.h"
#include "TightDataPointStorageD.h"
#include "CompressElement.h"
#include "dataCompression.h"
float computeRangeSize_float(float* oriData, size_t size, float* valueRangeSize, float* medianValue)
{
size_t i = 0;
float min = oriData[0];
float max = min;
for(i=1;i<size;i++)
{
float data = oriData[i];
if(min>data)
min = data;
else if(max<data)
max = data;
}
*valueRangeSize = max - min;
*medianValue = min + *valueRangeSize/2;
return min;
}
double computeRangeSize_double(double* oriData, size_t size, double* valueRangeSize, double* medianValue)
{
size_t i = 0;
double min = oriData[0];
double max = min;
for(i=1;i<size;i++)
{
double data = oriData[i];
if(min>data)
min = data;
else if(max<data)
max = data;
}
*valueRangeSize = max - min;
*medianValue = min + *valueRangeSize/2;
return min;
}
double min_d(double a, double b)
{
if(a<b)
return a;
else
return b;
}
double max_d(double a, double b)
{
if(a>b)
return a;
else
return b;
}
float min_f(float a, float b)
{
if(a<b)
return a;
else
return b;
}
float max_f(float a, float b)
{
if(a>b)
return a;
else
return b;
}
double getRealPrecision_double(double valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status)
{
int state = SZ_SUCCESS;
double precision = 0;
if(errBoundMode==SZ_ABS||errBoundMode==ABS_OR_PW_REL||errBoundMode==ABS_AND_PW_REL)
precision = absErrBound;
else if(errBoundMode==REL||errBoundMode==REL_OR_PW_REL||errBoundMode==REL_AND_PW_REL)
precision = relBoundRatio*valueRangeSize;
else if(errBoundMode==ABS_AND_REL)
precision = min_d(absErrBound, relBoundRatio*valueRangeSize);
else if(errBoundMode==ABS_OR_REL)
precision = max_d(absErrBound, relBoundRatio*valueRangeSize);
else if(errBoundMode==PW_REL)
precision = 0;
else
{
printf("Error: error-bound-mode is incorrect!\n");
state = SZ_BERR;
}
*status = state;
return precision;
}
double getRealPrecision_float(float valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status)
{
int state = SZ_SUCCESS;
double precision = 0;
if(errBoundMode==SZ_ABS||errBoundMode==ABS_OR_PW_REL||errBoundMode==ABS_AND_PW_REL)
precision = absErrBound;
else if(errBoundMode==REL||errBoundMode==REL_OR_PW_REL||errBoundMode==REL_AND_PW_REL)
precision = relBoundRatio*valueRangeSize;
else if(errBoundMode==ABS_AND_REL)
precision = min_f(absErrBound, relBoundRatio*valueRangeSize);
else if(errBoundMode==ABS_OR_REL)
precision = max_f(absErrBound, relBoundRatio*valueRangeSize);
else if(errBoundMode==PW_REL)
precision = 0;
else
{
printf("Error: error-bound-mode is incorrect!\n");
state = SZ_BERR;
}
*status = state;
return precision;
}
double getRealPrecision_int(long valueRangeSize, int errBoundMode, double absErrBound, double relBoundRatio, int *status)
{
int state = SZ_SUCCESS;
double precision = 0;
if(errBoundMode==SZ_ABS||errBoundMode==ABS_OR_PW_REL||errBoundMode==ABS_AND_PW_REL)
precision = absErrBound;
else if(errBoundMode==REL||errBoundMode==REL_OR_PW_REL||errBoundMode==REL_AND_PW_REL)
precision = relBoundRatio*valueRangeSize;
else if(errBoundMode==ABS_AND_REL)
precision = min_f(absErrBound, relBoundRatio*valueRangeSize);
else if(errBoundMode==ABS_OR_REL)
precision = max_f(absErrBound, relBoundRatio*valueRangeSize);
else if(errBoundMode==PW_REL)
precision = -1;
else
{
printf("Error: error-bound-mode is incorrect!\n");
state = SZ_BERR;
}
*status = state;
return precision;
}
void symTransform_8bytes(unsigned char data[8])
{
unsigned char tmp = data[0];
data[0] = data[7];
data[7] = tmp;
tmp = data[1];
data[1] = data[6];
data[6] = tmp;
tmp = data[2];
data[2] = data[5];
data[5] = tmp;
tmp = data[3];
data[3] = data[4];
data[4] = tmp;
}
INLINE void symTransform_2bytes(unsigned char data[2])
{
unsigned char tmp = data[0];
data[0] = data[1];
data[1] = tmp;
}
INLINE void symTransform_4bytes(unsigned char data[4])
{
unsigned char tmp = data[0];
data[0] = data[3];
data[3] = tmp;
tmp = data[1];
data[1] = data[2];
data[2] = tmp;
}
INLINE void compressSingleFloatValue(FloatValueCompressElement *vce, float oriValue, float precision, float medianValue,
int reqLength, int reqBytesLength, int resiBitsLength)
{
lfloat diffVal;
diffVal.value = oriValue - medianValue;
// calc ignore bit count
int ignBitCount = 32 - reqLength;
if(ignBitCount<0)
ignBitCount = 0;
intToBytes_bigEndian(vce->curBytes, diffVal.ivalue);
// truncate diff value tail bit with ignBitCount
diffVal.ivalue = (diffVal.ivalue >> ignBitCount) << ignBitCount;
// save to vce
vce->data = diffVal.value + medianValue;
vce->curValue = diffVal.ivalue;
vce->reqBytesLength = reqBytesLength;
vce->resiBitsLength = resiBitsLength;
}
void compressSingleDoubleValue(DoubleValueCompressElement *vce, double tgtValue, double precision, double medianValue,
int reqLength, int reqBytesLength, int resiBitsLength)
{
double normValue = tgtValue - medianValue;
ldouble lfBuf;
lfBuf.value = normValue;
int ignBytesLength = 64 - reqLength;
if(ignBytesLength<0)
ignBytesLength = 0;
long tmp_long = lfBuf.lvalue;
longToBytes_bigEndian(vce->curBytes, tmp_long);
lfBuf.lvalue = (lfBuf.lvalue >> ignBytesLength)<<ignBytesLength;
//double tmpValue = lfBuf.value;
vce->data = lfBuf.value+medianValue;
vce->curValue = tmp_long;
vce->reqBytesLength = reqBytesLength;
vce->resiBitsLength = resiBitsLength;
}
int compIdenticalLeadingBytesCount_double(unsigned char* preBytes, unsigned char* curBytes)
{
int i, n = 0;
for(i=0;i<8;i++)
if(preBytes[i]==curBytes[i])
n++;
else
break;
if(n>3) n = 3;
return n;
}
INLINE int compIdenticalLeadingBytesCount_float(unsigned char* preBytes, unsigned char* curBytes)
{
int i, n = 0;
for(i=0;i<4;i++)
if(preBytes[i]==curBytes[i])
n++;
else
break;
if(n>3) n = 3;
return n;
}
//TODO double-check the correctness...
INLINE void addExactData(DynamicByteArray *exactMidByteArray, DynamicIntArray *exactLeadNumArray,
DynamicIntArray *resiBitArray, LossyCompressionElement *lce)
{
int i;
int leadByteLength = lce->leadingZeroBytes;
addDIA_Data(exactLeadNumArray, leadByteLength);
unsigned char* intMidBytes = lce->integerMidBytes;
int integerMidBytesLength = lce->integerMidBytes_Length;
int resMidBitsLength = lce->resMidBitsLength;
if(intMidBytes!=NULL||resMidBitsLength!=0)
{
if(intMidBytes!=NULL)
for(i = 0;i<integerMidBytesLength;i++)
addDBA_Data(exactMidByteArray, intMidBytes[i]);
if(resMidBitsLength!=0)
addDIA_Data(resiBitArray, lce->residualMidBits);
}
}
/**
* @deprecated
* @return: the length of the coefficient array.
* */
int getPredictionCoefficients(int layers, int dimension, int **coeff_array, int *status)
{
size_t size = 0;
switch(dimension)
{
case 1:
switch(layers)
{
case 1:
*coeff_array = (int*)malloc(sizeof(int));
(*coeff_array)[0] = 1;
size = 1;
break;
case 2:
*coeff_array = (int*)malloc(2*sizeof(int));
(*coeff_array)[0] = 2;
(*coeff_array)[1] = -1;
size = 2;
break;
case 3:
*coeff_array = (int*)malloc(3*sizeof(int));
(*coeff_array)[0] = 3;
(*coeff_array)[1] = -3;
(*coeff_array)[2] = 1;
break;
}
break;
case 2:
switch(layers)
{
case 1:
break;
case 2:
break;
case 3:
break;
}
break;
case 3:
switch(layers)
{
case 1:
break;
case 2:
break;
case 3:
break;
}
break;
default:
printf("Error: dimension must be no greater than 3 in the current version.\n");
*status = SZ_DERR;
}
*status = SZ_SUCCESS;
return size;
}
int computeBlockEdgeSize_2D(int segmentSize)
{
int i = 1;
for(i=1; i<segmentSize;i++)
{
if(i*i>segmentSize)
break;
}
return i;
//return (int)(sqrt(segmentSize)+1);
}
int computeBlockEdgeSize_3D(int segmentSize)
{
int i = 1;
for(i=1; i<segmentSize;i++)
{
if(i*i*i>segmentSize)
break;
}
return i;
//return (int)(pow(segmentSize, 1.0/3)+1);
}
//The following functions are float-precision version of dealing with the unpredictable data points
int generateLossyCoefficients_float(float* oriData, double precision, size_t nbEle, int* reqBytesLength, int* resiBitsLength, float* medianValue, float* decData)
{
float valueRangeSize;
computeRangeSize_float(oriData, nbEle, &valueRangeSize, medianValue);
short radExpo = getExponent_float(valueRangeSize/2);
int reqLength;
computeReqLength_float(precision, radExpo, &reqLength, medianValue);
*reqBytesLength = reqLength/8;
*resiBitsLength = reqLength%8;
size_t i = 0;
for(i = 0;i < nbEle;i++)
{
float normValue = oriData[i] - *medianValue;
lfloat lfBuf;
lfBuf.value = normValue;
int ignBytesLength = 32 - reqLength;
if(ignBytesLength<0)
ignBytesLength = 0;
lfBuf.ivalue = (lfBuf.ivalue >> ignBytesLength) << ignBytesLength;
//float tmpValue = lfBuf.value;
decData[i] = lfBuf.value + *medianValue;
}
return reqLength;
}
/**
* @param float* oriData: inplace argument (input / output)
*
* */
int compressExactDataArray_float(float* oriData, double precision, size_t nbEle, unsigned char** leadArray, unsigned char** midArray, unsigned char** resiArray,
int reqLength, int reqBytesLength, int resiBitsLength, float medianValue)
{
//allocate memory for coefficient compression arrays
DynamicIntArray *exactLeadNumArray;
new_DIA(&exactLeadNumArray, DynArrayInitLen);
DynamicByteArray *exactMidByteArray;
new_DBA(&exactMidByteArray, DynArrayInitLen);
DynamicIntArray *resiBitArray;
new_DIA(&resiBitArray, DynArrayInitLen);
unsigned char preDataBytes[4] = {0,0,0,0};
//allocate memory for vce and lce
FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement));
LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement));
size_t i = 0;
for(i = 0;i < nbEle;i++)
{
compressSingleFloatValue(vce, oriData[i], precision, medianValue, reqLength, reqBytesLength, resiBitsLength);
updateLossyCompElement_Float(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce);
memcpy(preDataBytes,vce->curBytes,4);
addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
oriData[i] = vce->data;
}
convertDIAtoInts(exactLeadNumArray, leadArray);
convertDBAtoBytes(exactMidByteArray,midArray);
convertDIAtoInts(resiBitArray, resiArray);
size_t midArraySize = exactMidByteArray->size;
free(vce);
free(lce);
free_DIA(exactLeadNumArray);
free_DBA(exactMidByteArray);
free_DIA(resiBitArray);
return midArraySize;
}
void decompressExactDataArray_float(unsigned char* leadNum, unsigned char* exactMidBytes, unsigned char* residualMidBits, size_t nbEle, int reqLength, float medianValue, float** decData)
{
*decData = (float*)malloc(nbEle*sizeof(float));
size_t i = 0, j = 0, k = 0, l = 0, p = 0, curByteIndex = 0;
float exactData = 0;
unsigned char preBytes[4] = {0,0,0,0};
unsigned char curBytes[4];
int resiBits;
unsigned char leadingNum;
int reqBytesLength = reqLength/8;
int resiBitsLength = reqLength%8;
for(i = 0; i<nbEle;i++)
{
// compute resiBits
resiBits = 0;
if (resiBitsLength != 0) {
int kMod8 = k % 8;
int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength);
if (rightMovSteps > 0) {
int code = getRightMovingCode(kMod8, resiBitsLength);
resiBits = (residualMidBits[p] & code) >> rightMovSteps;
} else if (rightMovSteps < 0) {
int code1 = getLeftMovingCode(kMod8);
int code2 = getRightMovingCode(kMod8, resiBitsLength);
int leftMovSteps = -rightMovSteps;
rightMovSteps = 8 - leftMovSteps;
resiBits = (residualMidBits[p] & code1) << leftMovSteps;
p++;
resiBits = resiBits
| ((residualMidBits[p] & code2) >> rightMovSteps);
} else // rightMovSteps == 0
{
int code = getRightMovingCode(kMod8, resiBitsLength);
resiBits = (residualMidBits[p] & code);
p++;
}
k += resiBitsLength;
}
// recover the exact data
memset(curBytes, 0, 4);
leadingNum = leadNum[l++];
memcpy(curBytes, preBytes, leadingNum);
for (j = leadingNum; j < reqBytesLength; j++)
curBytes[j] = exactMidBytes[curByteIndex++];
if (resiBitsLength != 0) {
unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength));
curBytes[reqBytesLength] = resiByte;
}
exactData = bytesToFloat(curBytes);
(*decData)[i] = exactData + medianValue;
memcpy(preBytes,curBytes,4);
}
}
//double-precision version of dealing with unpredictable data points in sz 2.0
int generateLossyCoefficients_double(double* oriData, double precision, size_t nbEle, int* reqBytesLength, int* resiBitsLength, double* medianValue, double* decData)
{
double valueRangeSize;
computeRangeSize_double(oriData, nbEle, &valueRangeSize, medianValue);
short radExpo = getExponent_double(valueRangeSize/2);
int reqLength;
computeReqLength_double(precision, radExpo, &reqLength, medianValue);
*reqBytesLength = reqLength/8;
*resiBitsLength = reqLength%8;
size_t i = 0;
for(i = 0;i < nbEle;i++)
{
double normValue = oriData[i] - *medianValue;
ldouble ldBuf;
ldBuf.value = normValue;
int ignBytesLength = 64 - reqLength;
if(ignBytesLength<0)
ignBytesLength = 0;
ldBuf.lvalue = (ldBuf.lvalue >> ignBytesLength) << ignBytesLength;
decData[i] = ldBuf.value + *medianValue;
}
return reqLength;
}
/**
* @param double* oriData: inplace argument (input / output)
*
* */
int compressExactDataArray_double(double* oriData, double precision, size_t nbEle, unsigned char** leadArray, unsigned char** midArray, unsigned char** resiArray,
int reqLength, int reqBytesLength, int resiBitsLength, double medianValue)
{
//allocate memory for coefficient compression arrays
DynamicIntArray *exactLeadNumArray;
new_DIA(&exactLeadNumArray, DynArrayInitLen);
DynamicByteArray *exactMidByteArray;
new_DBA(&exactMidByteArray, DynArrayInitLen);
DynamicIntArray *resiBitArray;
new_DIA(&resiBitArray, DynArrayInitLen);
unsigned char preDataBytes[8] = {0,0,0,0,0,0,0,0};
//allocate memory for vce and lce
DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement));
LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement));
size_t i = 0;
for(i = 0;i < nbEle;i++)
{
compressSingleDoubleValue(vce, oriData[i], precision, medianValue, reqLength, reqBytesLength, resiBitsLength);
updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce);
memcpy(preDataBytes,vce->curBytes,8);
addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
oriData[i] = vce->data;
}
convertDIAtoInts(exactLeadNumArray, leadArray);
convertDBAtoBytes(exactMidByteArray,midArray);
convertDIAtoInts(resiBitArray, resiArray);
size_t midArraySize = exactMidByteArray->size;
free(vce);
free(lce);
free_DIA(exactLeadNumArray);
free_DBA(exactMidByteArray);
free_DIA(resiBitArray);
return midArraySize;
}
void decompressExactDataArray_double(unsigned char* leadNum, unsigned char* exactMidBytes, unsigned char* residualMidBits, size_t nbEle, int reqLength, double medianValue, double** decData)
{
*decData = (double*)malloc(nbEle*sizeof(double));
size_t i = 0, j = 0, k = 0, l = 0, p = 0, curByteIndex = 0;
double exactData = 0;
unsigned char preBytes[8] = {0,0,0,0,0,0,0,0};
unsigned char curBytes[8];
int resiBits;
unsigned char leadingNum;
int reqBytesLength = reqLength/8;
int resiBitsLength = reqLength%8;
for(i = 0; i<nbEle;i++)
{
// compute resiBits
resiBits = 0;
if (resiBitsLength != 0) {
int kMod8 = k % 8;
int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength);
if (rightMovSteps > 0) {
int code = getRightMovingCode(kMod8, resiBitsLength);
resiBits = (residualMidBits[p] & code) >> rightMovSteps;
} else if (rightMovSteps < 0) {
int code1 = getLeftMovingCode(kMod8);
int code2 = getRightMovingCode(kMod8, resiBitsLength);
int leftMovSteps = -rightMovSteps;
rightMovSteps = 8 - leftMovSteps;
resiBits = (residualMidBits[p] & code1) << leftMovSteps;
p++;
resiBits = resiBits
| ((residualMidBits[p] & code2) >> rightMovSteps);
} else // rightMovSteps == 0
{
int code = getRightMovingCode(kMod8, resiBitsLength);
resiBits = (residualMidBits[p] & code);
p++;
}
k += resiBitsLength;
}
// recover the exact data
memset(curBytes, 0, 8);
leadingNum = leadNum[l++];
memcpy(curBytes, preBytes, leadingNum);
for (j = leadingNum; j < reqBytesLength; j++)
curBytes[j] = exactMidBytes[curByteIndex++];
if (resiBitsLength != 0) {
unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength));
curBytes[reqBytesLength] = resiByte;
}
exactData = bytesToDouble(curBytes);
(*decData)[i] = exactData + medianValue;
memcpy(preBytes,curBytes,8);
}
}

View File

@ -0,0 +1,397 @@
/*-------------------------------------------------------------------------*/
/**
@file dictionary.c
@author N. Devillard
@brief Implements a dictionary for string variables.
This module implements a simple dictionary object, i.e. a list
of string/string associations. This object is useful to store e.g.
informations retrieved from a configuration file (ini files).
*/
/*--------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------
Includes
---------------------------------------------------------------------------*/
#include "dictionary.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/** Maximum value size for integers and doubles. */
#define MAXVALSZ 1024
/** Minimal allocated number of entries in a dictionary */
#define DICTMINSZ 128
/** Invalid key token */
#define DICT_INVALID_KEY ((char*)-1)
/*---------------------------------------------------------------------------
Private functions
---------------------------------------------------------------------------*/
/* Doubles the allocated size associated to a pointer */
/* 'size' is the current allocated size. */
static void * mem_double(void * ptr, int size)
{
void * newptr ;
newptr = calloc(2*size, 1);
if (newptr==NULL) {
return NULL ;
}
memcpy(newptr, ptr, size);
free(ptr);
return newptr ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Duplicate a string
@param s String to duplicate
@return Pointer to a newly allocated string, to be freed with free()
This is a replacement for strdup(). This implementation is provided
for systems that do not have it.
*/
/*--------------------------------------------------------------------------*/
static char * xstrdup(const char * s)
{
char * t ;
if (!s)
return NULL ;
t = (char*)malloc(strlen(s)+1) ;
if (t) {
strcpy(t,s);
}
return t ;
}
/*---------------------------------------------------------------------------
Function codes
---------------------------------------------------------------------------*/
/*-------------------------------------------------------------------------*/
/**
@brief Compute the hash key for a string.
@param key Character string to use for key.
@return 1 unsigned int on at least 32 bits.
This hash function has been taken from an Article in Dr Dobbs Journal.
This is normally a collision-free function, distributing keys evenly.
The key is stored anyway in the struct so that collision can be avoided
by comparing the key itself in last resort.
*/
/*--------------------------------------------------------------------------*/
unsigned dictionary_hash(const char * key)
{
int len ;
unsigned hash ;
int i ;
len = strlen(key);
for (hash=0, i=0 ; i<len ; i++) {
hash += (unsigned)key[i] ;
hash += (hash<<10);
hash ^= (hash>>6) ;
}
hash += (hash <<3);
hash ^= (hash >>11);
hash += (hash <<15);
return hash ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Create a new dictionary object.
@param size Optional initial size of the dictionary.
@return 1 newly allocated dictionary objet.
This function allocates a new dictionary object of given size and returns
it. If you do not know in advance (roughly) the number of entries in the
dictionary, give size=0.
*/
/*--------------------------------------------------------------------------*/
dictionary * dictionary_new(int size)
{
dictionary * d ;
/* If no size was specified, allocate space for DICTMINSZ */
if (size<DICTMINSZ) size=DICTMINSZ ;
if (!(d = (dictionary *)calloc(1, sizeof(dictionary)))) {
return NULL;
}
d->size = size ;
d->val = (char **)calloc(size, sizeof(char*));
d->key = (char **)calloc(size, sizeof(char*));
d->hash = (unsigned int *)calloc(size, sizeof(unsigned));
return d ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Delete a dictionary object
@param d dictionary object to deallocate.
@return void
Deallocate a dictionary object and all memory associated to it.
*/
/*--------------------------------------------------------------------------*/
void dictionary_del(dictionary * d)
{
int i ;
if (d==NULL) return ;
for (i=0 ; i<d->size ; i++) {
if (d->key[i]!=NULL)
free(d->key[i]);
if (d->val[i]!=NULL)
free(d->val[i]);
}
free(d->val);
free(d->key);
free(d->hash);
free(d);
return ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Get a value from a dictionary.
@param d dictionary object to search.
@param key Key to look for in the dictionary.
@param def Default value to return if key not found.
@return 1 pointer to internally allocated character string.
This function locates a key in a dictionary and returns a pointer to its
value, or the passed 'def' pointer if no such key can be found in
dictionary. The returned character pointer points to data internal to the
dictionary object, you should not try to free it or modify it.
*/
/*--------------------------------------------------------------------------*/
char * dictionary_get(dictionary * d, const char * key, char * def)
{
unsigned hash ;
int i ;
hash = dictionary_hash(key);
for (i=0 ; i<d->size ; i++) {
if (d->key[i]==NULL)
continue ;
/* Compare hash */
if (hash==d->hash[i]) {
/* Compare string, to avoid hash collisions */
if (!strcmp(key, d->key[i])) {
return d->val[i] ;
}
}
}
return def ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Set a value in a dictionary.
@param d dictionary object to modify.
@param key Key to modify or add.
@param val Value to add.
@return int 0 if Ok, anything else otherwise
If the given key is found in the dictionary, the associated value is
replaced by the provided one. If the key cannot be found in the
dictionary, it is added to it.
It is Ok to provide a NULL value for val, but NULL values for the dictionary
or the key are considered as errors: the function will return immediately
in such a case.
Notice that if you dictionary_set a variable to NULL, a call to
dictionary_get will return a NULL value: the variable will be found, and
its value (NULL) is returned. In other words, setting the variable
content to NULL is equivalent to deleting the variable from the
dictionary. It is not possible (in this implementation) to have a key in
the dictionary without value.
This function returns non-zero in case of failure.
*/
/*--------------------------------------------------------------------------*/
int dictionary_set(dictionary * d, const char * key, const char * val)
{
int i ;
unsigned hash ;
if (d==NULL || key==NULL) return -1 ;
/* Compute hash for this key */
hash = dictionary_hash(key) ;
/* Find if value is already in dictionary */
if (d->n>0) {
for (i=0 ; i<d->size ; i++) {
if (d->key[i]==NULL)
continue ;
if (hash==d->hash[i]) { /* Same hash value */
if (!strcmp(key, d->key[i])) { /* Same key */
/* Found a value: modify and return */
if (d->val[i]!=NULL)
free(d->val[i]);
d->val[i] = val ? xstrdup(val) : NULL ;
/* Value has been modified: return */
return 0 ;
}
}
}
}
/* Add a new value */
/* See if dictionary needs to grow */
if (d->n==d->size) {
/* Reached maximum size: reallocate dictionary */
d->val = (char **)mem_double(d->val, d->size * sizeof(char*)) ;
d->key = (char **)mem_double(d->key, d->size * sizeof(char*)) ;
d->hash = (unsigned int *)mem_double(d->hash, d->size * sizeof(unsigned)) ;
if ((d->val==NULL) || (d->key==NULL) || (d->hash==NULL)) {
/* Cannot grow dictionary */
return -1 ;
}
/* Double size */
d->size *= 2 ;
}
/* Insert key in the first empty slot. Start at d->n and wrap at
d->size. Because d->n < d->size this will necessarily
terminate. */
for (i=d->n ; d->key[i] ; ) {
if(++i == d->size) i = 0;
}
/* Copy key */
d->key[i] = xstrdup(key);
d->val[i] = val ? xstrdup(val) : NULL ;
d->hash[i] = hash;
d->n ++ ;
return 0 ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Delete a key in a dictionary
@param d dictionary object to modify.
@param key Key to remove.
@return void
This function deletes a key in a dictionary. Nothing is done if the
key cannot be found.
*/
/*--------------------------------------------------------------------------*/
void dictionary_unset(dictionary * d, const char * key)
{
unsigned hash ;
int i ;
if (key == NULL) {
return;
}
hash = dictionary_hash(key);
for (i=0 ; i<d->size ; i++) {
if (d->key[i]==NULL)
continue ;
/* Compare hash */
if (hash==d->hash[i]) {
/* Compare string, to avoid hash collisions */
if (!strcmp(key, d->key[i])) {
/* Found key */
break ;
}
}
}
if (i>=d->size)
/* Key not found */
return ;
free(d->key[i]);
d->key[i] = NULL ;
if (d->val[i]!=NULL) {
free(d->val[i]);
d->val[i] = NULL ;
}
d->hash[i] = 0 ;
d->n -- ;
return ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Dump a dictionary to an opened file pointer.
@param d Dictionary to dump
@param f Opened file pointer.
@return void
Dumps a dictionary onto an opened file pointer. Key pairs are printed out
as @c [Key]=[Value], one per line. It is Ok to provide stdout or stderr as
output file pointers.
*/
/*--------------------------------------------------------------------------*/
void dictionary_dump(dictionary * d, FILE * out)
{
int i ;
if (d==NULL || out==NULL) return ;
if (d->n<1) {
fprintf(out, "empty dictionary\n");
return ;
}
for (i=0 ; i<d->size ; i++) {
if (d->key[i]) {
fprintf(out, "%20s\t[%s]\n",
d->key[i],
d->val[i] ? d->val[i] : "UNDEF");
}
}
return ;
}
/* Test code */
#ifdef TESTDIC
#define NVALS 20000
int main(int argc, char *argv[])
{
dictionary * d ;
char * val ;
int i ;
char cval[90] ;
/* Allocate dictionary */
printf("allocating...\n");
d = dictionary_new(0);
/* Set values in dictionary */
printf("setting %d values...\n", NVALS);
for (i=0 ; i<NVALS ; i++) {
sprintf(cval, "%04d", i);
dictionary_set(d, cval, "salut");
}
printf("getting %d values...\n", NVALS);
for (i=0 ; i<NVALS ; i++) {
sprintf(cval, "%04d", i);
val = dictionary_get(d, cval, DICT_INVALID_KEY);
if (val==DICT_INVALID_KEY) {
printf("cannot get value for key [%s]\n", cval);
}
}
printf("unsetting %d values...\n", NVALS);
for (i=0 ; i<NVALS ; i++) {
sprintf(cval, "%04d", i);
dictionary_unset(d, cval);
}
if (d->n != 0) {
printf("error deleting values\n");
}
printf("deallocating...\n");
dictionary_del(d);
return 0 ;
}
#endif
/* vim: set ts=4 et sw=4 tw=75 */

View File

@ -0,0 +1,774 @@
/*-------------------------------------------------------------------------*/
/**
@file iniparser.c
@author N. Devillard
@brief Parser for ini files.
*/
/*--------------------------------------------------------------------------*/
/*---------------------------- Includes ------------------------------------*/
#include <ctype.h>
#include "iniparser.h"
/*---------------------------- Defines -------------------------------------*/
#define ASCIILINESZ (1024)
#define INI_INVALID_KEY ((char*)-1)
/*---------------------------------------------------------------------------
Private to this module
---------------------------------------------------------------------------*/
/**
* This enum stores the status for each parsed line (internal use only).
*/
typedef enum _line_status_ {
LINE_UNPROCESSED,
LINE_ERROR,
LINE_EMPTY,
LINE_COMMENT,
LINE_SECTION,
LINE_VALUE
} line_status ;
/*-------------------------------------------------------------------------*/
/**
@brief Convert a string to lowercase.
@param s String to convert.
@return ptr to statically allocated string.
This function returns a pointer to a statically allocated string
containing a lowercased version of the input string. Do not free
or modify the returned string! Since the returned string is statically
allocated, it will be modified at each function call (not re-entrant).
*/
/*--------------------------------------------------------------------------*/
static char * strlwc(const char * s)
{
static char l[ASCIILINESZ+1];
int i ;
if (s==NULL) return NULL ;
memset(l, 0, ASCIILINESZ+1);
i=0 ;
while (s[i] && i<ASCIILINESZ) {
l[i] = (char)tolower((int)s[i]);
i++ ;
}
l[ASCIILINESZ]=(char)0;
return l ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Remove blanks at the beginning and the end of a string.
@param s String to parse.
@return ptr to statically allocated string.
This function returns a pointer to a statically allocated string,
which is identical to the input string, except that all blank
characters at the end and the beg. of the string have been removed.
Do not free or modify the returned string! Since the returned string
is statically allocated, it will be modified at each function call
(not re-entrant).
*/
/*--------------------------------------------------------------------------*/
static char * strstrip(const char * s)
{
static char l[ASCIILINESZ+1];
char * last;
if (s==NULL) return NULL ;
while (isspace((int)*s) && *s) s++;
memset(l, 0, ASCIILINESZ+1);
strncpy(l, s, ASCIILINESZ);
last = l + strlen(l);
while (last > l) {
if (!isspace((int)*(last-1)))
break ;
last -- ;
}
*last = (char)0;
return (char*)l ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Get number of sections in a dictionary
@param d Dictionary to examine
@return int Number of sections found in dictionary
This function returns the number of sections found in a dictionary.
The test to recognize sections is done on the string stored in the
dictionary: a section name is given as "section" whereas a key is
stored as "section:key", thus the test looks for entries that do not
contain a colon.
This clearly fails in the case a section name contains a colon, but
this should simply be avoided.
This function returns -1 in case of error.
*/
/*--------------------------------------------------------------------------*/
int iniparser_getnsec(dictionary * d)
{
int i ;
int nsec ;
if (d==NULL) return -1 ;
nsec=0 ;
for (i=0 ; i<d->size ; i++) {
if (d->key[i]==NULL)
continue ;
if (strchr(d->key[i], ':')==NULL) {
nsec ++ ;
}
}
return nsec ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Get name for section n in a dictionary.
@param d Dictionary to examine
@param n Section number (from 0 to nsec-1).
@return Pointer to char string
This function locates the n-th section in a dictionary and returns
its name as a pointer to a string statically allocated inside the
dictionary. Do not free or modify the returned string!
This function returns NULL in case of error.
*/
/*--------------------------------------------------------------------------*/
char * iniparser_getsecname(dictionary * d, int n)
{
int i ;
int foundsec ;
if (d==NULL || n<0) return NULL ;
foundsec=0 ;
for (i=0 ; i<d->size ; i++) {
if (d->key[i]==NULL)
continue ;
if (strchr(d->key[i], ':')==NULL) {
foundsec++ ;
if (foundsec>n)
break ;
}
}
if (foundsec<=n) {
return NULL ;
}
return d->key[i] ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Dump a dictionary to an opened file pointer.
@param d Dictionary to dump.
@param f Opened file pointer to dump to.
@return void
This function prints out the contents of a dictionary, one element by
line, onto the provided file pointer. It is OK to specify @c stderr
or @c stdout as output files. This function is meant for debugging
purposes mostly.
*/
/*--------------------------------------------------------------------------*/
void iniparser_dump(dictionary * d, FILE * f)
{
int i ;
if (d==NULL || f==NULL) return ;
for (i=0 ; i<d->size ; i++) {
if (d->key[i]==NULL)
continue ;
if (d->val[i]!=NULL) {
fprintf(f, "[%s]=[%s]\n", d->key[i], d->val[i]);
} else {
fprintf(f, "[%s]=UNDEF\n", d->key[i]);
}
}
return ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Save a dictionary to a loadable ini file
@param d Dictionary to dump
@param f Opened file pointer to dump to
@return void
This function dumps a given dictionary into a loadable ini file.
It is Ok to specify @c stderr or @c stdout as output files.
*/
/*--------------------------------------------------------------------------*/
void iniparser_dump_ini(dictionary * d, FILE * f)
{
int i ;
int nsec ;
char * secname ;
if (d==NULL || f==NULL) return ;
nsec = iniparser_getnsec(d);
if (nsec<1) {
/* No section in file: dump all keys as they are */
for (i=0 ; i<d->size ; i++) {
if (d->key[i]==NULL)
continue ;
fprintf(f, "%s = %s\n", d->key[i], d->val[i]);
}
return ;
}
for (i=0 ; i<nsec ; i++) {
secname = iniparser_getsecname(d, i) ;
iniparser_dumpsection_ini(d, secname, f) ;
}
fprintf(f, "\n");
return ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Save a dictionary section to a loadable ini file
@param d Dictionary to dump
@param s Section name of dictionary to dump
@param f Opened file pointer to dump to
@return void
This function dumps a given section of a given dictionary into a loadable ini
file. It is Ok to specify @c stderr or @c stdout as output files.
*/
/*--------------------------------------------------------------------------*/
void iniparser_dumpsection_ini(dictionary * d, char * s, FILE * f)
{
int j ;
char keym[ASCIILINESZ+1];
int seclen ;
if (d==NULL || f==NULL) return ;
if (! iniparser_find_entry(d, s)) return ;
seclen = (int)strlen(s);
fprintf(f, "\n[%s]\n", s);
sprintf(keym, "%s:", s);
for (j=0 ; j<d->size ; j++) {
if (d->key[j]==NULL)
continue ;
if (!strncmp(d->key[j], keym, seclen+1)) {
fprintf(f,
"%-30s = %s\n",
d->key[j]+seclen+1,
d->val[j] ? d->val[j] : "");
}
}
fprintf(f, "\n");
return ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Get the number of keys in a section of a dictionary.
@param d Dictionary to examine
@param s Section name of dictionary to examine
@return Number of keys in section
*/
/*--------------------------------------------------------------------------*/
int iniparser_getsecnkeys(dictionary * d, char * s)
{
int seclen, nkeys ;
char keym[ASCIILINESZ+1];
int j ;
nkeys = 0;
if (d==NULL) return nkeys;
if (! iniparser_find_entry(d, s)) return nkeys;
seclen = (int)strlen(s);
sprintf(keym, "%s:", s);
for (j=0 ; j<d->size ; j++) {
if (d->key[j]==NULL)
continue ;
if (!strncmp(d->key[j], keym, seclen+1))
nkeys++;
}
return nkeys;
}
/*-------------------------------------------------------------------------*/
/**
@brief Get the number of keys in a section of a dictionary.
@param d Dictionary to examine
@param s Section name of dictionary to examine
@return pointer to statically allocated character strings
This function queries a dictionary and finds all keys in a given section.
Each pointer in the returned char pointer-to-pointer is pointing to
a string allocated in the dictionary; do not free or modify them.
This function returns NULL in case of error.
*/
/*--------------------------------------------------------------------------*/
char ** iniparser_getseckeys(dictionary * d, char * s)
{
char **keys;
int i, j ;
char keym[ASCIILINESZ+1];
int seclen, nkeys ;
keys = NULL;
if (d==NULL) return keys;
if (! iniparser_find_entry(d, s)) return keys;
nkeys = iniparser_getsecnkeys(d, s);
keys = (char**) malloc(nkeys*sizeof(char*));
seclen = (int)strlen(s);
sprintf(keym, "%s:", s);
i = 0;
for (j=0 ; j<d->size ; j++) {
if (d->key[j]==NULL)
continue ;
if (!strncmp(d->key[j], keym, seclen+1)) {
keys[i] = d->key[j];
i++;
}
}
return keys;
}
/*-------------------------------------------------------------------------*/
/**
@brief Get the string associated to a key
@param d Dictionary to search
@param key Key string to look for
@param def Default value to return if key not found.
@return pointer to statically allocated character string
This function queries a dictionary for a key. A key as read from an
ini file is given as "section:key". If the key cannot be found,
the pointer passed as 'def' is returned.
The returned char pointer is pointing to a string allocated in
the dictionary, do not free or modify it.
*/
/*--------------------------------------------------------------------------*/
char * iniparser_getstring(dictionary * d, const char * key, char * def)
{
char * lc_key ;
char * sval ;
if (d==NULL || key==NULL)
return def ;
lc_key = strlwc(key);
sval = dictionary_get(d, lc_key, def);
return sval ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Get the string associated to a key, convert to an int
@param d Dictionary to search
@param key Key string to look for
@param notfound Value to return in case of error
@return integer
This function queries a dictionary for a key. A key as read from an
ini file is given as "section:key". If the key cannot be found,
the notfound value is returned.
Supported values for integers include the usual C notation
so decimal, octal (starting with 0) and hexadecimal (starting with 0x)
are supported. Examples:
"42" -> 42
"042" -> 34 (octal -> decimal)
"0x42" -> 66 (hexa -> decimal)
Warning: the conversion may overflow in various ways. Conversion is
totally outsourced to strtol(), see the associated man page for overflow
handling.
Credits: Thanks to A. Becker for suggesting strtol()
*/
/*--------------------------------------------------------------------------*/
int iniparser_getint(dictionary * d, const char * key, int notfound)
{
char * str ;
str = iniparser_getstring(d, key, INI_INVALID_KEY);
if (str==INI_INVALID_KEY) return notfound ;
return (int)strtol(str, NULL, 0);
}
/*-------------------------------------------------------------------------*/
/**
@brief Get the string associated to a key, convert to a long
@param d Dictionary to search
@param key Key string to look for
@param notfound Value to return in case of error
@return long
Credits: This function bases completely on int iniparser_getint and was
slightly modified to return long instead of int.
*/
/*--------------------------------------------------------------------------*/
long iniparser_getlint(dictionary * d, const char * key, int notfound)
{
char * str ;
str = iniparser_getstring(d, key, INI_INVALID_KEY);
if (str==INI_INVALID_KEY) return notfound ;
return strtol(str, NULL, 0);
}
/*-------------------------------------------------------------------------*/
/**
@brief Get the string associated to a key, convert to a double
@param d Dictionary to search
@param key Key string to look for
@param notfound Value to return in case of error
@return double
This function queries a dictionary for a key. A key as read from an
ini file is given as "section:key". If the key cannot be found,
the notfound value is returned.
*/
/*--------------------------------------------------------------------------*/
double iniparser_getdouble(dictionary * d, const char * key, double notfound)
{
char * str ;
str = iniparser_getstring(d, key, INI_INVALID_KEY);
if (str==INI_INVALID_KEY) return notfound ;
return atof(str);
}
/*-------------------------------------------------------------------------*/
/**
@brief Get the string associated to a key, convert to a boolean
@param d Dictionary to search
@param key Key string to look for
@param notfound Value to return in case of error
@return integer
This function queries a dictionary for a key. A key as read from an
ini file is given as "section:key". If the key cannot be found,
the notfound value is returned.
A true boolean is found if one of the following is matched:
- A string starting with 'y'
- A string starting with 'Y'
- A string starting with 't'
- A string starting with 'T'
- A string starting with '1'
A false boolean is found if one of the following is matched:
- A string starting with 'n'
- A string starting with 'N'
- A string starting with 'f'
- A string starting with 'F'
- A string starting with '0'
The notfound value returned if no boolean is identified, does not
necessarily have to be 0 or 1.
*/
/*--------------------------------------------------------------------------*/
int iniparser_getboolean(dictionary * d, const char * key, int notfound)
{
char * c ;
int ret ;
c = iniparser_getstring(d, key, INI_INVALID_KEY);
if (c==INI_INVALID_KEY) return notfound ;
if (c[0]=='y' || c[0]=='Y' || c[0]=='1' || c[0]=='t' || c[0]=='T') {
ret = 1 ;
} else if (c[0]=='n' || c[0]=='N' || c[0]=='0' || c[0]=='f' || c[0]=='F') {
ret = 0 ;
} else {
ret = notfound ;
}
return ret;
}
/*-------------------------------------------------------------------------*/
/**
@brief Finds out if a given entry exists in a dictionary
@param ini Dictionary to search
@param entry Name of the entry to look for
@return integer 1 if entry exists, 0 otherwise
Finds out if a given entry exists in the dictionary. Since sections
are stored as keys with NULL associated values, this is the only way
of querying for the presence of sections in a dictionary.
*/
/*--------------------------------------------------------------------------*/
int iniparser_find_entry(
dictionary * ini,
const char * entry
)
{
int found=0 ;
if (iniparser_getstring(ini, entry, INI_INVALID_KEY)!=INI_INVALID_KEY) {
found = 1 ;
}
return found ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Set an entry in a dictionary.
@param ini Dictionary to modify.
@param entry Entry to modify (entry name)
@param val New value to associate to the entry.
@return int 0 if Ok, -1 otherwise.
If the given entry can be found in the dictionary, it is modified to
contain the provided value. If it cannot be found, -1 is returned.
It is Ok to set val to NULL.
*/
/*--------------------------------------------------------------------------*/
int iniparser_set(dictionary * ini, const char * entry, const char * val)
{
return dictionary_set(ini, strlwc(entry), val) ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Delete an entry in a dictionary
@param ini Dictionary to modify
@param entry Entry to delete (entry name)
@return void
If the given entry can be found, it is deleted from the dictionary.
*/
/*--------------------------------------------------------------------------*/
void iniparser_unset(dictionary * ini, const char * entry)
{
dictionary_unset(ini, strlwc(entry));
}
/*-------------------------------------------------------------------------*/
/**
@brief Load a single line from an INI file
@param input_line Input line, may be concatenated multi-line input
@param section Output space to store section
@param key Output space to store key
@param value Output space to store value
@return line_status value
*/
/*--------------------------------------------------------------------------*/
static line_status iniparser_line(
const char * input_line,
char * section,
char * key,
char * value)
{
line_status sta ;
char line[ASCIILINESZ+1];
int len ;
memset(line, 0, ASCIILINESZ + 1);
len = (int)strlen(strstrip(input_line));
if (len > ASCIILINESZ)
len = ASCIILINESZ;
strncpy(line, strstrip(input_line), len);
len = (int)strlen(line);
sta = LINE_UNPROCESSED ;
if (len<1) {
/* Empty line */
sta = LINE_EMPTY ;
} else if (line[0]=='#' || line[0]==';') {
/* Comment line */
sta = LINE_COMMENT ;
} else if (line[0]=='[' && line[len-1]==']') {
/* Section name */
sscanf(line, "[%[^]]", section);
strcpy(section, strstrip(section));
strcpy(section, strlwc(section));
sta = LINE_SECTION ;
} else if (sscanf (line, "%[^=] = \"%[^\"]\"", key, value) == 2
|| sscanf (line, "%[^=] = '%[^\']'", key, value) == 2
|| sscanf (line, "%[^=] = %[^;#]", key, value) == 2) {
/* Usual key=value, with or without comments */
strcpy(key, strstrip(key));
strcpy(key, strlwc(key));
strcpy(value, strstrip(value));
/*
* sscanf cannot handle '' or "" as empty values
* this is done here
*/
if (!strcmp(value, "\"\"") || (!strcmp(value, "''"))) {
value[0]=0 ;
}
sta = LINE_VALUE ;
} else if (sscanf(line, "%[^=] = %[;#]", key, value)==2
|| sscanf(line, "%[^=] %[=]", key, value) == 2) {
/*
* Special cases:
* key=
* key=;
* key=#
*/
strcpy(key, strstrip(key));
strcpy(key, strlwc(key));
value[0]=0 ;
sta = LINE_VALUE ;
} else {
/* Generate syntax error */
sta = LINE_ERROR ;
printf("===== > %s ===> %s\n", input_line, line);
}
return sta ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Parse an ini file and return an allocated dictionary object
@param ininame Name of the ini file to read.
@return Pointer to newly allocated dictionary
This is the parser for ini files. This function is called, providing
the name of the file to be read. It returns a dictionary object that
should not be accessed directly, but through accessor functions
instead.
The returned dictionary must be freed using iniparser_freedict().
*/
/*--------------------------------------------------------------------------*/
dictionary * iniparser_load(const char * ininame)
{
FILE * in ;
char line [ASCIILINESZ+1] ;
char section [ASCIILINESZ+1] ;
char key [ASCIILINESZ+1] ;
char tmp [2*ASCIILINESZ+2] ;
char val [ASCIILINESZ+1] ;
int last=0 ;
int len ;
int lineno=0 ;
int errs=0;
dictionary * dict ;
if ((in=fopen(ininame, "r"))==NULL) {
fprintf(stderr, "iniparser: cannot open %s\n", ininame);
return NULL ;
}
dict = dictionary_new(0) ;
if (!dict) {
fclose(in);
return NULL ;
}
memset(line, 0, ASCIILINESZ);
memset(section, 0, ASCIILINESZ);
memset(key, 0, ASCIILINESZ);
memset(val, 0, ASCIILINESZ);
last=0 ;
while (fgets(line+last, ASCIILINESZ-last, in)!=NULL) {
lineno++ ;
len = (int)strlen(line)-1;
if (len==0)
continue;
/* Safety check against buffer overflows */
if (line[len]!='\n') {
fprintf(stderr,
"iniparser: input line too long in %s (%d)\n",
ininame,
lineno);
dictionary_del(dict);
fclose(in);
return NULL ;
}
/* Get rid of \n and spaces at end of line */
while ((len>=0) &&
((line[len]=='\n') || (isspace(line[len])))) {
line[len]=0 ;
len-- ;
}
/* Detect multi-line */
if (line[len]=='\\') {
/* Multi-line value */
last=len ;
continue ;
} else {
last=0 ;
}
switch (iniparser_line(line, section, key, val)) {
case LINE_EMPTY:
case LINE_COMMENT:
break ;
case LINE_SECTION:
errs = dictionary_set(dict, section, NULL);
break ;
case LINE_VALUE:
sprintf(tmp, "%s:%s", section, key);
errs = dictionary_set(dict, tmp, val) ;
break ;
case LINE_ERROR:
fprintf(stderr, "iniparser: syntax error in %s (%d):\n",
ininame,
lineno);
fprintf(stderr, "-> %s\n", line);
errs++ ;
break;
default:
break ;
}
memset(line, 0, ASCIILINESZ);
last=0;
if (errs<0) {
fprintf(stderr, "iniparser: memory allocation failure\n");
break ;
}
}
if (errs) {
dictionary_del(dict);
dict = NULL ;
}
fclose(in);
return dict ;
}
/*-------------------------------------------------------------------------*/
/**
@brief Free all memory associated to an ini dictionary
@param d Dictionary to free
@return void
Free all memory associated to an ini dictionary.
It is mandatory to call this function before the dictionary object
gets out of the current context.
*/
/*--------------------------------------------------------------------------*/
void iniparser_freedict(dictionary * d)
{
dictionary_del(d);
}
/* vim: set ts=4 et sw=4 tw=75 */

