enh: change download method
This commit is contained in:
parent
171267c244
commit
21eec06c12
|
@ -4,9 +4,10 @@ ENV DEBIAN_FRONTEND=noninteractive
|
|||
ARG pkgFile
|
||||
ARG dirName
|
||||
ADD http://192.168.1.131/data/nas/TDengine/anode/taos.pth /apps
|
||||
ADD ${pkgFile} taos_ts_server.py /apps/
|
||||
ADD http://192.168.1.131/data/nas/TDengine/anode/taos_ts_server.py /apps
|
||||
ADD ${pkgFile} /apps/
|
||||
RUN cd ${dirName}/ && /bin/bash install.sh -e no && cd .. && rm -rf ${dirName}
|
||||
COPY entrypoint.sh /usr/local/bin/entrypoint.sh
|
||||
RUN chmod +x /usr/local/bin/entrypoint.sh
|
||||
RUN chmod +x /usr/local/bin/entrypoint.sh /apps/taos_ts_server.py
|
||||
EXPOSE 6090 8387 5000
|
||||
ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]
|
||||
|
|
|
@ -1,901 +0,0 @@
|
|||
"""
|
||||
TaosForPrediction(
|
||||
(Taos_model): TaosModel(
|
||||
(Taos_embed_layer): TaosPatchEmbedding(
|
||||
(Taos_emb): Linear(in_features=96, out_features=1024, bias=False)
|
||||
)
|
||||
(Taos_layers): ModuleList(
|
||||
(0-7): 8 x TaosDecoderLayer(
|
||||
(Taos_self_attn): TaosAttention(
|
||||
(Taos_q_proj): Linear(in_features=1024, out_features=1024, bias=True)
|
||||
(Taos_k_proj): Linear(in_features=1024, out_features=1024, bias=True)
|
||||
(Taos_v_proj): Linear(in_features=1024, out_features=1024, bias=True)
|
||||
(Taos_o_proj): Linear(in_features=1024, out_features=1024, bias=False)
|
||||
(Taos_rotary_emb): TaosRotaryEmbedding()
|
||||
)
|
||||
(Taos_ffn_layer): TaosMLP(
|
||||
(Taos_gate_proj): Linear(in_features=1024, out_features=2048, bias=False)
|
||||
(Taos_up_proj): Linear(in_features=1024, out_features=2048, bias=False)
|
||||
(Taos_down_proj): Linear(in_features=2048, out_features=1024, bias=False)
|
||||
(Taos_act_fn): GELUActivation()
|
||||
)
|
||||
(Taos_norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
||||
(Taos_norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
||||
)
|
||||
)
|
||||
(Taos_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
||||
)
|
||||
(Taos_lm_heads): ModuleList(
|
||||
(0): Linear(in_features=1024, out_features=96, bias=False)
|
||||
)
|
||||
(Taos_loss_function): MSELoss()
|
||||
)
|
||||
|
||||
"""
|
||||
from typing import Optional, Tuple, List, Union
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import PreTrainedModel, Cache, DynamicCache
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
||||
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
|
||||
from transformers import PretrainedConfig
|
||||
from typing import Any, Dict, List, Optional, Union, Callable
|
||||
from transformers import GenerationMixin, LogitsProcessorList, StoppingCriteriaList
|
||||
from transformers.generation import validate_stopping_criteria, EosTokenCriteria
|
||||
from transformers.generation.utils import GenerateNonBeamOutput, GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput, GenerationConfig, GenerateOutput
|
||||
from transformers.utils import ModelOutput
|
||||
from flask import Flask, request, jsonify
|
||||
import sys
|
||||
import argparse
|
||||
app = Flask(__name__)
|
||||
|
||||
|
||||
root_path = '/home/ubuntu/ds_predict/'
|
||||
device = 'cpu'
|
||||
max_len = 2048
|
||||
Taos_model = None
|
||||
|
||||
def load_data(file_name):
|
||||
with open(root_path + file_name, 'r') as f:
|
||||
numbers = [float(line.strip()) for line in f]
|
||||
print(numbers)
|
||||
return numbers[:max_len]
|
||||
|
||||
class TaosConfig(PretrainedConfig):
|
||||
model_type = "taos"
|
||||
keys_to_ignore_at_inference = ["Taos_past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
Taos_input_token_len: int = 1,
|
||||
Taos_hidden_size: int = 1024,
|
||||
Taos_intermediate_size: int = 2048,
|
||||
Taos_output_token_lens: List[int] = [1, 8, 32, 64],
|
||||
Taos_num_hidden_layers: int = 8,
|
||||
Taos_num_attention_heads: int = 8,
|
||||
Taos_hidden_act: str = "silu",
|
||||
Taos_use_cache: bool = True,
|
||||
Taos_rope_theta: int = 10000,
|
||||
Taos_attention_dropout: float = 0.0,
|
||||
Taos_initializer_range: float = 0.02,
|
||||
Taos_max_position_embeddings: int = 10000,
|
||||
**kwargs,
|
||||
):
|
||||
self.Taos_input_token_len = Taos_input_token_len
|
||||
self.Taos_hidden_size = Taos_hidden_size
|
||||
self.Taos_intermediate_size = Taos_intermediate_size
|
||||
