enh: change download method

This commit is contained in:
jiajingbin 2025-03-19 14:04:21 +08:00
parent 171267c244
commit 21eec06c12
2 changed files with 3 additions and 903 deletions

View File

@ -4,9 +4,10 @@ ENV DEBIAN_FRONTEND=noninteractive
ARG pkgFile
ARG dirName
ADD http://192.168.1.131/data/nas/TDengine/anode/taos.pth /apps
ADD ${pkgFile} taos_ts_server.py /apps/
ADD http://192.168.1.131/data/nas/TDengine/anode/taos_ts_server.py /apps
ADD ${pkgFile} /apps/
RUN cd ${dirName}/ && /bin/bash install.sh -e no && cd .. && rm -rf ${dirName}
COPY entrypoint.sh /usr/local/bin/entrypoint.sh
RUN chmod +x /usr/local/bin/entrypoint.sh
RUN chmod +x /usr/local/bin/entrypoint.sh /apps/taos_ts_server.py
EXPOSE 6090 8387 5000
ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]

View File

@ -1,901 +0,0 @@
"""
TaosForPrediction(
(Taos_model): TaosModel(
(Taos_embed_layer): TaosPatchEmbedding(
(Taos_emb): Linear(in_features=96, out_features=1024, bias=False)
)
(Taos_layers): ModuleList(
(0-7): 8 x TaosDecoderLayer(
(Taos_self_attn): TaosAttention(
(Taos_q_proj): Linear(in_features=1024, out_features=1024, bias=True)
(Taos_k_proj): Linear(in_features=1024, out_features=1024, bias=True)
(Taos_v_proj): Linear(in_features=1024, out_features=1024, bias=True)
(Taos_o_proj): Linear(in_features=1024, out_features=1024, bias=False)
(Taos_rotary_emb): TaosRotaryEmbedding()
)
(Taos_ffn_layer): TaosMLP(
(Taos_gate_proj): Linear(in_features=1024, out_features=2048, bias=False)
(Taos_up_proj): Linear(in_features=1024, out_features=2048, bias=False)
(Taos_down_proj): Linear(in_features=2048, out_features=1024, bias=False)
(Taos_act_fn): GELUActivation()
)
(Taos_norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(Taos_norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
(Taos_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
(Taos_lm_heads): ModuleList(
(0): Linear(in_features=1024, out_features=96, bias=False)
)
(Taos_loss_function): MSELoss()
)
"""
from typing import Optional, Tuple, List, Union
import torch
from torch import nn
import torch.nn.functional as F
from transformers import PreTrainedModel, Cache, DynamicCache
from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
from transformers import PretrainedConfig
from typing import Any, Dict, List, Optional, Union, Callable
from transformers import GenerationMixin, LogitsProcessorList, StoppingCriteriaList
from transformers.generation import validate_stopping_criteria, EosTokenCriteria
from transformers.generation.utils import GenerateNonBeamOutput, GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput, GenerationConfig, GenerateOutput
from transformers.utils import ModelOutput
from flask import Flask, request, jsonify
import sys
import argparse
app = Flask(__name__)
root_path = '/home/ubuntu/ds_predict/'
device = 'cpu'
max_len = 2048
Taos_model = None
def load_data(file_name):
with open(root_path + file_name, 'r') as f:
numbers = [float(line.strip()) for line in f]
print(numbers)
return numbers[:max_len]
class TaosConfig(PretrainedConfig):
model_type = "taos"
keys_to_ignore_at_inference = ["Taos_past_key_values"]
def __init__(
self,
Taos_input_token_len: int = 1,
Taos_hidden_size: int = 1024,
Taos_intermediate_size: int = 2048,
Taos_output_token_lens: List[int] = [1, 8, 32, 64],
Taos_num_hidden_layers: int = 8,
Taos_num_attention_heads: int = 8,
Taos_hidden_act: str = "silu",
Taos_use_cache: bool = True,
Taos_rope_theta: int = 10000,
Taos_attention_dropout: float = 0.0,
Taos_initializer_range: float = 0.02,
Taos_max_position_embeddings: int = 10000,
**kwargs,
):
self.Taos_input_token_len = Taos_input_token_len
self.Taos_hidden_size = Taos_hidden_size
self.Taos_intermediate_size = Taos_intermediate_size
self.Taos_num_hidden_layers = Taos_num_hidden_layers
self.Taos_num_attention_heads = Taos_num_attention_heads
self.Taos_hidden_act = Taos_hidden_act
self.Taos_output_token_lens = Taos_output_token_lens
self.Taos_use_cache = Taos_use_cache
self.Taos_rope_theta = Taos_rope_theta
self.Taos_attention_dropout = Taos_attention_dropout
self.Taos_initializer_range = Taos_initializer_range
self.Taos_max_position_embeddings = Taos_max_position_embeddings
super().__init__(**kwargs)
class BaseStreamer:
pass
class TaosTSGenerationMixin(GenerationMixin):
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
synced_gpus: Optional[bool] = None,