197
utils/TSZ/sz/src/sz.c Normal file
View File

@ -0,0 +1,197 @@
/**
* @file sz.c
* @author Sheng Di and Dingwen Tao
* @date Aug, 2016
* @brief SZ_Init, Compression and Decompression functions
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sz.h"
#include "CompressElement.h"
#include "DynamicByteArray.h"
#include "TightDataPointStorageD.h"
#include "TightDataPointStorageF.h"
#include "conf.h"
#include "utility.h"
//#include "CurveFillingCompressStorage.h"
unsigned char versionNumber = DATA_FROMAT_VER1;
int SZ_SIZE_TYPE_DEFUALT = 4;
int dataEndianType = LITTLE_ENDIAN_DATA; //*endian type of the data read from disk
int sysEndianType = LITTLE_ENDIAN_SYSTEM ; //*sysEndianType is actually set automatically.
//the confparams should be separate between compression and decopmression, in case of mutual-affection when calling compression/decompression alternatively
sz_params *confparams_cpr = NULL; //used for compression
sz_exedata *exe_params = NULL;
int SZ_Init(const char *configFilePath)
{
// check CPU EndianType
int x = 1;
char *y = (char*)&x;
if(*y==1)
sysEndianType = LITTLE_ENDIAN_SYSTEM;
else //=0
sysEndianType = BIG_ENDIAN_SYSTEM;
int loadFileResult = SZ_LoadConf(configFilePath);
if(loadFileResult==SZ_FAILED)
return SZ_FAILED;
exe_params->SZ_SIZE_TYPE = SZ_SIZE_TYPE_DEFUALT;
return SZ_SUCCESS;
}
int SZ_Init_Params(sz_params *params)
{
SZ_Init(NULL);
if(params->losslessCompressor!=GZIP_COMPRESSOR && params->losslessCompressor!=ZSTD_COMPRESSOR)
params->losslessCompressor = ZSTD_COMPRESSOR;
if(params->max_quant_intervals > 0)
params->maxRangeRadius = params->max_quant_intervals/2;
memcpy(confparams_cpr, params, sizeof(sz_params));
if(params->quantization_intervals%2!=0)
{
printf("Error: quantization_intervals must be an even number!\n");
return SZ_FAILED;
}
return SZ_SUCCESS;
}
/*-------------------------------------------------------------------------*/
/**
@brief Perform Compression
@param data data to be compressed
@param outSize the size (in bytes) after compression
@param r5,r4,r3,r2,r1 the sizes of each dimension (supporting only 5 dimensions at most in this version.
@return compressed data (in binary stream) or NULL(0) if any errors
**/
/*-------------------------------------------------------------------------*/
//
// compress output data to outData and return outSize
//
size_t SZ_compress_args(int dataType, void *data, size_t r1, unsigned char* outData, sz_params* params)
{
size_t outSize = 0;
if(dataType==SZ_FLOAT)
{
SZ_compress_args_float((float *)data, r1, outData, &outSize, params);
}
else if(dataType==SZ_DOUBLE)
{
SZ_compress_args_double((double *)data, r1, outData, &outSize, params);
}
else
{
printf("Error: dataType can only be SZ_FLOAT, SZ_DOUBLE .\n");
return 0;
}
return outSize;
}
//
// decompress output data to outData and return outSize
//
size_t SZ_decompress(int dataType, unsigned char *bytes, size_t byteLength, size_t r1, unsigned char* outData)
{
sz_exedata de_exe;
memset(&de_exe, 0, sizeof(sz_exedata));
sz_params de_params;
memset(&de_params, 0, sizeof(sz_params));
size_t outSize = 0;
if(dataType == SZ_FLOAT)
{
int status = SZ_decompress_args_float((float*)outData, r1, bytes, byteLength, 0, NULL, &de_exe, &de_params);
if(status == SZ_SUCCESS)
{
return r1*sizeof(float);
}
return 0;
}
else if(dataType == SZ_DOUBLE)
{
int status = SZ_decompress_args_double((double*)outData, r1, bytes, byteLength, 0, NULL, &de_exe, &de_params);
if(status == SZ_SUCCESS)
{
return r1*sizeof(double);
}
return 0;
}
else
{
printf("Error: data type cannot be the types other than SZ_FLOAT or SZ_DOUBLE\n");
}
return outSize;
}
void SZ_Finalize()
{
if(confparams_cpr!=NULL)
{
free(confparams_cpr);
confparams_cpr = NULL;
}
if(exe_params!=NULL)
{
free(exe_params);
exe_params = NULL;
}
}
#ifdef WINDOWS
#include <windows.h>
int gettimeofday(struct timeval *tv, struct timezone *tz);
#else
#include <sys/time.h>
#endif
struct timeval costStart; /*only used for recording the cost*/
double totalCost = 0;
void cost_start()
{
totalCost = 0;
gettimeofday(&costStart, NULL);
}
double cost_end(const char* tag)
{
double elapsed;
struct timeval costEnd;
gettimeofday(&costEnd, NULL);
elapsed = ((costEnd.tv_sec*1000000+costEnd.tv_usec)-(costStart.tv_sec*1000000+costStart.tv_usec))/1000000.0;
totalCost += elapsed;
double use_ms = totalCost*1000;
printf(" timecost %s : %.3f ms\n", tag, use_ms);
return use_ms;
}
void show_rate(int in_len, int out_len)
{
float rate=100*(float)out_len/(float)in_len;
printf(" in_len=%d out_len=%d compress rate=%.4f%%\n", in_len, out_len, rate);
}

View File

@ -0,0 +1,415 @@
/**
* @file sz_double.c
* @author Sheng Di, Dingwen Tao, Xin Liang, Xiangyu Zou, Tao Lu, Wen Xia, Xuan Wang, Weizhe Zhang
* @date Aug, 2016
* @brief SZ_Init, Compression and Decompression functions
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "sz.h"
#include "CompressElement.h"
#include "DynamicByteArray.h"
#include "DynamicIntArray.h"
#include "TightDataPointStorageD.h"
#include "sz_double.h"
#include "szd_double.h"
#include "utility.h"
unsigned char* SZ_skip_compress_double(double* data, size_t dataLength, size_t* outSize)
{
*outSize = dataLength*sizeof(double);
unsigned char* out = (unsigned char*)malloc(dataLength*sizeof(double));
memcpy(out, data, dataLength*sizeof(double));
return out;
}
INLINE void computeReqLength_double(double realPrecision, short radExpo, int* reqLength, double* medianValue)
{
short reqExpo = getPrecisionReqLength_double(realPrecision);
*reqLength = 12+radExpo - reqExpo; //radExpo-reqExpo == reqMantiLength
if(*reqLength<12)
*reqLength = 12;
if(*reqLength>64)
{
*reqLength = 64;
*medianValue = 0;
}
}
unsigned int optimize_intervals_double_1D(double *oriData, size_t dataLength, double realPrecision)
{
size_t i = 0, radiusIndex;
double pred_value = 0, pred_err;
size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t));
memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t));
size_t totalSampleSize = dataLength/confparams_cpr->sampleDistance;
for(i=2;i<dataLength;i++)
{
if(i%confparams_cpr->sampleDistance==0)
{
//pred_value = 2*oriData[i-1] - oriData[i-2];
pred_value = oriData[i-1];
pred_err = fabs(pred_value - oriData[i]);
radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2);
if(radiusIndex>=confparams_cpr->maxRangeRadius)
radiusIndex = confparams_cpr->maxRangeRadius - 1;
intervals[radiusIndex]++;
}
}
//compute the appropriate number
size_t targetCount = totalSampleSize*confparams_cpr->predThreshold;
size_t sum = 0;
for(i=0;i<confparams_cpr->maxRangeRadius;i++)
{
sum += intervals[i];
if(sum>targetCount)
break;
}
if(i>=confparams_cpr->maxRangeRadius)
i = confparams_cpr->maxRangeRadius-1;
unsigned int accIntervals = 2*(i+1);
unsigned int powerOf2 = roundUpToPowerOf2(accIntervals);
if(powerOf2<32)
powerOf2 = 32;
free(intervals);
//printf("accIntervals=%d, powerOf2=%d\n", accIntervals, powerOf2);
return powerOf2;
}
TightDataPointStorageD* SZ_compress_double_1D_MDQ(double *oriData,
size_t dataLength, double realPrecision, double valueRangeSize, double medianValue_d)
{
unsigned int quantization_intervals;
if(exe_params->optQuantMode==1)
quantization_intervals = optimize_intervals_double_1D_opt(oriData, dataLength, realPrecision);
else
quantization_intervals = exe_params->intvCapacity;
//updateQuantizationInfo(quantization_intervals);
int intvRadius = quantization_intervals/2;
size_t i;
int reqLength;
double medianValue = medianValue_d;
short radExpo = getExponent_double(valueRangeSize/2);
computeReqLength_double(realPrecision, radExpo, &reqLength, &medianValue);
int* type = (int*) malloc(dataLength*sizeof(int));
double* spaceFillingValue = oriData; //
DynamicIntArray *exactLeadNumArray;
new_DIA(&exactLeadNumArray, DynArrayInitLen);
DynamicByteArray *exactMidByteArray;
new_DBA(&exactMidByteArray, DynArrayInitLen);
DynamicIntArray *resiBitArray;
new_DIA(&resiBitArray, DynArrayInitLen);
unsigned char preDataBytes[8];
longToBytes_bigEndian(preDataBytes, 0);
int reqBytesLength = reqLength/8;
int resiBitsLength = reqLength%8;
double last3CmprsData[3] = {0};
DoubleValueCompressElement *vce = (DoubleValueCompressElement*)malloc(sizeof(DoubleValueCompressElement));
LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement));
//add the first data
type[0] = 0;
compressSingleDoubleValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength);
updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce);
memcpy(preDataBytes,vce->curBytes,8);
addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
listAdd_double(last3CmprsData, vce->data);
//add the second data
type[1] = 0;
compressSingleDoubleValue(vce, spaceFillingValue[1], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength);
updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce);
memcpy(preDataBytes,vce->curBytes,8);
addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
listAdd_double(last3CmprsData, vce->data);
int state;
double checkRadius;
double curData;
double pred = last3CmprsData[0];
double predAbsErr;
checkRadius = (quantization_intervals-1)*realPrecision;
double interval = 2*realPrecision;
double recip_realPrecision = 1/realPrecision;
for(i=2; i < dataLength; i++)
{
//printf("%.30G\n",last3CmprsData[0]);
curData = spaceFillingValue[i];
//pred = 2*last3CmprsData[0] - last3CmprsData[1];
//pred = last3CmprsData[0];
predAbsErr = fabs(curData - pred);
if(predAbsErr<checkRadius)
{
state = (predAbsErr*recip_realPrecision+1)*0.5;
if(curData>=pred)
{
type[i] = intvRadius+state;
pred = pred + state*interval;
}
else //curData<pred
{
type[i] = intvRadius-state;
pred = pred - state*interval;
}
//listAdd_double(last3CmprsData, pred);
continue;
}
//unpredictable data processing
type[i] = 0;
compressSingleDoubleValue(vce, curData, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength);
updateLossyCompElement_Double(vce->curBytes, preDataBytes, reqBytesLength, resiBitsLength, lce);
memcpy(preDataBytes,vce->curBytes,8);
addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
//listAdd_double(last3CmprsData, vce->data);
pred = vce->data;
}//end of for
size_t exactDataNum = exactLeadNumArray->size;
TightDataPointStorageD* tdps;
new_TightDataPointStorageD(&tdps, dataLength, exactDataNum,
type, exactMidByteArray->array, exactMidByteArray->size,
exactLeadNumArray->array,
resiBitArray->array, resiBitArray->size,
resiBitsLength,
realPrecision, medianValue, (char)reqLength, quantization_intervals, 0);
// printf("exactDataNum=%d, expSegmentsInBytes_size=%d, exactMidByteArray->size=%d\n",
// exactDataNum, expSegmentsInBytes_size, exactMidByteArray->size);
//free memory
free_DIA(exactLeadNumArray);
free_DIA(resiBitArray);
free(type);
free(vce);
free(lce);
free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps);
return tdps;
}
void SZ_compress_args_double_StoreOriData(double* oriData, size_t dataLength, unsigned char* newByteData, size_t *outSize)
{
int doubleSize = sizeof(double);
size_t k = 0, i;
size_t totalByteLength = 1 + MetaDataByteLength_double + exe_params->SZ_SIZE_TYPE + 1 + doubleSize*dataLength;
/*No need to malloc because newByteData should always already be allocated with no less totalByteLength.*/
//*newByteData = (unsigned char*)malloc(totalByteLength);
unsigned char dsLengthBytes[8];
newByteData[k++] = versionNumber;
if(exe_params->SZ_SIZE_TYPE==4)//1
newByteData[k++] = 16; //00010000
else
newByteData[k++] = 80; //01010000: 01000000 indicates the SZ_SIZE_TYPE=8
convertSZParamsToBytes(confparams_cpr, &(newByteData[k]), exe_params->optQuantMode);
k = k + MetaDataByteLength_double;
sizeToBytes(dsLengthBytes,dataLength, exe_params->SZ_SIZE_TYPE);
for (i = 0; i < exe_params->SZ_SIZE_TYPE; i++)//ST: 4 or 8
newByteData[k++] = dsLengthBytes[i];
if(sysEndianType==BIG_ENDIAN_SYSTEM)
memcpy(newByteData+4+MetaDataByteLength_double+exe_params->SZ_SIZE_TYPE, oriData, dataLength*doubleSize);
else
{
unsigned char* p = newByteData+4+MetaDataByteLength_double+exe_params->SZ_SIZE_TYPE;
for(i=0;i<dataLength;i++,p+=doubleSize)
doubleToBytes(p, oriData[i]);
}
*outSize = totalByteLength;
}
bool SZ_compress_args_double_NoCkRngeNoGzip_1D(unsigned char* newByteData, double *oriData,
size_t dataLength, double realPrecision, size_t *outSize, double valueRangeSize, double medianValue_d)
{
TightDataPointStorageD* tdps = NULL;
tdps = SZ_compress_double_1D_MDQ(oriData, dataLength, realPrecision, valueRangeSize, medianValue_d);
if(!convertTDPStoFlatBytes_double(tdps, newByteData, outSize))
{
free_TightDataPointStorageD(tdps);
return false;
}
//if(*outSize>3 + MetaDataByteLength_double + exe_params->SZ_SIZE_TYPE + 1 + sizeof(double)*dataLength)
// SZ_compress_args_double_StoreOriData(oriData, dataLength, newByteData, outSize);
free_TightDataPointStorageD(tdps);
return true;
}
void SZ_compress_args_double_withinRange(unsigned char* newByteData, double *oriData, size_t dataLength, size_t *outSize)
{
TightDataPointStorageD* tdps = (TightDataPointStorageD*) malloc(sizeof(TightDataPointStorageD));
memset(tdps, 0, sizeof(TightDataPointStorageD));
tdps->leadNumArray = NULL;
tdps->residualMidBits = NULL;
tdps->allSameData = 1;
tdps->dataSeriesLength = dataLength;
tdps->exactMidBytes = (unsigned char*)malloc(sizeof(unsigned char)*8);
tdps->isLossless = 0;
double value = oriData[0];
doubleToBytes(tdps->exactMidBytes, value);
tdps->exactMidBytes_size = 8;
size_t tmpOutSize;
//unsigned char *tmpByteData;
convertTDPStoFlatBytes_double(tdps, newByteData, &tmpOutSize);
//convertTDPStoFlatBytes_double(tdps, &tmpByteData, &tmpOutSize);
//*newByteData = (unsigned char*)malloc(sizeof(unsigned char)*16); //for floating-point data (1+3+4+4)
//memcpy(*newByteData, tmpByteData, 16);
*outSize = tmpOutSize;//12==3+1+8(double_size)+MetaDataByteLength_double
free_TightDataPointStorageD(tdps);
}
int SZ_compress_args_double(double *oriData, size_t r1, unsigned char* newByteData, size_t *outSize, sz_params* params)
{
int status = SZ_SUCCESS;
size_t dataLength = r1;
double valueRangeSize = 0, medianValue = 0;
// check at least elements count
if(dataLength <= MIN_NUM_OF_ELEMENTS)
{
printf("warning, double input elements count=%d less than %d, so need not do compress.\n", (int)dataLength, MIN_NUM_OF_ELEMENTS);
return SZ_LITTER_ELEMENT;
}
double min = computeRangeSize_double(oriData, dataLength, &valueRangeSize, &medianValue);
double max = min+valueRangeSize;
params->dmin = min;
params->dmax = max;
double realPrecision = 0;
if(params->errorBoundMode==PSNR)
{
params->errorBoundMode = SZ_ABS;
realPrecision = params->absErrBoundDouble = computeABSErrBoundFromPSNR(params->psnr, (double)params->predThreshold, valueRangeSize);
}
else if(params->errorBoundMode==NORM) //norm error = sqrt(sum((xi-xi_)^2))
{
params->errorBoundMode = SZ_ABS;
realPrecision = params->absErrBoundDouble = computeABSErrBoundFromNORM_ERR(params->normErr, dataLength);
//printf("realPrecision=%lf\n", realPrecision);
}
else
{
realPrecision = getRealPrecision_double(valueRangeSize, params->errorBoundMode, params->absErrBoundDouble, params->relBoundRatio, &status);
params->absErrBoundDouble = realPrecision;
}
if(valueRangeSize <= realPrecision)
{
SZ_compress_args_double_withinRange(newByteData, oriData, dataLength, outSize);
}
else
{
size_t tmpOutSize = 0;
unsigned char* tmpByteData = newByteData;
bool twoStage = params->szMode != SZ_BEST_SPEED;
if(twoStage)
{
tmpByteData = (unsigned char*)malloc(r1*sizeof(double)*1.2);
}
if(!SZ_compress_args_double_NoCkRngeNoGzip_1D(tmpByteData, oriData, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue))
{
if(twoStage)
free(tmpByteData);
return SZ_ALGORITHM_ERR;
}
//if(tmpOutSize>=dataLength*sizeof(double) + 3 + MetaDataByteLength_double + exe_params->SZ_SIZE_TYPE + 1)
// SZ_compress_args_double_StoreOriData(oriData, dataLength, tmpByteData, &tmpOutSize);
//
//Call Gzip to do the further compression.
//
if(twoStage)
{
*outSize = sz_lossless_compress(params->losslessCompressor, tmpByteData, tmpOutSize, newByteData);
free(tmpByteData);
}
else
{
*outSize = tmpOutSize;
}
}
return status;
}
unsigned int optimize_intervals_double_1D_opt(double *oriData, size_t dataLength, double realPrecision)
{
size_t i = 0, radiusIndex;
double pred_value = 0, pred_err;
size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t));
memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t));
size_t totalSampleSize = 0;
double * data_pos = oriData + 2;
while(data_pos - oriData < dataLength){
totalSampleSize++;
pred_value = data_pos[-1];
pred_err = fabs(pred_value - *data_pos);
radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2);
if(radiusIndex>=confparams_cpr->maxRangeRadius)
radiusIndex = confparams_cpr->maxRangeRadius - 1;
intervals[radiusIndex]++;
data_pos += confparams_cpr->sampleDistance;
}
//compute the appropriate number
size_t targetCount = totalSampleSize*confparams_cpr->predThreshold;
size_t sum = 0;
for(i=0;i<confparams_cpr->maxRangeRadius;i++)
{
sum += intervals[i];
if(sum>targetCount)
break;
}
if(i>=confparams_cpr->maxRangeRadius)
i = confparams_cpr->maxRangeRadius-1;
unsigned int accIntervals = 2*(i+1);
unsigned int powerOf2 = roundUpToPowerOf2(accIntervals);
if(powerOf2<32)
powerOf2 = 32;
free(intervals);
return powerOf2;
}

434
utils/TSZ/sz/src/sz_float.c Normal file
View File

@ -0,0 +1,434 @@
/**
* @file sz_float.c
* @author Sheng Di, Dingwen Tao, Xin Liang, Xiangyu Zou, Tao Lu, Wen Xia, Xuan Wang, Weizhe Zhang
* @date Aug, 2016
* @brief SZ_Init, Compression and Decompression functions
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "sz.h"
#include "CompressElement.h"
#include "DynamicByteArray.h"
#include "TightDataPointStorageF.h"
#include "sz_float.h"
#include "szd_float.h"
#include "utility.h"
# define MIN(_a, _b) (((_a) < (_b)) ? (_a) : (_b))
void computeReqLength_float(double realPrecision, short rangeExpo, int* reqLength, float* medianValue)
{
short realPrecExpo = getPrecisionReqLength_double(realPrecision);
*reqLength = 9 + rangeExpo - realPrecExpo + 1; //radExpo-reqExpo == reqMantiLength
if(*reqLength<9)
*reqLength = 9;
if(*reqLength>32)
{
*reqLength = 32;
*medianValue = 0;
}
}
unsigned int optimize_intervals_float_1D(float *oriData, size_t dataLength, double realPrecision)
{
size_t i = 0, radiusIndex;
float pred_value = 0, pred_err;
size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t));
memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t));
size_t totalSampleSize = dataLength/confparams_cpr->sampleDistance;
for(i=2;i<dataLength;i++)
{
if(i%confparams_cpr->sampleDistance==0)
{
//pred_value = 2*oriData[i-1] - oriData[i-2];
pred_value = oriData[i-1];
pred_err = fabs(pred_value - oriData[i]);
radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2);
if(radiusIndex>=confparams_cpr->maxRangeRadius)
radiusIndex = confparams_cpr->maxRangeRadius - 1;
intervals[radiusIndex]++;
}
}
//compute the appropriate number
size_t targetCount = totalSampleSize*confparams_cpr->predThreshold;
size_t sum = 0;
for(i=0;i<confparams_cpr->maxRangeRadius;i++)
{
sum += intervals[i];
if(sum>targetCount)
break;
}
if(i>=confparams_cpr->maxRangeRadius)
i = confparams_cpr->maxRangeRadius-1;
unsigned int accIntervals = 2*(i+1);
unsigned int powerOf2 = roundUpToPowerOf2(accIntervals);
if(powerOf2<32)
powerOf2 = 32;
free(intervals);
//printf("accIntervals=%d, powerOf2=%d\n", accIntervals, powerOf2);
return powerOf2;
}
TightDataPointStorageF* SZ_compress_float_1D_MDQ(float *oriData,
size_t dataLength, float realPrecision, float valueRangeSize, float medianValue_f)
{
unsigned int quantization_intervals;
if(exe_params->optQuantMode==1)
quantization_intervals = optimize_intervals_float_1D_opt(oriData, dataLength, realPrecision);
else
quantization_intervals = exe_params->intvCapacity;
//updateQuantizationInfo(quantization_intervals);
int half_interval = quantization_intervals/2;
//
// calc reqlength and need set medianValue to zero.
//
size_t i;
int reqLength; // need save bits length for one float . value ragne 9~32
float medianValue = medianValue_f;
short rangeExpo = getExponent_float(valueRangeSize/2);
computeReqLength_float(realPrecision, rangeExpo, &reqLength, &medianValue);
//
// malloc all
//
// 1 type
int* type = (int*) malloc(dataLength*sizeof(int));
float* spaceFillingValue = oriData; //
// 2 lead
DynamicIntArray *exactLeadNumArray;
new_DIA(&exactLeadNumArray, DynArrayInitLen);
// 3 mid
DynamicByteArray *exactMidByteArray;
new_DBA(&exactMidByteArray, DynArrayInitLen);
// 4 residual bit
DynamicIntArray *resiBitArray;
new_DIA(&resiBitArray, DynArrayInitLen);
unsigned char preDiffBytes[4];
intToBytes_bigEndian(preDiffBytes, 0);
// calc save byte length and bit lengths with reqLength
int reqBytesLength = reqLength/8;
int resiBitsLength = reqLength%8;
//float last3CmprsData[3] = {0};
FloatValueCompressElement *vce = (FloatValueCompressElement*)malloc(sizeof(FloatValueCompressElement));
LossyCompressionElement *lce = (LossyCompressionElement*)malloc(sizeof(LossyCompressionElement));
//add the first data
type[0] = 0;
compressSingleFloatValue(vce, spaceFillingValue[0], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength);
// set lce
updateLossyCompElement_Float(vce->curBytes, preDiffBytes, reqBytesLength, resiBitsLength, lce);
memcpy(preDiffBytes, vce->curBytes, 4);
// lce to arrays
addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
//listAdd_float(last3CmprsData, vce->data);
//add the second data
type[1] = 0;
compressSingleFloatValue(vce, spaceFillingValue[1], realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength);
updateLossyCompElement_Float(vce->curBytes, preDiffBytes, reqBytesLength, resiBitsLength, lce);
memcpy(preDiffBytes, vce->curBytes, 4);
addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
//listAdd_float(last3CmprsData, vce->data);
int state;
float checkRadius;
float oriFloat;
float pred = vce->data;
float diff;
checkRadius = (quantization_intervals-1)*realPrecision;
float double_realpreci = 2*realPrecision;
float recip_precision = 1/realPrecision;
for(i=2; i < dataLength; i++)
{
oriFloat = spaceFillingValue[i];
//pred = 2*last3CmprsData[0] - last3CmprsData[1];
//pred = last3CmprsData[0];
diff = fabsf(oriFloat - pred);
if(diff < checkRadius)
{
state = ((int)( diff * recip_precision + 1))>>1;
if(oriFloat >= pred)
{
type[i] = half_interval + state;
pred = pred + state * double_realpreci;
}
else //curData<pred
{
type[i] = half_interval - state;
pred = pred - state * double_realpreci;
}
//double-check the prediction error in case of machine-epsilon impact
if(fabs(oriFloat - pred) > realPrecision)
{
type[i] = 0;
compressSingleFloatValue(vce, oriFloat, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength);
updateLossyCompElement_Float(vce->curBytes, preDiffBytes, reqBytesLength, resiBitsLength, lce);
memcpy(preDiffBytes, vce->curBytes, 4);
addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
//listAdd_float(last3CmprsData, vce->data);
pred = vce->data;
}
else
{
//listAdd_float(last3CmprsData, pred);
}
// go next
continue;
}
//unpredictable data processing
type[i] = 0;
compressSingleFloatValue(vce, oriFloat, realPrecision, medianValue, reqLength, reqBytesLength, resiBitsLength);
updateLossyCompElement_Float(vce->curBytes, preDiffBytes, reqBytesLength, resiBitsLength, lce);
memcpy(preDiffBytes, vce->curBytes, 4);
addExactData(exactMidByteArray, exactLeadNumArray, resiBitArray, lce);
//listAdd_float(last3CmprsData, vce->data);
pred = vce->data;
}//end of for
// char* expSegmentsInBytes;
// int expSegmentsInBytes_size = convertESCToBytes(esc, &expSegmentsInBytes);
size_t exactDataNum = exactLeadNumArray->size;
TightDataPointStorageF* tdps = NULL;
new_TightDataPointStorageF(&tdps, dataLength, exactDataNum,
type, exactMidByteArray->array, exactMidByteArray->size,
exactLeadNumArray->array,
resiBitArray->array, resiBitArray->size,
resiBitsLength,
realPrecision, medianValue, (char)reqLength, quantization_intervals, 0);
//sdi:Debug
/* int sum =0;
for(i=0;i<dataLength;i++)
if(type[i]==0) sum++;
printf("opt_quantizations=%d, exactDataNum=%zu, sum=%d\n",quantization_intervals, exactDataNum, sum);
*/
//free memory
free_DIA(exactLeadNumArray);
free_DIA(resiBitArray);
free(type);
free(vce);
free(lce);
free(exactMidByteArray); //exactMidByteArray->array has been released in free_TightDataPointStorageF(tdps);
return tdps;
}
// compress core algorithm if success return true else return false
bool SZ_compress_args_float_NoCkRngeNoGzip_1D( unsigned char* newByteData, float *oriData,
size_t dataLength, double realPrecision, size_t *outSize, float valueRangeSize, float medianValue_f)
{
// get tdps
TightDataPointStorageF* tdps = NULL;
tdps = SZ_compress_float_1D_MDQ(oriData, dataLength, realPrecision, valueRangeSize, medianValue_f);
if(tdps == NULL)
return false;
// serialize
if(!convertTDPStoFlatBytes_float(tdps, newByteData, outSize))
{
free_TightDataPointStorageF(tdps);
return false;
}
// check compressed size large than original
if(*outSize > 1 + MetaDataByteLength + exe_params->SZ_SIZE_TYPE + 1 + sizeof(float)*dataLength)
{
return false;
}
free_TightDataPointStorageF(tdps);
return true;
}
void SZ_compress_args_float_withinRange(unsigned char* newByteData, float *oriData, size_t dataLength, size_t *outSize)
{
TightDataPointStorageF* tdps = (TightDataPointStorageF*) malloc(sizeof(TightDataPointStorageF));
memset(tdps, 0, sizeof(TightDataPointStorageF));
tdps->leadNumArray = NULL;
tdps->residualMidBits = NULL;
tdps->allSameData = 1;
tdps->dataSeriesLength = dataLength;
tdps->exactMidBytes = (unsigned char*)malloc(sizeof(unsigned char)*4);
tdps->isLossless = 0;
float value = oriData[0];
floatToBytes(tdps->exactMidBytes, value);
tdps->exactMidBytes_size = 4;
size_t tmpOutSize;
//unsigned char *tmpByteData;
convertTDPStoFlatBytes_float(tdps, newByteData, &tmpOutSize);
//*newByteData = (unsigned char*)malloc(sizeof(unsigned char)*12); //for floating-point data (1+3+4+4)
//memcpy(*newByteData, tmpByteData, 12);
*outSize = tmpOutSize; //8+SZ_SIZE_TYPE; //8==3+1+4(float_size)
free_TightDataPointStorageF(tdps);
}
void cost_start();
double cost_end(const char* tag);
void show_rate( int in_len, int out_len);
int SZ_compress_args_float(float *oriData, size_t r1, unsigned char* newByteData, size_t *outSize, sz_params* params)
{
int status = SZ_SUCCESS;
size_t dataLength = r1;
//cost_start();
// check at least elements count
if(dataLength <= MIN_NUM_OF_ELEMENTS)
{
printf("warning, input elements count=%d less than %d, so need not do compress.\n", (int)dataLength, MIN_NUM_OF_ELEMENTS);
return SZ_LITTER_ELEMENT;
}
float valueRangeSize = 0, medianValue = 0;
float min = 0;
min = computeRangeSize_float(oriData, dataLength, &valueRangeSize, &medianValue);
// calc max
float max = min+valueRangeSize;
params->fmin = min;
params->fmax = max;
// calc precision
double realPrecision = 0;
if(params->errorBoundMode==PSNR)
{
params->errorBoundMode = SZ_ABS;
realPrecision = params->absErrBound = computeABSErrBoundFromPSNR(params->psnr, (double)params->predThreshold, (double)valueRangeSize);
//printf("realPrecision=%lf\n", realPrecision);
}
else if(params->errorBoundMode==NORM) //norm error = sqrt(sum((xi-xi_)^2))
{
params->errorBoundMode = SZ_ABS;
realPrecision = params->absErrBound = computeABSErrBoundFromNORM_ERR(params->normErr, dataLength);
//printf("realPrecision=%lf\n", realPrecision);
}
else
{
realPrecision = getRealPrecision_float(valueRangeSize, params->errorBoundMode, params->absErrBound, params->relBoundRatio, &status);
params->absErrBound = realPrecision;
}
//cost_end(" sz_pre_calc");
//
// do compress
//
if(valueRangeSize <= realPrecision)
{
// special deal with same data
SZ_compress_args_float_withinRange(newByteData, oriData, dataLength, outSize);
return SZ_SUCCESS;
}
//
// first compress with sz
//
size_t tmpOutSize = 0;
unsigned char* tmpByteData = newByteData;
bool twoStage = params->szMode != SZ_BEST_SPEED;
if(twoStage)
{
tmpByteData = (unsigned char*)malloc(r1*sizeof(float) + 1024);
}
// compress core algorithm
if(!SZ_compress_args_float_NoCkRngeNoGzip_1D(tmpByteData, oriData, r1, realPrecision, &tmpOutSize, valueRangeSize, medianValue))
{
*outSize = 0;
if(twoStage)
free(tmpByteData);
return SZ_ALGORITHM_ERR;
}
//cost_end(" sz_first_compress");
//show_rate(r1*sizeof(float), tmpOutSize);
//
// second compress with Call Zstd or Gzip
//
//cost_start();
if(!twoStage)
{
*outSize = tmpOutSize;
}
else
{
*outSize = sz_lossless_compress(params->losslessCompressor, tmpByteData, tmpOutSize, newByteData);
free(tmpByteData);
}
//cost_end(" sz_second_compress");
//show_rate(r1*sizeof(float), *outSize);
return SZ_SUCCESS;
}
unsigned int optimize_intervals_float_1D_opt(float *oriData, size_t dataLength, double realPrecision)
{
size_t i = 0, radiusIndex;
float pred_value = 0, pred_err;
size_t *intervals = (size_t*)malloc(confparams_cpr->maxRangeRadius*sizeof(size_t));
memset(intervals, 0, confparams_cpr->maxRangeRadius*sizeof(size_t));
size_t totalSampleSize = 0;//dataLength/confparams_cpr->sampleDistance;
float * data_pos = oriData + 2;
while(data_pos - oriData < dataLength){
totalSampleSize++;
pred_value = data_pos[-1];
pred_err = fabs(pred_value - *data_pos);
radiusIndex = (unsigned long)((pred_err/realPrecision+1)/2);
if(radiusIndex>=confparams_cpr->maxRangeRadius)
radiusIndex = confparams_cpr->maxRangeRadius - 1;
intervals[radiusIndex]++;
data_pos += confparams_cpr->sampleDistance;
}
//compute the appropriate number
size_t targetCount = totalSampleSize*confparams_cpr->predThreshold;
size_t sum = 0;
for(i=0;i<confparams_cpr->maxRangeRadius;i++)
{
sum += intervals[i];
if(sum>targetCount)
break;
}
if(i>=confparams_cpr->maxRangeRadius)
i = confparams_cpr->maxRangeRadius-1;
unsigned int accIntervals = 2*(i+1);
unsigned int powerOf2 = roundUpToPowerOf2(accIntervals);
if(powerOf2<32)
powerOf2 = 32;
free(intervals);
return powerOf2;
}