self.Taos_num_hidden_layers = Taos_num_hidden_layers
|
||||
self.Taos_num_attention_heads = Taos_num_attention_heads
|
||||
self.Taos_hidden_act = Taos_hidden_act
|
||||
self.Taos_output_token_lens = Taos_output_token_lens
|
||||
self.Taos_use_cache = Taos_use_cache
|
||||
self.Taos_rope_theta = Taos_rope_theta
|
||||
self.Taos_attention_dropout = Taos_attention_dropout
|
||||
self.Taos_initializer_range = Taos_initializer_range
|
||||
self.Taos_max_position_embeddings = Taos_max_position_embeddings
|
||||
super().__init__(**kwargs)
|
||||
|
||||
class BaseStreamer:
|
||||
pass
|
||||
|
||||
class TaosTSGenerationMixin(GenerationMixin):
|
||||
@torch.no_grad()
|
||||
def generate(
|
||||
self,
|
||||
inputs: Optional[torch.Tensor] = None,
|
||||
generation_config: Optional[GenerationConfig] = None,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||||
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
||||
synced_gpus: Optional[bool] = None,
|
||||
assistant_model: Optional["PreTrainedModel"] = None,
|
||||
streamer: Optional["BaseStreamer"] = None,
|
||||
negative_prompt_ids: Optional[torch.Tensor] = None,
|
||||
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> Union[GenerateOutput, torch.LongTensor]:
|
||||
if len(inputs.shape) == 2:
|
||||
batch_size, cur_len = inputs.shape
|
||||
if cur_len < self.config.Taos_input_token_len:
|
||||
raise ValueError(f"Input length must be at least {self.config.Taos_input_token_len}")
|
||||
elif cur_len % self.config.Taos_input_token_len != 0:
|
||||
new_len = (cur_len // self.config.Taos_input_token_len) * self.config.Taos_input_token_len
|
||||
inputs = inputs[:, -new_len:]
|
||||
else:
|
||||
raise ValueError('Input shape must be: [batch_size, seq_len]')
|
||||
return super().generate(inputs=inputs, generation_config=generation_config, logits_processor=logits_processor, stopping_criteria=stopping_criteria, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, synced_gpus=synced_gpus, assistant_model=assistant_model, streamer=streamer, negative_prompt_ids=negative_prompt_ids, negative_prompt_attention_mask=negative_prompt_attention_mask, **kwargs)
|
||||
|
||||
def _greedy_search(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||||
max_length: Optional[int] = None,
|
||||
pad_token_id: Optional[int] = None,
|
||||
eos_token_id: Optional[Union[int, List[int]]] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
output_scores: Optional[bool] = None,
|
||||
output_logits: Optional[bool] = None,
|
||||
return_dict_in_generate: Optional[bool] = None,
|
||||
synced_gpus: bool = False,
|
||||
streamer: Optional["BaseStreamer"] = None,
|
||||
**model_kwargs,
|
||||
) -> Union[GenerateNonBeamOutput, torch.Tensor]:
|
||||
input_ids = input_ids.to(self.device)
|
||||
batch_size, cur_len = input_ids.shape
|
||||
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
||||
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
||||
if max_length is not None:
|
||||
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
|
||||
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
||||
if eos_token_id is not None:
|
||||
stopping_criteria.append(EosTokenCriteria(eos_token_id=eos_token_id))
|
||||
if isinstance(eos_token_id, int):
|
||||
eos_token_id = [eos_token_id]
|
||||
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
||||
output_attentions = output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
||||
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
||||
return_dict_in_generate = return_dict_in_generate if return_dict_in_generate is not None else self.generation_config.return_dict_in_generate
|
||||
|
||||
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
||||
scores = () if (return_dict_in_generate and output_scores) else None
|
||||
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
||||
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
||||
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
||||
|
||||
if return_dict_in_generate and self.config.is_encoder_decoder:
|
||||
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
|
||||
encoder_hidden_states = model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
|
||||
|
||||
if "inputs_embeds" in model_kwargs:
|
||||
cur_len = model_kwargs["inputs_embeds"].shape[1]
|
||||
this_peer_finished = False
|
||||