assistant_model: Optional["PreTrainedModel"] = None,
streamer: Optional["BaseStreamer"] = None,
negative_prompt_ids: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
if len(inputs.shape) == 2:
batch_size, cur_len = inputs.shape
if cur_len < self.config.Taos_input_token_len:
raise ValueError(f"Input length must be at least {self.config.Taos_input_token_len}")
elif cur_len % self.config.Taos_input_token_len != 0:
new_len = (cur_len // self.config.Taos_input_token_len) * self.config.Taos_input_token_len
inputs = inputs[:, -new_len:]
else:
raise ValueError('Input shape must be: [batch_size, seq_len]')
return super().generate(inputs=inputs, generation_config=generation_config, logits_processor=logits_processor, stopping_criteria=stopping_criteria, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, synced_gpus=synced_gpus, assistant_model=assistant_model, streamer=streamer, negative_prompt_ids=negative_prompt_ids, negative_prompt_attention_mask=negative_prompt_attention_mask, **kwargs)
def _greedy_search(
self,
input_ids: torch.Tensor,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
output_logits: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: bool = False,
streamer: Optional["BaseStreamer"] = None,
**model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.Tensor]:
input_ids = input_ids.to(self.device)
batch_size, cur_len = input_ids.shape
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
if eos_token_id is not None:
stopping_criteria.append(EosTokenCriteria(eos_token_id=eos_token_id))
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
output_attentions = output_attentions if output_attentions is not None else self.generation_config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
return_dict_in_generate = return_dict_in_generate if return_dict_in_generate is not None else self.generation_config.return_dict_in_generate
raw_logits = () if (return_dict_in_generate and output_logits) else None
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
if "inputs_embeds" in model_kwargs:
cur_len = model_kwargs["inputs_embeds"].shape[1]
this_peer_finished = False
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
model_kwargs["cache_position"] = torch.arange(cur_len, device=input_ids.device)
true_seq_len = cur_len // self.config.Taos_input_token_len
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, -true_seq_len:]
max_length = stopping_criteria.max_length
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
input_length = input_ids.shape[1]
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
max_output_length=max_length - input_length,
)
if synced_gpus and this_peer_finished:
continue
next_token_logits = outputs.logits
next_tokens_scores = logits_processor(input_ids, next_token_logits)
if return_dict_in_generate:
if output_scores:
scores += (next_tokens_scores,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += ((outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,))
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += ((outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,))
next_tokens = next_tokens_scores
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
horizon_length = next_tokens.shape[1] // self.config.Taos_input_token_len
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
if streamer is not None:
streamer.put(next_tokens.cpu())
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
horizon_length=horizon_length,
is_encoder_decoder=self.config.is_encoder_decoder,
)
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
this_peer_finished = unfinished_sequences.max() == 0
if input_ids.shape[1] > max_length:
input_ids = input_ids[:, :max_length]
if streamer is not None:
streamer.end()
if return_dict_in_generate:
if self.config.is_encoder_decoder:
return GenerateEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("Taos_past_key_values"),
)
else:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("Taos_past_key_values"),
)
else:
return input_ids[:, -(max_length - cur_len):]
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
horizon_length: int = 1,
is_encoder_decoder: bool = False,
standardize_cache_format: bool = False,
) -> Dict[str, Any]:
model_kwargs["Taos_past_key_values"] = self._extract_past_from_model_output(outputs, standardize_cache_format=standardize_cache_format)
if getattr(outputs, "state", None) is not None:
model_kwargs["state"] = outputs.state
