From 1d033418f84c99400e7e5ecbc88c80ab0b48a4ba Mon Sep 17 00:00:00 2001 From: Haojun Liao Date: Mon, 18 Nov 2024 09:47:20 +0800 Subject: [PATCH] Update index.md --- docs/zh/06-advanced/06-TDgpt/06-dev/index.md | 18 +++++------------- 1 file changed, 5 insertions(+), 13 deletions(-) diff --git a/docs/zh/06-advanced/06-TDgpt/06-dev/index.md b/docs/zh/06-advanced/06-TDgpt/06-dev/index.md index c6e6e9097a..cc7f902290 100644 --- a/docs/zh/06-advanced/06-TDgpt/06-dev/index.md +++ b/docs/zh/06-advanced/06-TDgpt/06-dev/index.md @@ -68,20 +68,12 @@ SELECT COUNT(*) FROM foo ANOMALY_DETECTION(col_name, 'algo=name') ## 添加具有模型的分析算法 -基于统计学的分析算法可以直接针对输入时间序列数据进行分析,整体分析流程比较快捷,但是某些深度学习算法对于输入数据的训练需要较长的时间,并且形成相应的模型。这种情况下,同一个分析算法对应不同的输入数据集有不同的分析模型。 +基于统计学的分析算法可以直接针对输入时间序列数据进行分析,但是某些深度学习算法对于输入数据需要较长的时间训练,并且生成相应的模型。这种情况下,同一个分析算法对应不同的输入数据集有不同的分析模型。 将具有模型的分析算法添加到 Anode 中,首先需要在 `model` 目录中建立该算法对应的目录(目录名称可自拟),将采用该算法针对不同的输入时间序列数据生成的训练模型均需要保存在该目录下,同时目录结构要在分析算法中确定,以便能够固定加载该目录下的分析模型。如下图所示,针对不同的数据集,采用自编码器(Autoencoder)训练的数据异常检测算法模型均保存在该目录下。为了确保模型能够正常读取加载,要求存储的模型使用`joblib`库进行序列化保存。 -调用已经保存的模型,需要首先调用`set_params`方法,并在参数中指定调用模型的名称 `{"model": "ad_encoder_keras"}` 即可调用该模型进行计算。调用方式如下: +调用已经保存的模型,需要在调用参数中增加指定模型名称,以便能够调用正确的模型,示例 SQL 语句如下所示。 -```python -def test_autoencoder_ad(self): - # 获取特定的算法对象 - # ... - - # 指定调用的模型,该模型是之前针对该数据集进行训练获得 - s.set_params({"model": "ad_encoder_keras"}) - - # 执行检查动作,并返回结果 - r = s.execute() +```SQL +--- 在 options 中增加 model 的名称,ad_autoencoder_foo, 针对 foo 数据集(表)训练的采用自编码器的异常检测模型进行异常检测 +SELECT COUNT(*), _WSTART FROM foo ANOMALY_DETECTION(col1, 'algo=encoder, model=ad_autoencoder_foo'); ``` -