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
||||
model_kwargs["cache_position"] = torch.arange(cur_len, device=input_ids.device)
|
||||
true_seq_len = cur_len // self.config.Taos_input_token_len
|
||||
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, -true_seq_len:]
|
||||
max_length = stopping_criteria.max_length
|
||||
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
|
||||
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
||||
input_length = input_ids.shape[1]
|
||||
outputs = self(
|
||||
**model_inputs,
|
||||
return_dict=True,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
max_output_length=max_length - input_length,
|
||||
)
|
||||
if synced_gpus and this_peer_finished:
|
||||
continue
|
||||
next_token_logits = outputs.logits
|
||||
next_tokens_scores = logits_processor(input_ids, next_token_logits)
|
||||
if return_dict_in_generate:
|
||||
if output_scores:
|
||||
scores += (next_tokens_scores,)
|
||||
if output_logits:
|
||||
raw_logits += (next_token_logits,)
|
||||
if output_attentions:
|
||||
decoder_attentions += ((outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,))
|
||||
if self.config.is_encoder_decoder:
|
||||
cross_attentions += (outputs.cross_attentions,)
|
||||
if output_hidden_states:
|
||||
decoder_hidden_states += ((outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,))
|
||||
next_tokens = next_tokens_scores
|
||||
if eos_token_id is not None:
|
||||
if pad_token_id is None:
|
||||
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
||||
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
||||
horizon_length = next_tokens.shape[1] // self.config.Taos_input_token_len
|
||||
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
if streamer is not None:
|
||||
streamer.put(next_tokens.cpu())
|
||||
model_kwargs = self._update_model_kwargs_for_generation(
|
||||
outputs,
|
||||
model_kwargs,
|
||||
horizon_length=horizon_length,
|
||||
is_encoder_decoder=self.config.is_encoder_decoder,
|
||||
)
|
||||
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
|
||||
this_peer_finished = unfinished_sequences.max() == 0
|
||||
if input_ids.shape[1] > max_length:
|
||||
input_ids = input_ids[:, :max_length]
|
||||
if streamer is not None:
|
||||
streamer.end()
|
||||
if return_dict_in_generate:
|
||||
if self.config.is_encoder_decoder:
|
||||
return GenerateEncoderDecoderOutput(
|
||||
sequences=input_ids,
|
||||
scores=scores,
|
||||
logits=raw_logits,
|
||||
encoder_attentions=encoder_attentions,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
decoder_attentions=decoder_attentions,
|
||||
cross_attentions=cross_attentions,
|
||||
decoder_hidden_states=decoder_hidden_states,
|
||||
past_key_values=model_kwargs.get("Taos_past_key_values"),
|
||||
)
|
||||
else:
|
||||
return GenerateDecoderOnlyOutput(
|
||||
sequences=input_ids,
|
||||
scores=scores,
|
||||
logits=raw_logits,
|
||||
attentions=decoder_attentions,
|
||||
hidden_states=decoder_hidden_states,
|
||||
past_key_values=model_kwargs.get("Taos_past_key_values"),
|
||||
)
|
||||
else:
|
||||
return input_ids[:, -(max_length - cur_len):]
|
||||
|
||||
def _update_model_kwargs_for_generation(
|
||||
self,
|
||||
outputs: ModelOutput,
|
||||
model_kwargs: Dict[str, Any],
|
||||
horizon_length: int = 1,
|
||||
is_encoder_decoder: bool = False,
|
||||
standardize_cache_format: bool = False,
|
||||
) -> Dict[str, Any]:
|
||||
model_kwargs["Taos_past_key_values"] = self._extract_past_from_model_output(outputs, standardize_cache_format=standardize_cache_format)
|
||||
if getattr(outputs, "state", None) is not None:
|
||||
model_kwargs["state"] = outputs.state
|
||||
if "token_type_ids" in model_kwargs:
|
||||
token_type_ids = model_kwargs["token_type_ids"]
|
||||
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
||||
if not is_encoder_decoder:
|
||||
if "attention_mask" in model_kwargs:
|
||||
attention_mask = model_kwargs["attention_mask"]
|
||||
model_kwargs["attention_mask"] = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], horizon_length))], dim=-1)
|
||||
else:
|
||||
if "decoder_attention_mask" in model_kwargs:
|
||||
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
||||
model_kwargs["decoder_attention_mask"] = torch.cat([decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], horizon_length))], dim=-1)
|
||||
