diff --git a/docs/zh/21-tdinternal/01-arch.md b/docs/zh/21-tdinternal/01-arch.md index 32d940abc1..e2480b6682 100644 --- a/docs/zh/21-tdinternal/01-arch.md +++ b/docs/zh/21-tdinternal/01-arch.md @@ -112,7 +112,7 @@ TDengine 3.0 采用 hash 一致性算法,确定每张数据表所在的 vnode ### 数据分区 -TDengine 除 vnode 分片之外,还对时序数据按照时间段进行分区。每个数据文件只包含一个时间段的时序数据,时间段的长度由 DB 的配置参数 days 决定。这种按时间段分区的方法还便于高效实现数据的保留策略,只要数据文件超过规定的天数(系统配置参数 keep),将被自动删除。而且不同的时间段可以存放于不同的路径和存储介质,以便于大数据的冷热管理,实现多级存储。 +TDengine 除 vnode 分片之外,还对时序数据按照时间段进行分区。每个数据文件只包含一个时间段的时序数据,时间段的长度由 DB 的配置参数 duration 决定。这种按时间段分区的方法还便于高效实现数据的保留策略,只要数据文件超过规定的天数(系统配置参数 keep),将被自动删除。而且不同的时间段可以存放于不同的路径和存储介质,以便于大数据的冷热管理,实现多级存储。 总的来说,**TDengine 是通过 vnode 以及时间两个维度,对大数据进行切分**,便于并行高效的管理,实现水平扩展。