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
if not is_encoder_decoder:
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], horizon_length))], dim=-1)
else:
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
model_kwargs["decoder_attention_mask"] = torch.cat([decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], horizon_length))], dim=-1)
if "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None:
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + horizon_length
return model_kwargs
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class TaosPatchEmbedding(nn.Module):
def __init__(self, config: TaosConfig):
super().__init__()
self.Taos_input_token_len = config.Taos_input_token_len
self.Taos_emb = nn.Linear(config.Taos_input_token_len, config.Taos_hidden_size, bias=False)
def forward(self, hidden_state: torch.Tensor):
hidden_state = hidden_state.unfold(dimension=-1, size=self.Taos_input_token_len, step=self.Taos_input_token_len)
return self.Taos_emb(hidden_state)
class TaosPointEmbedding(nn.Module):
def __init__(self, config: TaosConfig):
super().__init__()
self.Taos_emb_layer = nn.Linear(config.Taos_input_token_len, config.Taos_hidden_size, bias=False)
self.Taos_gate_layer = nn.Linear(config.Taos_input_token_len, config.Taos_hidden_size, bias=False)
self.Taos_act_fn = ACT2FN[config.Taos_hidden_act]
def forward(self, x):
emb = self.Taos_act_fn(self.Taos_gate_layer(x)) * self.Taos_emb_layer(x)
return emb
class TaosRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=10000, base=10000, device=None):
super().__init__()
self.Taos_dim = dim
self.Taos_max_position_embeddings = max_position_embeddings
self.Taos_base = base
inv_freq = 1.0 / (self.Taos_base ** (torch.arange(0, self.Taos_dim, 2, dtype=torch.int64).float().to(device) / self.Taos_dim))
self.register_buffer("Taos_inv_freq", inv_freq, persistent=False)
self._set_cos_sin_cache(seq_len=max_position_embeddings, device=self.Taos_inv_freq.device, dtype=torch.get_default_dtype())
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.Taos_max_seq_len_cached = seq_len
t = torch.arange(self.Taos_max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.Taos_inv_freq)
freqs = torch.outer(t, self.Taos_inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("Taos_cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("Taos_sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
if seq_len > self.Taos_max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (self.Taos_cos_cached[:seq_len].to(dtype=x.dtype), self.Taos_sin_cached[:seq_len].to(dtype=x.dtype))
class TaosAttention(nn.Module):
def __init__(self, config: TaosConfig, layer_idx: Optional[int] = None):
super().__init__()
self.Taos_layer_idx = layer_idx
self.Taos_hidden_size = config.Taos_hidden_size
self.Taos_num_heads = config.Taos_num_attention_heads
self.Taos_head_dim = self.Taos_hidden_size // self.Taos_num_heads
self.Taos_attention_dropout = config.Taos_attention_dropout
self.Taos_q_proj = nn.Linear(self.Taos_hidden_size, self.Taos_hidden_size, bias=True)
self.Taos_k_proj = nn.Linear(self.Taos_hidden_size, self.Taos_hidden_size, bias=True)
self.Taos_v_proj = nn.Linear(self.Taos_hidden_size, self.Taos_hidden_size, bias=True)
self.Taos_o_proj = nn.Linear(self.Taos_hidden_size, self.Taos_hidden_size, bias=False)
self.Taos_rotary_emb = TaosRotaryEmbedding(self.Taos_head_dim, max_position_embeddings=config.Taos_max_position_embeddings)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
Taos_past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.Taos_q_proj(hidden_states)
key_states = self.Taos_k_proj(hidden_states)
value_states = self.Taos_v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.Taos_num_heads, self.Taos_head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.Taos_num_heads, self.Taos_head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.Taos_num_heads, self.Taos_head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if Taos_past_key_value is not None:
kv_seq_len += Taos_past_key_value.get_usable_length(kv_seq_len, self.Taos_layer_idx)
cos, sin = self.Taos_rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if Taos_past_key_value is not None:
key_states, value_states = Taos_past_key_value.update(key_states, value_states, self.Taos_layer_idx)
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask, dropout_p=self.Taos_attention_dropout)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.Taos_hidden_size)