if "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None:
|
||||
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + horizon_length
|
||||
return model_kwargs
|
||||
|
||||
def rotate_half(x):
|
||||
x1 = x[..., : x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2:]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
||||
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
||||
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
class TaosPatchEmbedding(nn.Module):
|
||||
def __init__(self, config: TaosConfig):
|
||||
super().__init__()
|
||||
self.Taos_input_token_len = config.Taos_input_token_len
|
||||
self.Taos_emb = nn.Linear(config.Taos_input_token_len, config.Taos_hidden_size, bias=False)
|
||||
|
||||
def forward(self, hidden_state: torch.Tensor):
|
||||
hidden_state = hidden_state.unfold(dimension=-1, size=self.Taos_input_token_len, step=self.Taos_input_token_len)
|
||||
return self.Taos_emb(hidden_state)
|
||||
|
||||
class TaosPointEmbedding(nn.Module):
|
||||
def __init__(self, config: TaosConfig):
|
||||
super().__init__()
|
||||
self.Taos_emb_layer = nn.Linear(config.Taos_input_token_len, config.Taos_hidden_size, bias=False)
|
||||
self.Taos_gate_layer = nn.Linear(config.Taos_input_token_len, config.Taos_hidden_size, bias=False)
|
||||
self.Taos_act_fn = ACT2FN[config.Taos_hidden_act]
|
||||
|
||||
def forward(self, x):
|
||||
emb = self.Taos_act_fn(self.Taos_gate_layer(x)) * self.Taos_emb_layer(x)
|
||||
return emb
|
||||
|
||||
class TaosRotaryEmbedding(torch.nn.Module):
|
||||
def __init__(self, dim, max_position_embeddings=10000, base=10000, device=None):
|
||||
super().__init__()
|
||||
self.Taos_dim = dim
|
||||
self.Taos_max_position_embeddings = max_position_embeddings
|
||||
self.Taos_base = base
|
||||
inv_freq = 1.0 / (self.Taos_base ** (torch.arange(0, self.Taos_dim, 2, dtype=torch.int64).float().to(device) / self.Taos_dim))
|
||||
self.register_buffer("Taos_inv_freq", inv_freq, persistent=False)
|
||||
self._set_cos_sin_cache(seq_len=max_position_embeddings, device=self.Taos_inv_freq.device, dtype=torch.get_default_dtype())
|
||||
|
||||
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
||||
self.Taos_max_seq_len_cached = seq_len
|
||||
t = torch.arange(self.Taos_max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.Taos_inv_freq)
|
||||
freqs = torch.outer(t, self.Taos_inv_freq)
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
self.register_buffer("Taos_cos_cached", emb.cos().to(dtype), persistent=False)
|
||||
self.register_buffer("Taos_sin_cached", emb.sin().to(dtype), persistent=False)
|
||||
|
||||
def forward(self, x, seq_len=None):
|
||||
if seq_len > self.Taos_max_seq_len_cached:
|
||||
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
||||
return (self.Taos_cos_cached[:seq_len].to(dtype=x.dtype), self.Taos_sin_cached[:seq_len].to(dtype=x.dtype))
|
||||
|
||||
class TaosAttention(nn.Module):
|
||||
def __init__(self, config: TaosConfig, layer_idx: Optional[int] = None):
|
||||
super().__init__()
|
||||
self.Taos_layer_idx = layer_idx
|
||||
self.Taos_hidden_size = config.Taos_hidden_size
|
||||
self.Taos_num_heads = config.Taos_num_attention_heads
|
||||
self.Taos_head_dim = self.Taos_hidden_size // self.Taos_num_heads
|
||||
self.Taos_attention_dropout = config.Taos_attention_dropout
|
||||
self.Taos_q_proj = nn.Linear(self.Taos_hidden_size, self.Taos_hidden_size, bias=True)
|
||||
self.Taos_k_proj = nn.Linear(self.Taos_hidden_size, self.Taos_hidden_size, bias=True)
|
||||
self.Taos_v_proj = nn.Linear(self.Taos_hidden_size, self.Taos_hidden_size, bias=True)
|
||||
self.Taos_o_proj = nn.Linear(self.Taos_hidden_size, self.Taos_hidden_size, bias=False)
|
||||
self.Taos_rotary_emb = TaosRotaryEmbedding(self.Taos_head_dim, max_position_embeddings=config.Taos_max_position_embeddings)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
Taos_past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
query_states = self.Taos_q_proj(hidden_states)
|
||||
key_states = self.Taos_k_proj(hidden_states)
|
||||
value_states = self.Taos_v_proj(hidden_states)
|
||||
query_states = query_states.view(bsz, q_len, self.Taos_num_heads, self.Taos_head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.Taos_num_heads, self.Taos_head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len, self.Taos_num_heads, self.Taos_head_dim).transpose(1, 2)