View File

@ -0,0 +1,226 @@
/**
* @file szd_double.c
* @author Sheng Di, Dingwen Tao, Xin Liang, Xiangyu Zou, Tao Lu, Wen Xia, Xuan Wang, Weizhe Zhang
* @date Aug, 2016
* @brief
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "szd_double.h"
#include "TightDataPointStorageD.h"
#include "sz.h"
#include "utility.h"
#include "Huffman.h"
#include "transcode.h"
int SZ_decompress_args_double(double* newData, size_t r1, unsigned char* cmpBytes,
size_t cmpSize, int compressionType, double* hist_data, sz_exedata* pde_exe, sz_params* pde_params)
{
int status = SZ_SUCCESS;
size_t dataLength = r1;
//unsigned char* tmpBytes;
size_t targetUncompressSize = dataLength <<3; //i.e., *8
//tmpSize must be "much" smaller than dataLength
size_t i, tmpSize = 12+MetaDataByteLength_double+8;
unsigned char* szTmpBytes = NULL;
bool needFree = false;
if(cmpSize!=12+4+MetaDataByteLength_double && cmpSize!=12+8+MetaDataByteLength_double)
{
pde_params->losslessCompressor = is_lossless_compressed_data(cmpBytes, cmpSize);
if(pde_params->szMode!=SZ_TEMPORAL_COMPRESSION)
{
if(pde_params->losslessCompressor!=-1)
pde_params->szMode = SZ_BEST_COMPRESSION;
else
pde_params->szMode = SZ_BEST_SPEED;
}
if(pde_params->szMode==SZ_BEST_SPEED)
{
tmpSize = cmpSize;
szTmpBytes = cmpBytes;
}
else
{
if(targetUncompressSize<MIN_ZLIB_DEC_ALLOMEM_BYTES) //Considering the minimum size
targetUncompressSize = MIN_ZLIB_DEC_ALLOMEM_BYTES;
tmpSize = sz_lossless_decompress(pde_params->losslessCompressor, cmpBytes, (unsigned long)cmpSize, &szTmpBytes, (unsigned long)targetUncompressSize+4+MetaDataByteLength_double+8);
needFree = true;
}
}
else
szTmpBytes = cmpBytes;
// calc postion
//pde_params->sol_ID = szTmpBytes[1+3-2+14-4]; //szTmpBytes: version(3bytes), samebyte(1byte), [14]:sol_ID=SZ or SZ_Transpose
//TODO: convert szTmpBytes to double array.
TightDataPointStorageD* tdps = NULL;
int errBoundMode = new_TightDataPointStorageD_fromFlatBytes(&tdps, szTmpBytes, tmpSize, pde_exe, pde_params);
if(tdps == NULL)
{
return SZ_FORMAT_ERR;
}
int doubleSize = sizeof(double);
if(tdps->isLossless)
{
// *newData = (double*)malloc(doubleSize*dataLength); comment by tickduan
if(sysEndianType==BIG_ENDIAN_SYSTEM)
{
memcpy(newData, szTmpBytes+4+MetaDataByteLength_double+pde_exe->SZ_SIZE_TYPE, dataLength*doubleSize);
}
else
{
unsigned char* p = szTmpBytes+4+MetaDataByteLength_double+pde_exe->SZ_SIZE_TYPE;
for(i=0;i<dataLength;i++,p+=doubleSize)
newData[i] = bytesToDouble(p);
}
}
else if(pde_params->sol_ID==SZ_Transpose)
{
getSnapshotData_double_1D(newData,dataLength,tdps, errBoundMode, 0, hist_data, pde_params);
}
else //pde_params->sol_ID==SZ
{
if(tdps->raBytes_size > 0) //v2.0
{
getSnapshotData_double_1D(newData,r1,tdps, errBoundMode, 0, hist_data, pde_params);
}
else //1.4.13 or time-based compression
{
getSnapshotData_double_1D(newData,r1,tdps, errBoundMode, compressionType, hist_data, pde_params);
}
}
free_TightDataPointStorageD2(tdps);
if(szTmpBytes && needFree)
free(szTmpBytes);
return status;
}
void decompressDataSeries_double_1D(double* data, size_t dataSeriesLength, double* hist_data, TightDataPointStorageD* tdps)
{
//updateQuantizationInfo(tdps->intervals);
int intvRadius = tdps->intervals/2;
size_t i, j, k = 0, p = 0, l = 0; // k is to track the location of residual_bit
// in resiMidBits, p is to track the
// byte_index of resiMidBits, l is for
// leadNum
unsigned char* leadNum;
double interval = tdps->realPrecision*2;
convertByteArray2IntArray_fast_2b(tdps->exactDataNum, tdps->leadNumArray, tdps->leadNumArray_size, &leadNum);
//*data = (double*)malloc(sizeof(double)*dataSeriesLength); comment by tickduan
int* type = (int*)malloc(dataSeriesLength*sizeof(int));
if (tdps->ifAdtFse == false) {
HuffmanTree* huffmanTree = createHuffmanTree(tdps->stateNum);
decode_withTree(huffmanTree, tdps->typeArray, dataSeriesLength, type);
SZ_ReleaseHuffman(huffmanTree);
}
else {
decode_with_fse(type, dataSeriesLength, tdps->intervals, tdps->FseCode, tdps->FseCode_size,
tdps->transCodeBits, tdps->transCodeBits_size);
}
unsigned char preBytes[8];
unsigned char curBytes[8];
memset(preBytes, 0, 8);
size_t curByteIndex = 0;
int reqBytesLength, resiBitsLength, resiBits;
unsigned char leadingNum;
double medianValue, exactData, predValue;
reqBytesLength = tdps->reqLength/8;
resiBitsLength = tdps->reqLength%8;
medianValue = tdps->medianValue;
int type_;
for (i = 0; i < dataSeriesLength; i++)
{
type_ = type[i];
switch (type_) {
case 0:
// compute resiBits
resiBits = 0;
if (resiBitsLength != 0) {
int kMod8 = k % 8;
int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength);
if (rightMovSteps > 0) {
int code = getRightMovingCode(kMod8, resiBitsLength);
resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps;
} else if (rightMovSteps < 0) {
int code1 = getLeftMovingCode(kMod8);
int code2 = getRightMovingCode(kMod8, resiBitsLength);
int leftMovSteps = -rightMovSteps;
rightMovSteps = 8 - leftMovSteps;
resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps;
p++;
resiBits = resiBits
| ((tdps->residualMidBits[p] & code2) >> rightMovSteps);
} else // rightMovSteps == 0
{
int code = getRightMovingCode(kMod8, resiBitsLength);
resiBits = (tdps->residualMidBits[p] & code);
p++;
}
k += resiBitsLength;
}
// recover the exact data
memset(curBytes, 0, 8);
leadingNum = leadNum[l++];
memcpy(curBytes, preBytes, leadingNum);
for (j = leadingNum; j < reqBytesLength; j++)
curBytes[j] = tdps->exactMidBytes[curByteIndex++];
if (resiBitsLength != 0) {
unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength));
curBytes[reqBytesLength] = resiByte;
}
exactData = bytesToDouble(curBytes);
data[i] = exactData + medianValue;
memcpy(preBytes,curBytes,8);
break;
default:
//predValue = 2 * data[i-1] - data[i-2];
predValue = data[i-1];
data[i] = predValue + (type_-intvRadius)*interval;
break;
}
//printf("%.30G\n",data[i]);
}
free(leadNum);
free(type);
return;
}
void getSnapshotData_double_1D(double* data, size_t dataSeriesLength, TightDataPointStorageD* tdps, int errBoundMode, int compressionType, double* hist_data, sz_params* pde_params)
{
size_t i;
if (tdps->allSameData) {
double value = bytesToDouble(tdps->exactMidBytes);
//*data = (double*)malloc(sizeof(double)*dataSeriesLength); comment by tickduan
for (i = 0; i < dataSeriesLength; i++)
data[i] = value;
}
else
{
decompressDataSeries_double_1D(data, dataSeriesLength, hist_data, tdps);
}
}

View File

@ -0,0 +1,234 @@
/**
* @file szd_float.c
* @author Sheng Di, Dingwen Tao, Xin Liang, Xiangyu Zou, Tao Lu, Wen Xia, Xuan Wang, Weizhe Zhang
* @date Aug, 2018
* @brief
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "szd_float.h"
#include "TightDataPointStorageF.h"
#include "sz.h"
#include "utility.h"
#include "Huffman.h"
#include "transcode.h"
/**
*
* int compressionType: 1 (time-based compression) ; 0 (space-based compression)
* hist_data: only valid when compressionType==1, hist_data is the historical dataset such as the data in previous time step
*
* @return status SUCCESSFUL (SZ_SUCCESS) or not (other error codes) f
* */
int SZ_decompress_args_float(float* newData, size_t r1, unsigned char* cmpBytes,
size_t cmpSize, int compressionType, float* hist_data, sz_exedata* pde_exe, sz_params* pde_params)
{
int status = SZ_SUCCESS;
size_t dataLength = r1;
//unsigned char* tmpBytes;
size_t targetUncompressSize = dataLength <<2; //i.e., *4
//tmpSize must be "much" smaller than dataLength
size_t i, tmpSize = 8+MetaDataByteLength+pde_exe->SZ_SIZE_TYPE;
unsigned char* szTmpBytes = NULL;
bool needFree = false;
if(cmpSize!=8+4+MetaDataByteLength && cmpSize!=8+8+MetaDataByteLength) //4,8 means two posibilities of SZ_SIZE_TYPE
{
pde_params->losslessCompressor = is_lossless_compressed_data(cmpBytes, cmpSize);
if(pde_params->szMode!=SZ_TEMPORAL_COMPRESSION)
{
if(pde_params->losslessCompressor!=-1)
pde_params->szMode = SZ_BEST_COMPRESSION;
else
pde_params->szMode = SZ_BEST_SPEED;
}
if(pde_params->szMode==SZ_BEST_SPEED)
{
tmpSize = cmpSize;
szTmpBytes = cmpBytes;
}
else
{
if(targetUncompressSize<MIN_ZLIB_DEC_ALLOMEM_BYTES) //Considering the minimum size
targetUncompressSize = MIN_ZLIB_DEC_ALLOMEM_BYTES;
tmpSize = sz_lossless_decompress(pde_params->losslessCompressor, cmpBytes, (unsigned long)cmpSize, &szTmpBytes, (unsigned long)targetUncompressSize+4+MetaDataByteLength+8);
needFree = true;
}
}
else
szTmpBytes = cmpBytes;
// calc sol_ID
//pde_params->sol_ID = szTmpBytes[1+3-2+14-4]; //szTmpBytes: version(1bytes), samebyte(1byte), [14-4]:sol_ID=SZ or SZ_Transpose
//TODO: convert szTmpBytes to data array.
TightDataPointStorageF* tdps = NULL;
int errBoundMode = new_TightDataPointStorageF_fromFlatBytes(&tdps, szTmpBytes, tmpSize, pde_exe, pde_params);
if(tdps == NULL)
{
return SZ_FORMAT_ERR;
}
int floatSize = sizeof(float);
if(tdps->isLossless)
{
//*newData = (float*)malloc(floatSize*dataLength); comment by tickduan
if(sysEndianType==BIG_ENDIAN_SYSTEM)
{
memcpy(newData, szTmpBytes+4+MetaDataByteLength+pde_exe->SZ_SIZE_TYPE, dataLength*floatSize);
}
else
{
unsigned char* p = szTmpBytes+4+MetaDataByteLength+pde_exe->SZ_SIZE_TYPE;
for(i=0;i<dataLength;i++,p+=floatSize)
newData[i] = bytesToFloat(p);
}
}
else //pde_params->sol_ID==SZ
{
if(tdps->raBytes_size > 0) //v2.0
{
getSnapshotData_float_1D(newData,r1,tdps, errBoundMode, 0, hist_data, pde_params);
}
else //1.4.13 or time-based compression
{
getSnapshotData_float_1D(newData,r1,tdps, errBoundMode, compressionType, hist_data, pde_params);
}
}
//cost_start_();
//cost_end_();
//printf("totalCost_=%f\n", totalCost_);
free_TightDataPointStorageF2(tdps);
if(szTmpBytes && needFree)
free(szTmpBytes);
return status;
}
void decompressDataSeries_float_1D(float* data, size_t dataSeriesLength, float* hist_data, TightDataPointStorageF* tdps)
{
//updateQuantizationInfo(tdps->intervals);
int intvRadius = tdps->intervals/2;
size_t i, j, k = 0, p = 0, l = 0; // k is to track the location of residual_bit
// in resiMidBits, p is to track the
// byte_index of resiMidBits, l is for
// leadNum
unsigned char* leadNum;
float interval = tdps->realPrecision*2;
convertByteArray2IntArray_fast_2b(tdps->exactDataNum, tdps->leadNumArray, tdps->leadNumArray_size, &leadNum);
//data = (float*)malloc(sizeof(float)*dataSeriesLength); // comment by tickduan
int* types = (int*)malloc(dataSeriesLength*sizeof(int));
if (tdps->ifAdtFse == false) {
// type tree
HuffmanTree* huffmanTree = createHuffmanTree(tdps->stateNum);
decode_withTree(huffmanTree, tdps->typeArray, dataSeriesLength, types);
SZ_ReleaseHuffman(huffmanTree);
}
else {
decode_with_fse(types, dataSeriesLength, tdps->intervals, tdps->FseCode, tdps->FseCode_size,
tdps->transCodeBits, tdps->transCodeBits_size);
}
unsigned char preBytes[4];
unsigned char curBytes[4];
memset(preBytes, 0, 4);
size_t curByteIndex = 0;
int reqBytesLength, resiBitsLength, resiBits;
unsigned char leadingNum;
float medianValue, exactData, predValue;
reqBytesLength = tdps->reqLength/8;
resiBitsLength = tdps->reqLength%8;
medianValue = tdps->medianValue;
// decompress core
int type;
for (i = 0; i < dataSeriesLength; i++)
{
type = types[i];
switch (type)
{
case 0:
// compute resiBits
resiBits = 0;
if (resiBitsLength != 0) {
int kMod8 = k % 8;
int rightMovSteps = getRightMovingSteps(kMod8, resiBitsLength);
if (rightMovSteps > 0) {
int code = getRightMovingCode(kMod8, resiBitsLength);
resiBits = (tdps->residualMidBits[p] & code) >> rightMovSteps;
} else if (rightMovSteps < 0) {
int code1 = getLeftMovingCode(kMod8);
int code2 = getRightMovingCode(kMod8, resiBitsLength);
int leftMovSteps = -rightMovSteps;
rightMovSteps = 8 - leftMovSteps;
resiBits = (tdps->residualMidBits[p] & code1) << leftMovSteps;
p++;
resiBits = resiBits
| ((tdps->residualMidBits[p] & code2) >> rightMovSteps);
} else // rightMovSteps == 0
{
int code = getRightMovingCode(kMod8, resiBitsLength);
resiBits = (tdps->residualMidBits[p] & code);
p++;
}
k += resiBitsLength;
}
// recover the exact data
memset(curBytes, 0, 4);
leadingNum = leadNum[l++];
memcpy(curBytes, preBytes, leadingNum);
for (j = leadingNum; j < reqBytesLength; j++)
curBytes[j] = tdps->exactMidBytes[curByteIndex++];
if (resiBitsLength != 0) {
unsigned char resiByte = (unsigned char) (resiBits << (8 - resiBitsLength));
curBytes[reqBytesLength] = resiByte;
}
exactData = bytesToFloat(curBytes);
data[i] = exactData + medianValue;
memcpy(preBytes,curBytes,4);
break;
default:
//predValue = 2 * data[i-1] - data[i-2];
predValue = data[i-1];
data[i] = predValue + (float)(type - intvRadius) * interval;
break;
}
//printf("%.30G\n",data[i]);
}
free(leadNum);
free(types);
return;
}
void getSnapshotData_float_1D(float* data, size_t dataSeriesLength, TightDataPointStorageF* tdps, int errBoundMode, int compressionType, float* hist_data, sz_params* pde_params)
{
size_t i;
if (tdps->allSameData)
{
float value = bytesToFloat(tdps->exactMidBytes);
//*data = (float*)malloc(sizeof(float)*dataSeriesLength); commnet by tickduan
for (i = 0; i < dataSeriesLength; i++)
data[i] = value;
}
else
{
decompressDataSeries_float_1D(data, dataSeriesLength, hist_data, tdps);
}
}

89
utils/TSZ/sz/src/td_sz.c Normal file
View File

@ -0,0 +1,89 @@
/*
* Copyright (c) 2019 TAOS Data, Inc. <jhtao@taosdata.com>
*
* This program is free software: you can use, redistribute, and/or modify
* it under the terms of the GNU Affero General Public License, version 3
* or later ("AGPL"), as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "td_sz.h"
#include "sz.h"
#include "conf.h"
//
// Init success return 1 else 0
//
void tdszInit(double fPrecision, double dPrecision, unsigned int maxIntervals, unsigned int intervals, int ifAdtFse, const char* compressor)
{
// need malloc
if(confparams_cpr == NULL)
confparams_cpr = (sz_params*)malloc(sizeof(sz_params));
if(exe_params == NULL)
exe_params = (sz_exedata*)malloc(sizeof(sz_exedata));
// set default
setDefaulParams(exe_params, confparams_cpr);
// overwrite with args
confparams_cpr->absErrBound = fPrecision;
confparams_cpr->absErrBoundDouble = dPrecision;
confparams_cpr->max_quant_intervals = maxIntervals;
confparams_cpr->quantization_intervals = intervals;
confparams_cpr->ifAdtFse = ifAdtFse;
if(strcmp(compressor, "GZIP_COMPRESSOR")==0)
confparams_cpr->losslessCompressor = GZIP_COMPRESSOR;
else if(strcmp(compressor, "ZSTD_COMPRESSOR")==0)
confparams_cpr->losslessCompressor = ZSTD_COMPRESSOR;
return ;
}
//
// compress interface to tdengine return value is count of output with bytes
//
int tdszCompress(int type, const char * input, const int nelements, const char * output)
{
// check valid
sz_params comp_params = *confparams_cpr;
size_t outSize = SZ_compress_args(type, (void*)input, (size_t)nelements, (unsigned char*)output, &comp_params);
return (int)outSize;
}
//
// decompress interface to tdengine return value is count of output with bytes
//
int tdszDecompress(int type, const char * input, int compressedSize, const int nelements, const char * output)
{
size_t outSize = SZ_decompress(type, (void*)input, compressedSize, (size_t)nelements, (unsigned char*)output);
return (int)outSize;
}
//
// tdszExit
//
void tdszExit()
{
if(confparams_cpr!=NULL)
{
free(confparams_cpr);
confparams_cpr = NULL;
}
if(exe_params!=NULL)
{
free(exe_params);
exe_params = NULL;
}
}

View File

@ -0,0 +1,159 @@
/**
* @file transcode.c
* @author Yu Zhong (lx1zhong@qq.com)
* @brief Source file for ADT-FSE algorithm
* @date 2022-08-29
*
* @copyright Copyright (c) 2022
*
*/
#include "transcode.h"
#include "fse.h"
#include "bitstream.h"
#include <stdlib.h>
/**
* @brief transform type array to FseCode & tranCodeBits
* [type] ---minus md---> [factor] ---transcode---> [tp_code] + [bitstream of diff]
*
*/
void encode_with_fse(int *type, size_t dataSeriesLength, unsigned int intervals,
unsigned char **FseCode, size_t *FseCode_size,
unsigned char **transCodeBits, size_t *transCodeBits_size)
{
int nbits = 0;
int dstCapacity = dataSeriesLength * sizeof(int);
uint8_t *tp_code = (uint8_t *)malloc(dataSeriesLength);
BIT_CStream_t transCodeStream;
(*transCodeBits) = (unsigned char*)malloc(dstCapacity);
BIT_initCStream(&transCodeStream, (void *)(*transCodeBits), dstCapacity);
// transcoding
int md = intervals / 2;
uint8_t type2code[intervals];
unsigned int diff[intervals];
for (int i = md; i < intervals; i++)
{
type2code[i] = (uint8_t)Int2code(i - md);
diff[i] = i - md - code2int[type2code[i]][0];
}
for (int i = md - 1; i > 0; i--)
{
type2code[i] = 67 - type2code[2 * md - i];
diff[i] = diff[2*md-i];
}
for (int i = 0; i < dataSeriesLength; i++)
{
if (type[i] == 0)
{
// unpredictable data
tp_code[i] = 67;
nbits = 0;
}
else
{
tp_code[i] = type2code[type[i]];
nbits = code2int[tp_code[i]][1];
BIT_addBitsFast(&transCodeStream, diff[type[i]], nbits);
BIT_flushBitsFast(&transCodeStream);
}
}
(*FseCode) = (unsigned char*)malloc(2 * dataSeriesLength);
size_t fse_size = FSE_compress((*FseCode), 2 * dataSeriesLength, tp_code, dataSeriesLength);
if (FSE_isError(fse_size))
{
printf("ADT-FSE: FSE_compress error!\n");
exit(1);
}
(*FseCode_size) = fse_size;
size_t const streamSize = BIT_closeCStream(&transCodeStream);
(*transCodeBits_size) = streamSize;
if (streamSize == 0)
{
printf("ADT-FSE: transCodeBits_size too small!\n");
exit(1);
}
free(tp_code);
return;
}
/**
* @brief transform FseCode & tranCodeBits to type array
*
*/
void decode_with_fse(int *type, size_t dataSeriesLength, unsigned int intervals,
unsigned char *FseCode, size_t FseCode_size,
unsigned char *transCodeBits, size_t transCodeBits_size)
{
uint8_t *tp_code = (uint8_t *)malloc(dataSeriesLength);
if (FseCode_size <= 1)
{
// all zeros
memset((void *)type, 0, sizeof(int) * dataSeriesLength);
return;
}
size_t fse_size = FSE_decompress(tp_code, dataSeriesLength, FseCode, FseCode_size);
if (FSE_isError(fse_size))
{
printf("ADT-FSE: FSE_decompress error!\n");
exit(1);
}
if (fse_size != dataSeriesLength)
{
printf("ADT-FSE: FSE_decompress error! fse_size(%lu) != dataSeriesLength(%lu)!\n", fse_size, dataSeriesLength);
exit(1);
}
BIT_DStream_t transCodeStream;
size_t stream_size = BIT_initDStream(&transCodeStream, transCodeBits, transCodeBits_size);
if (stream_size == 0)
{
printf("ADT-FSE: transcode stream empty!\n");
exit(1);
}
int md = intervals / 2;
int code2type[67];
for (int i = 0; i < 67; i++)
{
code2type[i] = code2int[i][0] + md;
}
int nbits;
size_t diff;
for (int i = dataSeriesLength-1; i >= 0; i--)
{
if (tp_code[i] == 67) {
type[i] = 0;
continue;
}
nbits = code2int[tp_code[i]][1];
if (nbits >= 1)
diff = BIT_readBitsFast(&transCodeStream, nbits);
else
diff =0;
BIT_reloadDStream(&transCodeStream);
if (tp_code[i] < 34) {
// positive number
type[i] = code2type[tp_code[i]] + diff;
}
else {
// negative number
type[i] = code2type[tp_code[i]] - diff;
}
}
free(tp_code);
return;
}

View File

@ -0,0 +1,68 @@
/**
* @file utility.c
* @author Sheng Di, Sihuan Li
* @date Aug, 2018
* @brief
* (C) 2016 by Mathematics and Computer Science (MCS), Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "utility.h"
#include "sz.h"
#include "zstd.h"
int is_lossless_compressed_data(unsigned char* compressedBytes, size_t cmpSize)
{
#if ZSTD_VERSION_NUMBER >= 10300
unsigned long long frameContentSize = ZSTD_getFrameContentSize(compressedBytes, cmpSize);
if(frameContentSize != ZSTD_CONTENTSIZE_ERROR)
return ZSTD_COMPRESSOR;
#else
unsigned long long frameContentSize = ZSTD_getDecompressedSize(compressedBytes, cmpSize);
if(frameContentSize != 0)
return ZSTD_COMPRESSOR;
#endif
return -1; //fast mode (without GZIP or ZSTD)
}
unsigned long sz_lossless_compress(int losslessCompressor, unsigned char* data, unsigned long dataLength, unsigned char* compressBytes)
{
unsigned long outSize = 0;
int level = 3 ; // fast mode
size_t estimatedCompressedSize = 0;
switch(losslessCompressor)
{
case ZSTD_COMPRESSOR:
if(dataLength < 100)
estimatedCompressedSize = 200;
else
estimatedCompressedSize = dataLength*1.2;
//*compressBytes = (unsigned char*)malloc(estimatedCompressedSize); // comment by tickduan
outSize = ZSTD_compress(compressBytes, estimatedCompressedSize, data, dataLength, level); //default setting of level is 3
break;
default:
printf("Error: Unrecognized lossless compressor in sz_lossless_compress()\n");
}
return outSize;
}
unsigned long sz_lossless_decompress(int losslessCompressor, unsigned char* compressBytes, unsigned long cmpSize, unsigned char** oriData, unsigned long targetOriSize)
{
unsigned long outSize = 0;
switch(losslessCompressor)
{
case ZSTD_COMPRESSOR:
*oriData = (unsigned char*)malloc(targetOriSize);
outSize = ZSTD_decompress(*oriData, targetOriSize, compressBytes, cmpSize);
break;
default:
printf("Error: Unrecognized lossless compressor in sz_lossless_decompress()\n");
}
return outSize;
}

30
utils/TSZ/zstd/LICENSE Normal file
View File

@ -0,0 +1,30 @@
BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

119
utils/TSZ/zstd/README.md Normal file
View File

@ -0,0 +1,119 @@
Zstandard library files
================================
The __lib__ directory is split into several sub-directories,
in order to make it easier to select or exclude features.
#### Building
`Makefile` script is provided, supporting all standard [Makefile conventions](https://www.gnu.org/prep/standards/html_node/Makefile-Conventions.html#Makefile-Conventions),
including commands variables, staged install, directory variables and standard targets.
- `make` : generates both static and dynamic libraries
- `make install` : install libraries in default system directories
`libzstd` default scope includes compression, decompression, dictionary building,
and decoding support for legacy formats >= v0.4.0.
#### API
Zstandard's stable API is exposed within [lib/zstd.h](zstd.h).
#### Advanced API
Optional advanced features are exposed via :
- `lib/common/zstd_errors.h` : translates `size_t` function results
into an `ZSTD_ErrorCode`, for accurate error handling.
- `ZSTD_STATIC_LINKING_ONLY` : if this macro is defined _before_ including `zstd.h`,
it unlocks access to advanced experimental API,
exposed in second part of `zstd.h`.
These APIs are not "stable", their definition may change in the future.
As a consequence, it shall ___never be used with dynamic library___ !
Only static linking is allowed.
#### Modular build
It's possible to compile only a limited set of features.
- Directory `lib/common` is always required, for all variants.
- Compression source code lies in `lib/compress`
- Decompression source code lies in `lib/decompress`
- It's possible to include only `compress` or only `decompress`, they don't depend on each other.
- `lib/dictBuilder` : makes it possible to generate dictionaries from a set of samples.
The API is exposed in `lib/dictBuilder/zdict.h`.
This module depends on both `lib/common` and `lib/compress` .
- `lib/legacy` : source code to decompress legacy zstd formats, starting from `v0.1.0`.
This module depends on `lib/common` and `lib/decompress`.
To enable this feature, it's required to define `ZSTD_LEGACY_SUPPORT` during compilation.
Typically, with `gcc`, add argument `-DZSTD_LEGACY_SUPPORT=1`.
Using higher number limits versions supported.
For example, `ZSTD_LEGACY_SUPPORT=2` means : "support legacy formats >= v0.2.0".
`ZSTD_LEGACY_SUPPORT=3` means : "support legacy formats >= v0.3.0", and so on.
Starting v0.8.0, all versions of `zstd` produce frames compliant with specification.
As a consequence, `ZSTD_LEGACY_SUPPORT=8` (or more) doesn't trigger legacy support.
Also, `ZSTD_LEGACY_SUPPORT=0` means "do __not__ support legacy formats".
Once enabled, this capability is transparently triggered within decompression functions.
It's also possible to invoke directly legacy API, as exposed in `lib/legacy/zstd_legacy.h`.
Each version also provides an additional dedicated set of advanced API.
For example, advanced API for version `v0.4` is exposed in `lib/legacy/zstd_v04.h` .
Note : `lib/legacy` only supports _decoding_ legacy formats.
- Similarly, you can define `ZSTD_LIB_COMPRESSION, ZSTD_LIB_DECOMPRESSION`, `ZSTD_LIB_DICTBUILDER`,
and `ZSTD_LIB_DEPRECATED` as 0 to forgo compilation of the corresponding features. This will
also disable compilation of all dependencies (eg. `ZSTD_LIB_COMPRESSION=0` will also disable
dictBuilder).
#### Multithreading support
Multithreading is disabled by default when building with `make`.
Enabling multithreading requires 2 conditions :
- set macro `ZSTD_MULTITHREAD`
- on POSIX systems : compile with pthread (`-pthread` compilation flag for `gcc`)
Both conditions are automatically triggered by invoking `make lib-mt` target.
Note that, when linking a POSIX program with a multithreaded version of `libzstd`,
it's necessary to trigger `-pthread` flag during link stage.
Multithreading capabilities are exposed
via [advanced API `ZSTD_compress_generic()` defined in `lib/zstd.h`](https://github.com/facebook/zstd/blob/dev/lib/zstd.h#L919).
This API is still considered experimental,
but is expected to become "stable" at some point in the future.
#### Windows : using MinGW+MSYS to create DLL
DLL can be created using MinGW+MSYS with the `make libzstd` command.
This command creates `dll\libzstd.dll` and the import library `dll\libzstd.lib`.
The import library is only required with Visual C++.
The header file `zstd.h` and the dynamic library `dll\libzstd.dll` are required to
compile a project using gcc/MinGW.
The dynamic library has to be added to linking options.
It means that if a project that uses ZSTD consists of a single `test-dll.c`
file it should be linked with `dll\libzstd.dll`. For example:
```
gcc $(CFLAGS) -Iinclude/ test-dll.c -o test-dll dll\libzstd.dll
```
The compiled executable will require ZSTD DLL which is available at `dll\libzstd.dll`.
#### Deprecated API
Obsolete API on their way out are stored in directory `lib/deprecated`.
At this stage, it contains older streaming prototypes, in `lib/deprecated/zbuff.h`.
These prototypes will be removed in some future version.
Consider migrating code towards supported streaming API exposed in `zstd.h`.
#### Miscellaneous
The other files are not source code. There are :
- `LICENSE` : contains the BSD license text
- `Makefile` : `make` script to build and install zstd library (static and dynamic)
- `BUCK` : support for `buck` build system (https://buckbuild.com/)
- `libzstd.pc.in` : for `pkg-config` (used in `make install`)
- `README.md` : this file

View File

@ -0,0 +1,458 @@
/* ******************************************************************
bitstream
Part of FSE library
Copyright (C) 2013-present, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which must be inlined for best performance.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/*-****************************************
* Dependencies
******************************************/
#include "mem.h" /* unaligned access routines */
#include "debug.h" /* assert(), DEBUGLOG(), RAWLOG() */
#include "error_private.h" /* error codes and messages */
/*=========================================
* Target specific
=========================================*/
#if defined(__BMI__) && defined(__GNUC__)
# include <immintrin.h> /* support for bextr (experimental) */
#endif
#define STREAM_ACCUMULATOR_MIN_32 25
#define STREAM_ACCUMULATOR_MIN_64 57
#define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64))
/*-******************************************
* bitStream encoding API (write forward)
********************************************/
/* bitStream can mix input from multiple sources.
* A critical property of these streams is that they encode and decode in **reverse** direction.
* So the first bit sequence you add will be the last to be read, like a LIFO stack.
*/
typedef struct {
size_t bitContainer;
unsigned bitPos;
char* startPtr;
char* ptr;
char* endPtr;
} BIT_CStream_t;
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC);
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
/* Start with initCStream, providing the size of buffer to write into.
* bitStream will never write outside of this buffer.
* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
*
* bits are first added to a local register.
* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
* Writing data into memory is an explicit operation, performed by the flushBits function.
* Hence keep track how many bits are potentially stored into local register to avoid register overflow.
* After a flushBits, a maximum of 7 bits might still be stored into local register.
*
* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
*
* Last operation is to close the bitStream.
* The function returns the final size of CStream in bytes.
* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
*/
/*-********************************************
* bitStream decoding API (read backward)
**********************************************/
typedef struct {
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
const char* limitPtr;
} BIT_DStream_t;
typedef enum { BIT_DStream_unfinished = 0,
BIT_DStream_endOfBuffer = 1,
BIT_DStream_completed = 2,
BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
/* Start by invoking BIT_initDStream().
* A chunk of the bitStream is then stored into a local register.
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
* You can then retrieve bitFields stored into the local register, **in reverse order**.
* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
* Otherwise, it can be less than that, so proceed accordingly.
* Checking if DStream has reached its end can be performed with BIT_endOfDStream().
*/
/*-****************************************
* unsafe API
******************************************/
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
/* unsafe version; does not check buffer overflow */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/*-**************************************************************
* Internal functions
****************************************************************/
MEM_STATIC unsigned BIT_highbit32 (U32 val)
{
assert(val != 0);
{
# if defined(_MSC_VER) /* Visual */
unsigned long r=0;
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return 31 - __builtin_clz (val);
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29,
11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7,
19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
# endif
}
}
/*===== Local Constants =====*/
static const unsigned BIT_mask[] = {
0, 1, 3, 7, 0xF, 0x1F,
0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF,
0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF,
0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF,
0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, 0x1FFFFFFF,
0x3FFFFFFF, 0x7FFFFFFF}; /* up to 31 bits */
#define BIT_MASK_SIZE (sizeof(BIT_mask) / sizeof(BIT_mask[0]))
/*-**************************************************************
* bitStream encoding
****************************************************************/
/*! BIT_initCStream() :
* `dstCapacity` must be > sizeof(size_t)
* @return : 0 if success,
* otherwise an error code (can be tested using ERR_isError()) */
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC,
void* startPtr, size_t dstCapacity)
{
bitC->bitContainer = 0;
bitC->bitPos = 0;
bitC->startPtr = (char*)startPtr;
bitC->ptr = bitC->startPtr;
bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer);
if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall);
return 0;
}
/*! BIT_addBits() :
* can add up to 31 bits into `bitC`.
* Note : does not check for register overflow ! */
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
MEM_STATIC_ASSERT(BIT_MASK_SIZE == 32);
assert(nbBits < BIT_MASK_SIZE);
assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_addBitsFast() :
* works only if `value` is _clean_,
* meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
assert((value>>nbBits) == 0);
assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
bitC->bitContainer |= value << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_flushBitsFast() :
* assumption : bitContainer has not overflowed
* unsafe version; does not check buffer overflow */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
assert(bitC->ptr <= bitC->endPtr);
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_flushBits() :
* assumption : bitContainer has not overflowed
* safe version; check for buffer overflow, and prevents it.
* note : does not signal buffer overflow.
* overflow will be revealed later on using BIT_closeCStream() */
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_closeCStream() :
* @return : size of CStream, in bytes,
* or 0 if it could not fit into dstBuffer */
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
{
BIT_addBitsFast(bitC, 1, 1); /* endMark */
BIT_flushBits(bitC);
if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
}
/*-********************************************************
* bitStream decoding
**********************************************************/
/*! BIT_initDStream() :
* Initialize a BIT_DStream_t.
* `bitD` : a pointer to an already allocated BIT_DStream_t structure.
* `srcSize` must be the *exact* size of the bitStream, in bytes.
* @return : size of stream (== srcSize), or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
bitD->start = (const char*)srcBuffer;
bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer);
if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
} else {
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
/* fall-through */
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
/* fall-through */
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
/* fall-through */
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
/* fall-through */
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
/* fall-through */
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8;
/* fall-through */
default: break;
}
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */
}
bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
}
return srcSize;
}
MEM_STATIC size_t BIT_getUpperBits(size_t bitContainer, U32 const start)
{
return bitContainer >> start;
}
MEM_STATIC size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits)
{
#if defined(__BMI__) && defined(__GNUC__) && __GNUC__*1000+__GNUC_MINOR__ >= 4008 /* experimental */
# if defined(__x86_64__)
if (sizeof(bitContainer)==8)
return _bextr_u64(bitContainer, start, nbBits);
else
# endif
return _bextr_u32(bitContainer, start, nbBits);
#else
assert(nbBits < BIT_MASK_SIZE);
return (bitContainer >> start) & BIT_mask[nbBits];
#endif
}
MEM_STATIC size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
{
assert(nbBits < BIT_MASK_SIZE);
return bitContainer & BIT_mask[nbBits];
}
/*! BIT_lookBits() :
* Provides next n bits from local register.
* local register is not modified.
* On 32-bits, maxNbBits==24.
* On 64-bits, maxNbBits==56.
* @return : value extracted */
MEM_STATIC size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
{
#if defined(__BMI__) && defined(__GNUC__) /* experimental; fails if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8 */
return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits);
#else
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask);
#endif
}
/*! BIT_lookBitsFast() :
* unsafe version; only works if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
{
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
assert(nbBits >= 1);
return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask);
}
MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
/*! BIT_readBits() :
* Read (consume) next n bits from local register and update.
* Pay attention to not read more than nbBits contained into local register.
* @return : extracted value. */
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
{
size_t const value = BIT_lookBits(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_readBitsFast() :
* unsafe version; only works only if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
{
size_t const value = BIT_lookBitsFast(bitD, nbBits);
assert(nbBits >= 1);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_reloadDStream() :
* Refill `bitD` from buffer previously set in BIT_initDStream() .
* This function is safe, it guarantees it will not read beyond src buffer.
* @return : status of `BIT_DStream_t` internal register.
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */
return BIT_DStream_overflow;
if (bitD->ptr >= bitD->limitPtr) {
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BIT_DStream_unfinished;
}
if (bitD->ptr == bitD->start) {
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
return BIT_DStream_completed;
}
/* start < ptr < limitPtr */
{ U32 nbBytes = bitD->bitsConsumed >> 3;
BIT_DStream_status result = BIT_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start) {
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BIT_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */
return result;
}
}
/*! BIT_endOfDStream() :
* @return : 1 if DStream has _exactly_ reached its end (all bits consumed).
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITSTREAM_H_MODULE */

View File

@ -0,0 +1,111 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPILER_H
#define ZSTD_COMPILER_H
/*-*******************************************************
* Compiler specifics
*********************************************************/
/* force inlining */
#if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# define INLINE_KEYWORD inline
#else
# define INLINE_KEYWORD
#endif
#if defined(__GNUC__)
# define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER)
# define FORCE_INLINE_ATTR __forceinline
#else
# define FORCE_INLINE_ATTR
#endif
/**
* FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant
* parameters. They must be inlined for the compiler to elimininate the constant
* branches.
*/
#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
/**
* HINT_INLINE is used to help the compiler generate better code. It is *not*
* used for "templates", so it can be tweaked based on the compilers
* performance.
*
* gcc-4.8 and gcc-4.9 have been shown to benefit from leaving off the
* always_inline attribute.
*
* clang up to 5.0.0 (trunk) benefit tremendously from the always_inline
* attribute.
*/
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8 && __GNUC__ < 5
# define HINT_INLINE static INLINE_KEYWORD
#else
# define HINT_INLINE static INLINE_KEYWORD FORCE_INLINE_ATTR
#endif
/* force no inlining */
#ifdef _MSC_VER
# define FORCE_NOINLINE static __declspec(noinline)
#else
# ifdef __GNUC__
# define FORCE_NOINLINE static __attribute__((__noinline__))
# else
# define FORCE_NOINLINE static
# endif
#endif
/* target attribute */
#ifndef __has_attribute
#define __has_attribute(x) 0 /* Compatibility with non-clang compilers. */
#endif
#if defined(__GNUC__)
# define TARGET_ATTRIBUTE(target) __attribute__((__target__(target)))
#else
# define TARGET_ATTRIBUTE(target)
#endif
/* Enable runtime BMI2 dispatch based on the CPU.
* Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default.
*/
#ifndef DYNAMIC_BMI2
#if ((defined(__clang__) && __has_attribute(__target__)) \
|| (defined(__GNUC__) \
&& (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \
&& (defined(__x86_64__) || defined(_M_X86)) \
&& !defined(__BMI2__)
# define DYNAMIC_BMI2 1
#else
# define DYNAMIC_BMI2 0
#endif
#endif
/* prefetch */
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
# define PREFETCH(ptr) _mm_prefetch((const char*)ptr, _MM_HINT_T0)
#elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
# define PREFETCH(ptr) __builtin_prefetch(ptr, 0, 0)
#else
# define PREFETCH(ptr) /* disabled */
#endif
/* disable warnings */
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#endif
#endif /* ZSTD_COMPILER_H */

215
utils/TSZ/zstd/common/cpu.h Normal file
View File

@ -0,0 +1,215 @@
/*
* Copyright (c) 2018-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMMON_CPU_H
#define ZSTD_COMMON_CPU_H
/**
* Implementation taken from folly/CpuId.h
* https://github.com/facebook/folly/blob/master/folly/CpuId.h
*/
#include <string.h>
#include "mem.h"
#ifdef _MSC_VER
#include <intrin.h>
#endif
typedef struct {
U32 f1c;
U32 f1d;
U32 f7b;
U32 f7c;
} ZSTD_cpuid_t;
MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) {
U32 f1c = 0;
U32 f1d = 0;
U32 f7b = 0;
U32 f7c = 0;
#ifdef _MSC_VER
int reg[4];
__cpuid((int*)reg, 0);
{
int const n = reg[0];
if (n >= 1) {
__cpuid((int*)reg, 1);
f1c = (U32)reg[2];
f1d = (U32)reg[3];
}
if (n >= 7) {
__cpuidex((int*)reg, 7, 0);
f7b = (U32)reg[1];
f7c = (U32)reg[2];
}
}
#elif defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__)
/* The following block like the normal cpuid branch below, but gcc
* reserves ebx for use of its pic register so we must specially
* handle the save and restore to avoid clobbering the register
*/
U32 n;
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"popl %%ebx\n\t"
: "=a"(n)
: "a"(0)
: "ecx", "edx");
if (n >= 1) {
U32 f1a;
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"popl %%ebx\n\t"
: "=a"(f1a), "=c"(f1c), "=d"(f1d)
: "a"(1));
}
if (n >= 7) {
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"movl %%ebx, %%eax\n\r"
"popl %%ebx"
: "=a"(f7b), "=c"(f7c)
: "a"(7), "c"(0)
: "edx");
}
#elif defined(__x86_64__) || defined(_M_X64) || defined(__i386__)
U32 n;
__asm__("cpuid" : "=a"(n) : "a"(0) : "ebx", "ecx", "edx");
if (n >= 1) {
U32 f1a;
__asm__("cpuid" : "=a"(f1a), "=c"(f1c), "=d"(f1d) : "a"(1) : "ebx");
}
if (n >= 7) {
U32 f7a;
__asm__("cpuid"
: "=a"(f7a), "=b"(f7b), "=c"(f7c)
: "a"(7), "c"(0)
: "edx");
}
#endif
{
ZSTD_cpuid_t cpuid;
cpuid.f1c = f1c;
cpuid.f1d = f1d;
cpuid.f7b = f7b;
cpuid.f7c = f7c;
return cpuid;
}
}
#define X(name, r, bit) \
MEM_STATIC int ZSTD_cpuid_##name(ZSTD_cpuid_t const cpuid) { \
return ((cpuid.r) & (1U << bit)) != 0; \
}
/* cpuid(1): Processor Info and Feature Bits. */
#define C(name, bit) X(name, f1c, bit)
C(sse3, 0)
C(pclmuldq, 1)
C(dtes64, 2)
C(monitor, 3)
C(dscpl, 4)
C(vmx, 5)
C(smx, 6)
C(eist, 7)
C(tm2, 8)
C(ssse3, 9)
C(cnxtid, 10)
C(fma, 12)
C(cx16, 13)
C(xtpr, 14)
C(pdcm, 15)
C(pcid, 17)
C(dca, 18)
C(sse41, 19)
C(sse42, 20)
C(x2apic, 21)
C(movbe, 22)
C(popcnt, 23)
C(tscdeadline, 24)
C(aes, 25)
C(xsave, 26)
C(osxsave, 27)
C(avx, 28)
C(f16c, 29)
C(rdrand, 30)
#undef C
#define D(name, bit) X(name, f1d, bit)
D(fpu, 0)
D(vme, 1)
D(de, 2)
D(pse, 3)
D(tsc, 4)
D(msr, 5)
D(pae, 6)
D(mce, 7)
D(cx8, 8)
D(apic, 9)
D(sep, 11)
D(mtrr, 12)
D(pge, 13)
D(mca, 14)
D(cmov, 15)
D(pat, 16)
D(pse36, 17)
D(psn, 18)
D(clfsh, 19)
D(ds, 21)
D(acpi, 22)
D(mmx, 23)
D(fxsr, 24)
D(sse, 25)
D(sse2, 26)
D(ss, 27)
D(htt, 28)
D(tm, 29)
D(pbe, 31)
#undef D
/* cpuid(7): Extended Features. */
#define B(name, bit) X(name, f7b, bit)
B(bmi1, 3)
B(hle, 4)
B(avx2, 5)
B(smep, 7)
B(bmi2, 8)
B(erms, 9)
B(invpcid, 10)
B(rtm, 11)
B(mpx, 14)
B(avx512f, 16)
B(avx512dq, 17)
B(rdseed, 18)
B(adx, 19)
B(smap, 20)
B(avx512ifma, 21)
B(pcommit, 22)
B(clflushopt, 23)
B(clwb, 24)
B(avx512pf, 26)
B(avx512er, 27)
B(avx512cd, 28)
B(sha, 29)
B(avx512bw, 30)
B(avx512vl, 31)
#undef B
#define C(name, bit) X(name, f7c, bit)
C(prefetchwt1, 0)
C(avx512vbmi, 1)
#undef C
#undef X
#endif /* ZSTD_COMMON_CPU_H */

View File

@ -0,0 +1,44 @@
/* ******************************************************************
debug
Part of FSE library
Copyright (C) 2013-present, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
/*
* This module only hosts one global variable
* which can be used to dynamically influence the verbosity of traces,
* such as DEBUGLOG and RAWLOG
*/
#include "debug.h"
int g_debuglevel = DEBUGLEVEL;

View File

@ -0,0 +1,123 @@
/* ******************************************************************
debug
Part of FSE library
Copyright (C) 2013-present, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
/*
* The purpose of this header is to enable debug functions.
* They regroup assert(), DEBUGLOG() and RAWLOG() for run-time,
* and DEBUG_STATIC_ASSERT() for compile-time.
*
* By default, DEBUGLEVEL==0, which means run-time debug is disabled.
*
* Level 1 enables assert() only.
* Starting level 2, traces can be generated and pushed to stderr.
* The higher the level, the more verbose the traces.
*
* It's possible to dynamically adjust level using variable g_debug_level,
* which is only declared if DEBUGLEVEL>=2,
* and is a global variable, not multi-thread protected (use with care)
*/
#ifndef DEBUG_H_12987983217
#define DEBUG_H_12987983217
#if defined (__cplusplus)
extern "C" {
#endif
/* static assert is triggered at compile time, leaving no runtime artefact,
* but can only work with compile-time constants.
* This variant can only be used inside a function. */
#define DEBUG_STATIC_ASSERT(c) (void)sizeof(char[(c) ? 1 : -1])
/* DEBUGLEVEL is expected to be defined externally,
* typically through compiler command line.
* Value must be a number. */
#ifndef DEBUGLEVEL
# define DEBUGLEVEL 0
#endif
/* recommended values for DEBUGLEVEL :
* 0 : no debug, all run-time functions disabled
* 1 : no display, enables assert() only
* 2 : reserved, for currently active debug path
* 3 : events once per object lifetime (CCtx, CDict, etc.)
* 4 : events once per frame
* 5 : events once per block
* 6 : events once per sequence (verbose)
* 7+: events at every position (*very* verbose)
*
* It's generally inconvenient to output traces > 5.
* In which case, it's possible to selectively enable higher verbosity levels
* by modifying g_debug_level.
*/
#if (DEBUGLEVEL>=1)
# include <assert.h>
#else
# ifndef assert /* assert may be already defined, due to prior #include <assert.h> */
# define assert(condition) ((void)0) /* disable assert (default) */
# endif
#endif
#if (DEBUGLEVEL>=2)
# include <stdio.h>
extern int g_debuglevel; /* here, this variable is only declared,
it actually lives in debug.c,
and is shared by the whole process.
It's typically used to enable very verbose levels
on selective conditions (such as position in src) */
# define RAWLOG(l, ...) { \
if (l<=g_debuglevel) { \
fprintf(stderr, __VA_ARGS__); \
} }
# define DEBUGLOG(l, ...) { \
if (l<=g_debuglevel) { \
fprintf(stderr, __FILE__ ": " __VA_ARGS__); \
fprintf(stderr, " \n"); \
} }
#else
# define RAWLOG(l, ...) {} /* disabled */
# define DEBUGLOG(l, ...) {} /* disabled */
#endif
#if defined (__cplusplus)
}
#endif
#endif /* DEBUG_H_12987983217 */

View File

@ -0,0 +1,236 @@
/*
Common functions of New Generation Entropy library
Copyright (C) 2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
*************************************************************************** */
/* *************************************
* Dependencies
***************************************/
#include "mem.h"
#include "error_private.h" /* ERR_*, ERROR */
#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */
#include "fse.h"
#define HUF_STATIC_LINKING_ONLY /* HUF_TABLELOG_ABSOLUTEMAX */
#include "huf.h"
/*=== Version ===*/
unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; }
/*=== Error Management ===*/
unsigned FSE_isError(size_t code) { return ERR_isError(code); }
const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }
unsigned HUF_isError(size_t code) { return ERR_isError(code); }
const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*-**************************************************************
* FSE NCount encoding-decoding
****************************************************************/
size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) {
/* This function only works when hbSize >= 4 */
char buffer[4];
memset(buffer, 0, sizeof(buffer));
memcpy(buffer, headerBuffer, hbSize);
{ size_t const countSize = FSE_readNCount(normalizedCounter, maxSVPtr, tableLogPtr,
buffer, sizeof(buffer));
if (FSE_isError(countSize)) return countSize;
if (countSize > hbSize) return ERROR(corruption_detected);
return countSize;
} }
assert(hbSize >= 4);
/* init */
memset(normalizedCounter, 0, (*maxSVPtr+1) * sizeof(normalizedCounter[0])); /* all symbols not present in NCount have a frequency of 0 */
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) & (charnum<=*maxSVPtr)) {
if (previous0) {
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF) {
n0 += 24;
if (ip < iend-5) {
ip += 2;
bitStream = MEM_readLE32(ip) >> bitCount;
} else {
bitStream >>= 16;
bitCount += 16;
} }
while ((bitStream & 3) == 3) {
n0 += 3;
bitStream >>= 2;
bitCount += 2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
while (charnum < n0) normalizedCounter[charnum++] = 0;
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
assert((bitCount >> 3) <= 3); /* For first condition to work */
ip += bitCount>>3;
bitCount &= 7;
bitStream = MEM_readLE32(ip) >> bitCount;
} else {
bitStream >>= 2;
} }
{ int const max = (2*threshold-1) - remaining;
int count;
if ((bitStream & (threshold-1)) < (U32)max) {
count = bitStream & (threshold-1);
bitCount += nbBits-1;
} else {
count = bitStream & (2*threshold-1);
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= count < 0 ? -count : count; /* -1 means +1 */
normalizedCounter[charnum++] = (short)count;
previous0 = !count;
while (remaining < threshold) {
nbBits--;
threshold >>= 1;
}
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
} } /* while ((remaining>1) & (charnum<=*maxSVPtr)) */
if (remaining != 1) return ERROR(corruption_detected);
if (bitCount > 32) return ERROR(corruption_detected);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
return ip-istart;
}
/*! HUF_readStats() :
Read compact Huffman tree, saved by HUF_writeCTable().
`huffWeight` is destination buffer.
`rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32.
@return : size read from `src` , or an error Code .
Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
*/
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 weightTotal;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
/* memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) { /* special header */
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
{ U32 n;
for (n=0; n<oSize; n+=2) {
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
} } }
else { /* header compressed with FSE (normal case) */
FSE_DTable fseWorkspace[FSE_DTABLE_SIZE_U32(6)]; /* 6 is max possible tableLog for HUF header (maybe even 5, to be tested) */
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
oSize = FSE_decompress_wksp(huffWeight, hwSize-1, ip+1, iSize, fseWorkspace, 6); /* max (hwSize-1) values decoded, as last one is implied */
if (FSE_isError(oSize)) return oSize;
}
/* collect weight stats */
memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
weightTotal = 0;
{ U32 n; for (n=0; n<oSize; n++) {
if (huffWeight[n] >= HUF_TABLELOG_MAX) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
} }
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
{ U32 const tableLog = BIT_highbit32(weightTotal) + 1;
if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
*tableLogPtr = tableLog;
/* determine last weight */
{ U32 const total = 1 << tableLog;
U32 const rest = total - weightTotal;
U32 const verif = 1 << BIT_highbit32(rest);
U32 const lastWeight = BIT_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
} }
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
return iSize+1;
}

View File

@ -0,0 +1,48 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* The purpose of this file is to have a single list of error strings embedded in binary */
#include "error_private.h"
const char* ERR_getErrorString(ERR_enum code)
{
static const char* const notErrorCode = "Unspecified error code";
switch( code )
{
case PREFIX(no_error): return "No error detected";
case PREFIX(GENERIC): return "Error (generic)";
case PREFIX(prefix_unknown): return "Unknown frame descriptor";
case PREFIX(version_unsupported): return "Version not supported";
case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter";
case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding";
case PREFIX(corruption_detected): return "Corrupted block detected";
case PREFIX(checksum_wrong): return "Restored data doesn't match checksum";
case PREFIX(parameter_unsupported): return "Unsupported parameter";
case PREFIX(parameter_outOfBound): return "Parameter is out of bound";
case PREFIX(init_missing): return "Context should be init first";
case PREFIX(memory_allocation): return "Allocation error : not enough memory";
case PREFIX(workSpace_tooSmall): return "workSpace buffer is not large enough";
case PREFIX(stage_wrong): return "Operation not authorized at current processing stage";
case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";
case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small";
case PREFIX(dictionary_corrupted): return "Dictionary is corrupted";
case PREFIX(dictionary_wrong): return "Dictionary mismatch";
case PREFIX(dictionaryCreation_failed): return "Cannot create Dictionary from provided samples";
case PREFIX(dstSize_tooSmall): return "Destination buffer is too small";
case PREFIX(srcSize_wrong): return "Src size is incorrect";
/* following error codes are not stable and may be removed or changed in a future version */
case PREFIX(frameIndex_tooLarge): return "Frame index is too large";
case PREFIX(seekableIO): return "An I/O error occurred when reading/seeking";
case PREFIX(maxCode):
default: return notErrorCode;
}
}

View File

@ -0,0 +1,76 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* Note : this module is expected to remain private, do not expose it */
#ifndef ERROR_H_MODULE
#define ERROR_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t */
#include "zstd_errors.h" /* enum list */
/* ****************************************
* Compiler-specific
******************************************/
#if defined(__GNUC__)
# define ERR_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define ERR_STATIC static inline
#elif defined(_MSC_VER)
# define ERR_STATIC static __inline
#else
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/*-****************************************
* Customization (error_public.h)
******************************************/
typedef ZSTD_ErrorCode ERR_enum;
#define PREFIX(name) ZSTD_error_##name
/*-****************************************
* Error codes handling
******************************************/
#undef ERROR /* reported already defined on VS 2015 (Rich Geldreich) */
#define ERROR(name) ZSTD_ERROR(name)
#define ZSTD_ERROR(name) ((size_t)-PREFIX(name))
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); }
/*-****************************************
* Error Strings
******************************************/
const char* ERR_getErrorString(ERR_enum code); /* error_private.c */
ERR_STATIC const char* ERR_getErrorName(size_t code)
{
return ERR_getErrorString(ERR_getErrorCode(code));
}
#if defined (__cplusplus)
}
#endif
#endif /* ERROR_H_MODULE */

708
utils/TSZ/zstd/common/fse.h Normal file
View File

@ -0,0 +1,708 @@
/* ******************************************************************
FSE : Finite State Entropy codec
Public Prototypes declaration
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef FSE_H
#define FSE_H
/*-*****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
/*-*****************************************
* FSE_PUBLIC_API : control library symbols visibility
******************************************/
#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
# define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
# define FSE_PUBLIC_API __declspec(dllexport)
#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
# define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define FSE_PUBLIC_API
#endif
/*------ Version ------*/
#define FSE_VERSION_MAJOR 0
#define FSE_VERSION_MINOR 9
#define FSE_VERSION_RELEASE 0
#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
#define FSE_QUOTE(str) #str
#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
/*-****************************************
* FSE simple functions
******************************************/
/*! FSE_compress() :
Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
@return : size of compressed data (<= dstCapacity).
Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
if FSE_isError(return), compression failed (more details using FSE_getErrorName())
*/
FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
/*! FSE_decompress():
Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
into already allocated destination buffer 'dst', of size 'dstCapacity'.
@return : size of regenerated data (<= maxDstSize),
or an error code, which can be tested using FSE_isError() .
** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
Why ? : making this distinction requires a header.
Header management is intentionally delegated to the user layer, which can better manage special cases.
*/
FSE_PUBLIC_API size_t FSE_decompress(void* dst, size_t dstCapacity,
const void* cSrc, size_t cSrcSize);
/*-*****************************************
* Tool functions
******************************************/
FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
/* Error Management */
FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
/*-*****************************************
* FSE advanced functions
******************************************/
/*! FSE_compress2() :
Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
Both parameters can be defined as '0' to mean : use default value
@return : size of compressed data
Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
if FSE_isError(return), it's an error code.
*/
FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
/*-*****************************************
* FSE detailed API
******************************************/
/*!
FSE_compress() does the following:
1. count symbol occurrence from source[] into table count[] (see hist.h)
2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
3. save normalized counters to memory buffer using writeNCount()
4. build encoding table 'CTable' from normalized counters
5. encode the data stream using encoding table 'CTable'
FSE_decompress() does the following:
1. read normalized counters with readNCount()
2. build decoding table 'DTable' from normalized counters
3. decode the data stream using decoding table 'DTable'
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and provide normalized distribution using external method.
*/
/* *** COMPRESSION *** */
/*! FSE_optimalTableLog():
dynamically downsize 'tableLog' when conditions are met.
It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
@return : recommended tableLog (necessarily <= 'maxTableLog') */
FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
/*! FSE_normalizeCount():
normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
@return : tableLog,
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
/*! FSE_NCountWriteBound():
Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
Typically useful for allocation purpose. */
FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_writeNCount():
Compactly save 'normalizedCounter' into 'buffer'.
@return : size of the compressed table,
or an errorCode, which can be tested using FSE_isError(). */
FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
const short* normalizedCounter,
unsigned maxSymbolValue, unsigned tableLog);
/*! Constructor and Destructor of FSE_CTable.
Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog);
FSE_PUBLIC_API void FSE_freeCTable (FSE_CTable* ct);
/*! FSE_buildCTable():
Builds `ct`, which must be already allocated, using FSE_createCTable().
@return : 0, or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_compress_usingCTable():
Compress `src` using `ct` into `dst` which must be already allocated.
@return : size of compressed data (<= `dstCapacity`),
or 0 if compressed data could not fit into `dst`,
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
/*!
Tutorial :
----------
The first step is to count all symbols. FSE_count() does this job very fast.
Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
FSE_count() will return the number of occurrence of the most frequent symbol.
This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
The next step is to normalize the frequencies.
FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
You can use 'tableLog'==0 to mean "use default tableLog value".
If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
The result of FSE_normalizeCount() will be saved into a table,
called 'normalizedCounter', which is a table of signed short.
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
The return value is tableLog if everything proceeded as expected.
It is 0 if there is a single symbol within distribution.
If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
'buffer' must be already allocated.
For guaranteed success, buffer size must be at least FSE_headerBound().
The result of the function is the number of bytes written into 'buffer'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
'normalizedCounter' can then be used to create the compression table 'CTable'.
The space required by 'CTable' must be already allocated, using FSE_createCTable().
You can then use FSE_buildCTable() to fill 'CTable'.
If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
If it returns '0', compressed data could not fit into 'dst'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
*/
/* *** DECOMPRESSION *** */
/*! FSE_readNCount():
Read compactly saved 'normalizedCounter' from 'rBuffer'.
@return : size read from 'rBuffer',
or an errorCode, which can be tested using FSE_isError().
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
const void* rBuffer, size_t rBuffSize);
/*! Constructor and Destructor of FSE_DTable.
Note that its size depends on 'tableLog' */
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog);
FSE_PUBLIC_API void FSE_freeDTable(FSE_DTable* dt);
/*! FSE_buildDTable():
Builds 'dt', which must be already allocated, using FSE_createDTable().
return : 0, or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_decompress_usingDTable():
Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
into `dst` which must be already allocated.
@return : size of regenerated data (necessarily <= `dstCapacity`),
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
/*!
Tutorial :
----------
(Note : these functions only decompress FSE-compressed blocks.
If block is uncompressed, use memcpy() instead
If block is a single repeated byte, use memset() instead )
The first step is to obtain the normalized frequencies of symbols.
This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
or size the table to handle worst case situations (typically 256).
FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
If there is an error, the function will return an error code, which can be tested using FSE_isError().
The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
This is performed by the function FSE_buildDTable().
The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
If there is an error, the function will return an error code, which can be tested using FSE_isError().
`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
`cSrcSize` must be strictly correct, otherwise decompression will fail.
FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
*/
#endif /* FSE_H */
#if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
#define FSE_H_FSE_STATIC_LINKING_ONLY
/* *** Dependency *** */
#include "bitstream.h"
/* *****************************************
* Static allocation
*******************************************/
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) (size + (size>>7))
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
/* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
#define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
#define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
/* *****************************************
* FSE advanced API
***************************************** */
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
/**< same as FSE_optimalTableLog(), which used `minus==2` */
/* FSE_compress_wksp() :
* Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
* FSE_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable.
*/
#define FSE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) )
size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
/**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
/* FSE_buildCTable_wksp() :
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
* `wkspSize` must be >= `(1<<tableLog)`.
*/
size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
/**< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
/**< build a fake FSE_DTable, designed to always generate the same symbolValue */
size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, FSE_DTable* workSpace, unsigned maxLog);
/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DTABLE_SIZE_U32(maxLog)` */
typedef enum {
FSE_repeat_none, /**< Cannot use the previous table */
FSE_repeat_check, /**< Can use the previous table but it must be checked */
FSE_repeat_valid /**< Can use the previous table and it is asumed to be valid */
} FSE_repeat;
/* *****************************************
* FSE symbol compression API
*******************************************/
/*!
This API consists of small unitary functions, which highly benefit from being inlined.
Hence their body are included in next section.
*/
typedef struct {
ptrdiff_t value;
const void* stateTable;
const void* symbolTT;
unsigned stateLog;
} FSE_CState_t;
static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
/**<
These functions are inner components of FSE_compress_usingCTable().
They allow the creation of custom streams, mixing multiple tables and bit sources.
A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
So the first symbol you will encode is the last you will decode, like a LIFO stack.
You will need a few variables to track your CStream. They are :
FSE_CTable ct; // Provided by FSE_buildCTable()
BIT_CStream_t bitStream; // bitStream tracking structure
FSE_CState_t state; // State tracking structure (can have several)
The first thing to do is to init bitStream and state.
size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
FSE_initCState(&state, ct);
Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
You can then encode your input data, byte after byte.
FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
Remember decoding will be done in reverse direction.
FSE_encodeByte(&bitStream, &state, symbol);
At any time, you can also add any bit sequence.
Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
BIT_addBits(&bitStream, bitField, nbBits);
The above methods don't commit data to memory, they just store it into local register, for speed.
Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
Writing data to memory is a manual operation, performed by the flushBits function.
BIT_flushBits(&bitStream);
Your last FSE encoding operation shall be to flush your last state value(s).
FSE_flushState(&bitStream, &state);
Finally, you must close the bitStream.
The function returns the size of CStream in bytes.
If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
size_t size = BIT_closeCStream(&bitStream);
*/
/* *****************************************
* FSE symbol decompression API
*******************************************/
typedef struct {
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSE_DState_t;
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
/**<
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
You will decode FSE-encoded symbols from the bitStream,
and also any other bitFields you put in, **in reverse order**.
You will need a few variables to track your bitStream. They are :
BIT_DStream_t DStream; // Stream context
FSE_DState_t DState; // State context. Multiple ones are possible
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
The first thing to do is to init the bitStream.
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
You should then retrieve your initial state(s)
(in reverse flushing order if you have several ones) :
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
You can then decode your data, symbol after symbol.
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
Note : maximum allowed nbBits is 25, for 32-bits compatibility
size_t bitField = BIT_readBits(&DStream, nbBits);
All above operations only read from local register (which size depends on size_t).
Refueling the register from memory is manually performed by the reload method.
endSignal = FSE_reloadDStream(&DStream);
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
BIT_DStream_unfinished : there is still some data left into the DStream.
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
to properly detect the exact end of stream.
After each decoded symbol, check if DStream is fully consumed using this simple test :
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
Checking if DStream has reached its end is performed by :
BIT_endOfDStream(&DStream);
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
FSE_endOfDState(&DState);
*/
/* *****************************************
* FSE unsafe API
*******************************************/
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/* *****************************************
* Implementation of inlined functions
*******************************************/
typedef struct {
int deltaFindState;
U32 deltaNbBits;
} FSE_symbolCompressionTransform; /* total 8 bytes */
MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
{
const void* ptr = ct;
const U16* u16ptr = (const U16*) ptr;
const U32 tableLog = MEM_read16(ptr);
statePtr->value = (ptrdiff_t)1<<tableLog;
statePtr->stateTable = u16ptr+2;
statePtr->symbolTT = ((const U32*)ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1));
statePtr->stateLog = tableLog;
}
/*! FSE_initCState2() :
* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
* uses the smallest state value possible, saving the cost of this symbol */
MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
{
FSE_initCState(statePtr, ct);
{ const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* stateTable = (const U16*)(statePtr->stateTable);
U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
}
MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, U32 symbol)
{
FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* const stateTable = (const U16*)(statePtr->stateTable);
U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
BIT_addBits(bitC, statePtr->value, nbBitsOut);
statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
{
BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
BIT_flushBits(bitC);
}
/* FSE_getMaxNbBits() :
* Approximate maximum cost of a symbol, in bits.
* Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
* note 1 : assume symbolValue is valid (<= maxSymbolValue)
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
{
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
}
/* FSE_bitCost() :
* Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
* note 1 : assume symbolValue is valid (<= maxSymbolValue)
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
{
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
U32 const threshold = (minNbBits+1) << 16;
assert(tableLog < 16);
assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */
{ U32 const tableSize = 1 << tableLog;
U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */
U32 const bitMultiplier = 1 << accuracyLog;
assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
assert(normalizedDeltaFromThreshold <= bitMultiplier);
return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
}
}
/* ====== Decompression ====== */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSE_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSE_decode_t; /* size == U32 */
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
{
const void* ptr = dt;
const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
return DInfo.symbol;
}
MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
}
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
/*! FSE_decodeSymbolFast() :
unsafe, only works if no symbol has a probability > 50% */
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/* **************************************************************
* Tuning parameters
****************************************************************/
/*!MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#ifndef FSE_MAX_MEMORY_USAGE
# define FSE_MAX_MEMORY_USAGE 14
#endif
#ifndef FSE_DEFAULT_MEMORY_USAGE
# define FSE_DEFAULT_MEMORY_USAGE 13
#endif
/*!FSE_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#ifndef FSE_MAX_SYMBOL_VALUE
# define FSE_MAX_SYMBOL_VALUE 255
#endif
/* **************************************************************
* template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
#define FSE_DECODE_TYPE FSE_decode_t
#endif /* !FSE_COMMONDEFS_ONLY */
/* ***************************************************************
* Constants
*****************************************************************/
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5
#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
#define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
#endif /* FSE_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif

View File

@ -0,0 +1,309 @@
/* ******************************************************************
FSE : Finite State Entropy decoder
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include "bitstream.h"
#include "compiler.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "error_private.h"
/* **************************************************************
* Error Management
****************************************************************/
#define FSE_isError ERR_isError
#define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
/* check and forward error code */
#define CHECK_F(f) { size_t const e = f; if (FSE_isError(e)) return e; }
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
FSE_DTable* FSE_createDTable (unsigned tableLog)
{
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
return (FSE_DTable*)malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
}
void FSE_freeDTable (FSE_DTable* dt)
{
free(dt);
}
size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
U32 const maxSV1 = maxSymbolValue + 1;
U32 const tableSize = 1 << tableLog;
U32 highThreshold = tableSize-1;
/* Sanity Checks */
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
{ FSE_DTableHeader DTableH;
DTableH.tableLog = (U16)tableLog;
DTableH.fastMode = 1;
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
U32 s;
for (s=0; s<maxSV1; s++) {
if (normalizedCounter[s]==-1) {
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
symbolNext[s] = normalizedCounter[s];
} } }
memcpy(dt, &DTableH, sizeof(DTableH));
}
/* Spread symbols */
{ U32 const tableMask = tableSize-1;
U32 const step = FSE_TABLESTEP(tableSize);
U32 s, position = 0;
for (s=0; s<maxSV1; s++) {
int i;
for (i=0; i<normalizedCounter[s]; i++) {
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
} }
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
}
/* Build Decoding table */
{ U32 u;
for (u=0; u<tableSize; u++) {
FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
U32 const nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
} }
return 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/*-*******************************************************
* Decompression (Byte symbols)
*********************************************************/
size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
void* ptr = dt;
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
void* dPtr = dt + 1;
FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSV1 = tableMask+1;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* Build Decoding Table */
DTableH->tableLog = (U16)nbBits;
DTableH->fastMode = 1;
for (s=0; s<maxSV1; s++) {
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BIT_DStream_t bitD;
FSE_DState_t state1;
FSE_DState_t state2;
/* Init */
CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize));
FSE_initDState(&state1, &bitD, dt);
FSE_initDState(&state2, &bitD, dt);
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) & (op<olimit) ; op+=4) {
op[0] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[1] = FSE_GETSYMBOL(&state2);
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
op[2] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[3] = FSE_GETSYMBOL(&state2);
}
/* tail */
/* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
while (1) {
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSE_GETSYMBOL(&state1);
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
*op++ = FSE_GETSYMBOL(&state2);
break;
}
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSE_GETSYMBOL(&state2);
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
*op++ = FSE_GETSYMBOL(&state1);
break;
} }
return op-ostart;
}
size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt)
{
const void* ptr = dt;
const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
const U32 fastMode = DTableH->fastMode;
/* select fast mode (static) */
if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, FSE_DTable* workSpace, unsigned maxLog)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
short counting[FSE_MAX_SYMBOL_VALUE+1];
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
/* normal FSE decoding mode */
size_t const NCountLength = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
if (FSE_isError(NCountLength)) return NCountLength;
//if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size; supposed to be already checked in NCountLength, only remaining case : NCountLength==cSrcSize */
if (tableLog > maxLog) return ERROR(tableLog_tooLarge);
ip += NCountLength;
cSrcSize -= NCountLength;
CHECK_F( FSE_buildDTable (workSpace, counting, maxSymbolValue, tableLog) );
return FSE_decompress_usingDTable (dst, dstCapacity, ip, cSrcSize, workSpace); /* always return, even if it is an error code */
}
typedef FSE_DTable DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
size_t FSE_decompress(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize)
{
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
return FSE_decompress_wksp(dst, dstCapacity, cSrc, cSrcSize, dt, FSE_MAX_TABLELOG);
}
#endif /* FSE_COMMONDEFS_ONLY */

334
utils/TSZ/zstd/common/huf.h Normal file
View File

@ -0,0 +1,334 @@
/* ******************************************************************
huff0 huffman codec,
part of Finite State Entropy library
Copyright (C) 2013-present, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef HUF_H_298734234
#define HUF_H_298734234
/* *** Dependencies *** */
#include <stddef.h> /* size_t */
/* *** library symbols visibility *** */
/* Note : when linking with -fvisibility=hidden on gcc, or by default on Visual,
* HUF symbols remain "private" (internal symbols for library only).
* Set macro FSE_DLL_EXPORT to 1 if you want HUF symbols visible on DLL interface */
#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
# define HUF_PUBLIC_API __attribute__ ((visibility ("default")))
#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
# define HUF_PUBLIC_API __declspec(dllexport)
#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
# define HUF_PUBLIC_API __declspec(dllimport) /* not required, just to generate faster code (saves a function pointer load from IAT and an indirect jump) */
#else
# define HUF_PUBLIC_API
#endif
/* ========================== */
/* *** simple functions *** */
/* ========================== */
/** HUF_compress() :
* Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'.
* 'dst' buffer must be already allocated.
* Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize).
* `srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB.
* @return : size of compressed data (<= `dstCapacity`).
* Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
* if HUF_isError(return), compression failed (more details using HUF_getErrorName())
*/
HUF_PUBLIC_API size_t HUF_compress(void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
/** HUF_decompress() :
* Decompress HUF data from buffer 'cSrc', of size 'cSrcSize',
* into already allocated buffer 'dst', of minimum size 'dstSize'.
* `originalSize` : **must** be the ***exact*** size of original (uncompressed) data.
* Note : in contrast with FSE, HUF_decompress can regenerate
* RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data,
* because it knows size to regenerate (originalSize).
* @return : size of regenerated data (== originalSize),
* or an error code, which can be tested using HUF_isError()
*/
HUF_PUBLIC_API size_t HUF_decompress(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize);
/* *** Tool functions *** */
#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */
HUF_PUBLIC_API size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */
/* Error Management */
HUF_PUBLIC_API unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */
HUF_PUBLIC_API const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */
/* *** Advanced function *** */
/** HUF_compress2() :
* Same as HUF_compress(), but offers control over `maxSymbolValue` and `tableLog`.
* `maxSymbolValue` must be <= HUF_SYMBOLVALUE_MAX .
* `tableLog` must be `<= HUF_TABLELOG_MAX` . */
HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog);
/** HUF_compress4X_wksp() :
* Same as HUF_compress2(), but uses externally allocated `workSpace`.
* `workspace` must have minimum alignment of 4, and be at least as large as HUF_WORKSPACE_SIZE */
#define HUF_WORKSPACE_SIZE (6 << 10)
#define HUF_WORKSPACE_SIZE_U32 (HUF_WORKSPACE_SIZE / sizeof(U32))
HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize);
#endif /* HUF_H_298734234 */
/* ******************************************************************
* WARNING !!
* The following section contains advanced and experimental definitions
* which shall never be used in the context of a dynamic library,
* because they are not guaranteed to remain stable in the future.
* Only consider them in association with static linking.
* *****************************************************************/
#if defined(HUF_STATIC_LINKING_ONLY) && !defined(HUF_H_HUF_STATIC_LINKING_ONLY)
#define HUF_H_HUF_STATIC_LINKING_ONLY
/* *** Dependencies *** */
#include "mem.h" /* U32 */
/* *** Constants *** */
#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */
#define HUF_SYMBOLVALUE_MAX 255
#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
# error "HUF_TABLELOG_MAX is too large !"
#endif
/* ****************************************
* Static allocation
******************************************/
/* HUF buffer bounds */
#define HUF_CTABLEBOUND 129
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true when incompressible is pre-filtered with fast heuristic */
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* static allocation of HUF's Compression Table */
#define HUF_CTABLE_SIZE_U32(maxSymbolValue) ((maxSymbolValue)+1) /* Use tables of U32, for proper alignment */
#define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_U32(maxSymbolValue) * sizeof(U32))
#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
U32 name##hb[HUF_CTABLE_SIZE_U32(maxSymbolValue)]; \
void* name##hv = &(name##hb); \
HUF_CElt* name = (HUF_CElt*)(name##hv) /* no final ; */
/* static allocation of HUF's DTable */
typedef U32 HUF_DTable;
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
#define HUF_CREATE_STATIC_DTABLEX1(DTable, maxTableLog) \
HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) }
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) }
/* ****************************************
* Advanced decompression functions
******************************************/
size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */
size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< considers RLE and uncompressed as errors */
size_t HUF_decompress4X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
/* ****************************************
* HUF detailed API
* ****************************************/
/*! HUF_compress() does the following:
* 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h")
* 2. (optional) refine tableLog using HUF_optimalTableLog()
* 3. build Huffman table from count using HUF_buildCTable()
* 4. save Huffman table to memory buffer using HUF_writeCTable()
* 5. encode the data stream using HUF_compress4X_usingCTable()
*
* The following API allows targeting specific sub-functions for advanced tasks.
* For example, it's possible to compress several blocks using the same 'CTable',
* or to save and regenerate 'CTable' using external methods.
*/
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
typedef struct HUF_CElt_s HUF_CElt; /* incomplete type */
size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits); /* @return : maxNbBits; CTable and count can overlap. In which case, CTable will overwrite count content */
size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
typedef enum {
HUF_repeat_none, /**< Cannot use the previous table */
HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */
HUF_repeat_valid /**< Can use the previous table and it is assumed to be valid */
} HUF_repeat;
/** HUF_compress4X_repeat() :
* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid. */
size_t HUF_compress4X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
* `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE.
*/
#define HUF_CTABLE_WORKSPACE_SIZE_U32 (2*HUF_SYMBOLVALUE_MAX +1 +1)
#define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned))
size_t HUF_buildCTable_wksp (HUF_CElt* tree,
const U32* count, U32 maxSymbolValue, U32 maxNbBits,
void* workSpace, size_t wkspSize);
/*! HUF_readStats() :
* Read compact Huffman tree, saved by HUF_writeCTable().
* `huffWeight` is destination buffer.
* @return : size read from `src` , or an error Code .
* Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize,
U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize);
/** HUF_readCTable() :
* Loading a CTable saved with HUF_writeCTable() */
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
/** HUF_getNbBits() :
* Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX
* Note 1 : is not inlined, as HUF_CElt definition is private
* Note 2 : const void* used, so that it can provide a statically allocated table as argument (which uses type U32) */
U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue);
/*
* HUF_decompress() does the following:
* 1. select the decompression algorithm (X1, X2) based on pre-computed heuristics
* 2. build Huffman table from save, using HUF_readDTableX?()
* 3. decode 1 or 4 segments in parallel using HUF_decompress?X?_usingDTable()
*/
/** HUF_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-computed metrics.
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
* Assumption : 0 < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
/**
* The minimum workspace size for the `workSpace` used in
* HUF_readDTableX1_wksp() and HUF_readDTableX2_wksp().
*
* The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when
* HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15.
* Buffer overflow errors may potentially occur if code modifications result in
* a required workspace size greater than that specified in the following
* macro.
*/
#define HUF_DECOMPRESS_WORKSPACE_SIZE (2 << 10)
#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
size_t HUF_readDTableX1 (HUF_DTable* DTable, const void* src, size_t srcSize);
size_t HUF_readDTableX1_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize);
size_t HUF_readDTableX2_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize);
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
size_t HUF_decompress4X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
/* ====================== */
/* single stream variants */
/* ====================== */
size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
/** HUF_compress1X_repeat() :
* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid. */
size_t HUF_compress1X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2);
size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */
size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
size_t HUF_decompress1X_DCtx_wksp (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize);
size_t HUF_decompress1X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */
size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); /**< automatic selection of sing or double symbol decoder, based on DTable */
size_t HUF_decompress1X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
/* BMI2 variants.
* If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
*/
size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2);
size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2);
#endif /* HUF_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif

362
utils/TSZ/zstd/common/mem.h Normal file
View File

@ -0,0 +1,362 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include <string.h> /* memcpy */
/*-****************************************
* Compiler specifics
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
#if defined(__GNUC__)
# define MEM_STATIC static __inline __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/* code only tested on 32 and 64 bits systems */
#define MEM_STATIC_ASSERT(c) { enum { MEM_static_assert = 1/(int)(!!(c)) }; }
MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
/*-**************************************************************
* Basic Types
*****************************************************************/
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/*-**************************************************************
* Memory I/O
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets depending on alignment.
* In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6)
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
# define MEM_FORCE_MEMORY_ACCESS 2
# elif defined(__INTEL_COMPILER) || defined(__GNUC__)
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard, by lying on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
#if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
__pragma( pack(push, 1) )
typedef struct { U16 v; } unalign16;
typedef struct { U32 v; } unalign32;
typedef struct { U64 v; } unalign64;
typedef struct { size_t v; } unalignArch;
__pragma( pack(pop) )
#else
typedef struct { U16 v; } __attribute__((packed)) unalign16;
typedef struct { U32 v; } __attribute__((packed)) unalign32;
typedef struct { U64 v; } __attribute__((packed)) unalign64;
typedef struct { size_t v; } __attribute__((packed)) unalignArch;
#endif
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; }
MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC size_t MEM_readST(const void* memPtr)
{
size_t val; memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write32(void* memPtr, U32 value)
{
memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write64(void* memPtr, U64 value)
{
memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U32 MEM_swap32(U32 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_ulong(in);
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
return __builtin_bswap32(in);
#else
return ((in << 24) & 0xff000000 ) |
((in << 8) & 0x00ff0000 ) |
((in >> 8) & 0x0000ff00 ) |
((in >> 24) & 0x000000ff );
#endif
}
MEM_STATIC U64 MEM_swap64(U64 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_uint64(in);
#elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)
return __builtin_bswap64(in);
#else
return ((in << 56) & 0xff00000000000000ULL) |
((in << 40) & 0x00ff000000000000ULL) |
((in << 24) & 0x0000ff0000000000ULL) |
((in << 8) & 0x000000ff00000000ULL) |
((in >> 8) & 0x00000000ff000000ULL) |
((in >> 24) & 0x0000000000ff0000ULL) |
((in >> 40) & 0x000000000000ff00ULL) |
((in >> 56) & 0x00000000000000ffULL);
#endif
}
MEM_STATIC size_t MEM_swapST(size_t in)
{
if (MEM_32bits())
return (size_t)MEM_swap32((U32)in);
else
return (size_t)MEM_swap64((U64)in);
}
/*=== Little endian r/w ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian()) {
MEM_write16(memPtr, val);
} else {
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
{
MEM_writeLE16(memPtr, (U16)val);
((BYTE*)memPtr)[2] = (BYTE)(val>>16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
return MEM_swap32(MEM_read32(memPtr));
}
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, val32);
else
MEM_write32(memPtr, MEM_swap32(val32));
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
return MEM_swap64(MEM_read64(memPtr));
}
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, val64);
else
MEM_write64(memPtr, MEM_swap64(val64));
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeLE32(memPtr, (U32)val);
else
MEM_writeLE64(memPtr, (U64)val);
}
/*=== Big endian r/w ===*/
MEM_STATIC U32 MEM_readBE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap32(MEM_read32(memPtr));
else
return MEM_read32(memPtr);
}
MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, MEM_swap32(val32));
else
MEM_write32(memPtr, val32);
}
MEM_STATIC U64 MEM_readBE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap64(MEM_read64(memPtr));
else
return MEM_read64(memPtr);
}
MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, MEM_swap64(val64));
else
MEM_write64(memPtr, val64);
}
MEM_STATIC size_t MEM_readBEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readBE32(memPtr);
else
return (size_t)MEM_readBE64(memPtr);
}
MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeBE32(memPtr, (U32)val);
else
MEM_writeBE64(memPtr, (U64)val);
}
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */

View File

@ -0,0 +1,340 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* ====== Dependencies ======= */
#include <stddef.h> /* size_t */
#include "debug.h" /* assert */
#include "zstd_internal.h" /* ZSTD_malloc, ZSTD_free */
#include "pool.h"
/* ====== Compiler specifics ====== */
#if defined(_MSC_VER)
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
#endif
#ifdef ZSTD_MULTITHREAD
#include "threading.h" /* pthread adaptation */
/* A job is a function and an opaque argument */
typedef struct POOL_job_s {
POOL_function function;
void *opaque;
} POOL_job;
struct POOL_ctx_s {
ZSTD_customMem customMem;
/* Keep track of the threads */
ZSTD_pthread_t* threads;
size_t threadCapacity;
size_t threadLimit;
/* The queue is a circular buffer */
POOL_job *queue;
size_t queueHead;
size_t queueTail;
size_t queueSize;
/* The number of threads working on jobs */
size_t numThreadsBusy;
/* Indicates if the queue is empty */
int queueEmpty;
/* The mutex protects the queue */
ZSTD_pthread_mutex_t queueMutex;
/* Condition variable for pushers to wait on when the queue is full */
ZSTD_pthread_cond_t queuePushCond;
/* Condition variables for poppers to wait on when the queue is empty */
ZSTD_pthread_cond_t queuePopCond;
/* Indicates if the queue is shutting down */
int shutdown;
};
/* POOL_thread() :
* Work thread for the thread pool.
* Waits for jobs and executes them.
* @returns : NULL on failure else non-null.
*/
static void* POOL_thread(void* opaque) {
POOL_ctx* const ctx = (POOL_ctx*)opaque;
if (!ctx) { return NULL; }
for (;;) {
/* Lock the mutex and wait for a non-empty queue or until shutdown */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
while ( ctx->queueEmpty
|| (ctx->numThreadsBusy >= ctx->threadLimit) ) {
if (ctx->shutdown) {
/* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit),
* a few threads will be shutdown while !queueEmpty,
* but enough threads will remain active to finish the queue */
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return opaque;
}
ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex);
}
/* Pop a job off the queue */
{ POOL_job const job = ctx->queue[ctx->queueHead];
ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize;
ctx->numThreadsBusy++;
ctx->queueEmpty = ctx->queueHead == ctx->queueTail;
/* Unlock the mutex, signal a pusher, and run the job */
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
ZSTD_pthread_cond_signal(&ctx->queuePushCond);
job.function(job.opaque);
/* If the intended queue size was 0, signal after finishing job */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
ctx->numThreadsBusy--;
if (ctx->queueSize == 1) {
ZSTD_pthread_cond_signal(&ctx->queuePushCond);
}
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
}
} /* for (;;) */
assert(0); /* Unreachable */
}
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
}
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
ZSTD_customMem customMem) {
POOL_ctx* ctx;
/* Check parameters */
if (!numThreads) { return NULL; }
/* Allocate the context and zero initialize */
ctx = (POOL_ctx*)ZSTD_calloc(sizeof(POOL_ctx), customMem);
if (!ctx) { return NULL; }
/* Initialize the job queue.
* It needs one extra space since one space is wasted to differentiate
* empty and full queues.
*/
ctx->queueSize = queueSize + 1;
ctx->queue = (POOL_job*)ZSTD_malloc(ctx->queueSize * sizeof(POOL_job), customMem);
ctx->queueHead = 0;
ctx->queueTail = 0;
ctx->numThreadsBusy = 0;
ctx->queueEmpty = 1;
(void)ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL);
(void)ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL);
(void)ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL);
ctx->shutdown = 0;
/* Allocate space for the thread handles */
ctx->threads = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), customMem);
ctx->threadCapacity = 0;
ctx->customMem = customMem;
/* Check for errors */
if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; }
/* Initialize the threads */
{ size_t i;
for (i = 0; i < numThreads; ++i) {
if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) {
ctx->threadCapacity = i;
POOL_free(ctx);
return NULL;
} }
ctx->threadCapacity = numThreads;
ctx->threadLimit = numThreads;
}
return ctx;
}
/*! POOL_join() :
Shutdown the queue, wake any sleeping threads, and join all of the threads.
*/
static void POOL_join(POOL_ctx* ctx) {
/* Shut down the queue */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
ctx->shutdown = 1;
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
/* Wake up sleeping threads */
ZSTD_pthread_cond_broadcast(&ctx->queuePushCond);
ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
/* Join all of the threads */
{ size_t i;
for (i = 0; i < ctx->threadCapacity; ++i) {
ZSTD_pthread_join(ctx->threads[i], NULL); /* note : could fail */
} }
}
void POOL_free(POOL_ctx *ctx) {
if (!ctx) { return; }
POOL_join(ctx);
ZSTD_pthread_mutex_destroy(&ctx->queueMutex);
ZSTD_pthread_cond_destroy(&ctx->queuePushCond);
ZSTD_pthread_cond_destroy(&ctx->queuePopCond);
ZSTD_free(ctx->queue, ctx->customMem);
ZSTD_free(ctx->threads, ctx->customMem);
ZSTD_free(ctx, ctx->customMem);
}
size_t POOL_sizeof(POOL_ctx *ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */
return sizeof(*ctx)
+ ctx->queueSize * sizeof(POOL_job)
+ ctx->threadCapacity * sizeof(ZSTD_pthread_t);
}
/* @return : 0 on success, 1 on error */
static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads)
{
if (numThreads <= ctx->threadCapacity) {
if (!numThreads) return 1;
ctx->threadLimit = numThreads;
return 0;
}
/* numThreads > threadCapacity */
{ ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem);
if (!threadPool) return 1;
/* replace existing thread pool */
memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool));
ZSTD_free(ctx->threads, ctx->customMem);
ctx->threads = threadPool;
/* Initialize additional threads */
{ size_t threadId;
for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) {
if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) {
ctx->threadCapacity = threadId;
return 1;
} }
} }
/* successfully expanded */
ctx->threadCapacity = numThreads;
ctx->threadLimit = numThreads;
return 0;
}
/* @return : 0 on success, 1 on error */
int POOL_resize(POOL_ctx* ctx, size_t numThreads)
{
int result;
if (ctx==NULL) return 1;
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
result = POOL_resize_internal(ctx, numThreads);
ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return result;
}
/**
* Returns 1 if the queue is full and 0 otherwise.
*
* When queueSize is 1 (pool was created with an intended queueSize of 0),
* then a queue is empty if there is a thread free _and_ no job is waiting.
*/
static int isQueueFull(POOL_ctx const* ctx) {
if (ctx->queueSize > 1) {
return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize);
} else {
return (ctx->numThreadsBusy == ctx->threadLimit) ||
!ctx->queueEmpty;
}
}
static void POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
{
POOL_job const job = {function, opaque};
assert(ctx != NULL);
if (ctx->shutdown) return;
ctx->queueEmpty = 0;
ctx->queue[ctx->queueTail] = job;
ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
ZSTD_pthread_cond_signal(&ctx->queuePopCond);
}
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque)
{
assert(ctx != NULL);
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
/* Wait until there is space in the queue for the new job */
while (isQueueFull(ctx) && (!ctx->shutdown)) {
ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
}
POOL_add_internal(ctx, function, opaque);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
}
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque)
{
assert(ctx != NULL);
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
if (isQueueFull(ctx)) {
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return 0;
}
POOL_add_internal(ctx, function, opaque);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return 1;
}
#else /* ZSTD_MULTITHREAD not defined */
/* ========================== */
/* No multi-threading support */
/* ========================== */
/* We don't need any data, but if it is empty, malloc() might return NULL. */
struct POOL_ctx_s {
int dummy;
};
static POOL_ctx g_ctx;
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
}
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) {
(void)numThreads;
(void)queueSize;
(void)customMem;
return &g_ctx;
}
void POOL_free(POOL_ctx* ctx) {
assert(!ctx || ctx == &g_ctx);
(void)ctx;
}
int POOL_resize(POOL_ctx* ctx, size_t numThreads) {
(void)ctx; (void)numThreads;
return 0;
}
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) {
(void)ctx;
function(opaque);
}
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) {
(void)ctx;
function(opaque);
return 1;
}
size_t POOL_sizeof(POOL_ctx* ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */
assert(ctx == &g_ctx);
return sizeof(*ctx);
}
#endif /* ZSTD_MULTITHREAD */

View File

@ -0,0 +1,84 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef POOL_H
#define POOL_H
#if defined (__cplusplus)
extern "C" {
#endif
#include <stddef.h> /* size_t */
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_customMem */
#include "zstd.h"
typedef struct POOL_ctx_s POOL_ctx;
/*! POOL_create() :
* Create a thread pool with at most `numThreads` threads.
* `numThreads` must be at least 1.
* The maximum number of queued jobs before blocking is `queueSize`.
* @return : POOL_ctx pointer on success, else NULL.
*/
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize);
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
ZSTD_customMem customMem);
/*! POOL_free() :
* Free a thread pool returned by POOL_create().
*/
void POOL_free(POOL_ctx* ctx);
/*! POOL_resize() :
* Expands or shrinks pool's number of threads.
* This is more efficient than releasing + creating a new context,
* since it tries to preserve and re-use existing threads.
* `numThreads` must be at least 1.
* @return : 0 when resize was successful,
* !0 (typically 1) if there is an error.
* note : only numThreads can be resized, queueSize remains unchanged.
*/
int POOL_resize(POOL_ctx* ctx, size_t numThreads);
/*! POOL_sizeof() :
* @return threadpool memory usage
* note : compatible with NULL (returns 0 in this case)
*/
size_t POOL_sizeof(POOL_ctx* ctx);
/*! POOL_function :
* The function type that can be added to a thread pool.
*/
typedef void (*POOL_function)(void*);
/*! POOL_add() :
* Add the job `function(opaque)` to the thread pool. `ctx` must be valid.
* Possibly blocks until there is room in the queue.
* Note : The function may be executed asynchronously,
* therefore, `opaque` must live until function has been completed.
*/
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque);
/*! POOL_tryAdd() :
* Add the job `function(opaque)` to thread pool _if_ a worker is available.
* Returns immediately even if not (does not block).
* @return : 1 if successful, 0 if not.
*/
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque);
#if defined (__cplusplus)
}
#endif
#endif

View File

@ -0,0 +1,75 @@
/**
* Copyright (c) 2016 Tino Reichardt
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*
* You can contact the author at:
* - zstdmt source repository: https://github.com/mcmilk/zstdmt
*/
/**
* This file will hold wrapper for systems, which do not support pthreads
*/
/* create fake symbol to avoid empty trnaslation unit warning */
int g_ZSTD_threading_useles_symbol;
#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
/**
* Windows minimalist Pthread Wrapper, based on :
* http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
*/
/* === Dependencies === */
#include <process.h>
#include <errno.h>
#include "threading.h"
/* === Implementation === */
static unsigned __stdcall worker(void *arg)
{
ZSTD_pthread_t* const thread = (ZSTD_pthread_t*) arg;
thread->arg = thread->start_routine(thread->arg);
return 0;
}
int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
void* (*start_routine) (void*), void* arg)
{
(void)unused;
thread->arg = arg;
thread->start_routine = start_routine;
thread->handle = (HANDLE) _beginthreadex(NULL, 0, worker, thread, 0, NULL);
if (!thread->handle)
return errno;
else
return 0;
}
int ZSTD_pthread_join(ZSTD_pthread_t thread, void **value_ptr)
{
DWORD result;
if (!thread.handle) return 0;
result = WaitForSingleObject(thread.handle, INFINITE);
switch (result) {
case WAIT_OBJECT_0:
if (value_ptr) *value_ptr = thread.arg;
return 0;
case WAIT_ABANDONED:
return EINVAL;
default:
return GetLastError();
}
}
#endif /* ZSTD_MULTITHREAD */

View File

@ -0,0 +1,123 @@
/**
* Copyright (c) 2016 Tino Reichardt
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*
* You can contact the author at:
* - zstdmt source repository: https://github.com/mcmilk/zstdmt
*/
#ifndef THREADING_H_938743
#define THREADING_H_938743
#if defined (__cplusplus)
extern "C" {
#endif
#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
/**
* Windows minimalist Pthread Wrapper, based on :
* http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
*/
#ifdef WINVER
# undef WINVER
#endif
#define WINVER 0x0600
#ifdef _WIN32_WINNT
# undef _WIN32_WINNT
#endif
#define _WIN32_WINNT 0x0600
#ifndef WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN
#endif
#undef ERROR /* reported already defined on VS 2015 (Rich Geldreich) */
#include <windows.h>
#undef ERROR
#define ERROR(name) ZSTD_ERROR(name)
/* mutex */
#define ZSTD_pthread_mutex_t CRITICAL_SECTION
#define ZSTD_pthread_mutex_init(a, b) ((void)(b), InitializeCriticalSection((a)), 0)
#define ZSTD_pthread_mutex_destroy(a) DeleteCriticalSection((a))
#define ZSTD_pthread_mutex_lock(a) EnterCriticalSection((a))
#define ZSTD_pthread_mutex_unlock(a) LeaveCriticalSection((a))
/* condition variable */
#define ZSTD_pthread_cond_t CONDITION_VARIABLE
#define ZSTD_pthread_cond_init(a, b) ((void)(b), InitializeConditionVariable((a)), 0)
#define ZSTD_pthread_cond_destroy(a) ((void)(a))
#define ZSTD_pthread_cond_wait(a, b) SleepConditionVariableCS((a), (b), INFINITE)
#define ZSTD_pthread_cond_signal(a) WakeConditionVariable((a))
#define ZSTD_pthread_cond_broadcast(a) WakeAllConditionVariable((a))
/* ZSTD_pthread_create() and ZSTD_pthread_join() */
typedef struct {
HANDLE handle;
void* (*start_routine)(void*);
void* arg;
} ZSTD_pthread_t;
int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
void* (*start_routine) (void*), void* arg);
int ZSTD_pthread_join(ZSTD_pthread_t thread, void** value_ptr);
/**
* add here more wrappers as required
*/
#elif defined(ZSTD_MULTITHREAD) /* posix assumed ; need a better detection method */
/* === POSIX Systems === */
# include <pthread.h>
#define ZSTD_pthread_mutex_t pthread_mutex_t
#define ZSTD_pthread_mutex_init(a, b) pthread_mutex_init((a), (b))
#define ZSTD_pthread_mutex_destroy(a) pthread_mutex_destroy((a))
#define ZSTD_pthread_mutex_lock(a) pthread_mutex_lock((a))
#define ZSTD_pthread_mutex_unlock(a) pthread_mutex_unlock((a))
#define ZSTD_pthread_cond_t pthread_cond_t
#define ZSTD_pthread_cond_init(a, b) pthread_cond_init((a), (b))
#define ZSTD_pthread_cond_destroy(a) pthread_cond_destroy((a))
#define ZSTD_pthread_cond_wait(a, b) pthread_cond_wait((a), (b))
#define ZSTD_pthread_cond_signal(a) pthread_cond_signal((a))
#define ZSTD_pthread_cond_broadcast(a) pthread_cond_broadcast((a))
#define ZSTD_pthread_t pthread_t
#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d))
#define ZSTD_pthread_join(a, b) pthread_join((a),(b))
#else /* ZSTD_MULTITHREAD not defined */
/* No multithreading support */
typedef int ZSTD_pthread_mutex_t;
#define ZSTD_pthread_mutex_init(a, b) ((void)(a), (void)(b), 0)
#define ZSTD_pthread_mutex_destroy(a) ((void)(a))
#define ZSTD_pthread_mutex_lock(a) ((void)(a))
#define ZSTD_pthread_mutex_unlock(a) ((void)(a))
typedef int ZSTD_pthread_cond_t;
#define ZSTD_pthread_cond_init(a, b) ((void)(a), (void)(b), 0)
#define ZSTD_pthread_cond_destroy(a) ((void)(a))
#define ZSTD_pthread_cond_wait(a, b) ((void)(a), (void)(b))
#define ZSTD_pthread_cond_signal(a) ((void)(a))
#define ZSTD_pthread_cond_broadcast(a) ((void)(a))
/* do not use ZSTD_pthread_t */
#endif /* ZSTD_MULTITHREAD */
#if defined (__cplusplus)
}
#endif
#endif /* THREADING_H_938743 */

View File

@ -0,0 +1,875 @@
/*
* xxHash - Fast Hash algorithm
* Copyright (C) 2012-2016, Yann Collet
*
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at :
* - xxHash homepage: http://www.xxhash.com
* - xxHash source repository : https://github.com/Cyan4973/xxHash
*/
/* *************************************
* Tuning parameters
***************************************/
/*!XXH_FORCE_MEMORY_ACCESS :
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
* The below switch allow to select different access method for improved performance.
* Method 0 (default) : use `memcpy()`. Safe and portable.
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
* Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
* It can generate buggy code on targets which do not support unaligned memory accesses.
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
* See http://stackoverflow.com/a/32095106/646947 for details.
* Prefer these methods in priority order (0 > 1 > 2)
*/
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
# define XXH_FORCE_MEMORY_ACCESS 2
# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
# define XXH_FORCE_MEMORY_ACCESS 1
# endif
#endif
/*!XXH_ACCEPT_NULL_INPUT_POINTER :
* If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
* When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
* By default, this option is disabled. To enable it, uncomment below define :
*/
/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
/*!XXH_FORCE_NATIVE_FORMAT :
* By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
* Results are therefore identical for little-endian and big-endian CPU.
* This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
* Should endian-independance be of no importance for your application, you may set the #define below to 1,
* to improve speed for Big-endian CPU.
* This option has no impact on Little_Endian CPU.
*/
#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
# define XXH_FORCE_NATIVE_FORMAT 0
#endif
/*!XXH_FORCE_ALIGN_CHECK :
* This is a minor performance trick, only useful with lots of very small keys.
* It means : check for aligned/unaligned input.
* The check costs one initial branch per hash; set to 0 when the input data
* is guaranteed to be aligned.
*/
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
# define XXH_FORCE_ALIGN_CHECK 0
# else
# define XXH_FORCE_ALIGN_CHECK 1
# endif
#endif
/* *************************************
* Includes & Memory related functions
***************************************/
/* Modify the local functions below should you wish to use some other memory routines */
/* for malloc(), free() */
#include <stdlib.h>
static void* XXH_malloc(size_t s) { return malloc(s); }
static void XXH_free (void* p) { free(p); }
/* for memcpy() */
#include <string.h>
static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
#ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY
#endif
#include "xxhash.h"
/* *************************************
* Compiler Specific Options
***************************************/
#if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# define INLINE_KEYWORD inline
#else
# define INLINE_KEYWORD
#endif
#if defined(__GNUC__)
# define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER)
# define FORCE_INLINE_ATTR __forceinline
#else
# define FORCE_INLINE_ATTR
#endif
#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
#ifdef _MSC_VER
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* *************************************
* Basic Types
***************************************/
#ifndef MEM_MODULE
# define MEM_MODULE
# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
# else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
# endif
#endif
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
#else
/* portable and safe solution. Generally efficient.
* see : http://stackoverflow.com/a/32095106/646947
*/
static U32 XXH_read32(const void* memPtr)
{
U32 val;
memcpy(&val, memPtr, sizeof(val));
return val;
}
static U64 XXH_read64(const void* memPtr)
{
U64 val;
memcpy(&val, memPtr, sizeof(val));
return val;
}
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
/* ****************************************
* Compiler-specific Functions and Macros
******************************************/
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
#if defined(_MSC_VER)
# define XXH_rotl32(x,r) _rotl(x,r)
# define XXH_rotl64(x,r) _rotl64(x,r)
#else
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
#endif
#if defined(_MSC_VER) /* Visual Studio */
# define XXH_swap32 _byteswap_ulong
# define XXH_swap64 _byteswap_uint64
#elif GCC_VERSION >= 403
# define XXH_swap32 __builtin_bswap32
# define XXH_swap64 __builtin_bswap64
#else
static U32 XXH_swap32 (U32 x)
{
return ((x << 24) & 0xff000000 ) |
((x << 8) & 0x00ff0000 ) |
((x >> 8) & 0x0000ff00 ) |
((x >> 24) & 0x000000ff );
}
static U64 XXH_swap64 (U64 x)
{
return ((x << 56) & 0xff00000000000000ULL) |
((x << 40) & 0x00ff000000000000ULL) |
((x << 24) & 0x0000ff0000000000ULL) |
((x << 8) & 0x000000ff00000000ULL) |
((x >> 8) & 0x00000000ff000000ULL) |
((x >> 24) & 0x0000000000ff0000ULL) |
((x >> 40) & 0x000000000000ff00ULL) |
((x >> 56) & 0x00000000000000ffULL);
}
#endif
/* *************************************
* Architecture Macros
***************************************/
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
#ifndef XXH_CPU_LITTLE_ENDIAN
static const int g_one = 1;
# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
#endif
/* ***************************
* Memory reads
*****************************/
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
else
return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
}
FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
{
return XXH_readLE32_align(ptr, endian, XXH_unaligned);
}
static U32 XXH_readBE32(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
}
FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
else
return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
}
FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
{
return XXH_readLE64_align(ptr, endian, XXH_unaligned);
}
static U64 XXH_readBE64(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
}
/* *************************************
* Macros
***************************************/
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/* *************************************
* Constants
***************************************/
static const U32 PRIME32_1 = 2654435761U;
static const U32 PRIME32_2 = 2246822519U;
static const U32 PRIME32_3 = 3266489917U;
static const U32 PRIME32_4 = 668265263U;
static const U32 PRIME32_5 = 374761393U;
static const U64 PRIME64_1 = 11400714785074694791ULL;
static const U64 PRIME64_2 = 14029467366897019727ULL;
static const U64 PRIME64_3 = 1609587929392839161ULL;
static const U64 PRIME64_4 = 9650029242287828579ULL;
static const U64 PRIME64_5 = 2870177450012600261ULL;
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
/* **************************
* Utils
****************************/
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
{
memcpy(dstState, srcState, sizeof(*dstState));
}
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
{
memcpy(dstState, srcState, sizeof(*dstState));
}
/* ***************************
* Simple Hash Functions
*****************************/
static U32 XXH32_round(U32 seed, U32 input)
{
seed += input * PRIME32_2;
seed = XXH_rotl32(seed, 13);
seed *= PRIME32_1;
return seed;
}
FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* bEnd = p + len;
U32 h32;
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL) {
len=0;
bEnd=p=(const BYTE*)(size_t)16;
}
#endif
if (len>=16) {
const BYTE* const limit = bEnd - 16;
U32 v1 = seed + PRIME32_1 + PRIME32_2;
U32 v2 = seed + PRIME32_2;
U32 v3 = seed + 0;
U32 v4 = seed - PRIME32_1;
do {
v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
} while (p<=limit);
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
} else {
h32 = seed + PRIME32_5;
}
h32 += (U32) len;
while (p+4<=bEnd) {
h32 += XXH_get32bits(p) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
p+=4;
}
while (p<bEnd) {
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return h32;
}
XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
{
#if 0
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH32_CREATESTATE_STATIC(state);
XXH32_reset(state, seed);
XXH32_update(state, input, len);
return XXH32_digest(state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
} }
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}
static U64 XXH64_round(U64 acc, U64 input)
{
acc += input * PRIME64_2;
acc = XXH_rotl64(acc, 31);
acc *= PRIME64_1;
return acc;
}
static U64 XXH64_mergeRound(U64 acc, U64 val)
{
val = XXH64_round(0, val);
acc ^= val;
acc = acc * PRIME64_1 + PRIME64_4;
return acc;
}
FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
U64 h64;
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL) {
len=0;
bEnd=p=(const BYTE*)(size_t)32;
}
#endif
if (len>=32) {
const BYTE* const limit = bEnd - 32;
U64 v1 = seed + PRIME64_1 + PRIME64_2;
U64 v2 = seed + PRIME64_2;
U64 v3 = seed + 0;
U64 v4 = seed - PRIME64_1;
do {
v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
} while (p<=limit);
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
h64 = XXH64_mergeRound(h64, v1);
h64 = XXH64_mergeRound(h64, v2);
h64 = XXH64_mergeRound(h64, v3);
h64 = XXH64_mergeRound(h64, v4);
} else {
h64 = seed + PRIME64_5;
}
h64 += (U64) len;
while (p+8<=bEnd) {
U64 const k1 = XXH64_round(0, XXH_get64bits(p));
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd) {
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd) {
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
{
#if 0
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH64_CREATESTATE_STATIC(state);
XXH64_reset(state, seed);
XXH64_update(state, input, len);
return XXH64_digest(state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
} }
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}
/* **************************************************
* Advanced Hash Functions
****************************************************/
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
{
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
{
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
/*** Hash feed ***/
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
{
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
state.v1 = seed + PRIME32_1 + PRIME32_2;
state.v2 = seed + PRIME32_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME32_1;
memcpy(statePtr, &state, sizeof(state));
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
{
XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
state.v1 = seed + PRIME64_1 + PRIME64_2;
state.v2 = seed + PRIME64_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME64_1;
memcpy(statePtr, &state, sizeof(state));
return XXH_OK;
}
FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif
state->total_len_32 += (unsigned)len;
state->large_len |= (len>=16) | (state->total_len_32>=16);
if (state->memsize + len < 16) { /* fill in tmp buffer */
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
state->memsize += (unsigned)len;
return XXH_OK;
}
if (state->memsize) { /* some data left from previous update */
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
{ const U32* p32 = state->mem32;
state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
}
p += 16-state->memsize;
state->memsize = 0;
}
if (p <= bEnd-16) {
const BYTE* const limit = bEnd - 16;
U32 v1 = state->v1;
U32 v2 = state->v2;
U32 v3 = state->v3;
U32 v4 = state->v4;
do {
v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
} while (p<=limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < bEnd) {
XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
state->memsize = (unsigned)(bEnd-p);
}
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
}
FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
{
const BYTE * p = (const BYTE*)state->mem32;
const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
U32 h32;
if (state->large_len) {
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
} else {
h32 = state->v3 /* == seed */ + PRIME32_5;
}
h32 += state->total_len_32;
while (p+4<=bEnd) {
h32 += XXH_readLE32(p, endian) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4;
p+=4;
}
while (p<bEnd) {
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return h32;
}
XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_digest_endian(state_in, XXH_littleEndian);
else
return XXH32_digest_endian(state_in, XXH_bigEndian);
}
/* **** XXH64 **** */
FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif
state->total_len += len;
if (state->memsize + len < 32) { /* fill in tmp buffer */
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
state->memsize += (U32)len;
return XXH_OK;
}
if (state->memsize) { /* tmp buffer is full */
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
p += 32-state->memsize;
state->memsize = 0;
}
if (p+32 <= bEnd) {
const BYTE* const limit = bEnd - 32;
U64 v1 = state->v1;
U64 v2 = state->v2;
U64 v3 = state->v3;
U64 v4 = state->v4;
do {
v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
} while (p<=limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < bEnd) {
XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
state->memsize = (unsigned)(bEnd-p);
}
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
}
FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
{
const BYTE * p = (const BYTE*)state->mem64;
const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
U64 h64;
if (state->total_len >= 32) {
U64 const v1 = state->v1;
U64 const v2 = state->v2;
U64 const v3 = state->v3;
U64 const v4 = state->v4;
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
h64 = XXH64_mergeRound(h64, v1);
h64 = XXH64_mergeRound(h64, v2);
h64 = XXH64_mergeRound(h64, v3);
h64 = XXH64_mergeRound(h64, v4);
} else {
h64 = state->v3 + PRIME64_5;
}
h64 += (U64) state->total_len;
while (p+8<=bEnd) {
U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd) {
h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd) {
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_digest_endian(state_in, XXH_littleEndian);
else
return XXH64_digest_endian(state_in, XXH_bigEndian);
}
/* **************************
* Canonical representation
****************************/
/*! Default XXH result types are basic unsigned 32 and 64 bits.
* The canonical representation follows human-readable write convention, aka big-endian (large digits first).
* These functions allow transformation of hash result into and from its canonical format.
* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
*/
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
memcpy(dst, &hash, sizeof(*dst));
}
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
memcpy(dst, &hash, sizeof(*dst));
}
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
{
return XXH_readBE32(src);
}
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
{
return XXH_readBE64(src);
}

View File

@ -0,0 +1,305 @@
/*
xxHash - Extremely Fast Hash algorithm
Header File
Copyright (C) 2012-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- xxHash source repository : https://github.com/Cyan4973/xxHash
*/
/* Notice extracted from xxHash homepage :
xxHash is an extremely fast Hash algorithm, running at RAM speed limits.
It also successfully passes all tests from the SMHasher suite.
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
Name Speed Q.Score Author
xxHash 5.4 GB/s 10
CrapWow 3.2 GB/s 2 Andrew
MumurHash 3a 2.7 GB/s 10 Austin Appleby
SpookyHash 2.0 GB/s 10 Bob Jenkins
SBox 1.4 GB/s 9 Bret Mulvey
Lookup3 1.2 GB/s 9 Bob Jenkins
SuperFastHash 1.2 GB/s 1 Paul Hsieh
CityHash64 1.05 GB/s 10 Pike & Alakuijala
FNV 0.55 GB/s 5 Fowler, Noll, Vo
CRC32 0.43 GB/s 9
MD5-32 0.33 GB/s 10 Ronald L. Rivest
SHA1-32 0.28 GB/s 10
Q.Score is a measure of quality of the hash function.
It depends on successfully passing SMHasher test set.
10 is a perfect score.
A 64-bits version, named XXH64, is available since r35.
It offers much better speed, but for 64-bits applications only.
Name Speed on 64 bits Speed on 32 bits
XXH64 13.8 GB/s 1.9 GB/s
XXH32 6.8 GB/s 6.0 GB/s
*/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef XXHASH_H_5627135585666179
#define XXHASH_H_5627135585666179 1
/* ****************************
* Definitions
******************************/
#include <stddef.h> /* size_t */
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
/* ****************************
* API modifier
******************************/
/** XXH_PRIVATE_API
* This is useful if you want to include xxhash functions in `static` mode
* in order to inline them, and remove their symbol from the public list.
* Methodology :
* #define XXH_PRIVATE_API
* #include "xxhash.h"
* `xxhash.c` is automatically included.
* It's not useful to compile and link it as a separate module anymore.
*/
#ifdef XXH_PRIVATE_API
# ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY
# endif
# if defined(__GNUC__)
# define XXH_PUBLIC_API static __inline __attribute__((unused))
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define XXH_PUBLIC_API static inline
# elif defined(_MSC_VER)
# define XXH_PUBLIC_API static __inline
# else
# define XXH_PUBLIC_API static /* this version may generate warnings for unused static functions; disable the relevant warning */
# endif
#else
# define XXH_PUBLIC_API /* do nothing */
#endif /* XXH_PRIVATE_API */
/*!XXH_NAMESPACE, aka Namespace Emulation :
If you want to include _and expose_ xxHash functions from within your own library,
but also want to avoid symbol collisions with another library which also includes xxHash,
you can use XXH_NAMESPACE, to automatically prefix any public symbol from xxhash library
with the value of XXH_NAMESPACE (so avoid to keep it NULL and avoid numeric values).
Note that no change is required within the calling program as long as it includes `xxhash.h` :
regular symbol name will be automatically translated by this header.
*/
#ifdef XXH_NAMESPACE
# define XXH_CAT(A,B) A##B
# define XXH_NAME2(A,B) XXH_CAT(A,B)
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
#endif
/* *************************************
* Version
***************************************/
#define XXH_VERSION_MAJOR 0
#define XXH_VERSION_MINOR 6
#define XXH_VERSION_RELEASE 2
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
XXH_PUBLIC_API unsigned XXH_versionNumber (void);
/* ****************************
* Simple Hash Functions
******************************/
typedef unsigned int XXH32_hash_t;
typedef unsigned long long XXH64_hash_t;
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, unsigned int seed);
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, unsigned long long seed);
/*!
XXH32() :
Calculate the 32-bits hash of sequence "length" bytes stored at memory address "input".
The memory between input & input+length must be valid (allocated and read-accessible).
"seed" can be used to alter the result predictably.
Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s
XXH64() :
Calculate the 64-bits hash of sequence of length "len" stored at memory address "input".
"seed" can be used to alter the result predictably.
This function runs 2x faster on 64-bits systems, but slower on 32-bits systems (see benchmark).
*/
/* ****************************
* Streaming Hash Functions
******************************/
typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
/*! State allocation, compatible with dynamic libraries */
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
/* hash streaming */
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, unsigned int seed);
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, unsigned long long seed);
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
/*
These functions generate the xxHash of an input provided in multiple segments.
Note that, for small input, they are slower than single-call functions, due to state management.
For small input, prefer `XXH32()` and `XXH64()` .
XXH state must first be allocated, using XXH*_createState() .
Start a new hash by initializing state with a seed, using XXH*_reset().
Then, feed the hash state by calling XXH*_update() as many times as necessary.
Obviously, input must be allocated and read accessible.
The function returns an error code, with 0 meaning OK, and any other value meaning there is an error.
Finally, a hash value can be produced anytime, by using XXH*_digest().
This function returns the nn-bits hash as an int or long long.
It's still possible to continue inserting input into the hash state after a digest,
and generate some new hashes later on, by calling again XXH*_digest().
When done, free XXH state space if it was allocated dynamically.
*/
/* **************************
* Utils
****************************/
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* ! C99 */
# define restrict /* disable restrict */
#endif
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dst_state, const XXH32_state_t* restrict src_state);
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dst_state, const XXH64_state_t* restrict src_state);
/* **************************
* Canonical representation
****************************/
/* Default result type for XXH functions are primitive unsigned 32 and 64 bits.
* The canonical representation uses human-readable write convention, aka big-endian (large digits first).
* These functions allow transformation of hash result into and from its canonical format.
* This way, hash values can be written into a file / memory, and remain comparable on different systems and programs.
*/
typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
typedef struct { unsigned char digest[8]; } XXH64_canonical_t;
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
#endif /* XXHASH_H_5627135585666179 */
/* ================================================================================================
This section contains definitions which are not guaranteed to remain stable.
They may change in future versions, becoming incompatible with a different version of the library.
They shall only be used with static linking.
Never use these definitions in association with dynamic linking !
=================================================================================================== */
#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXH_STATIC_H_3543687687345)
#define XXH_STATIC_H_3543687687345
/* These definitions are only meant to allow allocation of XXH state
statically, on stack, or in a struct for example.
Do not use members directly. */
struct XXH32_state_s {
unsigned total_len_32;
unsigned large_len;
unsigned v1;
unsigned v2;
unsigned v3;
unsigned v4;
unsigned mem32[4]; /* buffer defined as U32 for alignment */
unsigned memsize;
unsigned reserved; /* never read nor write, will be removed in a future version */
}; /* typedef'd to XXH32_state_t */
struct XXH64_state_s {
unsigned long long total_len;
unsigned long long v1;
unsigned long long v2;
unsigned long long v3;
unsigned long long v4;
unsigned long long mem64[4]; /* buffer defined as U64 for alignment */
unsigned memsize;
unsigned reserved[2]; /* never read nor write, will be removed in a future version */
}; /* typedef'd to XXH64_state_t */
# ifdef XXH_PRIVATE_API
# include "xxhash.c" /* include xxhash functions as `static`, for inlining */
# endif
#endif /* XXH_STATIC_LINKING_ONLY && XXH_STATIC_H_3543687687345 */
#if defined (__cplusplus)
}
#endif

View File

@ -0,0 +1,81 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include <stdlib.h> /* malloc, calloc, free */
#include <string.h> /* memset */
#include "error_private.h"
#include "zstd_internal.h"
/*-****************************************
* Version
******************************************/
unsigned ZSTD_versionNumber(void) { return ZSTD_VERSION_NUMBER; }
const char* ZSTD_versionString(void) { return ZSTD_VERSION_STRING; }
/*-****************************************
* ZSTD Error Management
******************************************/
/*! ZSTD_isError() :
* tells if a return value is an error code */
unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
/*! ZSTD_getErrorName() :
* provides error code string from function result (useful for debugging) */
const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*! ZSTD_getError() :
* convert a `size_t` function result into a proper ZSTD_errorCode enum */
ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); }
/*! ZSTD_getErrorString() :
* provides error code string from enum */
const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorString(code); }
/*=**************************************************************
* Custom allocator
****************************************************************/
void* ZSTD_malloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc)
return customMem.customAlloc(customMem.opaque, size);
return malloc(size);
}
void* ZSTD_calloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc) {
/* calloc implemented as malloc+memset;
* not as efficient as calloc, but next best guess for custom malloc */
void* const ptr = customMem.customAlloc(customMem.opaque, size);
memset(ptr, 0, size);
return ptr;
}
return calloc(1, size);
}
void ZSTD_free(void* ptr, ZSTD_customMem customMem)
{
if (ptr!=NULL) {
if (customMem.customFree)
customMem.customFree(customMem.opaque, ptr);
else
free(ptr);
}
}

View File

@ -0,0 +1,92 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_ERRORS_H_398273423
#define ZSTD_ERRORS_H_398273423
#if defined (__cplusplus)
extern "C" {
#endif
/*===== dependency =====*/
#include <stddef.h> /* size_t */
/* ===== ZSTDERRORLIB_API : control library symbols visibility ===== */
#ifndef ZSTDERRORLIB_VISIBILITY
# if defined(__GNUC__) && (__GNUC__ >= 4)
# define ZSTDERRORLIB_VISIBILITY __attribute__ ((visibility ("default")))
# else
# define ZSTDERRORLIB_VISIBILITY
# endif
#endif
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBILITY
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBILITY
#endif
/*-*********************************************
* Error codes list
*-*********************************************
* Error codes _values_ are pinned down since v1.3.1 only.
* Therefore, don't rely on values if you may link to any version < v1.3.1.
*
* Only values < 100 are considered stable.
*
* note 1 : this API shall be used with static linking only.
* dynamic linking is not yet officially supported.
* note 2 : Prefer relying on the enum than on its value whenever possible
* This is the only supported way to use the error list < v1.3.1
* note 3 : ZSTD_isError() is always correct, whatever the library version.
**********************************************/
typedef enum {
ZSTD_error_no_error = 0,
ZSTD_error_GENERIC = 1,
ZSTD_error_prefix_unknown = 10,
ZSTD_error_version_unsupported = 12,
ZSTD_error_frameParameter_unsupported = 14,
ZSTD_error_frameParameter_windowTooLarge = 16,
ZSTD_error_corruption_detected = 20,
ZSTD_error_checksum_wrong = 22,
ZSTD_error_dictionary_corrupted = 30,
ZSTD_error_dictionary_wrong = 32,
ZSTD_error_dictionaryCreation_failed = 34,
ZSTD_error_parameter_unsupported = 40,
ZSTD_error_parameter_outOfBound = 42,
ZSTD_error_tableLog_tooLarge = 44,
ZSTD_error_maxSymbolValue_tooLarge = 46,
ZSTD_error_maxSymbolValue_tooSmall = 48,
ZSTD_error_stage_wrong = 60,
ZSTD_error_init_missing = 62,
ZSTD_error_memory_allocation = 64,
ZSTD_error_workSpace_tooSmall= 66,
ZSTD_error_dstSize_tooSmall = 70,
ZSTD_error_srcSize_wrong = 72,
/* following error codes are __NOT STABLE__, they can be removed or changed in future versions */
ZSTD_error_frameIndex_tooLarge = 100,
ZSTD_error_seekableIO = 102,
ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */
} ZSTD_ErrorCode;
/*! ZSTD_getErrorCode() :
convert a `size_t` function result into a `ZSTD_ErrorCode` enum type,
which can be used to compare with enum list published above */
ZSTDERRORLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult);
ZSTDERRORLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code); /**< Same as ZSTD_getErrorName, but using a `ZSTD_ErrorCode` enum argument */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_ERRORS_H_398273423 */

View File

@ -0,0 +1,256 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CCOMMON_H_MODULE
#define ZSTD_CCOMMON_H_MODULE
/* this module contains definitions which must be identical
* across compression, decompression and dictBuilder.
* It also contains a few functions useful to at least 2 of them
* and which benefit from being inlined */
/*-*************************************
* Dependencies
***************************************/
#include "compiler.h"
#include "mem.h"
#include "debug.h" /* assert, DEBUGLOG, RAWLOG, g_debuglevel */
#include "error_private.h"
#define ZSTD_STATIC_LINKING_ONLY
#include "zstd.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"
#ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
#endif
#include "xxhash.h" /* XXH_reset, update, digest */
#if defined (__cplusplus)
extern "C" {
#endif
/* ---- static assert (debug) --- */
#define ZSTD_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)
/*-*************************************
* shared macros
***************************************/
#undef MIN
#undef MAX
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))
#define CHECK_F(f) { size_t const errcod = f; if (ERR_isError(errcod)) return errcod; } /* check and Forward error code */
#define CHECK_E(f, e) { size_t const errcod = f; if (ERR_isError(errcod)) return ERROR(e); } /* check and send Error code */
/*-*************************************
* Common constants
***************************************/
#define ZSTD_OPT_NUM (1<<12)
#define ZSTD_REP_NUM 3 /* number of repcodes */
#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
static const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define BIT1 2
#define BIT0 1
#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10
#define ZSTD_WINDOWLOG_DEFAULTMAX 27 /* Default maximum allowed window log */
static const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 };
static const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 };
#define ZSTD_FRAMEIDSIZE 4
static const size_t ZSTD_frameIdSize = ZSTD_FRAMEIDSIZE; /* magic number size */
#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
static const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
#define HufLog 12
typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e;
#define LONGNBSEQ 0x7F00
#define MINMATCH 3
#define Litbits 8
#define MaxLit ((1<<Litbits) - 1)
#define MaxML 52
#define MaxLL 35
#define DefaultMaxOff 28
#define MaxOff 31
#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
#define MLFSELog 9
#define LLFSELog 9
#define OffFSELog 8
#define MaxFSELog MAX(MAX(MLFSELog, LLFSELog), OffFSELog)
static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3,
4, 6, 7, 8, 9,10,11,12,
13,14,15,16 };
static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
2, 3, 2, 1, 1, 1, 1, 1,
-1,-1,-1,-1 };
#define LL_DEFAULTNORMLOG 6 /* for static allocation */
static const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3,
4, 4, 5, 7, 8, 9,10,11,
12,13,14,15,16 };
static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1,-1,-1,
-1,-1,-1,-1,-1 };
#define ML_DEFAULTNORMLOG 6 /* for static allocation */
static const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG;
static const S16 OF_defaultNorm[DefaultMaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
-1,-1,-1,-1,-1 };
#define OF_DEFAULTNORMLOG 5 /* for static allocation */
static const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
/*-*******************************************
* Shared functions to include for inlining
*********************************************/
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
/*! ZSTD_wildcopy() :
* custom version of memcpy(), can overwrite up to WILDCOPY_OVERLENGTH bytes (if length==0) */
#define WILDCOPY_OVERLENGTH 8
MEM_STATIC void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
do
COPY8(op, ip)
while (op < oend);
}
MEM_STATIC void ZSTD_wildcopy_e(void* dst, const void* src, void* dstEnd) /* should be faster for decoding, but strangely, not verified on all platform */
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = (BYTE*)dstEnd;
do
COPY8(op, ip)
while (op < oend);
}
/*-*******************************************
* Private declarations
*********************************************/
typedef struct seqDef_s {
U32 offset;
U16 litLength;
U16 matchLength;
} seqDef;
typedef struct {
seqDef* sequencesStart;
seqDef* sequences;
BYTE* litStart;
BYTE* lit;
BYTE* llCode;
BYTE* mlCode;
BYTE* ofCode;
U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
U32 longLengthPos;
} seqStore_t;
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */
/* custom memory allocation functions */
void* ZSTD_malloc(size_t size, ZSTD_customMem customMem);
void* ZSTD_calloc(size_t size, ZSTD_customMem customMem);
void ZSTD_free(void* ptr, ZSTD_customMem customMem);
MEM_STATIC U32 ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus */
{
assert(val != 0);
{
# if defined(_MSC_VER) /* Visual */
unsigned long r=0;
_BitScanReverse(&r, val);
return (unsigned)r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */
return 31 - __builtin_clz(val);
# else /* Software version */
static const U32 DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return DeBruijnClz[(v * 0x07C4ACDDU) >> 27];
# endif
}
}
/* ZSTD_invalidateRepCodes() :
* ensures next compression will not use repcodes from previous block.
* Note : only works with regular variant;
* do not use with extDict variant ! */
void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx); /* zstdmt, adaptive_compression (shouldn't get this definition from here) */
typedef struct {
blockType_e blockType;
U32 lastBlock;
U32 origSize;
} blockProperties_t;
/*! ZSTD_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
/* Used by: decompress, fullbench (does not get its definition from here) */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
blockProperties_t* bpPtr);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_CCOMMON_H_MODULE */

View File

@ -0,0 +1,714 @@
/* ******************************************************************
FSE : Finite State Entropy encoder
Copyright (C) 2013-present, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include "compiler.h"
#include "mem.h" /* U32, U16, etc. */
#include "debug.h" /* assert, DEBUGLOG */
#include "hist.h" /* HIST_count_wksp */
#include "bitstream.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "error_private.h"
/* **************************************************************
* Error Management
****************************************************************/
#define FSE_isError ERR_isError
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
/* FSE_buildCTable_wksp() :
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
* wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)`
* workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements
*/
size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
U32 const tableSize = 1 << tableLog;
U32 const tableMask = tableSize - 1;
void* const ptr = ct;
U16* const tableU16 = ( (U16*) ptr) + 2;
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ;
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
U32 const step = FSE_TABLESTEP(tableSize);
U32 cumul[FSE_MAX_SYMBOL_VALUE+2];
FSE_FUNCTION_TYPE* const tableSymbol = (FSE_FUNCTION_TYPE*)workSpace;
U32 highThreshold = tableSize-1;
/* CTable header */
if (((size_t)1 << tableLog) * sizeof(FSE_FUNCTION_TYPE) > wkspSize) return ERROR(tableLog_tooLarge);
tableU16[-2] = (U16) tableLog;
tableU16[-1] = (U16) maxSymbolValue;
assert(tableLog < 16); /* required for the threshold strategy to work */
/* For explanations on how to distribute symbol values over the table :
* http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
/* symbol start positions */
{ U32 u;
cumul[0] = 0;
for (u=1; u<=maxSymbolValue+1; u++) {
if (normalizedCounter[u-1]==-1) { /* Low proba symbol */
cumul[u] = cumul[u-1] + 1;
tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1);
} else {
cumul[u] = cumul[u-1] + normalizedCounter[u-1];
} }
cumul[maxSymbolValue+1] = tableSize+1;
}
/* Spread symbols */
{ U32 position = 0;
U32 symbol;
for (symbol=0; symbol<=maxSymbolValue; symbol++) {
int nbOccurences;
for (nbOccurences=0; nbOccurences<normalizedCounter[symbol]; nbOccurences++) {
tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* Low proba area */
} }
if (position!=0) return ERROR(GENERIC); /* Must have gone through all positions */
}
/* Build table */
{ U32 u; for (u=0; u<tableSize; u++) {
FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */
tableU16[cumul[s]++] = (U16) (tableSize+u); /* TableU16 : sorted by symbol order; gives next state value */
} }
/* Build Symbol Transformation Table */
{ unsigned total = 0;
unsigned s;
for (s=0; s<=maxSymbolValue; s++) {
switch (normalizedCounter[s])
{
case 0:
/* filling nonetheless, for compatibility with FSE_getMaxNbBits() */
symbolTT[s].deltaNbBits = ((tableLog+1) << 16) - (1<<tableLog);
break;
case -1:
case 1:
symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog);
symbolTT[s].deltaFindState = total - 1;
total ++;
break;
default :
{
U32 const maxBitsOut = tableLog - BIT_highbit32 (normalizedCounter[s]-1);
U32 const minStatePlus = normalizedCounter[s] << maxBitsOut;
symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
symbolTT[s].deltaFindState = total - normalizedCounter[s];
total += normalizedCounter[s];
} } } }
#if 0 /* debug : symbol costs */
DEBUGLOG(5, "\n --- table statistics : ");
{ U32 symbol;
for (symbol=0; symbol<=maxSymbolValue; symbol++) {
DEBUGLOG(5, "%3u: w=%3i, maxBits=%u, fracBits=%.2f",
symbol, normalizedCounter[symbol],
FSE_getMaxNbBits(symbolTT, symbol),
(double)FSE_bitCost(symbolTT, tableLog, symbol, 8) / 256);
}
}
#endif
return 0;
}
size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
FSE_FUNCTION_TYPE tableSymbol[FSE_MAX_TABLESIZE]; /* memset() is not necessary, even if static analyzer complain about it */
return FSE_buildCTable_wksp(ct, normalizedCounter, maxSymbolValue, tableLog, tableSymbol, sizeof(tableSymbol));
}
#ifndef FSE_COMMONDEFS_ONLY
/*-**************************************************************
* FSE NCount encoding
****************************************************************/
size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
{
size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog) >> 3) + 3;
return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
}
static size_t FSE_writeNCount_generic (void* header, size_t headerBufferSize,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
unsigned writeIsSafe)
{
BYTE* const ostart = (BYTE*) header;
BYTE* out = ostart;
BYTE* const oend = ostart + headerBufferSize;
int nbBits;
const int tableSize = 1 << tableLog;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
bitStream = 0;
bitCount = 0;
/* Table Size */
bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
bitCount += 4;
/* Init */
remaining = tableSize+1; /* +1 for extra accuracy */
threshold = tableSize;
nbBits = tableLog+1;
while (remaining>1) { /* stops at 1 */
if (previous0) {
unsigned start = charnum;
while (!normalizedCounter[charnum]) charnum++;
while (charnum >= start+24) {
start+=24;
bitStream += 0xFFFFU << bitCount;
if ((!writeIsSafe) && (out > oend-2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE) bitStream;
out[1] = (BYTE)(bitStream>>8);
out+=2;
bitStream>>=16;
}
while (charnum >= start+3) {
start+=3;
bitStream += 3 << bitCount;
bitCount += 2;
}
bitStream += (charnum-start) << bitCount;
bitCount += 2;
if (bitCount>16) {
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
} }
{ int count = normalizedCounter[charnum++];
int const max = (2*threshold-1)-remaining;
remaining -= count < 0 ? -count : count;
count++; /* +1 for extra accuracy */
if (count>=threshold) count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
bitStream += count << bitCount;
bitCount += nbBits;
bitCount -= (count<max);
previous0 = (count==1);
if (remaining<1) return ERROR(GENERIC);
while (remaining<threshold) { nbBits--; threshold>>=1; }
}
if (bitCount>16) {
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
} }
/* flush remaining bitStream */
if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out+= (bitCount+7) /8;
if (charnum > maxSymbolValue + 1) return ERROR(GENERIC);
return (out-ostart);
}
size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */
if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1);
}
/*-**************************************************************
* FSE Compression Code
****************************************************************/
/*! FSE_sizeof_CTable() :
FSE_CTable is a variable size structure which contains :
`U16 tableLog;`
`U16 maxSymbolValue;`
`U16 nextStateNumber[1 << tableLog];` // This size is variable
`FSE_symbolCompressionTransform symbolTT[maxSymbolValue+1];` // This size is variable
Allocation is manual (C standard does not support variable-size structures).
*/
size_t FSE_sizeof_CTable (unsigned maxSymbolValue, unsigned tableLog)
{
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
return FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
}
FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog)
{
size_t size;
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
return (FSE_CTable*)malloc(size);
}
void FSE_freeCTable (FSE_CTable* ct) { free(ct); }
/* provides the minimum logSize to safely represent a distribution */
static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
{
U32 minBitsSrc = BIT_highbit32((U32)(srcSize - 1)) + 1;
U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
assert(srcSize > 1); /* Not supported, RLE should be used instead */
return minBits;
}
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
{
U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus;
U32 tableLog = maxTableLog;
U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
assert(srcSize > 1); /* Not supported, RLE should be used instead */
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */
if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */
if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG;
if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG;
return tableLog;
}
unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
}
/* Secondary normalization method.
To be used when primary method fails. */
static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue)
{
short const NOT_YET_ASSIGNED = -2;
U32 s;
U32 distributed = 0;
U32 ToDistribute;
/* Init */
U32 const lowThreshold = (U32)(total >> tableLog);
U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
for (s=0; s<=maxSymbolValue; s++) {
if (count[s] == 0) {
norm[s]=0;
continue;
}
if (count[s] <= lowThreshold) {
norm[s] = -1;
distributed++;
total -= count[s];
continue;
}
if (count[s] <= lowOne) {
norm[s] = 1;
distributed++;
total -= count[s];
continue;
}
norm[s]=NOT_YET_ASSIGNED;
}
ToDistribute = (1 << tableLog) - distributed;
if ((total / ToDistribute) > lowOne) {
/* risk of rounding to zero */
lowOne = (U32)((total * 3) / (ToDistribute * 2));
for (s=0; s<=maxSymbolValue; s++) {
if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) {
norm[s] = 1;
distributed++;
total -= count[s];
continue;
} }
ToDistribute = (1 << tableLog) - distributed;
}
if (distributed == maxSymbolValue+1) {
/* all values are pretty poor;
probably incompressible data (should have already been detected);
find max, then give all remaining points to max */
U32 maxV = 0, maxC = 0;
for (s=0; s<=maxSymbolValue; s++)
if (count[s] > maxC) { maxV=s; maxC=count[s]; }
norm[maxV] += (short)ToDistribute;
return 0;
}
if (total == 0) {
/* all of the symbols were low enough for the lowOne or lowThreshold */
for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1))
if (norm[s] > 0) { ToDistribute--; norm[s]++; }
return 0;
}
{ U64 const vStepLog = 62 - tableLog;
U64 const mid = (1ULL << (vStepLog-1)) - 1;
U64 const rStep = ((((U64)1<<vStepLog) * ToDistribute) + mid) / total; /* scale on remaining */
U64 tmpTotal = mid;
for (s=0; s<=maxSymbolValue; s++) {
if (norm[s]==NOT_YET_ASSIGNED) {
U64 const end = tmpTotal + (count[s] * rStep);
U32 const sStart = (U32)(tmpTotal >> vStepLog);
U32 const sEnd = (U32)(end >> vStepLog);
U32 const weight = sEnd - sStart;
if (weight < 1)
return ERROR(GENERIC);
norm[s] = (short)weight;
tmpTotal = end;
} } }
return 0;
}
size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
const unsigned* count, size_t total,
unsigned maxSymbolValue)
{
/* Sanity checks */
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */
if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */
{ static U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 };
U64 const scale = 62 - tableLog;
U64 const step = ((U64)1<<62) / total; /* <== here, one division ! */
U64 const vStep = 1ULL<<(scale-20);
int stillToDistribute = 1<<tableLog;
unsigned s;
unsigned largest=0;
short largestP=0;
U32 lowThreshold = (U32)(total >> tableLog);
for (s=0; s<=maxSymbolValue; s++) {
if (count[s] == total) return 0; /* rle special case */
if (count[s] == 0) { normalizedCounter[s]=0; continue; }
if (count[s] <= lowThreshold) {
normalizedCounter[s] = -1;
stillToDistribute--;
} else {
short proba = (short)((count[s]*step) >> scale);
if (proba<8) {
U64 restToBeat = vStep * rtbTable[proba];
proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
}
if (proba > largestP) { largestP=proba; largest=s; }
normalizedCounter[s] = proba;
stillToDistribute -= proba;
} }
if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
/* corner case, need another normalization method */
size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue);
if (FSE_isError(errorCode)) return errorCode;
}
else normalizedCounter[largest] += (short)stillToDistribute;
}
#if 0
{ /* Print Table (debug) */
U32 s;
U32 nTotal = 0;
for (s=0; s<=maxSymbolValue; s++)
RAWLOG(2, "%3i: %4i \n", s, normalizedCounter[s]);
for (s=0; s<=maxSymbolValue; s++)
nTotal += abs(normalizedCounter[s]);
if (nTotal != (1U<<tableLog))
RAWLOG(2, "Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
getchar();
}
#endif
return tableLog;
}
/* fake FSE_CTable, for raw (uncompressed) input */
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits)
{
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSymbolValue = tableMask;
void* const ptr = ct;
U16* const tableU16 = ( (U16*) ptr) + 2;
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableSize>>1); /* assumption : tableLog >= 1 */
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
unsigned s;
/* Sanity checks */
if (nbBits < 1) return ERROR(GENERIC); /* min size */
/* header */
tableU16[-2] = (U16) nbBits;
tableU16[-1] = (U16) maxSymbolValue;
/* Build table */
for (s=0; s<tableSize; s++)
tableU16[s] = (U16)(tableSize + s);
/* Build Symbol Transformation Table */
{ const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits);
for (s=0; s<=maxSymbolValue; s++) {
symbolTT[s].deltaNbBits = deltaNbBits;
symbolTT[s].deltaFindState = s-1;
} }
return 0;
}
/* fake FSE_CTable, for rle input (always same symbol) */
size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
{
void* ptr = ct;
U16* tableU16 = ( (U16*) ptr) + 2;
void* FSCTptr = (U32*)ptr + 2;
FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) FSCTptr;
/* header */
tableU16[-2] = (U16) 0;
tableU16[-1] = (U16) symbolValue;
/* Build table */
tableU16[0] = 0;
tableU16[1] = 0; /* just in case */
/* Build Symbol Transformation Table */
symbolTT[symbolValue].deltaNbBits = 0;
symbolTT[symbolValue].deltaFindState = 0;
return 0;
}
static size_t FSE_compress_usingCTable_generic (void* dst, size_t dstSize,
const void* src, size_t srcSize,
const FSE_CTable* ct, const unsigned fast)
{
const BYTE* const istart = (const BYTE*) src;
const BYTE* const iend = istart + srcSize;
const BYTE* ip=iend;
BIT_CStream_t bitC;
FSE_CState_t CState1, CState2;
/* init */
if (srcSize <= 2) return 0;
{ size_t const initError = BIT_initCStream(&bitC, dst, dstSize);
if (FSE_isError(initError)) return 0; /* not enough space available to write a bitstream */ }
#define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
if (srcSize & 1) {
FSE_initCState2(&CState1, ct, *--ip);
FSE_initCState2(&CState2, ct, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_FLUSHBITS(&bitC);
} else {
FSE_initCState2(&CState2, ct, *--ip);
FSE_initCState2(&CState1, ct, *--ip);
}
/* join to mod 4 */
srcSize -= 2;
if ((sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) { /* test bit 2 */
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_FLUSHBITS(&bitC);
}
/* 2 or 4 encoding per loop */
while ( ip>istart ) {
FSE_encodeSymbol(&bitC, &CState2, *--ip);
if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */
FSE_FLUSHBITS(&bitC);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) { /* this test must be static */
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
}
FSE_FLUSHBITS(&bitC);
}
FSE_flushCState(&bitC, &CState2);
FSE_flushCState(&bitC, &CState1);
return BIT_closeCStream(&bitC);
}
size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
const void* src, size_t srcSize,
const FSE_CTable* ct)
{
unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize));
if (fast)
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
else
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
}
size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
/* FSE_compress_wksp() :
* Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
* `wkspSize` size must be `(1<<tableLog)`.
*/
size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const oend = ostart + dstSize;
U32 count[FSE_MAX_SYMBOL_VALUE+1];
S16 norm[FSE_MAX_SYMBOL_VALUE+1];
FSE_CTable* CTable = (FSE_CTable*)workSpace;
size_t const CTableSize = FSE_CTABLE_SIZE_U32(tableLog, maxSymbolValue);
void* scratchBuffer = (void*)(CTable + CTableSize);
size_t const scratchBufferSize = wkspSize - (CTableSize * sizeof(FSE_CTable));
/* init conditions */
if (wkspSize < FSE_WKSP_SIZE_U32(tableLog, maxSymbolValue)) return ERROR(tableLog_tooLarge);
if (srcSize <= 1) return 0; /* Not compressible */
if (!maxSymbolValue) maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
if (!tableLog) tableLog = FSE_DEFAULT_TABLELOG;
/* Scan input and build symbol stats */
{ CHECK_V_F(maxCount, HIST_count_wksp(count, &maxSymbolValue, src, srcSize, (unsigned*)scratchBuffer) );
if (maxCount == srcSize) return 1; /* only a single symbol in src : rle */
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
if (maxCount < (srcSize >> 7)) return 0; /* Heuristic : not compressible enough */
}
tableLog = FSE_optimalTableLog(tableLog, srcSize, maxSymbolValue);
CHECK_F( FSE_normalizeCount(norm, tableLog, count, srcSize, maxSymbolValue) );
/* Write table description header */
{ CHECK_V_F(nc_err, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
op += nc_err;
}
/* Compress */
CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, scratchBufferSize) );
{ CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, src, srcSize, CTable) );
if (cSize == 0) return 0; /* not enough space for compressed data */
op += cSize;
}
/* check compressibility */
if ( (size_t)(op-ostart) >= srcSize-1 ) return 0;
return op-ostart;
}
typedef struct {
FSE_CTable CTable_max[FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)];
BYTE scratchBuffer[1 << FSE_MAX_TABLELOG];
} fseWkspMax_t;
size_t FSE_compress2 (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog)
{
fseWkspMax_t scratchBuffer;
DEBUG_STATIC_ASSERT(sizeof(scratchBuffer) >= FSE_WKSP_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)); /* compilation failures here means scratchBuffer is not large enough */
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
return FSE_compress_wksp(dst, dstCapacity, src, srcSize, maxSymbolValue, tableLog, &scratchBuffer, sizeof(scratchBuffer));
}
size_t FSE_compress (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
return FSE_compress2(dst, dstCapacity, src, srcSize, FSE_MAX_SYMBOL_VALUE, FSE_DEFAULT_TABLELOG);
}
#endif /* FSE_COMMONDEFS_ONLY */

View File

@ -0,0 +1,195 @@
/* ******************************************************************
hist : Histogram functions
part of Finite State Entropy project
Copyright (C) 2013-present, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* --- dependencies --- */
#include "mem.h" /* U32, BYTE, etc. */
#include "debug.h" /* assert, DEBUGLOG */
#include "error_private.h" /* ERROR */
#include "hist.h"
/* --- Error management --- */
unsigned HIST_isError(size_t code) { return ERR_isError(code); }
/*-**************************************************************
* Histogram functions
****************************************************************/
unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* const end = ip + srcSize;
unsigned maxSymbolValue = *maxSymbolValuePtr;
unsigned largestCount=0;
memset(count, 0, (maxSymbolValue+1) * sizeof(*count));
if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
while (ip<end) {
assert(*ip <= maxSymbolValue);
count[*ip++]++;
}
while (!count[maxSymbolValue]) maxSymbolValue--;
*maxSymbolValuePtr = maxSymbolValue;
{ U32 s;
for (s=0; s<=maxSymbolValue; s++)
if (count[s] > largestCount) largestCount = count[s];
}
return largestCount;
}
/* HIST_count_parallel_wksp() :
* store histogram into 4 intermediate tables, recombined at the end.
* this design makes better use of OoO cpus,
* and is noticeably faster when some values are heavily repeated.
* But it needs some additional workspace for intermediate tables.
* `workSpace` size must be a table of size >= HIST_WKSP_SIZE_U32.
* @return : largest histogram frequency,
* or an error code (notably when histogram would be larger than *maxSymbolValuePtr). */
static size_t HIST_count_parallel_wksp(
unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
unsigned checkMax,
unsigned* const workSpace)
{
const BYTE* ip = (const BYTE*)source;
const BYTE* const iend = ip+sourceSize;
unsigned maxSymbolValue = *maxSymbolValuePtr;
unsigned max=0;
U32* const Counting1 = workSpace;
U32* const Counting2 = Counting1 + 256;
U32* const Counting3 = Counting2 + 256;
U32* const Counting4 = Counting3 + 256;
memset(workSpace, 0, 4*256*sizeof(unsigned));
/* safety checks */
if (!sourceSize) {
memset(count, 0, maxSymbolValue + 1);
*maxSymbolValuePtr = 0;
return 0;
}
if (!maxSymbolValue) maxSymbolValue = 255; /* 0 == default */
/* by stripes of 16 bytes */
{ U32 cached = MEM_read32(ip); ip += 4;
while (ip < iend-15) {
U32 c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
}
ip-=4;
}
/* finish last symbols */
while (ip<iend) Counting1[*ip++]++;
if (checkMax) { /* verify stats will fit into destination table */
U32 s; for (s=255; s>maxSymbolValue; s--) {
Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
if (Counting1[s]) return ERROR(maxSymbolValue_tooSmall);
} }
{ U32 s;
if (maxSymbolValue > 255) maxSymbolValue = 255;
for (s=0; s<=maxSymbolValue; s++) {
count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
if (count[s] > max) max = count[s];
} }
while (!count[maxSymbolValue]) maxSymbolValue--;
*maxSymbolValuePtr = maxSymbolValue;
return (size_t)max;
}
/* HIST_countFast_wksp() :
* Same as HIST_countFast(), but using an externally provided scratch buffer.
* `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */
size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
unsigned* workSpace)
{
if (sourceSize < 1500) /* heuristic threshold */
return HIST_count_simple(count, maxSymbolValuePtr, source, sourceSize);
return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 0, workSpace);
}
/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */
size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize)
{
unsigned tmpCounters[HIST_WKSP_SIZE_U32];
return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, tmpCounters);
}
/* HIST_count_wksp() :
* Same as HIST_count(), but using an externally provided scratch buffer.
* `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */
size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize, unsigned* workSpace)
{
if (*maxSymbolValuePtr < 255)
return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 1, workSpace);
*maxSymbolValuePtr = 255;
return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace);
}
size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize)
{
unsigned tmpCounters[HIST_WKSP_SIZE_U32];
return HIST_count_wksp(count, maxSymbolValuePtr, src, srcSize, tmpCounters);
}

View File

@ -0,0 +1,92 @@
/* ******************************************************************
hist : Histogram functions
part of Finite State Entropy project
Copyright (C) 2013-present, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* --- dependencies --- */
#include <stddef.h> /* size_t */
/* --- simple histogram functions --- */
/*! HIST_count():
* Provides the precise count of each byte within a table 'count'.
* 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
* Updates *maxSymbolValuePtr with actual largest symbol value detected.
* @return : count of the most frequent symbol (which isn't identified).
* or an error code, which can be tested using HIST_isError().
* note : if return == srcSize, there is only one symbol.
*/
size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);
unsigned HIST_isError(size_t code); /*< tells if a return value is an error code */
/* --- advanced histogram functions --- */
#define HIST_WKSP_SIZE_U32 1024
/** HIST_count_wksp() :
* Same as HIST_count(), but using an externally provided scratch buffer.
* Benefit is this function will use very little stack space.
* `workSpace` must be a table of unsigned of size >= HIST_WKSP_SIZE_U32
*/
size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize,
unsigned* workSpace);
/** HIST_countFast() :
* same as HIST_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr.
* This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr`
*/
size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);
/** HIST_countFast_wksp() :
* Same as HIST_countFast(), but using an externally provided scratch buffer.
* `workSpace` must be a table of unsigned of size >= HIST_WKSP_SIZE_U32
*/
size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize,
unsigned* workSpace);
/*! HIST_count_simple() :
* Same as HIST_countFast(), this function is unsafe,
* and will segfault if any value within `src` is `> *maxSymbolValuePtr`.
* It is also a bit slower for large inputs.
* However, it does not need any additional memory (not even on stack).
* @return : count of the most frequent symbol.
* Note this function doesn't produce any error (i.e. it must succeed).
*/
unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);

View File

@ -0,0 +1,796 @@
/* ******************************************************************
Huffman encoder, part of New Generation Entropy library
Copyright (C) 2013-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
/* **************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* **************************************************************
* Includes
****************************************************************/
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
#include "compiler.h"
#include "bitstream.h"
#include "hist.h"
#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
#include "fse.h" /* header compression */
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"
#include "error_private.h"
/* **************************************************************
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
/* **************************************************************
* Utils
****************************************************************/
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
}
/* *******************************************************
* HUF : Huffman block compression
*********************************************************/
/* HUF_compressWeights() :
* Same as FSE_compress(), but dedicated to huff0's weights compression.
* The use case needs much less stack memory.
* Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
*/
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const oend = ostart + dstSize;
U32 maxSymbolValue = HUF_TABLELOG_MAX;
U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
BYTE scratchBuffer[1<<MAX_FSE_TABLELOG_FOR_HUFF_HEADER];
U32 count[HUF_TABLELOG_MAX+1];
S16 norm[HUF_TABLELOG_MAX+1];
/* init conditions */
if (wtSize <= 1) return 0; /* Not compressible */
/* Scan input and build symbol stats */
{ unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize); /* never fails */
if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
}
tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue) );
/* Write table description header */
{ CHECK_V_F(hSize, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
op += hSize;
}
/* Compress */
CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
{ CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, weightTable, wtSize, CTable) );
if (cSize == 0) return 0; /* not enough space for compressed data */
op += cSize;
}
return op-ostart;
}
struct HUF_CElt_s {
U16 val;
BYTE nbBits;
}; /* typedef'd to HUF_CElt within "huf.h" */
/*! HUF_writeCTable() :
`CTable` : Huffman tree to save, using huf representation.
@return : size of saved CTable */
size_t HUF_writeCTable (void* dst, size_t maxDstSize,
const HUF_CElt* CTable, U32 maxSymbolValue, U32 huffLog)
{
BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
BYTE* op = (BYTE*)dst;
U32 n;
/* check conditions */
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
/* convert to weight */
bitsToWeight[0] = 0;
for (n=1; n<huffLog+1; n++)
bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
for (n=0; n<maxSymbolValue; n++)
huffWeight[n] = bitsToWeight[CTable[n].nbBits];
/* attempt weights compression by FSE */
{ CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
op[0] = (BYTE)hSize;
return hSize+1;
} }
/* write raw values as 4-bits (max : 15) */
if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
for (n=0; n<maxSymbolValue; n+=2)
op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
return ((maxSymbolValue+1)/2) + 1;
}
size_t HUF_readCTable (HUF_CElt* CTable, U32* maxSymbolValuePtr, const void* src, size_t srcSize)
{
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
U32 nbSymbols = 0;
/* get symbol weights */
CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
/* check result */
if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
/* Prepare base value per rank */
{ U32 n, nextRankStart = 0;
for (n=1; n<=tableLog; n++) {
U32 current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
} }
/* fill nbBits */
{ U32 n; for (n=0; n<nbSymbols; n++) {
const U32 w = huffWeight[n];
CTable[n].nbBits = (BYTE)(tableLog + 1 - w);
} }
/* fill val */
{ U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
{ U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
/* determine stating value per rank */
valPerRank[tableLog+1] = 0; /* for w==0 */
{ U16 min = 0;
U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
valPerRank[n] = min; /* get starting value within each rank */
min += nbPerRank[n];
min >>= 1;
} }
/* assign value within rank, symbol order */
{ U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
}
*maxSymbolValuePtr = nbSymbols - 1;
return readSize;
}
U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
{
const HUF_CElt* table = (const HUF_CElt*)symbolTable;
assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
return table[symbolValue].nbBits;
}
typedef struct nodeElt_s {
U32 count;
U16 parent;
BYTE byte;
BYTE nbBits;
} nodeElt;
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
{
const U32 largestBits = huffNode[lastNonNull].nbBits;
if (largestBits <= maxNbBits) return largestBits; /* early exit : no elt > maxNbBits */
/* there are several too large elements (at least >= 2) */
{ int totalCost = 0;
const U32 baseCost = 1 << (largestBits - maxNbBits);
U32 n = lastNonNull;
while (huffNode[n].nbBits > maxNbBits) {
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
huffNode[n].nbBits = (BYTE)maxNbBits;
n --;
} /* n stops at huffNode[n].nbBits <= maxNbBits */
while (huffNode[n].nbBits == maxNbBits) n--; /* n end at index of smallest symbol using < maxNbBits */
/* renorm totalCost */
totalCost >>= (largestBits - maxNbBits); /* note : totalCost is necessarily a multiple of baseCost */
/* repay normalized cost */
{ U32 const noSymbol = 0xF0F0F0F0;
U32 rankLast[HUF_TABLELOG_MAX+2];
int pos;
/* Get pos of last (smallest) symbol per rank */
memset(rankLast, 0xF0, sizeof(rankLast));
{ U32 currentNbBits = maxNbBits;
for (pos=n ; pos >= 0; pos--) {
if (huffNode[pos].nbBits >= currentNbBits) continue;
currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */
rankLast[maxNbBits-currentNbBits] = pos;
} }
while (totalCost > 0) {
U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1;
for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
U32 highPos = rankLast[nBitsToDecrease];
U32 lowPos = rankLast[nBitsToDecrease-1];
if (highPos == noSymbol) continue;
if (lowPos == noSymbol) break;
{ U32 const highTotal = huffNode[highPos].count;
U32 const lowTotal = 2 * huffNode[lowPos].count;
if (highTotal <= lowTotal) break;
} }
/* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
/* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
nBitsToDecrease ++;
totalCost -= 1 << (nBitsToDecrease-1);
if (rankLast[nBitsToDecrease-1] == noSymbol)
rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; /* this rank is no longer empty */
huffNode[rankLast[nBitsToDecrease]].nbBits ++;
if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
rankLast[nBitsToDecrease] = noSymbol;
else {
rankLast[nBitsToDecrease]--;
if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
} } /* while (totalCost > 0) */
while (totalCost < 0) { /* Sometimes, cost correction overshoot */
if (rankLast[1] == noSymbol) { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
while (huffNode[n].nbBits == maxNbBits) n--;
huffNode[n+1].nbBits--;
rankLast[1] = n+1;
totalCost++;
continue;
}
huffNode[ rankLast[1] + 1 ].nbBits--;
rankLast[1]++;
totalCost ++;
} } } /* there are several too large elements (at least >= 2) */
return maxNbBits;
}
typedef struct {
U32 base;
U32 current;
} rankPos;
static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
{
rankPos rank[32];
U32 n;
memset(rank, 0, sizeof(rank));
for (n=0; n<=maxSymbolValue; n++) {
U32 r = BIT_highbit32(count[n] + 1);
rank[r].base ++;
}
for (n=30; n>0; n--) rank[n-1].base += rank[n].base;
for (n=0; n<32; n++) rank[n].current = rank[n].base;
for (n=0; n<=maxSymbolValue; n++) {
U32 const c = count[n];
U32 const r = BIT_highbit32(c+1) + 1;
U32 pos = rank[r].current++;
while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) {
huffNode[pos] = huffNode[pos-1];
pos--;
}
huffNode[pos].count = c;
huffNode[pos].byte = (BYTE)n;
}
}
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of HUF_CTABLE_WORKSPACE_SIZE_U32 unsigned.
*/
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
{
nodeElt* const huffNode0 = (nodeElt*)workSpace;
nodeElt* const huffNode = huffNode0+1;
U32 n, nonNullRank;
int lowS, lowN;
U16 nodeNb = STARTNODE;
U32 nodeRoot;
/* safety checks */
if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (wkspSize < sizeof(huffNodeTable)) return ERROR(workSpace_tooSmall);
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
memset(huffNode0, 0, sizeof(huffNodeTable));
/* sort, decreasing order */
HUF_sort(huffNode, count, maxSymbolValue);
/* init for parents */
nonNullRank = maxSymbolValue;
while(huffNode[nonNullRank].count == 0) nonNullRank--;
lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb;
nodeNb++; lowS-=2;
for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
/* create parents */
while (nodeNb <= nodeRoot) {
U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
huffNode[n1].parent = huffNode[n2].parent = nodeNb;
nodeNb++;
}
/* distribute weights (unlimited tree height) */
huffNode[nodeRoot].nbBits = 0;
for (n=nodeRoot-1; n>=STARTNODE; n--)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
for (n=0; n<=nonNullRank; n++)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
/* enforce maxTableLog */
maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);
/* fill result into tree (val, nbBits) */
{ U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
for (n=0; n<=nonNullRank; n++)
nbPerRank[huffNode[n].nbBits]++;
/* determine stating value per rank */
{ U16 min = 0;
for (n=maxNbBits; n>0; n--) {
valPerRank[n] = min; /* get starting value within each rank */
min += nbPerRank[n];
min >>= 1;
} }
for (n=0; n<=maxSymbolValue; n++)
tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
for (n=0; n<=maxSymbolValue; n++)
tree[n].val = valPerRank[tree[n].nbBits]++; /* assign value within rank, symbol order */
}
return maxNbBits;
}
/** HUF_buildCTable() :
* @return : maxNbBits
* Note : count is used before tree is written, so they can safely overlap
*/
size_t HUF_buildCTable (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits)
{
huffNodeTable nodeTable;
return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, nodeTable, sizeof(nodeTable));
}
static size_t HUF_estimateCompressedSize(HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
{
size_t nbBits = 0;
int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) {
nbBits += CTable[s].nbBits * count[s];
}
return nbBits >> 3;
}
static int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
int bad = 0;
int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) {
bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
}
return !bad;
}
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
FORCE_INLINE_TEMPLATE void
HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
{
BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
}
#define HUF_FLUSHBITS(s) BIT_flushBits(s)
#define HUF_FLUSHBITS_1(stream) \
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
#define HUF_FLUSHBITS_2(stream) \
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
FORCE_INLINE_TEMPLATE size_t
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
const BYTE* ip = (const BYTE*) src;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
size_t n;
BIT_CStream_t bitC;
/* init */
if (dstSize < 8) return 0; /* not enough space to compress */
{ size_t const initErr = BIT_initCStream(&bitC, op, oend-op);
if (HUF_isError(initErr)) return 0; }
n = srcSize & ~3; /* join to mod 4 */
switch (srcSize & 3)
{
case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
HUF_FLUSHBITS_2(&bitC);
/* fall-through */
case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
HUF_FLUSHBITS_1(&bitC);
/* fall-through */
case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
HUF_FLUSHBITS(&bitC);
/* fall-through */
case 0 : /* fall-through */
default: break;
}
for (; n>0; n-=4) { /* note : n&3==0 at this stage */
HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
HUF_FLUSHBITS_1(&bitC);
HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
HUF_FLUSHBITS_2(&bitC);
HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
HUF_FLUSHBITS_1(&bitC);
HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
HUF_FLUSHBITS(&bitC);
}
return BIT_closeCStream(&bitC);
}
#if DYNAMIC_BMI2
static TARGET_ATTRIBUTE("bmi2") size_t
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
static size_t
HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, const int bmi2)
{
if (bmi2) {
return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
}
return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
}
#else
static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, const int bmi2)
{
(void)bmi2;
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
#endif
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}
static size_t
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, int bmi2)
{
size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
const BYTE* ip = (const BYTE*) src;
const BYTE* const iend = ip + srcSize;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
if (srcSize < 12) return 0; /* no saving possible : too small input */
op += 6; /* jumpTable */
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0;
assert(cSize <= 65535);
MEM_writeLE16(ostart, (U16)cSize);
op += cSize;
}
ip += segmentSize;
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0;
assert(cSize <= 65535);
MEM_writeLE16(ostart+2, (U16)cSize);
op += cSize;
}
ip += segmentSize;
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0;
assert(cSize <= 65535);
MEM_writeLE16(ostart+4, (U16)cSize);
op += cSize;
}
ip += segmentSize;
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, iend-ip, CTable, bmi2) );
if (cSize==0) return 0;
op += cSize;
}
return op-ostart;
}
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}
static size_t HUF_compressCTable_internal(
BYTE* const ostart, BYTE* op, BYTE* const oend,
const void* src, size_t srcSize,
unsigned singleStream, const HUF_CElt* CTable, const int bmi2)
{
size_t const cSize = singleStream ?
HUF_compress1X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2) :
HUF_compress4X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2);
if (HUF_isError(cSize)) { return cSize; }
if (cSize==0) { return 0; } /* uncompressible */
op += cSize;
/* check compressibility */
if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
return op-ostart;
}
typedef struct {
U32 count[HUF_SYMBOLVALUE_MAX + 1];
HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
huffNodeTable nodeTable;
} HUF_compress_tables_t;
/* HUF_compress_internal() :
* `workSpace` must a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
static size_t HUF_compress_internal (
void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
unsigned singleStream,
void* workSpace, size_t wkspSize,
HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
const int bmi2)
{
HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
/* checks & inits */
if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
if (!srcSize) return 0; /* Uncompressed */
if (!dstSize) return 0; /* cannot fit anything within dst budget */
if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
/* Heuristic : If old table is valid, use it for small inputs */
if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
singleStream, oldHufTable, bmi2);
}
/* Scan input and build symbol stats */
{ CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->count) );
if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
}
/* Check validity of previous table */
if ( repeat
&& *repeat == HUF_repeat_check
&& !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
*repeat = HUF_repeat_none;
}
/* Heuristic : use existing table for small inputs */
if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
singleStream, oldHufTable, bmi2);
}
/* Build Huffman Tree */
huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
{ CHECK_V_F(maxBits, HUF_buildCTable_wksp(table->CTable, table->count,
maxSymbolValue, huffLog,
table->nodeTable, sizeof(table->nodeTable)) );
huffLog = (U32)maxBits;
/* Zero unused symbols in CTable, so we can check it for validity */
memset(table->CTable + (maxSymbolValue + 1), 0,
sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
}
/* Write table description header */
{ CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
/* Check if using previous huffman table is beneficial */
if (repeat && *repeat != HUF_repeat_none) {
size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
singleStream, oldHufTable, bmi2);
} }
/* Use the new huffman table */
if (hSize + 12ul >= srcSize) { return 0; }
op += hSize;
if (repeat) { *repeat = HUF_repeat_none; }
if (oldHufTable)
memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
}
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
singleStream, table->CTable, bmi2);
}
size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize)
{
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, 1 /*single stream*/,
workSpace, wkspSize,
NULL, NULL, 0, 0 /*bmi2*/);
}
size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize,
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
{
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, 1 /*single stream*/,
workSpace, wkspSize, hufTable,
repeat, preferRepeat, bmi2);
}
size_t HUF_compress1X (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog)
{
unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}
/* HUF_compress4X_repeat():
* compress input using 4 streams.
* provide workspace to generate compression tables */
size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize)
{
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, 0 /*4 streams*/,
workSpace, wkspSize,
NULL, NULL, 0, 0 /*bmi2*/);
}
/* HUF_compress4X_repeat():
* compress input using 4 streams.
* re-use an existing huffman compression table */
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize,
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
{
return HUF_compress_internal(dst, dstSize, src, srcSize,
maxSymbolValue, huffLog, 0 /* 4 streams */,
workSpace, wkspSize,
hufTable, repeat, preferRepeat, bmi2);
}
size_t HUF_compress2 (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog)
{
unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}
size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,795 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* This header contains definitions
* that shall **only** be used by modules within lib/compress.
*/
#ifndef ZSTD_COMPRESS_H
#define ZSTD_COMPRESS_H
/*-*************************************
* Dependencies
***************************************/
#include "zstd_internal.h"
#ifdef ZSTD_MULTITHREAD
# include "zstdmt_compress.h"
#endif
#if defined (__cplusplus)
extern "C" {
#endif
/*-*************************************
* Constants
***************************************/
#define kSearchStrength 8
#define HASH_READ_SIZE 8
#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index 1 now means "unsorted".
It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
It's not a big deal though : candidate will just be sorted again.
Additionnally, candidate position 1 will be lost.
But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be misdhandled after table re-use with a different strategy
Constant required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
/*-*************************************
* Context memory management
***************************************/
typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
typedef enum {
ZSTD_dictDefaultAttach = 0,
ZSTD_dictForceAttach = 1,
ZSTD_dictForceCopy = -1,
} ZSTD_dictAttachPref_e;
typedef struct ZSTD_prefixDict_s {
const void* dict;
size_t dictSize;
ZSTD_dictContentType_e dictContentType;
} ZSTD_prefixDict;
typedef struct {
U32 CTable[HUF_CTABLE_SIZE_U32(255)];
HUF_repeat repeatMode;
} ZSTD_hufCTables_t;
typedef struct {
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
FSE_repeat offcode_repeatMode;
FSE_repeat matchlength_repeatMode;
FSE_repeat litlength_repeatMode;
} ZSTD_fseCTables_t;
typedef struct {
ZSTD_hufCTables_t huf;
ZSTD_fseCTables_t fse;
} ZSTD_entropyCTables_t;
typedef struct {
U32 off;
U32 len;
} ZSTD_match_t;
typedef struct {
int price;
U32 off;
U32 mlen;
U32 litlen;
U32 rep[ZSTD_REP_NUM];
} ZSTD_optimal_t;
typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
typedef struct {
/* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
U32* litFreq; /* table of literals statistics, of size 256 */
U32* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */
U32* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */
U32* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */
ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */
ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
U32 litSum; /* nb of literals */
U32 litLengthSum; /* nb of litLength codes */
U32 matchLengthSum; /* nb of matchLength codes */
U32 offCodeSum; /* nb of offset codes */
U32 litSumBasePrice; /* to compare to log2(litfreq) */
U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */
U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */
U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
} optState_t;
typedef struct {
ZSTD_entropyCTables_t entropy;
U32 rep[ZSTD_REP_NUM];
} ZSTD_compressedBlockState_t;
typedef struct {
BYTE const* nextSrc; /* next block here to continue on current prefix */
BYTE const* base; /* All regular indexes relative to this position */
BYTE const* dictBase; /* extDict indexes relative to this position */
U32 dictLimit; /* below that point, need extDict */
U32 lowLimit; /* below that point, no more data */
} ZSTD_window_t;
typedef struct ZSTD_matchState_t ZSTD_matchState_t;
struct ZSTD_matchState_t {
ZSTD_window_t window; /* State for window round buffer management */
U32 loadedDictEnd; /* index of end of dictionary */
U32 nextToUpdate; /* index from which to continue table update */
U32 nextToUpdate3; /* index from which to continue table update */
U32 hashLog3; /* dispatch table : larger == faster, more memory */
U32* hashTable;
U32* hashTable3;
U32* chainTable;
optState_t opt; /* optimal parser state */
const ZSTD_matchState_t *dictMatchState;
};
typedef struct {
ZSTD_compressedBlockState_t* prevCBlock;
ZSTD_compressedBlockState_t* nextCBlock;
ZSTD_matchState_t matchState;
} ZSTD_blockState_t;
typedef struct {
U32 offset;
U32 checksum;
} ldmEntry_t;
typedef struct {
ZSTD_window_t window; /* State for the window round buffer management */
ldmEntry_t* hashTable;
BYTE* bucketOffsets; /* Next position in bucket to insert entry */
U64 hashPower; /* Used to compute the rolling hash.
* Depends on ldmParams.minMatchLength */
} ldmState_t;
typedef struct {
U32 enableLdm; /* 1 if enable long distance matching */
U32 hashLog; /* Log size of hashTable */
U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
U32 minMatchLength; /* Minimum match length */
U32 hashEveryLog; /* Log number of entries to skip */
U32 windowLog; /* Window log for the LDM */
} ldmParams_t;
typedef struct {
U32 offset;
U32 litLength;
U32 matchLength;
} rawSeq;
typedef struct {
rawSeq* seq; /* The start of the sequences */
size_t pos; /* The position where reading stopped. <= size. */
size_t size; /* The number of sequences. <= capacity. */
size_t capacity; /* The capacity starting from `seq` pointer */
} rawSeqStore_t;
struct ZSTD_CCtx_params_s {
ZSTD_format_e format;
ZSTD_compressionParameters cParams;
ZSTD_frameParameters fParams;
int compressionLevel;
int forceWindow; /* force back-references to respect limit of
* 1<<wLog, even for dictionary */
ZSTD_dictAttachPref_e attachDictPref;
/* Multithreading: used to pass parameters to mtctx */
unsigned nbWorkers;
unsigned jobSize;
unsigned overlapSizeLog;
/* Long distance matching parameters */
ldmParams_t ldmParams;
/* Internal use, for createCCtxParams() and freeCCtxParams() only */
ZSTD_customMem customMem;
}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
struct ZSTD_CCtx_s {
ZSTD_compressionStage_e stage;
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
ZSTD_CCtx_params requestedParams;
ZSTD_CCtx_params appliedParams;
U32 dictID;
int workSpaceOversizedDuration;
void* workSpace;
size_t workSpaceSize;
size_t blockSize;
unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
unsigned long long consumedSrcSize;
unsigned long long producedCSize;
XXH64_state_t xxhState;
ZSTD_customMem customMem;
size_t staticSize;
seqStore_t seqStore; /* sequences storage ptrs */
ldmState_t ldmState; /* long distance matching state */
rawSeq* ldmSequences; /* Storage for the ldm output sequences */
size_t maxNbLdmSequences;
rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
ZSTD_blockState_t blockState;
U32* entropyWorkspace; /* entropy workspace of HUF_WORKSPACE_SIZE bytes */
/* streaming */
char* inBuff;
size_t inBuffSize;
size_t inToCompress;
size_t inBuffPos;
size_t inBuffTarget;
char* outBuff;
size_t outBuffSize;
size_t outBuffContentSize;
size_t outBuffFlushedSize;
ZSTD_cStreamStage streamStage;
U32 frameEnded;
/* Dictionary */
ZSTD_CDict* cdictLocal;
const ZSTD_CDict* cdict;
ZSTD_prefixDict prefixDict; /* single-usage dictionary */
/* Multi-threading */
#ifdef ZSTD_MULTITHREAD
ZSTDMT_CCtx* mtctx;
#endif
};
typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
typedef enum { ZSTD_noDict = 0, ZSTD_extDict = 1, ZSTD_dictMatchState = 2 } ZSTD_dictMode_e;
typedef size_t (*ZSTD_blockCompressor) (
ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode);
MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
{
static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 16, 17, 17, 18, 18, 19, 19,
20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22,
23, 23, 23, 23, 23, 23, 23, 23,
24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24 };
static const U32 LL_deltaCode = 19;
return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
}
/* ZSTD_MLcode() :
* note : mlBase = matchLength - MINMATCH;
* because it's the format it's stored in seqStore->sequences */
MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
{
static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
static const U32 ML_deltaCode = 36;
return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
}
/*! ZSTD_storeSeq() :
* Store a sequence (literal length, literals, offset code and match length code) into seqStore_t.
* `offsetCode` : distance to match + 3 (values 1-3 are repCodes).
* `mlBase` : matchLength - MINMATCH
*/
MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const void* literals, U32 offsetCode, size_t mlBase)
{
#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
static const BYTE* g_start = NULL;
if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
{ U32 const pos = (U32)((const BYTE*)literals - g_start);
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offsetCode);
}
#endif
/* copy Literals */
assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + 128 KB);
ZSTD_wildcopy(seqStorePtr->lit, literals, litLength);
seqStorePtr->lit += litLength;
/* literal Length */
if (litLength>0xFFFF) {
assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
seqStorePtr->longLengthID = 1;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
}
seqStorePtr->sequences[0].litLength = (U16)litLength;
/* match offset */
seqStorePtr->sequences[0].offset = offsetCode + 1;
/* match Length */
if (mlBase>0xFFFF) {
assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
seqStorePtr->longLengthID = 2;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
}
seqStorePtr->sequences[0].matchLength = (U16)mlBase;
seqStorePtr->sequences++;
}
/*-*************************************
* Match length counter
***************************************/
static unsigned ZSTD_NbCommonBytes (size_t val)
{
if (MEM_isLittleEndian()) {
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
unsigned long r = 0;
_BitScanForward64( &r, (U64)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (__builtin_ctzll((U64)val) >> 3);
# else
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
0, 3, 1, 3, 1, 4, 2, 7,
0, 2, 3, 6, 1, 5, 3, 5,
1, 3, 4, 4, 2, 5, 6, 7,
7, 0, 1, 2, 3, 3, 4, 6,
2, 6, 5, 5, 3, 4, 5, 6,
7, 1, 2, 4, 6, 4, 4, 5,
7, 2, 6, 5, 7, 6, 7, 7 };
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
# endif
} else { /* 32 bits */
# if defined(_MSC_VER)
unsigned long r=0;
_BitScanForward( &r, (U32)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_ctz((U32)val) >> 3);
# else
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
3, 2, 2, 1, 3, 2, 0, 1,
3, 3, 1, 2, 2, 2, 2, 0,
3, 1, 2, 0, 1, 0, 1, 1 };
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
# endif
}
} else { /* Big Endian CPU */
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
unsigned long r = 0;
_BitScanReverse64( &r, val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (__builtin_clzll(val) >> 3);
# else
unsigned r;
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
r += (!val);
return r;
# endif
} else { /* 32 bits */
# if defined(_MSC_VER)
unsigned long r = 0;
_BitScanReverse( &r, (unsigned long)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_clz((U32)val) >> 3);
# else
unsigned r;
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
r += (!val);
return r;
# endif
} }
}
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
{
const BYTE* const pStart = pIn;
const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
if (pIn < pInLoopLimit) {
{ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (diff) return ZSTD_NbCommonBytes(diff); }
pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
while (pIn < pInLoopLimit) {
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
pIn += ZSTD_NbCommonBytes(diff);
return (size_t)(pIn - pStart);
} }
if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
return (size_t)(pIn - pStart);
}
/** ZSTD_count_2segments() :
* can count match length with `ip` & `match` in 2 different segments.
* convention : on reaching mEnd, match count continue starting from iStart
*/
MEM_STATIC size_t
ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
{
const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
size_t const matchLength = ZSTD_count(ip, match, vEnd);
if (match + matchLength != mEnd) return matchLength;
DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
}
/*-*************************************
* Hashes
***************************************/
static const U32 prime3bytes = 506832829U;
static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
static const U32 prime4bytes = 2654435761U;
static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
static const U64 prime5bytes = 889523592379ULL;
static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
static const U64 prime6bytes = 227718039650203ULL;
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
static const U64 prime7bytes = 58295818150454627ULL;
static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
MEM_STATIC size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
{
switch(mls)
{
default:
case 4: return ZSTD_hash4Ptr(p, hBits);
case 5: return ZSTD_hash5Ptr(p, hBits);
case 6: return ZSTD_hash6Ptr(p, hBits);
case 7: return ZSTD_hash7Ptr(p, hBits);
case 8: return ZSTD_hash8Ptr(p, hBits);
}
}
/*-*************************************
* Round buffer management
***************************************/
/* Max current allowed */
#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
/* Maximum chunk size before overflow correction needs to be called again */
#define ZSTD_CHUNKSIZE_MAX \
( ((U32)-1) /* Maximum ending current index */ \
- ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */
/**
* ZSTD_window_clear():
* Clears the window containing the history by simply setting it to empty.
*/
MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
{
size_t const endT = (size_t)(window->nextSrc - window->base);
U32 const end = (U32)endT;
window->lowLimit = end;
window->dictLimit = end;
}
/**
* ZSTD_window_hasExtDict():
* Returns non-zero if the window has a non-empty extDict.
*/
MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
{
return window.lowLimit < window.dictLimit;
}
/**
* ZSTD_matchState_dictMode():
* Inspects the provided matchState and figures out what dictMode should be
* passed to the compressor.
*/
MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
{
return ZSTD_window_hasExtDict(ms->window) ?
ZSTD_extDict :
ms->dictMatchState != NULL ?
ZSTD_dictMatchState :
ZSTD_noDict;
}
/**
* ZSTD_window_needOverflowCorrection():
* Returns non-zero if the indices are getting too large and need overflow
* protection.
*/
MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
void const* srcEnd)
{
U32 const current = (U32)((BYTE const*)srcEnd - window.base);
return current > ZSTD_CURRENT_MAX;
}
/**
* ZSTD_window_correctOverflow():
* Reduces the indices to protect from index overflow.
* Returns the correction made to the indices, which must be applied to every
* stored index.
*
* The least significant cycleLog bits of the indices must remain the same,
* which may be 0. Every index up to maxDist in the past must be valid.
* NOTE: (maxDist & cycleMask) must be zero.
*/
MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
U32 maxDist, void const* src)
{
/* preemptive overflow correction:
* 1. correction is large enough:
* lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
* 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
*
* current - newCurrent
* > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
* > (3<<29) - (1<<chainLog)
* > (3<<29) - (1<<30) (NOTE: chainLog <= 30)
* > 1<<29
*
* 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
* After correction, current is less than (1<<chainLog + 1<<windowLog).
* In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
* In 32-bit mode we are safe, because (chainLog <= 29), so
* ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
* 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
* windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
*/
U32 const cycleMask = (1U << cycleLog) - 1;
U32 const current = (U32)((BYTE const*)src - window->base);
U32 const newCurrent = (current & cycleMask) + maxDist;
U32 const correction = current - newCurrent;
assert((maxDist & cycleMask) == 0);
assert(current > newCurrent);
/* Loose bound, should be around 1<<29 (see above) */
assert(correction > 1<<28);
window->base += correction;
window->dictBase += correction;
window->lowLimit -= correction;
window->dictLimit -= correction;
DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
window->lowLimit);
return correction;
}
/**
* ZSTD_window_enforceMaxDist():
* Updates lowLimit so that:
* (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
*
* This allows a simple check that index >= lowLimit to see if index is valid.
* This must be called before a block compression call, with srcEnd as the block
* source end.
*
* If loadedDictEndPtr is not NULL, we set it to zero once we update lowLimit.
* This is because dictionaries are allowed to be referenced as long as the last
* byte of the dictionary is in the window, but once they are out of range,
* they cannot be referenced. If loadedDictEndPtr is NULL, we use
* loadedDictEnd == 0.
*
* In normal dict mode, the dict is between lowLimit and dictLimit. In
* dictMatchState mode, lowLimit and dictLimit are the same, and the dictionary
* is below them. forceWindow and dictMatchState are therefore incompatible.
*/
MEM_STATIC void ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
void const* srcEnd, U32 maxDist,
U32* loadedDictEndPtr,
const ZSTD_matchState_t** dictMatchStatePtr)
{
U32 const current = (U32)((BYTE const*)srcEnd - window->base);
U32 loadedDictEnd = loadedDictEndPtr != NULL ? *loadedDictEndPtr : 0;
DEBUGLOG(5, "ZSTD_window_enforceMaxDist: current=%u, maxDist=%u", current, maxDist);
if (current > maxDist + loadedDictEnd) {
U32 const newLowLimit = current - maxDist;
if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
if (window->dictLimit < window->lowLimit) {
DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
window->dictLimit, window->lowLimit);
window->dictLimit = window->lowLimit;
}
if (loadedDictEndPtr)
*loadedDictEndPtr = 0;
if (dictMatchStatePtr)
*dictMatchStatePtr = NULL;
}
}
/**
* ZSTD_window_update():
* Updates the window by appending [src, src + srcSize) to the window.
* If it is not contiguous, the current prefix becomes the extDict, and we
* forget about the extDict. Handles overlap of the prefix and extDict.
* Returns non-zero if the segment is contiguous.
*/
MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
void const* src, size_t srcSize)
{
BYTE const* const ip = (BYTE const*)src;
U32 contiguous = 1;
DEBUGLOG(5, "ZSTD_window_update");
/* Check if blocks follow each other */
if (src != window->nextSrc) {
/* not contiguous */
size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
window->lowLimit = window->dictLimit;
assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
window->dictLimit = (U32)distanceFromBase;
window->dictBase = window->base;
window->base = ip - distanceFromBase;
// ms->nextToUpdate = window->dictLimit;
if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */
contiguous = 0;
}
window->nextSrc = ip + srcSize;
/* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
if ( (ip+srcSize > window->dictBase + window->lowLimit)
& (ip < window->dictBase + window->dictLimit)) {
ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
window->lowLimit = lowLimitMax;
DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
}
return contiguous;
}
/* debug functions */
MEM_STATIC double ZSTD_fWeight(U32 rawStat)
{
U32 const fp_accuracy = 8;
U32 const fp_multiplier = (1 << fp_accuracy);
U32 const stat = rawStat + 1;
U32 const hb = ZSTD_highbit32(stat);
U32 const BWeight = hb * fp_multiplier;
U32 const FWeight = (stat << fp_accuracy) >> hb;
U32 const weight = BWeight + FWeight;
assert(hb + fp_accuracy < 31);
return (double)weight / fp_multiplier;
}
MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
{
unsigned u, sum;
for (u=0, sum=0; u<=max; u++) sum += table[u];
DEBUGLOG(2, "total nb elts: %u", sum);
for (u=0; u<=max; u++) {
DEBUGLOG(2, "%2u: %5u (%.2f)",
u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
}
}
#if defined (__cplusplus)
}
#endif
/* ==============================================================
* Private declarations
* These prototypes shall only be called from within lib/compress
* ============================================================== */
/* ZSTD_getCParamsFromCCtxParams() :
* cParams are built depending on compressionLevel, src size hints,
* LDM and manually set compression parameters.
*/
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize);
/*! ZSTD_initCStream_internal() :
* Private use only. Init streaming operation.
* expects params to be valid.
* must receive dict, or cdict, or none, but not both.
* @return : 0, or an error code */
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
void ZSTD_resetSeqStore(seqStore_t* ssPtr);
/*! ZSTD_compressStream_generic() :
* Private use only. To be called from zstdmt_compress.c in single-thread mode. */
size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective const flushMode);
/*! ZSTD_getCParamsFromCDict() :
* as the name implies */
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
/* ZSTD_compressBegin_advanced_internal() :
* Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params,
unsigned long long pledgedSrcSize);
/* ZSTD_compress_advanced_internal() :
* Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_CCtx_params params);
/* ZSTD_writeLastEmptyBlock() :
* output an empty Block with end-of-frame mark to complete a frame
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
* or an error code if `dstCapcity` is too small (<ZSTD_blockHeaderSize)
*/
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
/* ZSTD_referenceExternalSequences() :
* Must be called before starting a compression operation.
* seqs must parse a prefix of the source.
* This cannot be used when long range matching is enabled.
* Zstd will use these sequences, and pass the literals to a secondary block
* compressor.
* @return : An error code on failure.
* NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
* access and data corruption.
*/
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
#endif /* ZSTD_COMPRESS_H */

View File

@ -0,0 +1,487 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h"
#include "zstd_double_fast.h"
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
ZSTD_compressionParameters const* cParams,
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
{
U32* const hashLarge = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32 const mls = cParams->searchLength;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Always insert every fastHashFillStep position into the hash tables.
* Insert the other positions into the large hash table if their entry
* is empty.
*/
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
U32 const current = (U32)(ip - base);
U32 i;
for (i = 0; i < fastHashFillStep; ++i) {
size_t const smHash = ZSTD_hashPtr(ip + i, hBitsS, mls);
size_t const lgHash = ZSTD_hashPtr(ip + i, hBitsL, 8);
if (i == 0)
hashSmall[smHash] = current + i;
if (i == 0 || hashLarge[lgHash] == 0)
hashLarge[lgHash] = current + i;
/* Only load extra positions for ZSTD_dtlm_full */
if (dtlm == ZSTD_dtlm_fast)
break;
}
}
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_doubleFast_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize,
U32 const mls /* template */, ZSTD_dictMode_e const dictMode)
{
U32* const hashLong = ms->hashTable;
const U32 hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
const U32 hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 prefixLowestIndex = ms->window.dictLimit;
const BYTE* const prefixLowest = base + prefixLowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved = 0;
const ZSTD_matchState_t* const dms = ms->dictMatchState;
const U32* const dictHashLong = dictMode == ZSTD_dictMatchState ?
dms->hashTable : NULL;
const U32* const dictHashSmall = dictMode == ZSTD_dictMatchState ?
dms->chainTable : NULL;
const U32 dictStartIndex = dictMode == ZSTD_dictMatchState ?
dms->window.dictLimit : 0;
const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ?
dms->window.base : NULL;
const BYTE* const dictStart = dictMode == ZSTD_dictMatchState ?
dictBase + dictStartIndex : NULL;
const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ?
dms->window.nextSrc : NULL;
const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ?
prefixLowestIndex - (U32)(dictEnd - dictBase) :
0;
const U32 dictAndPrefixLength = (U32)(ip - prefixLowest + dictEnd - dictStart);
assert(dictMode == ZSTD_noDict || dictMode == ZSTD_dictMatchState);
/* init */
ip += (dictAndPrefixLength == 0);
if (dictMode == ZSTD_noDict) {
U32 const maxRep = (U32)(ip - prefixLowest);
if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
}
if (dictMode == ZSTD_dictMatchState) {
/* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */
assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength);
}
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
size_t mLength;
U32 offset;
size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
U32 const current = (U32)(ip-base);
U32 const matchIndexL = hashLong[h2];
U32 matchIndexS = hashSmall[h];
const BYTE* matchLong = base + matchIndexL;
const BYTE* match = base + matchIndexS;
const U32 repIndex = current + 1 - offset_1;
const BYTE* repMatch = (dictMode == ZSTD_dictMatchState
&& repIndex < prefixLowestIndex) ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
hashLong[h2] = hashSmall[h] = current; /* update hash tables */
/* check dictMatchState repcode */
if (dictMode == ZSTD_dictMatchState
&& ((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
goto _match_stored;
}
/* check noDict repcode */
if ( dictMode == ZSTD_noDict
&& ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
goto _match_stored;
}
/* check prefix long match */
if ( (matchIndexL > prefixLowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip)) ) {
mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8;
offset = (U32)(ip-matchLong);
while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
goto _match_found;
}
/* check dictMatchState long match */
if (dictMode == ZSTD_dictMatchState) {
U32 const dictMatchIndexL = dictHashLong[h2];
const BYTE* dictMatchL = dictBase + dictMatchIndexL;
assert(dictMatchL < dictEnd);
if (dictMatchL > dictStart && MEM_read64(dictMatchL) == MEM_read64(ip)) {
mLength = ZSTD_count_2segments(ip+8, dictMatchL+8, iend, dictEnd, prefixLowest) + 8;
offset = (U32)(current - dictMatchIndexL - dictIndexDelta);
while (((ip>anchor) & (dictMatchL>dictStart)) && (ip[-1] == dictMatchL[-1])) { ip--; dictMatchL--; mLength++; } /* catch up */
goto _match_found;
}
}
/* check prefix short match */
if ( (matchIndexS > prefixLowestIndex) && (MEM_read32(match) == MEM_read32(ip)) ) {
goto _search_next_long;
}
/* check dictMatchState short match */
if (dictMode == ZSTD_dictMatchState) {
U32 const dictMatchIndexS = dictHashSmall[h];
match = dictBase + dictMatchIndexS;
matchIndexS = dictMatchIndexS + dictIndexDelta;
if (match > dictStart && MEM_read32(match) == MEM_read32(ip)) {
goto _search_next_long;
}
}
ip += ((ip-anchor) >> kSearchStrength) + 1;
continue;
_search_next_long:
{
size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
U32 const matchIndexL3 = hashLong[hl3];
const BYTE* matchL3 = base + matchIndexL3;
hashLong[hl3] = current + 1;
/* check prefix long +1 match */
if ( (matchIndexL3 > prefixLowestIndex) && (MEM_read64(matchL3) == MEM_read64(ip+1)) ) {
mLength = ZSTD_count(ip+9, matchL3+8, iend) + 8;
ip++;
offset = (U32)(ip-matchL3);
while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */
goto _match_found;
}
/* check dict long +1 match */
if (dictMode == ZSTD_dictMatchState) {
U32 const dictMatchIndexL3 = dictHashLong[hl3];
const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3;
assert(dictMatchL3 < dictEnd);
if (dictMatchL3 > dictStart && MEM_read64(dictMatchL3) == MEM_read64(ip+1)) {
mLength = ZSTD_count_2segments(ip+1+8, dictMatchL3+8, iend, dictEnd, prefixLowest) + 8;
ip++;
offset = (U32)(current + 1 - dictMatchIndexL3 - dictIndexDelta);
while (((ip>anchor) & (dictMatchL3>dictStart)) && (ip[-1] == dictMatchL3[-1])) { ip--; dictMatchL3--; mLength++; } /* catch up */
goto _match_found;
}
}
}
/* if no long +1 match, explore the short match we found */
if (dictMode == ZSTD_dictMatchState && matchIndexS < prefixLowestIndex) {
mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4;
offset = (U32)(current - matchIndexS);
while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
} else {
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
offset = (U32)(ip - match);
while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
}
/* fall-through */
_match_found:
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
_match_stored:
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
hashLong[ZSTD_hashPtr(base+current+2, hBitsL, 8)] =
hashSmall[ZSTD_hashPtr(base+current+2, hBitsS, mls)] = current+2; /* here because current+2 could be > iend-8 */
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] =
hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base);
/* check immediate repcode */
if (dictMode == ZSTD_dictMatchState) {
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = dictMode == ZSTD_dictMatchState
&& repIndex2 < prefixLowestIndex ?
dictBase - dictIndexDelta + repIndex2 :
base + repIndex2;
if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
}
}
if (dictMode == ZSTD_noDict) {
while ( (ip <= ilimit)
&& ( (offset_2>0)
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
/* store sequence */
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
} } } }
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved;
rep[1] = offset_2 ? offset_2 : offsetSaved;
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
const U32 mls = cParams->searchLength;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 4, ZSTD_noDict);
case 5 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 5, ZSTD_noDict);
case 6 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 6, ZSTD_noDict);
case 7 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 7, ZSTD_noDict);
}
}
size_t ZSTD_compressBlock_doubleFast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
const U32 mls = cParams->searchLength;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 4, ZSTD_dictMatchState);
case 5 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 5, ZSTD_dictMatchState);
case 6 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 6, ZSTD_dictMatchState);
case 7 :
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, cParams, src, srcSize, 7, ZSTD_dictMatchState);
}
}
static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize,
U32 const mls /* template */)
{
U32* const hashLong = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const U32 prefixStartIndex = ms->window.dictLimit;
const BYTE* const base = ms->window.base;
const BYTE* const prefixStart = base + prefixStartIndex;
const U32 dictStartIndex = ms->window.lowLimit;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dictBase + prefixStartIndex;
U32 offset_1=rep[0], offset_2=rep[1];
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_extDict_generic (srcSize=%zu)", srcSize);
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
const U32 matchIndex = hashSmall[hSmall];
const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
const BYTE* match = matchBase + matchIndex;
const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
const U32 matchLongIndex = hashLong[hLong];
const BYTE* const matchLongBase = matchLongIndex < prefixStartIndex ? dictBase : base;
const BYTE* matchLong = matchLongBase + matchLongIndex;
const U32 current = (U32)(ip-base);
const U32 repIndex = current + 1 - offset_1; /* offset_1 expected <= current +1 */
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
size_t mLength;
hashSmall[hSmall] = hashLong[hLong] = current; /* update hash table */
if ((((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex doesn't overlap dict + prefix */
& (repIndex > dictStartIndex))
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
} else {
if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchLongIndex < prefixStartIndex ? dictStart : prefixStart;
U32 offset;
mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, prefixStart) + 8;
offset = current - matchLongIndex;
while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
} else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) {
size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
U32 const matchIndex3 = hashLong[h3];
const BYTE* const match3Base = matchIndex3 < prefixStartIndex ? dictBase : base;
const BYTE* match3 = match3Base + matchIndex3;
U32 offset;
hashLong[h3] = current + 1;
if ( (matchIndex3 > dictStartIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
const BYTE* const matchEnd = matchIndex3 < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex3 < prefixStartIndex ? dictStart : prefixStart;
mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, prefixStart) + 8;
ip++;
offset = current+1 - matchIndex3;
while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
} else {
const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
offset = current - matchIndex;
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
}
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
} else {
ip += ((ip-anchor) >> kSearchStrength) + 1;
continue;
} }
/* found a match : store it */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
hashSmall[ZSTD_hashPtr(base+current+2, hBitsS, mls)] = current+2;
hashLong[ZSTD_hashPtr(base+current+2, hBitsL, 8)] = current+2;
hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base);
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) /* intentional overflow : ensure repIndex2 doesn't overlap dict + prefix */
& (repIndex2 > dictStartIndex))
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
} } }
/* save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
U32 const mls = cParams->searchLength;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 4);
case 5 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 5);
case 6 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 6);
case 7 :
return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, cParams, src, srcSize, 7);
}
}

View File

@ -0,0 +1,39 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_DOUBLE_FAST_H
#define ZSTD_DOUBLE_FAST_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "mem.h" /* U32 */
#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
ZSTD_compressionParameters const* cParams,
void const* end, ZSTD_dictTableLoadMethod_e dtlm);
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_doubleFast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_DOUBLE_FAST_H */

View File

@ -0,0 +1,380 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h"
#include "zstd_fast.h"
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
ZSTD_compressionParameters const* cParams,
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
{
U32* const hashTable = ms->hashTable;
U32 const hBits = cParams->hashLog;
U32 const mls = cParams->searchLength;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Always insert every fastHashFillStep position into the hash table.
* Insert the other positions if their hash entry is empty.
*/
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
U32 const current = (U32)(ip - base);
U32 i;
for (i = 0; i < fastHashFillStep; ++i) {
size_t const hash = ZSTD_hashPtr(ip + i, hBits, mls);
if (i == 0 || hashTable[hash] == 0)
hashTable[hash] = current + i;
/* Only load extra positions for ZSTD_dtlm_full */
if (dtlm == ZSTD_dtlm_fast)
break;
}
}
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_fast_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const hlog, U32 stepSize, U32 const mls,
ZSTD_dictMode_e const dictMode)
{
U32* const hashTable = ms->hashTable;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 prefixStartIndex = ms->window.dictLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved = 0;
const ZSTD_matchState_t* const dms = ms->dictMatchState;
const U32* const dictHashTable = dictMode == ZSTD_dictMatchState ?
dms->hashTable : NULL;
const U32 dictStartIndex = dictMode == ZSTD_dictMatchState ?
dms->window.dictLimit : 0;
const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ?
dms->window.base : NULL;
const BYTE* const dictStart = dictMode == ZSTD_dictMatchState ?
dictBase + dictStartIndex : NULL;
const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ?
dms->window.nextSrc : NULL;
const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ?
prefixStartIndex - (U32)(dictEnd - dictBase) :
0;
const U32 dictAndPrefixLength = (U32)(ip - prefixStart + dictEnd - dictStart);
assert(dictMode == ZSTD_noDict || dictMode == ZSTD_dictMatchState);
/* otherwise, we would get index underflow when translating a dict index
* into a local index */
assert(dictMode != ZSTD_dictMatchState
|| prefixStartIndex >= (U32)(dictEnd - dictBase));
/* init */
stepSize += !stepSize; /* support stepSize of 0 */
ip += (dictAndPrefixLength == 0);
if (dictMode == ZSTD_noDict) {
U32 const maxRep = (U32)(ip - prefixStart);
if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
}
if (dictMode == ZSTD_dictMatchState) {
/* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */
assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength);
}
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
size_t mLength;
size_t const h = ZSTD_hashPtr(ip, hlog, mls);
U32 const current = (U32)(ip-base);
U32 const matchIndex = hashTable[h];
const BYTE* match = base + matchIndex;
const U32 repIndex = current + 1 - offset_1;
const BYTE* repMatch = (dictMode == ZSTD_dictMatchState
&& repIndex < prefixStartIndex) ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
hashTable[h] = current; /* update hash table */
if ( (dictMode == ZSTD_dictMatchState)
&& ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
} else if ( dictMode == ZSTD_noDict
&& ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
} else if ( (matchIndex <= prefixStartIndex)
|| (MEM_read32(match) != MEM_read32(ip)) ) {
if (dictMode == ZSTD_dictMatchState) {
U32 const dictMatchIndex = dictHashTable[h];
const BYTE* dictMatch = dictBase + dictMatchIndex;
if (dictMatchIndex <= dictStartIndex ||
MEM_read32(dictMatch) != MEM_read32(ip)) {
assert(stepSize >= 1);
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
continue;
} else {
/* found a dict match */
U32 const offset = (U32)(current-dictMatchIndex-dictIndexDelta);
mLength = ZSTD_count_2segments(ip+4, dictMatch+4, iend, dictEnd, prefixStart) + 4;
while (((ip>anchor) & (dictMatch>dictStart))
&& (ip[-1] == dictMatch[-1])) {
ip--; dictMatch--; mLength++;
} /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
}
} else {
assert(stepSize >= 1);
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
continue;
}
} else {
/* found a regular match */
U32 const offset = (U32)(ip-match);
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
while (((ip>anchor) & (match>prefixStart))
&& (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
}
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
hashTable[ZSTD_hashPtr(base+current+2, hlog, mls)] = current+2; /* here because current+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
/* check immediate repcode */
if (dictMode == ZSTD_dictMatchState) {
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
dictBase - dictIndexDelta + repIndex2 :
base + repIndex2;
if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
}
}
if (dictMode == ZSTD_noDict) {
while ( (ip <= ilimit)
&& ( (offset_2>0)
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
/* store sequence */
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = (U32)(ip-base);
ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
} } } }
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved;
rep[1] = offset_2 ? offset_2 : offsetSaved;
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
U32 const hlog = cParams->hashLog;
U32 const mls = cParams->searchLength;
U32 const stepSize = cParams->targetLength;
assert(ms->dictMatchState == NULL);
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 4, ZSTD_noDict);
case 5 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 5, ZSTD_noDict);
case 6 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 6, ZSTD_noDict);
case 7 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 7, ZSTD_noDict);
}
}
size_t ZSTD_compressBlock_fast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
U32 const hlog = cParams->hashLog;
U32 const mls = cParams->searchLength;
U32 const stepSize = cParams->targetLength;
assert(ms->dictMatchState != NULL);
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 4, ZSTD_dictMatchState);
case 5 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 5, ZSTD_dictMatchState);
case 6 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 6, ZSTD_dictMatchState);
case 7 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 7, ZSTD_dictMatchState);
}
}
static size_t ZSTD_compressBlock_fast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const hlog, U32 stepSize, U32 const mls)
{
U32* hashTable = ms->hashTable;
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 dictStartIndex = ms->window.lowLimit;
const BYTE* const dictStart = dictBase + dictStartIndex;
const U32 prefixStartIndex = ms->window.dictLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const dictEnd = dictBase + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
U32 offset_1=rep[0], offset_2=rep[1];
stepSize += !stepSize; /* support stepSize == 0 */
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t h = ZSTD_hashPtr(ip, hlog, mls);
const U32 matchIndex = hashTable[h];
const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
const BYTE* match = matchBase + matchIndex;
const U32 current = (U32)(ip-base);
const U32 repIndex = current + 1 - offset_1;
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
size_t mLength;
hashTable[h] = current; /* update hash table */
assert(offset_1 <= current +1); /* check repIndex */
if ( (((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > dictStartIndex))
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
} else {
if ( (matchIndex < dictStartIndex) ||
(MEM_read32(match) != MEM_read32(ip)) ) {
assert(stepSize >= 1);
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
continue;
}
{ const BYTE* matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
U32 offset;
mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
offset = current - matchIndex;
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
} }
/* found a match : store it */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
hashTable[ZSTD_hashPtr(base+current+2, hlog, mls)] = current+2;
hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (repIndex2 > dictStartIndex)) /* intentional overflow */
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
} } }
/* save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
U32 const hlog = cParams->hashLog;
U32 const mls = cParams->searchLength;
U32 const stepSize = cParams->targetLength;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 4);
case 5 :
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 5);
case 6 :
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 6);
case 7 :
return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, hlog, stepSize, 7);
}
}

View File

@ -0,0 +1,38 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_FAST_H
#define ZSTD_FAST_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "mem.h" /* U32 */
#include "zstd_compress_internal.h"
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
ZSTD_compressionParameters const* cParams,
void const* end, ZSTD_dictTableLoadMethod_e dtlm);
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_fast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_FAST_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,69 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_LAZY_H
#define ZSTD_LAZY_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h"
U32 ZSTD_insertAndFindFirstIndex(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip);
void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). pre-emptively increase value of ZSTD_DUBT_UNSORTED_MARK */
size_t ZSTD_compressBlock_btlazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_LAZY_H */

View File

@ -0,0 +1,648 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#include "zstd_ldm.h"
#include "debug.h"
#include "zstd_fast.h" /* ZSTD_fillHashTable() */
#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */
#define LDM_BUCKET_SIZE_LOG 3
#define LDM_MIN_MATCH_LENGTH 64
#define LDM_HASH_RLOG 7
#define LDM_HASH_CHAR_OFFSET 10
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
ZSTD_compressionParameters const* cParams)
{
params->windowLog = cParams->windowLog;
ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
if (cParams->strategy >= ZSTD_btopt) {
/* Get out of the way of the optimal parser */
U32 const minMatch = MAX(cParams->targetLength, params->minMatchLength);
assert(minMatch >= ZSTD_LDM_MINMATCH_MIN);
assert(minMatch <= ZSTD_LDM_MINMATCH_MAX);
params->minMatchLength = minMatch;
}
if (params->hashLog == 0) {
params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG);
assert(params->hashLog <= ZSTD_HASHLOG_MAX);
}
if (params->hashEveryLog == 0) {
params->hashEveryLog = params->windowLog < params->hashLog
? 0
: params->windowLog - params->hashLog;
}
params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
}
size_t ZSTD_ldm_getTableSize(ldmParams_t params)
{
size_t const ldmHSize = ((size_t)1) << params.hashLog;
size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
size_t const ldmBucketSize =
((size_t)1) << (params.hashLog - ldmBucketSizeLog);
size_t const totalSize = ldmBucketSize + ldmHSize * sizeof(ldmEntry_t);
return params.enableLdm ? totalSize : 0;
}
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
{
return params.enableLdm ? (maxChunkSize / params.minMatchLength) : 0;
}
/** ZSTD_ldm_getSmallHash() :
* numBits should be <= 32
* If numBits==0, returns 0.
* @return : the most significant numBits of value. */
static U32 ZSTD_ldm_getSmallHash(U64 value, U32 numBits)
{
assert(numBits <= 32);
return numBits == 0 ? 0 : (U32)(value >> (64 - numBits));
}
/** ZSTD_ldm_getChecksum() :
* numBitsToDiscard should be <= 32
* @return : the next most significant 32 bits after numBitsToDiscard */
static U32 ZSTD_ldm_getChecksum(U64 hash, U32 numBitsToDiscard)
{
assert(numBitsToDiscard <= 32);
return (hash >> (64 - 32 - numBitsToDiscard)) & 0xFFFFFFFF;
}
/** ZSTD_ldm_getTag() ;
* Given the hash, returns the most significant numTagBits bits
* after (32 + hbits) bits.
*
* If there are not enough bits remaining, return the last
* numTagBits bits. */
static U32 ZSTD_ldm_getTag(U64 hash, U32 hbits, U32 numTagBits)
{
assert(numTagBits < 32 && hbits <= 32);
if (32 - hbits < numTagBits) {
return hash & (((U32)1 << numTagBits) - 1);
} else {
return (hash >> (32 - hbits - numTagBits)) & (((U32)1 << numTagBits) - 1);
}
}
/** ZSTD_ldm_getBucket() :
* Returns a pointer to the start of the bucket associated with hash. */
static ldmEntry_t* ZSTD_ldm_getBucket(
ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams)
{
return ldmState->hashTable + (hash << ldmParams.bucketSizeLog);
}
/** ZSTD_ldm_insertEntry() :
* Insert the entry with corresponding hash into the hash table */
static void ZSTD_ldm_insertEntry(ldmState_t* ldmState,
size_t const hash, const ldmEntry_t entry,
ldmParams_t const ldmParams)
{
BYTE* const bucketOffsets = ldmState->bucketOffsets;
*(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + bucketOffsets[hash]) = entry;
bucketOffsets[hash]++;
bucketOffsets[hash] &= ((U32)1 << ldmParams.bucketSizeLog) - 1;
}
/** ZSTD_ldm_makeEntryAndInsertByTag() :
*
* Gets the small hash, checksum, and tag from the rollingHash.
*
* If the tag matches (1 << ldmParams.hashEveryLog)-1, then
* creates an ldmEntry from the offset, and inserts it into the hash table.
*
* hBits is the length of the small hash, which is the most significant hBits
* of rollingHash. The checksum is the next 32 most significant bits, followed
* by ldmParams.hashEveryLog bits that make up the tag. */
static void ZSTD_ldm_makeEntryAndInsertByTag(ldmState_t* ldmState,
U64 const rollingHash,
U32 const hBits,
U32 const offset,
ldmParams_t const ldmParams)
{
U32 const tag = ZSTD_ldm_getTag(rollingHash, hBits, ldmParams.hashEveryLog);
U32 const tagMask = ((U32)1 << ldmParams.hashEveryLog) - 1;
if (tag == tagMask) {
U32 const hash = ZSTD_ldm_getSmallHash(rollingHash, hBits);
U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits);
ldmEntry_t entry;
entry.offset = offset;
entry.checksum = checksum;
ZSTD_ldm_insertEntry(ldmState, hash, entry, ldmParams);
}
}
/** ZSTD_ldm_getRollingHash() :
* Get a 64-bit hash using the first len bytes from buf.
*
* Giving bytes s = s_1, s_2, ... s_k, the hash is defined to be
* H(s) = s_1*(a^(k-1)) + s_2*(a^(k-2)) + ... + s_k*(a^0)
*
* where the constant a is defined to be prime8bytes.
*
* The implementation adds an offset to each byte, so
* H(s) = (s_1 + HASH_CHAR_OFFSET)*(a^(k-1)) + ... */
static U64 ZSTD_ldm_getRollingHash(const BYTE* buf, U32 len)
{
U64 ret = 0;
U32 i;
for (i = 0; i < len; i++) {
ret *= prime8bytes;
ret += buf[i] + LDM_HASH_CHAR_OFFSET;
}
return ret;
}
/** ZSTD_ldm_ipow() :
* Return base^exp. */
static U64 ZSTD_ldm_ipow(U64 base, U64 exp)
{
U64 ret = 1;
while (exp) {
if (exp & 1) { ret *= base; }
exp >>= 1;
base *= base;
}
return ret;
}
U64 ZSTD_ldm_getHashPower(U32 minMatchLength) {
DEBUGLOG(4, "ZSTD_ldm_getHashPower: mml=%u", minMatchLength);
assert(minMatchLength >= ZSTD_LDM_MINMATCH_MIN);
return ZSTD_ldm_ipow(prime8bytes, minMatchLength - 1);
}
/** ZSTD_ldm_updateHash() :
* Updates hash by removing toRemove and adding toAdd. */
static U64 ZSTD_ldm_updateHash(U64 hash, BYTE toRemove, BYTE toAdd, U64 hashPower)
{
hash -= ((toRemove + LDM_HASH_CHAR_OFFSET) * hashPower);
hash *= prime8bytes;
hash += toAdd + LDM_HASH_CHAR_OFFSET;
return hash;
}
/** ZSTD_ldm_countBackwardsMatch() :
* Returns the number of bytes that match backwards before pIn and pMatch.
*
* We count only bytes where pMatch >= pBase and pIn >= pAnchor. */
static size_t ZSTD_ldm_countBackwardsMatch(
const BYTE* pIn, const BYTE* pAnchor,
const BYTE* pMatch, const BYTE* pBase)
{
size_t matchLength = 0;
while (pIn > pAnchor && pMatch > pBase && pIn[-1] == pMatch[-1]) {
pIn--;
pMatch--;
matchLength++;
}
return matchLength;
}
/** ZSTD_ldm_fillFastTables() :
*
* Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies.
* This is similar to ZSTD_loadDictionaryContent.
*
* The tables for the other strategies are filled within their
* block compressors. */
static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
ZSTD_compressionParameters const* cParams,
void const* end)
{
const BYTE* const iend = (const BYTE*)end;
switch(cParams->strategy)
{
case ZSTD_fast:
ZSTD_fillHashTable(ms, cParams, iend, ZSTD_dtlm_fast);
break;
case ZSTD_dfast:
ZSTD_fillDoubleHashTable(ms, cParams, iend, ZSTD_dtlm_fast);
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
case ZSTD_btlazy2:
case ZSTD_btopt:
case ZSTD_btultra:
break;
default:
assert(0); /* not possible : not a valid strategy id */
}
return 0;
}
/** ZSTD_ldm_fillLdmHashTable() :
*
* Fills hashTable from (lastHashed + 1) to iend (non-inclusive).
* lastHash is the rolling hash that corresponds to lastHashed.
*
* Returns the rolling hash corresponding to position iend-1. */
static U64 ZSTD_ldm_fillLdmHashTable(ldmState_t* state,
U64 lastHash, const BYTE* lastHashed,
const BYTE* iend, const BYTE* base,
U32 hBits, ldmParams_t const ldmParams)
{
U64 rollingHash = lastHash;
const BYTE* cur = lastHashed + 1;
while (cur < iend) {
rollingHash = ZSTD_ldm_updateHash(rollingHash, cur[-1],
cur[ldmParams.minMatchLength-1],
state->hashPower);
ZSTD_ldm_makeEntryAndInsertByTag(state,
rollingHash, hBits,
(U32)(cur - base), ldmParams);
++cur;
}
return rollingHash;
}
/** ZSTD_ldm_limitTableUpdate() :
*
* Sets cctx->nextToUpdate to a position corresponding closer to anchor
* if it is far way
* (after a long match, only update tables a limited amount). */
static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
{
U32 const current = (U32)(anchor - ms->window.base);
if (current > ms->nextToUpdate + 1024) {
ms->nextToUpdate =
current - MIN(512, current - ms->nextToUpdate - 1024);
}
}
static size_t ZSTD_ldm_generateSequences_internal(
ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
ldmParams_t const* params, void const* src, size_t srcSize)
{
/* LDM parameters */
int const extDict = ZSTD_window_hasExtDict(ldmState->window);
U32 const minMatchLength = params->minMatchLength;
U64 const hashPower = ldmState->hashPower;
U32 const hBits = params->hashLog - params->bucketSizeLog;
U32 const ldmBucketSize = 1U << params->bucketSizeLog;
U32 const hashEveryLog = params->hashEveryLog;
U32 const ldmTagMask = (1U << params->hashEveryLog) - 1;
/* Prefix and extDict parameters */
U32 const dictLimit = ldmState->window.dictLimit;
U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
BYTE const* const base = ldmState->window.base;
BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
BYTE const* const lowPrefixPtr = base + dictLimit;
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
BYTE const* const ilimit = iend - MAX(minMatchLength, HASH_READ_SIZE);
/* Input positions */
BYTE const* anchor = istart;
BYTE const* ip = istart;
/* Rolling hash */
BYTE const* lastHashed = NULL;
U64 rollingHash = 0;
while (ip <= ilimit) {
size_t mLength;
U32 const current = (U32)(ip - base);
size_t forwardMatchLength = 0, backwardMatchLength = 0;
ldmEntry_t* bestEntry = NULL;
if (ip != istart) {
rollingHash = ZSTD_ldm_updateHash(rollingHash, lastHashed[0],
lastHashed[minMatchLength],
hashPower);
} else {
rollingHash = ZSTD_ldm_getRollingHash(ip, minMatchLength);
}
lastHashed = ip;
/* Do not insert and do not look for a match */
if (ZSTD_ldm_getTag(rollingHash, hBits, hashEveryLog) != ldmTagMask) {
ip++;
continue;
}
/* Get the best entry and compute the match lengths */
{
ldmEntry_t* const bucket =
ZSTD_ldm_getBucket(ldmState,
ZSTD_ldm_getSmallHash(rollingHash, hBits),
*params);
ldmEntry_t* cur;
size_t bestMatchLength = 0;
U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits);
for (cur = bucket; cur < bucket + ldmBucketSize; ++cur) {
size_t curForwardMatchLength, curBackwardMatchLength,
curTotalMatchLength;
if (cur->checksum != checksum || cur->offset <= lowestIndex) {
continue;
}
if (extDict) {
BYTE const* const curMatchBase =
cur->offset < dictLimit ? dictBase : base;
BYTE const* const pMatch = curMatchBase + cur->offset;
BYTE const* const matchEnd =
cur->offset < dictLimit ? dictEnd : iend;
BYTE const* const lowMatchPtr =
cur->offset < dictLimit ? dictStart : lowPrefixPtr;
curForwardMatchLength = ZSTD_count_2segments(
ip, pMatch, iend,
matchEnd, lowPrefixPtr);
if (curForwardMatchLength < minMatchLength) {
continue;
}
curBackwardMatchLength =
ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch,
lowMatchPtr);
curTotalMatchLength = curForwardMatchLength +
curBackwardMatchLength;
} else { /* !extDict */
BYTE const* const pMatch = base + cur->offset;
curForwardMatchLength = ZSTD_count(ip, pMatch, iend);
if (curForwardMatchLength < minMatchLength) {
continue;
}
curBackwardMatchLength =
ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch,
lowPrefixPtr);
curTotalMatchLength = curForwardMatchLength +
curBackwardMatchLength;
}
if (curTotalMatchLength > bestMatchLength) {
bestMatchLength = curTotalMatchLength;
forwardMatchLength = curForwardMatchLength;
backwardMatchLength = curBackwardMatchLength;
bestEntry = cur;
}
}
}
/* No match found -- continue searching */
if (bestEntry == NULL) {
ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash,
hBits, current,
*params);
ip++;
continue;
}
/* Match found */
mLength = forwardMatchLength + backwardMatchLength;
ip -= backwardMatchLength;
{
/* Store the sequence:
* ip = current - backwardMatchLength
* The match is at (bestEntry->offset - backwardMatchLength)
*/
U32 const matchIndex = bestEntry->offset;
U32 const offset = current - matchIndex;
rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
/* Out of sequence storage */
if (rawSeqStore->size == rawSeqStore->capacity)
return ERROR(dstSize_tooSmall);
seq->litLength = (U32)(ip - anchor);
seq->matchLength = (U32)mLength;
seq->offset = offset;
rawSeqStore->size++;
}
/* Insert the current entry into the hash table */
ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, hBits,
(U32)(lastHashed - base),
*params);
assert(ip + backwardMatchLength == lastHashed);
/* Fill the hash table from lastHashed+1 to ip+mLength*/
/* Heuristic: don't need to fill the entire table at end of block */
if (ip + mLength <= ilimit) {
rollingHash = ZSTD_ldm_fillLdmHashTable(
ldmState, rollingHash, lastHashed,
ip + mLength, base, hBits, *params);
lastHashed = ip + mLength - 1;
}
ip += mLength;
anchor = ip;
}
return iend - anchor;
}
/*! ZSTD_ldm_reduceTable() :
* reduce table indexes by `reducerValue` */
static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
U32 const reducerValue)
{
U32 u;
for (u = 0; u < size; u++) {
if (table[u].offset < reducerValue) table[u].offset = 0;
else table[u].offset -= reducerValue;
}
}
size_t ZSTD_ldm_generateSequences(
ldmState_t* ldmState, rawSeqStore_t* sequences,
ldmParams_t const* params, void const* src, size_t srcSize)
{
U32 const maxDist = 1U << params->windowLog;
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
size_t const kMaxChunkSize = 1 << 20;
size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
size_t chunk;
size_t leftoverSize = 0;
assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
/* Check that ZSTD_window_update() has been called for this chunk prior
* to passing it to this function.
*/
assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
/* The input could be very large (in zstdmt), so it must be broken up into
* chunks to enforce the maximmum distance and handle overflow correction.
*/
assert(sequences->pos <= sequences->size);
assert(sequences->size <= sequences->capacity);
for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
size_t const remaining = (size_t)(iend - chunkStart);
BYTE const *const chunkEnd =
(remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
size_t const chunkSize = chunkEnd - chunkStart;
size_t newLeftoverSize;
size_t const prevSize = sequences->size;
assert(chunkStart < iend);
/* 1. Perform overflow correction if necessary. */
if (ZSTD_window_needOverflowCorrection(ldmState->window, chunkEnd)) {
U32 const ldmHSize = 1U << params->hashLog;
U32 const correction = ZSTD_window_correctOverflow(
&ldmState->window, /* cycleLog */ 0, maxDist, src);
ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
}
/* 2. We enforce the maximum offset allowed.
*
* kMaxChunkSize should be small enough that we don't lose too much of
* the window through early invalidation.
* TODO: * Test the chunk size.
* * Try invalidation after the sequence generation and test the
* the offset against maxDist directly.
*/
ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, NULL, NULL);
/* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
newLeftoverSize = ZSTD_ldm_generateSequences_internal(
ldmState, sequences, params, chunkStart, chunkSize);
if (ZSTD_isError(newLeftoverSize))
return newLeftoverSize;
/* 4. We add the leftover literals from previous iterations to the first
* newly generated sequence, or add the `newLeftoverSize` if none are
* generated.
*/
/* Prepend the leftover literals from the last call */
if (prevSize < sequences->size) {
sequences->seq[prevSize].litLength += (U32)leftoverSize;
leftoverSize = newLeftoverSize;
} else {
assert(newLeftoverSize == chunkSize);
leftoverSize += chunkSize;
}
}
return 0;
}
void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) {
while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
if (srcSize <= seq->litLength) {
/* Skip past srcSize literals */
seq->litLength -= (U32)srcSize;
return;
}
srcSize -= seq->litLength;
seq->litLength = 0;
if (srcSize < seq->matchLength) {
/* Skip past the first srcSize of the match */
seq->matchLength -= (U32)srcSize;
if (seq->matchLength < minMatch) {
/* The match is too short, omit it */
if (rawSeqStore->pos + 1 < rawSeqStore->size) {
seq[1].litLength += seq[0].matchLength;
}
rawSeqStore->pos++;
}
return;
}
srcSize -= seq->matchLength;
seq->matchLength = 0;
rawSeqStore->pos++;
}
}
/**
* If the sequence length is longer than remaining then the sequence is split
* between this block and the next.
*
* Returns the current sequence to handle, or if the rest of the block should
* be literals, it returns a sequence with offset == 0.
*/
static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
U32 const remaining, U32 const minMatch)
{
rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
assert(sequence.offset > 0);
/* Likely: No partial sequence */
if (remaining >= sequence.litLength + sequence.matchLength) {
rawSeqStore->pos++;
return sequence;
}
/* Cut the sequence short (offset == 0 ==> rest is literals). */
if (remaining <= sequence.litLength) {
sequence.offset = 0;
} else if (remaining < sequence.litLength + sequence.matchLength) {
sequence.matchLength = remaining - sequence.litLength;
if (sequence.matchLength < minMatch) {
sequence.offset = 0;
}
}
/* Skip past `remaining` bytes for the future sequences. */
ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
return sequence;
}
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize)
{
unsigned const minMatch = cParams->searchLength;
ZSTD_blockCompressor const blockCompressor =
ZSTD_selectBlockCompressor(cParams->strategy, ZSTD_matchState_dictMode(ms));
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
/* Input positions */
BYTE const* ip = istart;
DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize);
assert(rawSeqStore->pos <= rawSeqStore->size);
assert(rawSeqStore->size <= rawSeqStore->capacity);
/* Loop through each sequence and apply the block compressor to the lits */
while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
/* maybeSplitSequence updates rawSeqStore->pos */
rawSeq const sequence = maybeSplitSequence(rawSeqStore,
(U32)(iend - ip), minMatch);
int i;
/* End signal */
if (sequence.offset == 0)
break;
assert(sequence.offset <= (1U << cParams->windowLog));
assert(ip + sequence.litLength + sequence.matchLength <= iend);
/* Fill tables for block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, cParams, ip);
/* Run the block compressor */
DEBUGLOG(5, "calling block compressor on segment of size %u", sequence.litLength);
{
size_t const newLitLength =
blockCompressor(ms, seqStore, rep, cParams, ip,
sequence.litLength);
ip += sequence.litLength;
/* Update the repcodes */
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
rep[i] = rep[i-1];
rep[0] = sequence.offset;
/* Store the sequence */
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength,
sequence.offset + ZSTD_REP_MOVE,
sequence.matchLength - MINMATCH);
ip += sequence.matchLength;
}
}
/* Fill the tables for the block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, cParams, ip);
/* Compress the last literals */
return blockCompressor(ms, seqStore, rep, cParams,
ip, iend - ip);
}

View File

@ -0,0 +1,110 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
*/
#ifndef ZSTD_LDM_H
#define ZSTD_LDM_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h" /* ldmParams_t, U32 */
#include "zstd.h" /* ZSTD_CCtx, size_t */
/*-*************************************
* Long distance matching
***************************************/
#define ZSTD_LDM_DEFAULT_WINDOW_LOG ZSTD_WINDOWLOG_DEFAULTMAX
/**
* ZSTD_ldm_generateSequences():
*
* Generates the sequences using the long distance match finder.
* Generates long range matching sequences in `sequences`, which parse a prefix
* of the source. `sequences` must be large enough to store every sequence,
* which can be checked with `ZSTD_ldm_getMaxNbSeq()`.
* @returns 0 or an error code.
*
* NOTE: The user must have called ZSTD_window_update() for all of the input
* they have, even if they pass it to ZSTD_ldm_generateSequences() in chunks.
* NOTE: This function returns an error if it runs out of space to store
* sequences.
*/
size_t ZSTD_ldm_generateSequences(
ldmState_t* ldms, rawSeqStore_t* sequences,
ldmParams_t const* params, void const* src, size_t srcSize);
/**
* ZSTD_ldm_blockCompress():
*
* Compresses a block using the predefined sequences, along with a secondary
* block compressor. The literals section of every sequence is passed to the
* secondary block compressor, and those sequences are interspersed with the
* predefined sequences. Returns the length of the last literals.
* Updates `rawSeqStore.pos` to indicate how many sequences have been consumed.
* `rawSeqStore.seq` may also be updated to split the last sequence between two
* blocks.
* @return The length of the last literals.
*
* NOTE: The source must be at most the maximum block size, but the predefined
* sequences can be any size, and may be longer than the block. In the case that
* they are longer than the block, the last sequences may need to be split into
* two. We handle that case correctly, and update `rawSeqStore` appropriately.
* NOTE: This function does not return any errors.
*/
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams,
void const* src, size_t srcSize);
/**
* ZSTD_ldm_skipSequences():
*
* Skip past `srcSize` bytes worth of sequences in `rawSeqStore`.
* Avoids emitting matches less than `minMatch` bytes.
* Must be called for data with is not passed to ZSTD_ldm_blockCompress().
*/
void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize,
U32 const minMatch);
/** ZSTD_ldm_getTableSize() :
* Estimate the space needed for long distance matching tables or 0 if LDM is
* disabled.
*/
size_t ZSTD_ldm_getTableSize(ldmParams_t params);
/** ZSTD_ldm_getSeqSpace() :
* Return an upper bound on the number of sequences that can be produced by
* the long distance matcher, or 0 if LDM is disabled.
*/
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize);
/** ZSTD_ldm_getTableSize() :
* Return prime8bytes^(minMatchLength-1) */
U64 ZSTD_ldm_getHashPower(U32 minMatchLength);
/** ZSTD_ldm_adjustParameters() :
* If the params->hashEveryLog is not set, set it to its default value based on
* windowLog and params->hashLog.
*
* Ensures that params->bucketSizeLog is <= params->hashLog (setting it to
* params->hashLog if it is not).
*
* Ensures that the minMatchLength >= targetLength during optimal parsing.
*/
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
ZSTD_compressionParameters const* cParams);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_FAST_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,49 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_OPT_H
#define ZSTD_OPT_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h"
void ZSTD_updateTree(
ZSTD_matchState_t* ms, ZSTD_compressionParameters const* cParams,
const BYTE* ip, const BYTE* iend); /* used in ZSTD_loadDictionaryContent() */
size_t ZSTD_compressBlock_btopt(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btopt_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btopt_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_OPT_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,156 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTDMT_COMPRESS_H
#define ZSTDMT_COMPRESS_H
#if defined (__cplusplus)
extern "C" {
#endif
/* Note : This is an internal API.
* Some methods are still exposed (ZSTDLIB_API),
* because it used to be the only way to invoke MT compression.
* Now, it's recommended to use ZSTD_compress_generic() instead.
* These methods will stop being exposed in a future version */
/* === Dependencies === */
#include <stddef.h> /* size_t */
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters */
#include "zstd.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTDLIB_API */
/* === Memory management === */
typedef struct ZSTDMT_CCtx_s ZSTDMT_CCtx;
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers);
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers,
ZSTD_customMem cMem);
ZSTDLIB_API size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx);
ZSTDLIB_API size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx);
/* === Simple one-pass compression function === */
ZSTDLIB_API size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel);
/* === Streaming functions === */
ZSTDLIB_API size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel);
ZSTDLIB_API size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize); /**< if srcSize is not known at reset time, use ZSTD_CONTENTSIZE_UNKNOWN. Note: for compatibility with older programs, 0 means the same as ZSTD_CONTENTSIZE_UNKNOWN, but it will change in the future to mean "empty" */
ZSTDLIB_API size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
ZSTDLIB_API size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output); /**< @return : 0 == all flushed; >0 : still some data to be flushed; or an error code (ZSTD_isError()) */
ZSTDLIB_API size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output); /**< @return : 0 == all flushed; >0 : still some data to be flushed; or an error code (ZSTD_isError()) */
/* === Advanced functions and parameters === */
#ifndef ZSTDMT_JOBSIZE_MIN
# define ZSTDMT_JOBSIZE_MIN (1U << 20) /* 1 MB - Minimum size of each compression job */
#endif
ZSTDLIB_API size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict,
ZSTD_parameters params,
unsigned overlapLog);
ZSTDLIB_API size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx,
const void* dict, size_t dictSize, /* dict can be released after init, a local copy is preserved within zcs */
ZSTD_parameters params,
unsigned long long pledgedSrcSize); /* pledgedSrcSize is optional and can be zero == unknown */
ZSTDLIB_API size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fparams,
unsigned long long pledgedSrcSize); /* note : zero means empty */
/* ZSTDMT_parameter :
* List of parameters that can be set using ZSTDMT_setMTCtxParameter() */
typedef enum {
ZSTDMT_p_jobSize, /* Each job is compressed in parallel. By default, this value is dynamically determined depending on compression parameters. Can be set explicitly here. */
ZSTDMT_p_overlapSectionLog /* Each job may reload a part of previous job to enhance compressionr ratio; 0 == no overlap, 6(default) == use 1/8th of window, >=9 == use full window. This is a "sticky" parameter : its value will be re-used on next compression job */
} ZSTDMT_parameter;
/* ZSTDMT_setMTCtxParameter() :
* allow setting individual parameters, one at a time, among a list of enums defined in ZSTDMT_parameter.
* The function must be called typically after ZSTD_createCCtx() but __before ZSTDMT_init*() !__
* Parameters not explicitly reset by ZSTDMT_init*() remain the same in consecutive compression sessions.
* @return : 0, or an error code (which can be tested using ZSTD_isError()) */
ZSTDLIB_API size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, unsigned value);
/* ZSTDMT_getMTCtxParameter() :
* Query the ZSTDMT_CCtx for a parameter value.
* @return : 0, or an error code (which can be tested using ZSTD_isError()) */
ZSTDLIB_API size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, unsigned* value);
/*! ZSTDMT_compressStream_generic() :
* Combines ZSTDMT_compressStream() with optional ZSTDMT_flushStream() or ZSTDMT_endStream()
* depending on flush directive.
* @return : minimum amount of data still to be flushed
* 0 if fully flushed
* or an error code
* note : needs to be init using any ZSTD_initCStream*() variant */
ZSTDLIB_API size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp);
/* ========================================================
* === Private interface, for use by ZSTD_compress.c ===
* === Not exposed in libzstd. Never invoke directly ===
* ======================================================== */
size_t ZSTDMT_CCtxParam_setMTCtxParameter(ZSTD_CCtx_params* params, ZSTDMT_parameter parameter, unsigned value);
/* ZSTDMT_CCtxParam_setNbWorkers()
* Set nbWorkers, and clamp it.
* Also reset jobSize and overlapLog */
size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers);
/*! ZSTDMT_updateCParams_whileCompressing() :
* Updates only a selected set of compression parameters, to remain compatible with current frame.
* New parameters will be applied to next compression job. */
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams);
/* ZSTDMT_getFrameProgression():
* tells how much data has been consumed (input) and produced (output) for current frame.
* able to count progression inside worker threads.
*/
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx);
/*! ZSTDMT_initCStream_internal() :
* Private use only. Init streaming operation.
* expects params to be valid.
* must receive dict, or cdict, or none, but not both.
* @return : 0, or an error code */
size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* zcs,
const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDMT_COMPRESS_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,213 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* ***************************************************************
* NOTES/WARNINGS
******************************************************************/
/* The streaming API defined here is deprecated.
* Consider migrating towards ZSTD_compressStream() API in `zstd.h`
* See 'lib/README.md'.
*****************************************************************/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef ZSTD_BUFFERED_H_23987
#define ZSTD_BUFFERED_H_23987
/* *************************************
* Dependencies
***************************************/
#include <stddef.h> /* size_t */
#include "zstd.h" /* ZSTD_CStream, ZSTD_DStream, ZSTDLIB_API */
/* ***************************************************************
* Compiler specifics
*****************************************************************/
/* Deprecation warnings */
/* Should these warnings be a problem,
it is generally possible to disable them,
typically with -Wno-deprecated-declarations for gcc
or _CRT_SECURE_NO_WARNINGS in Visual.
Otherwise, it's also possible to define ZBUFF_DISABLE_DEPRECATE_WARNINGS */
#ifdef ZBUFF_DISABLE_DEPRECATE_WARNINGS
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API /* disable deprecation warnings */
#else
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define ZBUFF_DEPRECATED(message) [[deprecated(message)]] ZSTDLIB_API
# elif (defined(__GNUC__) && (__GNUC__ >= 5)) || defined(__clang__)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated(message)))
# elif defined(__GNUC__) && (__GNUC__ >= 3)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated))
# elif defined(_MSC_VER)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __declspec(deprecated(message))
# else
# pragma message("WARNING: You need to implement ZBUFF_DEPRECATED for this compiler")
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API
# endif
#endif /* ZBUFF_DISABLE_DEPRECATE_WARNINGS */
/* *************************************
* Streaming functions
***************************************/
/* This is the easier "buffered" streaming API,
* using an internal buffer to lift all restrictions on user-provided buffers
* which can be any size, any place, for both input and output.
* ZBUFF and ZSTD are 100% interoperable,
* frames created by one can be decoded by the other one */
typedef ZSTD_CStream ZBUFF_CCtx;
ZBUFF_DEPRECATED("use ZSTD_createCStream") ZBUFF_CCtx* ZBUFF_createCCtx(void);
ZBUFF_DEPRECATED("use ZSTD_freeCStream") size_t ZBUFF_freeCCtx(ZBUFF_CCtx* cctx);
ZBUFF_DEPRECATED("use ZSTD_initCStream") size_t ZBUFF_compressInit(ZBUFF_CCtx* cctx, int compressionLevel);
ZBUFF_DEPRECATED("use ZSTD_initCStream_usingDict") size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
ZBUFF_DEPRECATED("use ZSTD_compressStream") size_t ZBUFF_compressContinue(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr, const void* src, size_t* srcSizePtr);
ZBUFF_DEPRECATED("use ZSTD_flushStream") size_t ZBUFF_compressFlush(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
ZBUFF_DEPRECATED("use ZSTD_endStream") size_t ZBUFF_compressEnd(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
/*-*************************************************
* Streaming compression - howto
*
* A ZBUFF_CCtx object is required to track streaming operation.
* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
* ZBUFF_CCtx objects can be reused multiple times.
*
* Start by initializing ZBUF_CCtx.
* Use ZBUFF_compressInit() to start a new compression operation.
* Use ZBUFF_compressInitDictionary() for a compression which requires a dictionary.
*
* Use ZBUFF_compressContinue() repetitively to consume input stream.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written within *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present again remaining data.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each call, so save its content if it matters or change @dst .
* @return : a hint to preferred nb of bytes to use as input for next function call (it's just a hint, to improve latency)
* or an error code, which can be tested using ZBUFF_isError().
*
* At any moment, it's possible to flush whatever data remains within buffer, using ZBUFF_compressFlush().
* The nb of bytes written into `dst` will be reported into *dstCapacityPtr.
* Note that the function cannot output more than *dstCapacityPtr,
* therefore, some content might still be left into internal buffer if *dstCapacityPtr is too small.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* ZBUFF_compressEnd() instructs to finish a frame.
* It will perform a flush and write frame epilogue.
* The epilogue is required for decoders to consider a frame completed.
* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
* In which case, call again ZBUFF_compressFlush() to complete the flush.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : _recommended buffer_ sizes (not compulsory) : ZBUFF_recommendedCInSize() / ZBUFF_recommendedCOutSize()
* input : ZBUFF_recommendedCInSize==128 KB block size is the internal unit, use this value to reduce intermediate stages (better latency)
* output : ZBUFF_recommendedCOutSize==ZSTD_compressBound(128 KB) + 3 + 3 : ensures it's always possible to write/flush/end a full block. Skip some buffering.
* By using both, it ensures that input will be entirely consumed, and output will always contain the result, reducing intermediate buffering.
* **************************************************/
typedef ZSTD_DStream ZBUFF_DCtx;
ZBUFF_DEPRECATED("use ZSTD_createDStream") ZBUFF_DCtx* ZBUFF_createDCtx(void);
ZBUFF_DEPRECATED("use ZSTD_freeDStream") size_t ZBUFF_freeDCtx(ZBUFF_DCtx* dctx);
ZBUFF_DEPRECATED("use ZSTD_initDStream") size_t ZBUFF_decompressInit(ZBUFF_DCtx* dctx);
ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* dctx, const void* dict, size_t dictSize);
ZBUFF_DEPRECATED("use ZSTD_decompressStream") size_t ZBUFF_decompressContinue(ZBUFF_DCtx* dctx,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr);
/*-***************************************************************************
* Streaming decompression howto
*
* A ZBUFF_DCtx object is required to track streaming operations.
* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
* Use ZBUFF_decompressInit() to start a new decompression operation,
* or ZBUFF_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFF_DCtx objects can be re-init multiple times.
*
* Use ZBUFF_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
* @return : 0 when a frame is completely decoded and fully flushed,
* 1 when there is still some data left within internal buffer to flush,
* >1 when more data is expected, with value being a suggested next input size (it's just a hint, which helps latency),
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize() and ZBUFF_recommendedDOutSize()
* output : ZBUFF_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFF_recommendedDInSize == 128KB + 3;
* just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
/* *************************************
* Tool functions
***************************************/
ZBUFF_DEPRECATED("use ZSTD_isError") unsigned ZBUFF_isError(size_t errorCode);
ZBUFF_DEPRECATED("use ZSTD_getErrorName") const char* ZBUFF_getErrorName(size_t errorCode);
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are just hints, they tend to offer better latency */
ZBUFF_DEPRECATED("use ZSTD_CStreamInSize") size_t ZBUFF_recommendedCInSize(void);
ZBUFF_DEPRECATED("use ZSTD_CStreamOutSize") size_t ZBUFF_recommendedCOutSize(void);
ZBUFF_DEPRECATED("use ZSTD_DStreamInSize") size_t ZBUFF_recommendedDInSize(void);
ZBUFF_DEPRECATED("use ZSTD_DStreamOutSize") size_t ZBUFF_recommendedDOutSize(void);
#endif /* ZSTD_BUFFERED_H_23987 */
#ifdef ZBUFF_STATIC_LINKING_ONLY
#ifndef ZBUFF_STATIC_H_30298098432
#define ZBUFF_STATIC_H_30298098432
/* ====================================================================================
* The definitions in this section are considered experimental.
* They should never be used in association with a dynamic library, as they may change in the future.
* They are provided for advanced usages.
* Use them only in association with static linking.
* ==================================================================================== */
/*--- Dependency ---*/
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters, ZSTD_customMem */
#include "zstd.h"
/*--- Custom memory allocator ---*/
/*! ZBUFF_createCCtx_advanced() :
* Create a ZBUFF compression context using external alloc and free functions */
ZBUFF_DEPRECATED("use ZSTD_createCStream_advanced") ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem);
/*! ZBUFF_createDCtx_advanced() :
* Create a ZBUFF decompression context using external alloc and free functions */
ZBUFF_DEPRECATED("use ZSTD_createDStream_advanced") ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem);
/*--- Advanced Streaming Initialization ---*/
ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize);
#endif /* ZBUFF_STATIC_H_30298098432 */
#endif /* ZBUFF_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif

View File

@ -0,0 +1,26 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "error_private.h"
#include "zbuff.h"
/*-****************************************
* ZBUFF Error Management (deprecated)
******************************************/
/*! ZBUFF_isError() :
* tells if a return value is an error code */
unsigned ZBUFF_isError(size_t errorCode) { return ERR_isError(errorCode); }
/*! ZBUFF_getErrorName() :
* provides error code string from function result (useful for debugging) */
const char* ZBUFF_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }

Some files were not shown because too many files have changed in this diff Show More