attn_output = self.Taos_o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, Taos_past_key_value
class TaosMLP(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str):
super().__init__()
self.Taos_hidden_size = hidden_size
self.Taos_intermediate_size = intermediate_size
self.Taos_gate_proj = nn.Linear(self.Taos_hidden_size, self.Taos_intermediate_size, bias=False)
self.Taos_up_proj = nn.Linear(self.Taos_hidden_size, self.Taos_intermediate_size, bias=False)
self.Taos_down_proj = nn.Linear(self.Taos_intermediate_size, self.Taos_hidden_size, bias=False)
self.Taos_act_fn = ACT2FN[hidden_act]
def forward(self, hidden_state):
return self.Taos_down_proj(self.Taos_act_fn(self.Taos_gate_proj(hidden_state)) * self.Taos_up_proj(hidden_state))
class TaosDecoderLayer(nn.Module):
def __init__(self, config: TaosConfig, layer_idx: int):
super().__init__()
self.Taos_self_attn = TaosAttention(config, layer_idx)
self.Taos_ffn_layer = TaosMLP(hidden_size=config.Taos_hidden_size, intermediate_size=config.Taos_intermediate_size, hidden_act=config.Taos_hidden_act)
self.Taos_norm1 = torch.nn.LayerNorm(config.Taos_hidden_size)
self.Taos_norm2 = torch.nn.LayerNorm(config.Taos_hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
Taos_past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor], Optional[torch.FloatTensor]]:
residual = hidden_states
hidden_states, self_attn_weights, present_key_value = self.Taos_self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
Taos_past_key_value=Taos_past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
hidden_states = self.Taos_norm1(hidden_states)
residual = hidden_states
hidden_states = self.Taos_ffn_layer(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.Taos_norm2(hidden_states)
if not output_attentions:
self_attn_weights = None
if not use_cache:
present_key_value = None
return hidden_states, self_attn_weights, present_key_value
class TaosPreTrainedModel(PreTrainedModel):
config_class = TaosConfig
base_model_prefix = "Taos_model"
supports_gradient_checkpointing = True
_no_split_modules = ["TaosDecoderLayer"]
_skip_keys_device_placement = "Taos_past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = False
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.Taos_initializer_range
if isinstance(module, torch.nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, torch.nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class TaosModel(TaosPreTrainedModel):
def __init__(self, config: TaosConfig):
super().__init__(config)
self.Taos_embed_layer = TaosPatchEmbedding(config)
self.Taos_layers = nn.ModuleList([TaosDecoderLayer(config, layer_idx) for layer_idx in range(config.Taos_num_hidden_layers)])
self.Taos_norm = torch.nn.LayerNorm(config.Taos_hidden_size)
self.Taos_gradient_checkpointing = False
def forward(
self,
input_ids: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
Taos_past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else self.config.Taos_use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.Taos_embed_layer(input_ids)
seq_length = inputs_embeds.shape[1]
if self.Taos_gradient_checkpointing and self.training:
if use_cache:
use_cache = False
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(Taos_past_key_values, Cache)
if use_legacy_cache:
Taos_past_key_values = DynamicCache.from_legacy_cache(Taos_past_key_values)
past_key_values_length = Taos_past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device)
position_ids = position_ids.view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
attention_mask = _prepare_4d_causal_attention_mask(attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=None)
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.Taos_layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.Taos_gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
Taos_past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
Taos_past_key_value=Taos_past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if use_cache:
next_decoder_cache = layer_outputs[2]
hidden_states = self.Taos_norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class TaosForPrediction(TaosPreTrainedModel, TaosTSGenerationMixin):
def __init__(self, config: TaosConfig):
super().__init__(config)
self.config = config
self.Taos_model = TaosModel(self.config)
lm_head_list = []