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if Taos_past_key_value is not None:
|
||||
kv_seq_len += Taos_past_key_value.get_usable_length(kv_seq_len, self.Taos_layer_idx)
|
||||
cos, sin = self.Taos_rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
||||
if Taos_past_key_value is not None:
|
||||
key_states, value_states = Taos_past_key_value.update(key_states, value_states, self.Taos_layer_idx)
|
||||
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attention_mask, dropout_p=self.Taos_attention_dropout)
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.Taos_hidden_size)
|
||||
attn_output = self.Taos_o_proj(attn_output)
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
return attn_output, attn_weights, Taos_past_key_value
|
||||
|
||||
class TaosMLP(nn.Module):
|
||||
def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str):
|
||||
super().__init__()
|
||||
self.Taos_hidden_size = hidden_size
|
||||
self.Taos_intermediate_size = intermediate_size
|
||||
self.Taos_gate_proj = nn.Linear(self.Taos_hidden_size, self.Taos_intermediate_size, bias=False)
|
||||
self.Taos_up_proj = nn.Linear(self.Taos_hidden_size, self.Taos_intermediate_size, bias=False)
|
||||
self.Taos_down_proj = nn.Linear(self.Taos_intermediate_size, self.Taos_hidden_size, bias=False)
|
||||
self.Taos_act_fn = ACT2FN[hidden_act]
|
||||
|
||||
def forward(self, hidden_state):
|
||||
return self.Taos_down_proj(self.Taos_act_fn(self.Taos_gate_proj(hidden_state)) * self.Taos_up_proj(hidden_state))
|
||||
|
||||
class TaosDecoderLayer(nn.Module):
|
||||
def __init__(self, config: TaosConfig, layer_idx: int):
|
||||
super().__init__()
|
||||
self.Taos_self_attn = TaosAttention(config, layer_idx)
|
||||
self.Taos_ffn_layer = TaosMLP(hidden_size=config.Taos_hidden_size, intermediate_size=config.Taos_intermediate_size, hidden_act=config.Taos_hidden_act)
|
||||
self.Taos_norm1 = torch.nn.LayerNorm(config.Taos_hidden_size)
|
||||
self.Taos_norm2 = torch.nn.LayerNorm(config.Taos_hidden_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
Taos_past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor], Optional[torch.FloatTensor]]:
|
||||
residual = hidden_states
|
||||
hidden_states, self_attn_weights, present_key_value = self.Taos_self_attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
Taos_past_key_value=Taos_past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
hidden_states = self.Taos_norm1(hidden_states)
|
||||
residual = hidden_states
|
||||
hidden_states = self.Taos_ffn_layer(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
hidden_states = self.Taos_norm2(hidden_states)
|
||||
if not output_attentions:
|
||||
self_attn_weights = None
|
||||
if not use_cache:
|
||||
present_key_value = None
|
||||
return hidden_states, self_attn_weights, present_key_value
|
||||
|
||||
class TaosPreTrainedModel(PreTrainedModel):
|
||||
config_class = TaosConfig
|
||||
base_model_prefix = "Taos_model"
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["TaosDecoderLayer"]
|
||||
_skip_keys_device_placement = "Taos_past_key_values"
|
||||
_supports_flash_attn_2 = True
|
||||
_supports_sdpa = False
|
||||
_supports_cache_class = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
std = self.config.Taos_initializer_range
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, torch.nn.Embedding):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
class TaosModel(TaosPreTrainedModel):
|
||||
def __init__(self, config: TaosConfig):
|
||||
super().__init__(config)
|
||||
self.Taos_embed_layer = TaosPatchEmbedding(config)
|
||||
self.Taos_layers = nn.ModuleList([TaosDecoderLayer(config, layer_idx) for layer_idx in range(config.Taos_num_hidden_layers)])
|
||||
self.Taos_norm = torch.nn.LayerNorm(config.Taos_hidden_size)
|
||||
self.Taos_gradient_checkpointing = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
Taos_past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, MoeModelOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
use_cache = use_cache if use_cache is not None else self.config.Taos_use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.Taos_embed_layer(input_ids)
|
||||
seq_length = inputs_embeds.shape[1]
|
||||
|
||||
if self.Taos_gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
