Update index.md

This commit is contained in:
Haojun Liao 2024-10-31 20:05:12 +08:00 committed by GitHub
parent 6c8881681e
commit 3dfc4b0b88
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 21 additions and 0 deletions

View File

@ -165,6 +165,27 @@ DROP ANODE {anode_id}
### 时序数据分析功能
#### 白噪声检查
平台提供Restful的服务检测输入时间序列是否是白噪声时间序列White Noise Data, WND白噪声时间序列及随机数序列。
此外,分析平台要求输入的数据不能是 , 因此针对的所有数据均默认进行 白噪声检查。当前白噪声检查采用通行的 Ljung-Box检验Ljung-Box 统计量检查过程需要遍历整个输入序列并进行计算。
如果用户能够明确输入序列一定不是白噪声序列,那么可以通过输入参数,指定预测之前忽略该检查,从而节省分析过程的 CPU 计算资源。
同时支持独立地针对输入序列进行白噪声检测(该检测功能暂不独立对外开放)。
#### 数据重采样和时间戳对齐
数据分析平台支持将输入的数据进行重采样的预处理,从而确保输出结果按照用户指定的等间隔进行处理。处理过程分为两种类别:
数据时间戳对齐。由于真实数据时间可能并非严格按照查询指定的时间戳输入。此时数据平台将自动将数据的时间间隔按照指定的时间间隔进行对齐。例如有输入时间序列:[11, 22, 29, 41],用户指定时间间隔为 10那么该序列将被对齐重整为以下序列 [10, 20, 30, 40]。
数据时间重采样。用户输入的时间序列其采样频率超过了指定的查询需要获得结果的时间间隔,例如输入原始数据是 5 但是输出结果的频率是 10. [0 5 10 15 20 25 30],那么该输入数据列将重采用为间隔 为 10 的输入序列,其结果如下 [0, 10, 2030]。[5, 15, 25] 处的数据将被丢弃。
需要注意的是,数据输入平台不支持缺失数据补齐后进行的预测分析,如果输入时间序列数据[11, 22, 29, 49],并且用户要求的时间间隔为 10 重整对齐后的序列是 [10, 20, 30, 50] 那么该序列进行预测分析将返回错误。
#### 时序数据异常检测
异常检测是针对输入的时序数据,使用预设或用户指定的算法确定时间序列中**可能**出现异常时间序列点,对于时间序列中若干个连续的异常点,将自动合并成为一个连续的(闭区间)异常窗口。对于只有单个点的场景,异常窗口窗口退化成为一个起始时间和结束时间相同的点。
异常检测生成的异常窗口受检测算法和算法参数的共同影响,对于异常窗口范围内的数据,可以应用 TDengine 提供的聚合和标量函数进行查询或变换处理。