self.Taos_output_token_len_map = {}
for i, output_token_len in enumerate(self.config.Taos_output_token_lens):
lm_head_list.append(nn.Linear(self.config.Taos_hidden_size, output_token_len, bias=False))
self.Taos_output_token_len_map[output_token_len] = i
self.Taos_lm_heads = nn.ModuleList(lm_head_list)
self.Taos_loss_function = torch.nn.MSELoss(reduction='none')
self.post_init()
def set_decoder(self, decoder):
self.Taos_model = decoder
def get_decoder(self):
return self.Taos_model
def forward(
self,
input_ids: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
Taos_past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
loss_masks: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
max_output_length: Optional[int] = None,
revin: Optional[bool] = False,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if revin:
mean, std = input_ids.mean(dim=-1, keepdim=True), input_ids.std(dim=-1, keepdim=True)
input_ids = (input_ids - mean) / std
outputs = self.Taos_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
Taos_past_key_values=Taos_past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
predictions = None
loss = None
if labels is not None:
ar_loss = 0.0
for lm_head, output_token_len in zip(self.Taos_lm_heads, self.config.Taos_output_token_lens):
one_predictions = lm_head(hidden_states)
one_loss = self.calc_ar_loss(one_predictions, labels, loss_masks, output_token_len)
ar_loss += one_loss
if predictions is None:
predictions = one_predictions
loss = ar_loss / len(self.config.Taos_output_token_lens)
else:
if max_output_length is None:
output_token_len = self.config.Taos_output_token_lens[0]
max_output_length = output_token_len
else:
output_token_len = self.config.Taos_output_token_lens[0]
for h in self.config.Taos_output_token_lens[1:]:
if h > max_output_length:
break
else:
output_token_len = h
lm_head = self.Taos_lm_heads[self.Taos_output_token_len_map[output_token_len]]
predictions = lm_head(hidden_states)[:, -1, :]
if output_token_len > max_output_length:
predictions = predictions[:, :max_output_length]
if revin:
predictions = predictions * std + mean
if not return_dict:
output = (predictions,) + outputs[1:]
return (loss) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
logits=predictions,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def calc_ar_loss(self, predictions, labels, loss_masks, output_token_len):
seq_len = predictions.shape[1] * self.config.Taos_input_token_len
labels = labels[:, :seq_len - self.config.Taos_input_token_len + output_token_len]
shift_labels = labels.unfold(dimension=-1, size=output_token_len, step=self.config.Taos_input_token_len)
losses = self.Taos_loss_function(predictions, shift_labels).mean(dim=-1)
if loss_masks is not None:
losses = losses * loss_masks
loss = losses.sum() / loss_masks.sum()
else:
loss = torch.mean(losses)
return loss
def prepare_inputs_for_generation(
self, input_ids, Taos_past_key_values=None, attention_mask=None, inputs_embeds=None, revin=True, **kwargs
):
if Taos_past_key_values is not None:
if isinstance(Taos_past_key_values, Cache):
cache_length = Taos_past_key_values.get_seq_length()
if isinstance(Taos_past_key_values, DynamicCache):
past_length = Taos_past_key_values.seen_tokens
else:
past_length = cache_length
max_cache_length = Taos_past_key_values.get_max_length()
else:
cache_length = past_length = Taos_past_key_values[0][0].shape[2]
max_cache_length = None
if attention_mask is not None and attention_mask.shape[1] > (input_ids.shape[1] // self.config.Taos_input_token_len):
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
elif past_length < (input_ids.shape[1] // self.config.Taos_input_token_len):
input_ids = input_ids[:, past_length * self.config.Taos_input_token_len:]
if max_cache_length is not None and attention_mask is not None and cache_length + (input_ids.shape[1] // self.config.Taos_input_token_len) > max_cache_length:
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if Taos_past_key_values:
position_ids = position_ids[:, -(input_ids.shape[1] // self.config.Taos_input_token_len):]
if inputs_embeds is not None and Taos_past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update({
"position_ids": position_ids,
"Taos_past_key_values": Taos_past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"revin": revin
})
return model_inputs
def init_model():
global Taos_model
if Taos_model != None:
return
config = TaosConfig(
Taos_input_token_len=96,
Taos_hidden_size=1024,
Taos_num_attention_heads=8,
Taos_intermediate_size=2048,
Taos_num_hidden_layers=8,
Taos_max_position_embeddings=2048,
Taos_attention_dropout=0.1,
Taos_hidden_act="gelu",
Taos_output_token_lens=[96],
)
Taos_model = TaosForPrediction(config)
model_path = "taos.pth"
Taos_model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=True)
Taos_model = Taos_model.to(device)
#src_data = load_data('src_data/holt-winters_1.txt')
#print(f"src_data:{src_data}")
#seqs = torch.tensor(src_data).unsqueeze(0).float()
#seqs = seqs.to(device)
print(Taos_model)
def train():
pass
def infer():
pass
def data_view():
pass
@app.route('/get_train_data', methods=['POST'])
def get_train_data():
try:
# 初始化训练数据集(如果尚未初始化)
#init_train_dataset()
# 从请求中获取可选参数(例如指定索引)
#data = request.get_json()
# 获取数据
#seq_x, seq_y = train_dataset[index] # seq_x: [672, 1], seq_y: [672, 1]
src_data = load_data('data.txt')
seq_x = src_data[:-96]
seq_y = src_data[-96:]
seq_x = torch.tensor(seq_x, dtype=torch.float32) # 转换为张量
seq_x_1d = seq_x.squeeze().flatten() # 转换为 [672]
seq_y = torch.tensor(seq_y, dtype=torch.float32) # 转换为张量
seq_y_1d = seq_y.squeeze().flatten() # 转换为 [672]
# 反标准化(可选,如果需要返回原始数据)
#c_begin = index // train_dataset.n_timepoint # 当前特征索引
#seq_x_1d = train_dataset.inverse_transform(seq_x_1d.reshape(-1, 1), feature_idx=c_begin).flatten()
seq_x_1d = seq_x_1d.reshape(-1, 1).flatten()
seq_y_1d = seq_y_1d.reshape(-1, 1).flatten()
# 转换为 Python 列表以便 JSON 序列化
seq_x_list = seq_x_1d.tolist()
seq_y_list = seq_y_1d.tolist()
# 返回结果
response = {
'status': 'success',
'index': 0,
'x': seq_x_list, # 长度为 672 的列表
'y': seq_y_list,
'x_length': len(seq_x_list),
'y_length': len(seq_y_list),
}
return jsonify(response), 200
except Exception as e:
print(f"Error in get_train_data: {e}")
return jsonify({'error': f'Failed to get data: {str(e)}'}), 500
@app.route('/ds_data', methods=['POST'])
def load_data():
# 打开文件并读取数据
with open('/home/ubuntu/ds_predict/data.txt', 'r') as f:
# 使用列表推导式将每一行转换为数字并存储在列表中
numbers = [float(line.strip()) for line in f]
print(numbers)
with open('/home/ubuntu/ds_predict/pred.txt', 'r') as f:
# 使用列表推导式将每一行转换为数字并存储在列表中
pred_numbers = [float(line.strip()) for line in f]
print(pred_numbers)
# 返回结果
response = {
'status': 'success',
'x': numbers[:max_len],
'y': pred_numbers[:max_len]
}
return jsonify(response), 200
@app.route('/ds_predict', methods=['POST'])
def ds_predict():
print(f"predict")
global Taos_model
"""处理POST请求并返回模型预测结果"""
try:
# 获取POST请求中的JSON数据
data = request.get_json()
if not data or 'input' not in data:
return jsonify({
'status':'error',
'error': 'Invalid input, please provide "input" field in JSON'
}), 400
print(f"data:{data}")
input_data = data['input']
#这个input_data是一个变长的数字数组
#result = ", ".join(map(str, input_data))
num_len = data['next_len']#96 #len(input_data)
#seq_len = num_len
#pred_y = predict_fn(num_len, result, input_data)
seqs = torch.tensor(input_data).unsqueeze(0).float().to(device)
prediction_length = num_len
pred_y = Taos_model.generate(seqs, max_new_tokens=prediction_length)
#去掉[]
#pred_y = pred_y.replace('[','').replace(']','')
print(f"now pred:({pred_y})")
#numbers = [float(num) for num in pred_y.split(",")]
numbers = pred_y[0].tolist()
#print(numbers.dtype)
"""
if not isinstance(input_data, list) or not all(isinstance(x, (int, float)) for x in input_data):
return jsonify({
'status':'error',
'error': 'Input must be a list of numbers'
}), 400
# 返回结果
"""
response = {
'status': 'success',
#'input': input_data,
'output': numbers[-num_len:]
}
return jsonify(response), 200
except Exception as e:
print(f"error when predict:{e}")
return jsonify({
'error': f'Prediction failed: {str(e)}'
}), 500
# 主函数
def main():
# 创建 ArgumentParser 对象
parser = argparse.ArgumentParser(description="一个支持 train 和 infer 的命令行工具")
# 添加 --action 参数
parser.add_argument(
"--action",
type=str,
choices=["train", "infer", "data", "server"], # 限制输入值为 train 或 infer
required=True, # 参数必须提供
help="指定操作: 'train''infer'"
)
# 解析命令行参数
args = parser.parse_args()
# 根据 action 参数调用对应函数
if args.action == "train":
train()
elif args.action == "infer":
infer()
elif args.action == "data":
data_view()
elif args.action == "server":
#server()
init_model()
# 启动Flask服务器
app.run(
host='0.0.0.0',
port=5000,
threaded=True, # 支持多线程处理并发请求
debug=False # 生产环境建议设为False
)
# 入口点
if __name__ == "__main__":
main()