use_cache = False
|
||||
|
||||
past_key_values_length = 0
|
||||
if use_cache:
|
||||
use_legacy_cache = not isinstance(Taos_past_key_values, Cache)
|
||||
if use_legacy_cache:
|
||||
Taos_past_key_values = DynamicCache.from_legacy_cache(Taos_past_key_values)
|
||||
past_key_values_length = Taos_past_key_values.get_usable_length(seq_length)
|
||||
|
||||
if position_ids is None:
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
position_ids = torch.arange(past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device)
|
||||
position_ids = position_ids.view(-1, seq_length)
|
||||
else:
|
||||
position_ids = position_ids.view(-1, seq_length).long()
|
||||
|
||||
attention_mask = _prepare_4d_causal_attention_mask(attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=None)
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = None
|
||||
|
||||
for decoder_layer in self.Taos_layers:
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
if self.Taos_gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
decoder_layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
Taos_past_key_values,
|
||||
output_attentions,
|
||||
use_cache,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
Taos_past_key_value=Taos_past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
hidden_states = layer_outputs[0]
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
if use_cache:
|
||||
next_decoder_cache = layer_outputs[2]
|
||||
|
||||
hidden_states = self.Taos_norm(hidden_states)
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = None
|
||||
if use_cache:
|
||||
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
return MoeModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
class TaosForPrediction(TaosPreTrainedModel, TaosTSGenerationMixin):
|
||||
def __init__(self, config: TaosConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.Taos_model = TaosModel(self.config)
|
||||
lm_head_list = []
|
||||
self.Taos_output_token_len_map = {}
|
||||
for i, output_token_len in enumerate(self.config.Taos_output_token_lens):
|
||||
lm_head_list.append(nn.Linear(self.config.Taos_hidden_size, output_token_len, bias=False))
|
||||
self.Taos_output_token_len_map[output_token_len] = i
|
||||
self.Taos_lm_heads = nn.ModuleList(lm_head_list)
|
||||
self.Taos_loss_function = torch.nn.MSELoss(reduction='none')
|
||||
self.post_init()
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.Taos_model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.Taos_model
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
Taos_past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.FloatTensor] = None,
|
||||
loss_masks: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
max_output_length: Optional[int] = None,
|
||||
revin: Optional[bool] = False,
|
||||
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if revin:
|
||||
mean, std = input_ids.mean(dim=-1, keepdim=True), input_ids.std(dim=-1, keepdim=True)
|
||||
input_ids = (input_ids - mean) / std
|
||||
outputs = self.Taos_model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
Taos_past_key_values=Taos_past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
|
||||
predictions = None
|
||||
loss = None
|
||||
if labels is not None:
|
||||
ar_loss = 0.0
|
||||
for lm_head, output_token_len in zip(self.Taos_lm_heads, self.config.Taos_output_token_lens):
|
||||
one_predictions = lm_head(hidden_states)
|
||||
one_loss = self.calc_ar_loss(one_predictions, labels, loss_masks, output_token_len)
|
||||
ar_loss += one_loss
|
||||
if predictions is None:
|
||||
predictions = one_predictions
|
||||
loss = ar_loss / len(self.config.Taos_output_token_lens)
|
||||
else:
|
||||
if max_output_length is None:
|
||||
output_token_len = self.config.Taos_output_token_lens[0]
|
||||
max_output_length = output_token_len
|
||||
else:
|
||||
output_token_len = self.config.Taos_output_token_lens[0]
|
||||
for h in self.config.Taos_output_token_lens[1:]:
|
||||
if h > max_output_length:
|
||||
break
|
||||
else:
|
||||
output_token_len = h
|
||||
lm_head = self.Taos_lm_heads[self.Taos_output_token_len_map[output_token_len]]
|
||||
predictions = lm_head(hidden_states)[:, -1, :]
|
||||
if output_token_len > max_output_length:
|
||||
predictions = predictions[:, :max_output_length]
|
||||
if revin:
|
||||
predictions = predictions * std + mean
|
||||
if not return_dict:
|
||||
output = (predictions,) + outputs[1:]
|
||||
return (loss) + output if loss is not None else output
|
||||
return MoeCausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=predictions,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
def calc_ar_loss(self, predictions, labels, loss_masks, output_token_len):
|
||||
seq_len = predictions.shape[1] * self.config.Taos_input_token_len
|
||||
labels = labels[:, :seq_len - self.config.Taos_input_token_len + output_token_len]
|
||||
shift_labels = labels.unfold(dimension=-1, size=output_token_len, step=self.config.Taos_input_token_len)
|
||||
losses = self.Taos_loss_function(predictions, shift_labels).mean(dim=-1)
|
||||
if loss_masks is not None:
|
||||
losses = losses * loss_masks
|
||||
loss = losses.sum() / loss_masks.sum()
|
||||
else:
|
||||
loss = torch.mean(losses)
|
||||
return loss
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self, input_ids, Taos_past_key_values=None, attention_mask=None, inputs_embeds=None, revin=True, **kwargs
|
||||
):
|
||||
if Taos_past_key_values is not None:
|
||||
if isinstance(Taos_past_key_values, Cache):
|
||||
cache_length = Taos_past_key_values.get_seq_length()
|
||||
if isinstance(Taos_past_key_values, DynamicCache):
|
||||
past_length = Taos_past_key_values.seen_tokens
|
||||
else:
|
||||
past_length = cache_length
|
||||
max_cache_length = Taos_past_key_values.get_max_length()
|
||||
else:
|
||||
cache_length = past_length = Taos_past_key_values[0][0].shape[2]
|
||||
max_cache_length = None
|
||||
if attention_mask is not None and attention_mask.shape[1] > (input_ids.shape[1] // self.config.Taos_input_token_len):
|
||||
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
|
||||
elif past_length < (input_ids.shape[1] // self.config.Taos_input_token_len):
|
||||
input_ids = input_ids[:, past_length * self.config.Taos_input_token_len:]
|
||||
if max_cache_length is not None and attention_mask is not None and cache_length + (input_ids.shape[1] // self.config.Taos_input_token_len) > max_cache_length:
|
||||
attention_mask = attention_mask[:, -max_cache_length:]
|
||||
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
if attention_mask is not None and position_ids is None:
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if Taos_past_key_values:
|
||||
position_ids = position_ids[:, -(input_ids.shape[1] // self.config.Taos_input_token_len):]
|
||||
|
||||
if inputs_embeds is not None and Taos_past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update({
|
||||
"position_ids": position_ids,
|
||||
"Taos_past_key_values": Taos_past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"attention_mask": attention_mask,
|
||||
"revin": revin
|
||||
})
|
||||
return model_inputs
|
||||
|
||||
|
||||
def init_model():
|
||||
global Taos_model
|
||||
if Taos_model != None:
|
||||
return
|
||||
config = TaosConfig(
|
||||
Taos_input_token_len=96,
|
||||
Taos_hidden_size=1024,
|
||||
Taos_num_attention_heads=8,
|
||||
Taos_intermediate_size=2048,
|
||||
Taos_num_hidden_layers=8,
|
||||
Taos_max_position_embeddings=2048,
|
||||
Taos_attention_dropout=0.1,
|
||||
Taos_hidden_act="gelu",
|
||||
Taos_output_token_lens=[96],
|
||||
)
|
||||
|
||||
Taos_model = TaosForPrediction(config)
|
||||
model_path = "taos.pth"
|
||||
Taos_model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=True)
|
||||
Taos_model = Taos_model.to(device)
|
||||
|
||||
#src_data = load_data('src_data/holt-winters_1.txt')
|
||||
#print(f"src_data:{src_data}")
|
||||
#seqs = torch.tensor(src_data).unsqueeze(0).float()
|
||||
#seqs = seqs.to(device)
|
||||
print(Taos_model)
|
||||
|
||||
def train():
|
||||
pass
|
||||
|
||||
def infer():
|
||||
pass
|
||||
|
||||
def data_view():
|
||||
pass
|
||||
|
||||
@app.route('/get_train_data', methods=['POST'])
|
||||
def get_train_data():
|
||||
try:
|
||||
# 初始化训练数据集(如果尚未初始化)
|
||||
#init_train_dataset()
|
||||
|
||||
# 从请求中获取可选参数(例如指定索引)
|
||||
#data = request.get_json()
|
||||
|
||||
# 获取数据
|
||||
#seq_x, seq_y = train_dataset[index] # seq_x: [672, 1], seq_y: [672, 1]
|
||||
src_data = load_data('data.txt')
|
||||
seq_x = src_data[:-96]
|
||||
seq_y = src_data[-96:]
|
||||
seq_x = torch.tensor(seq_x, dtype=torch.float32) # 转换为张量
|
||||
seq_x_1d = seq_x.squeeze().flatten() # 转换为 [672]
|
||||
|
||||
seq_y = torch.tensor(seq_y, dtype=torch.float32) # 转换为张量
|
||||
seq_y_1d = seq_y.squeeze().flatten() # 转换为 [672]
|
||||
|
||||
# 反标准化(可选,如果需要返回原始数据)
|
||||
#c_begin = index // train_dataset.n_timepoint # 当前特征索引
|
||||
#seq_x_1d = train_dataset.inverse_transform(seq_x_1d.reshape(-1, 1), feature_idx=c_begin).flatten()
|
||||
seq_x_1d = seq_x_1d.reshape(-1, 1).flatten()
|
||||
seq_y_1d = seq_y_1d.reshape(-1, 1).flatten()
|
||||
|
||||
# 转换为 Python 列表以便 JSON 序列化
|
||||
seq_x_list = seq_x_1d.tolist()
|
||||
seq_y_list = seq_y_1d.tolist()
|
||||
|
||||
# 返回结果
|
||||
response = {
|
||||
'status': 'success',
|
||||
'index': 0,
|
||||
'x': seq_x_list, # 长度为 672 的列表
|
||||
'y': seq_y_list,
|
||||
'x_length': len(seq_x_list),
|
||||
'y_length': len(seq_y_list),
|
||||
}
|
||||
return jsonify(response), 200
|
||||
except Exception as e:
|
||||
print(f"Error in get_train_data: {e}")
|
||||
return jsonify({'error': f'Failed to get data: {str(e)}'}), 500
|
||||
|
||||
|
||||
@app.route('/ds_data', methods=['POST'])
|
||||
def load_data():
|
||||
# 打开文件并读取数据
|
||||
with open('/home/ubuntu/ds_predict/data.txt', 'r') as f:
|
||||
# 使用列表推导式将每一行转换为数字并存储在列表中
|
||||
numbers = [float(line.strip()) for line in f]
|
||||
print(numbers)
|
||||
with open('/home/ubuntu/ds_predict/pred.txt', 'r') as f:
|
||||
# 使用列表推导式将每一行转换为数字并存储在列表中
|
||||
pred_numbers = [float(line.strip()) for line in f]
|
||||
print(pred_numbers)
|
||||
|
||||
# 返回结果
|
||||
response = {
|
||||
'status': 'success',
|
||||
'x': numbers[:max_len],
|
||||
'y': pred_numbers[:max_len]
|
||||
}
|
||||
return jsonify(response), 200
|
||||
|
||||
@app.route('/ds_predict', methods=['POST'])
|
||||
def ds_predict():
|
||||
print(f"predict")
|
||||
global Taos_model
|
||||
"""处理POST请求并返回模型预测结果"""
|
||||
try:
|
||||
# 获取POST请求中的JSON数据
|
||||
data = request.get_json()
|
||||
if not data or 'input' not in data:
|
||||
return jsonify({
|
||||
'status':'error',
|
||||
'error': 'Invalid input, please provide "input" field in JSON'
|
||||
}), 400
|
||||
|
||||
print(f"data:{data}")
|
||||
input_data = data['input']
|
||||
#这个input_data是一个变长的数字数组
|
||||
#result = ", ".join(map(str, input_data))
|
||||
num_len = data['next_len']#96 #len(input_data)
|
||||
#seq_len = num_len
|
||||
#pred_y = predict_fn(num_len, result, input_data)
|
||||
seqs = torch.tensor(input_data).unsqueeze(0).float().to(device)
|
||||
prediction_length = num_len
|
||||
pred_y = Taos_model.generate(seqs, max_new_tokens=prediction_length)
|
||||
#去掉[]
|
||||
#pred_y = pred_y.replace('[','').replace(']','')
|
||||
print(f"now pred:({pred_y})")
|
||||
#numbers = [float(num) for num in pred_y.split(",")]
|
||||
numbers = pred_y[0].tolist()
|
||||
#print(numbers.dtype)
|
||||
"""
|
||||
if not isinstance(input_data, list) or not all(isinstance(x, (int, float)) for x in input_data):
|
||||
return jsonify({
|
||||
'status':'error',
|
||||
'error': 'Input must be a list of numbers'
|
||||
}), 400
|
||||
|
||||
# 返回结果
|
||||
"""
|
||||
response = {
|
||||
'status': 'success',
|
||||
#'input': input_data,
|
||||
'output': numbers[-num_len:]
|
||||
}
|
||||
return jsonify(response), 200
|
||||
except Exception as e:
|
||||
print(f"error when predict:{e}")
|
||||
return jsonify({
|
||||
'error': f'Prediction failed: {str(e)}'
|
||||
}), 500
|
||||
|
||||
|
||||
|
||||
# 主函数
|
||||
def main():
|
||||
# 创建 ArgumentParser 对象
|
||||
parser = argparse.ArgumentParser(description="一个支持 train 和 infer 的命令行工具")
|
||||
|
||||
# 添加 --action 参数
|
||||
parser.add_argument(
|
||||
"--action",
|
||||
type=str,
|
||||
choices=["train", "infer", "data", "server"], # 限制输入值为 train 或 infer
|
||||
required=True, # 参数必须提供
|
||||
help="指定操作: 'train' 或 'infer'"
|
||||
)
|
||||
|
||||
# 解析命令行参数
|
||||
args = parser.parse_args()
|
||||
|
||||
# 根据 action 参数调用对应函数
|
||||
if args.action == "train":
|
||||
train()
|
||||
elif args.action == "infer":
|
||||
infer()
|
||||
elif args.action == "data":
|
||||
data_view()
|
||||
elif args.action == "server":
|
||||
#server()
|
||||
init_model()
|
||||
# 启动Flask服务器
|
||||
app.run(
|
||||
host='0.0.0.0',
|
||||
port=5000,
|
||||
threaded=True, # 支持多线程处理并发请求
|
||||
debug=False # 生产环境建议设为False
|
||||
)
|
||||
|
||||
|
||||
# 入口点
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue