docs: data analysis

This commit is contained in:
Shengliang Guan 2024-11-06 09:03:56 +08:00
parent 082c6b1c50
commit 04cf61b8d8
5 changed files with 81 additions and 76 deletions

View File

@ -7,12 +7,12 @@ sidebar_label: "ARIMA"
## 功能概述
ARIMA 即自回归移动平均模型(Autoregressive Integrated Moving Average, ARIMA),也记作 ARIMA(p,d,q),是统计模型中最常见的一种用来进行时间序列预测的模型。
ARIMA模型是一种自回归模型只需要自变量即可预测后续的值。ARIMA模型要求时序数据**平稳**,或经过差分处理后平稳,如果是不平稳的数据,**无法**获得正确的结果。
ARIMA 即自回归移动平均模型Autoregressive Integrated Moving Average, ARIMA,也记作 ARIMA(p,d,q),是统计模型中最常见的一种用来进行时间序列预测的模型。
ARIMA 模型是一种自回归模型只需要自变量即可预测后续的值。ARIMA 模型要求时序数据**平稳**,或经过差分处理后平稳,如果是不平稳的数据,**无法**获得正确的结果。
>平稳的时间序列:其性质不随观测时间的变化而变化。具有趋势或季节性的时间序列不是平稳时间序列——趋势和季节性使得时间序列在不同时段呈现不同性质。
以下参数可以动态输入控制预测过程中生成 合适的 ARIMA 的模型。
以下参数可以动态输入控制预测过程中生成 合适的 ARIMA 的模型。
- p= 自回归模型阶数
- d= 差分阶数
@ -23,19 +23,19 @@ ARIMA模型是一种自回归模型只需要自变量即可预测后续的值
分析平台中使用自动化的 ARIMA 模型进行计算,因此每次计算的时候会根据输入的数据自动拟合最合适的模型,然后根据该模型进行预测输出结果。
|参数名称|说明|必填项|
|---|---|---|
|period|输入时间序列数据每个周期包含的数据点个数。如果不设置该参数或该参数设置为 0 将使用非季节性/周期性的 ARIMA 模型预测。|选填|
|start_p| 自回归模型阶数的 起始值0 开始的整数,不推荐大于 10 |选填|
|max_p| 自回归模型阶数的 结束值0 开始的整数,不推荐大于 10 |选填|
|start_q| 移动平均模型阶数的起始值, 0 开始的整数,不推荐大于 10 |选填|
|max_q| 移动平均模型阶数的结束值, 0 开始的整数,不推荐大于 10 |选填|
|d| 差分阶数|选填|
|period|输入时间序列每个周期包含的数据点个数。如果不设置该参数或该参数设置为 0将使用非季节性/周期性的 ARIMA 模型预测。|选填|
|start_p|自回归模型阶数的起始值0 开始的整数,不推荐大于 10 |选填|
|max_p|自回归模型阶数的结束值0 开始的整数,不推荐大于 10 |选填|
|start_q|移动平均模型阶数的起始值0 开始的整数,不推荐大于 10 |选填|
|max_q|移动平均模型阶数的结束值0 开始的整数,不推荐大于 10 |选填|
|d|差分阶数|选填|
`start_p`、`max_p` `start_q` `max_q` 四个参数约束了模型在多大的范围内去搜寻合适的最优解。相同输入数据的条件下,参数范围越大,消耗的资源越多,系统响应的时间越长。
### 示例及结果
针对 i32 列进行数据预测,输入列 i32 每 10 个点是一个周期start_p 起始是 1 最大拟合是 5start_q是1最大值是5预测结果中返回 95% 置信区间范围边界。
针对 i32 列进行数据预测,输入列 i32 每 10 个点是一个周期start_p 起始是 1 最大拟合是 5start_q 1最大值是 5预测结果中返回 95% 置信区间范围边界。
```
FORECAST(i32, "algo=arima,alpha=95,period=10, start_p=1, max_p=5, start_q=1, max_q=5")
FORECAST(i32, "algo=arima,alpha=95,period=10,start_p=1,max_p=5,start_q=1,max_q=5")
```
```json5

View File

@ -6,8 +6,8 @@ sidebar_label: "HoltWinters"
本节讲述 HoltWinters 算法模型的使用方法。
## 功能概述
HoltWinters模型又称为多次指数平滑模型EMA含有线性趋势和周期波动的非平稳序列适用,利用指数平滑法让模型参数不断适应非平稳序列的变化,并对未来趋势进行**短期**预测。
HoltWinters有两种不同的季节性组成部分当季节变化在该时间序列中大致保持不变时通常选择**加法模型**;而当季节变化与时间序列的水平成比例变化时,通常选择**乘法模型**。
HoltWinters 模型又称为多次指数平滑模型EMA适用于含有线性趋势和周期波动的非平稳序列,利用指数平滑法让模型参数不断适应非平稳序列的变化,并对未来趋势进行**短期**预测。
HoltWinters 有两种不同的季节性组成部分,当季节变化在该时间序列中大致保持不变时,通常选择**加法模型**;而当季节变化与时间序列的水平成比例变化时,通常选择**乘法模型**。
该模型对于返回数据也不提供计算的置信区间范围结果。在 95% 置信区间的上下界结果与预测结果相同。
@ -16,9 +16,9 @@ HoltWinters有两种不同的季节性组成部分当季节变化在该时间
分析平台中使用自动化的 ARIMA 模型进行计算,因此每次计算的时候会根据输入的数据自动拟合最合适的模型,然后根据该模型进行预测输出结果。
|参数名称|说明|必填项|
|---|---|---|
|period| 输入时间序列数据每个周期包含的数据点个数。如果不设置该参数或该参数设置为 0 将使用一次(简单)指数平滑方式进行数据拟合,并据此进行未来数据的预测|选填|
|trend| 趋势模型使用加法模型还是乘法模型|选填|
|seasonal| 季节性采用加法模型还是乘法模型|选填|
|period|输入时间序列每个周期包含的数据点个数。如果不设置该参数或该参数设置为 0 将使用一次(简单)指数平滑方式进行数据拟合,并据此进行未来数据的预测|选填|
|trend|趋势模型使用加法模型还是乘法模型|选填|
|seasonal|季节性采用加法模型还是乘法模型|选填|
参数 `trend``seasonal`的均可以选择 `add` (加法模型)或 `mul`(乘法模型)。
@ -30,11 +30,11 @@ FORECAST(i32, "algo=holtwinters,period=10,trend=mul,seasonal=mul")
```json5
{
"rows": rows, // 结果的行数
"period": period, // 返回结果的周期性, 该结果与输入的周期性相同,如果没有周期性,该值为 0
"algo": 'holtwinters' // 返回结果使用的计算模型
"mse":mse, // 最小均方误差minmum square error
"res": res // 具体的结果,按照列形式返回的结果。一般意义上包含了 两列[timestamp][fc_results]。
"rows": rows, // 结果的行数
"period": period, // 返回结果的周期性, 该结果与输入的周期性相同,如果没有周期性,该值为 0
"algo": 'holtwinters' // 返回结果使用的计算模型
"mse":mse, // 最小均方误差minmum square error
"res": res // 具体的结果,按照列形式返回的结果。一般意义上包含了 两列 [timestamp][fc_results]。
}
```

View File

@ -3,7 +3,7 @@ title: "Anomaly-detection"
sidebar_label: "Anomaly-detection"
---
本节讲述 异常检测 算法模型的使用方法。
本节讲述 异常检测算法模型的使用方法。
## 概述
分析平台提供了 6 种异常检查模型6 种异常检查模型分为 3 个类别,分别属于基于统计的异常检测模型、基于数据密度的检测模型、基于深度学习的异常检测模型。在不指定异常检测使用的方法的情况下,默认调用 iqr 的方法进行计算。
@ -11,7 +11,7 @@ sidebar_label: "Anomaly-detection"
### 统计学异常检测方法
- k-sigma<sup>[1]</sup>: 即 ***689599.7 rule*** 。***k***值默认为3 即序列均值的 3 倍标准差范围为边界超过边界的是异常值。KSigma 要求数据整体上服从正态分布如果一个点偏离均值K倍标准差则该点被视为异常点.
- k-sigma<sup>[1]</sup>: 即 ***689599.7 rule*** 。***k***值默认为 3 即序列均值的 3 倍标准差范围为边界超过边界的是异常值。KSigma 要求数据整体上服从正态分布,如果一个点偏离均值 K 倍标准差,则该点被视为异常点.
|参数名称|说明|是否必选|默认值|
|---|---|---|---|
@ -22,7 +22,7 @@ sidebar_label: "Anomaly-detection"
- Grubbs<sup>[3]</sup>: 又称为 Grubbs' test即最大标准残差测试。Grubbs 通常用作检验最大值、最小值偏离均值的程度是否为异常,该单变量数据集遵循近似标准正态分布。非正态分布数据集不能使用该方法。无输入参数。
- SHESD<sup>[4]</sup> 带有季节性的 ESD 检测算法。ESD 可以检测时间序列数据的多异常点。需要指定异常点比例的上界***k***最差的情况是至多49.9%。数据集的异常比例一般不超过5%
- SHESD<sup>[4]</sup> 带有季节性的 ESD 检测算法。ESD 可以检测时间序列数据的多异常点。需要指定异常点比例的上界***k***,最差的情况是至多 49.9%。数据集的异常比例一般不超过 5%
|参数名称|说明|是否必选|默认值|
|---|---|---|---|
@ -30,7 +30,7 @@ sidebar_label: "Anomaly-detection"
### 基于数据密度的检测方法
LOF<sup>[5]</sup>: 局部离群因子(LOF又叫局部异常因子)算法是Breunig于2000年提出的一种基于密度的局部离群点检测算法该方法适用于不同类簇密度分散情况迥异的数据。根据数据点周围的数据密集情况首先计算每个数据点的一个局部可达密度然后通过局部可达密度进一步计算得到每个数据点的一个离群因子该离群因子即标识了一个数据点的离群程度因子值越大表示离群程度越高因子值越小表示离群程度越低。最后输出离群程度最大的top(n)个点。
LOF<sup>[5]</sup>: 局部离群因子LOF又叫局部异常因子算法是 Breunig 于 2000 年提出的一种基于密度的局部离群点检测算法,该方法适用于不同类簇密度分散情况迥异的数据。根据数据点周围的数据密集情况,首先计算每个数据点的一个局部可达密度,然后通过局部可达密度进一步计算得到每个数据点的一个离群因子,该离群因子即标识了一个数据点的离群程度,因子值越大,表示离群程度越高,因子值越小,表示离群程度越低。最后,输出离群程度最大的 top(n) 个点。
### 基于深度学习的检测方法

View File

@ -11,10 +11,10 @@ sidebar_label: "addins"
|目录|说明|
|---|---|
|taos|Python 源代码目录,其下包含了算法具体保存目录 algo放置杂项目录 misc 单元测试和集成测试目录 test。 algo目录下 ad 放置异常检测算法代码, fc 放置预测算法代码|
|taos|Python 源代码目录,其下包含了算法具体保存目录 algo放置杂项目录 misc 单元测试和集成测试目录 test。 algo 目录下 ad 放置异常检测算法代码, fc 放置预测算法代码|
|script|是安装脚本和发布脚本放置目录|
|model|放置针对数据集完成的训练模型|
|cfg| 配置文件目录|
|cfg|配置文件目录|
## 约定与限制
@ -23,7 +23,7 @@ sidebar_label: "addins"
### 类命名规范
算法类的名称需要 以下划线开始,以 Service 结尾。例如_KsigmaService 是 KSigma 异常检测算法的实现类。
算法类的名称需要以下划线开始,以 Service 结尾。例如_KsigmaService 是 KSigma 异常检测算法的实现类。
### 类继承约定
@ -38,22 +38,22 @@ sidebar_label: "addins"
### 核心方法输入与输出约定
`execute` 是算法处理的核心方法。调用该方法的时候, `self.list` 已经设置好输入数组。
`execute` 是算法处理的核心方法。调用该方法的时候,`self.list` 已经设置好输入数组。
异常检测输出结果
`execute` 的返回值是长度与 `self.list` 相同的数组,数组位置为 -1 的即为异常值点。例如:输入数组是 [2, 2, 2, 2, 100] 如果 100 是异常点,那么返回值是 [1, 1, 1, 1, -1]。
`execute` 的返回值是长度与 `self.list` 相同的数组,数组位置为 -1 的即为异常值点。例如:输入数组是 [2, 2, 2, 2, 100] 如果 100 是异常点,那么返回值是 [1, 1, 1, 1, -1]。
预测输出结果
对于预测算法, `AbstractForecastService` 的对象属性说明如下:
对于预测算法,`AbstractForecastService` 的对象属性说明如下:
|属性名称|说明|默认值|
|---|---|---|
|period|输入时序数据的周期性,多少个数据点表示一个完整的周期。如果没有周期性,那么设置为 0 即可| 0|
|period|输入时序数据的周期性,多少个数据点表示一个完整的周期。如果没有周期性,那么设置为 0 即可| 0|
|start_ts|预测数据的开始时间| 0|
|time_step|预测结果的两个数据点之间时间间隔|0 |
|fc_rows|预测结果数量| 0 |
|return_conf|返回结果中是否包含执行区间范围,如果算法计算结果不包含置信区间,那么上界和下界与自身相同| 1|
|conf|执行区间分位数 0.05|
|conf|执行区间分位数 0.05|
预测返回结果如下:
@ -76,7 +76,7 @@ from service import AbstractAnomalyDetectionService
# 算法实现类名称 需要以下划线 "_" 开始,并以 Service 结束,如下 _IqrService 是 IQR 异常检测算法的实现类。
class _IqrService(AbstractAnomalyDetectionService):
""" IQR algorithm 定义类,从 AbstractAnomalyDetectionService 继承,并实现 AbstractAnomalyDetectionService类的抽象函数 """
""" IQR algorithm 定义类,从 AbstractAnomalyDetectionService 继承,并实现 AbstractAnomalyDetectionService 类的抽象函数 """
# 定义算法调用关键词全小写ASCII码(必须添加)
name = 'iqr'
@ -111,6 +111,7 @@ class _IqrService(AbstractAnomalyDetectionService):
## 单元测试
在测试文件目录中的 anomaly_test.py 中增加单元测试用例。
```python
def test_iqr(self):
""" 测试 _IqrService 类 """
@ -137,9 +138,9 @@ def test_iqr(self):
## 需要模型的算法
针对特定数据集,进行模型训练的算法,在训练完成后。需要将训练得到的模型保存在 model 目录中。需要注意的是,针对每个算法,需要建立独立的文件夹。例如 auto_encoder 的训练算法在 model 目录下建立了, autoencoder的目录使用该算法针对不同数据集训练得到的模型均需要放置在该目录下。
针对特定数据集,进行模型训练的算法,在训练完成后。需要将训练得到的模型保存在 model 目录中。需要注意的是,针对每个算法,需要建立独立的文件夹。例如 auto_encoder 的训练算法在 model 目录下建立 autoencoder 的目录,使用该算法针对不同数据集训练得到的模型,均需要放置在该目录下。
训练完成后的模型,使用 joblib 进行保存。
训练完成后的模型,使用 joblib 进行保存。
并在 model 目录下建立对应的文件夹存放该模型。

View File

@ -5,18 +5,18 @@ title: 数据分析功能
## 概述
TDengine 通过 ANode(AnalysisNode) 是提供数据分析功能的扩展组件,通过 Restful 接口提供分析服务,从而拓展 TDengine 的功能,支持时间序列高级分析功能
ANode 是无状态的数据分析节点,集群中可以存在多个 ANode节点相互之间没有关联。将 ANode 注册到 TDengine 集群以后,通过 SQL 语句即可调用并完成时序分析任务。
ANodeAnalysis Node是 TDengine 提供数据分析功能的扩展组件,通过 Restful 接口提供分析服务,拓展 TDengine 的功能,支持时间序列高级分析。
ANode 是无状态的数据分析节点,集群中可以存在多个 ANode 节点,相互之间没有关联。将 ANode 注册到 TDengine 集群以后,通过 SQL 语句即可调用并完成时序分析任务。
下图是数据分析的技术架构示意图。
![数据分析功能架构图](./pic/data-analysis.png)
## 安装部署
### 环境准备
ANode 要求节点上准备有 Python 3.10 及以上版本以及相应的Python包自动安装组件 Pip ,同时请确保能够正常连接互联网。
ANode 要求节点上准备有 Python 3.10 及以上版本以及相应的 Python 包自动安装组件 Pip同时请确保能够正常连接互联网。
### 安装及卸载
使用专门的 ANode 安装包 TDengine-enterprise-anode-1.x.x.tar.gz 进行 ANode 的安装部署工作,安装过程与 TDengien 的安装流程一致。
使用专门的 ANode 安装包 TDengine-enterprise-anode-1.x.x.tar.gz 进行 ANode 的安装部署工作,安装过程与 TDengine 的安装流程一致。
```bash
tar -xzvf TDengine-enterprise-anode-1.0.0.tar.gz
@ -30,7 +30,7 @@ sudo ./install.sh
为了避免 ANode 安装后影响目标节点现有的 Python 库。 ANode 使用 Python 虚拟环境运行,安装后的默认 Python 目录处于 `/var/lib/taos/taosanode/venv/`。为了避免反复安装虚拟环境带来的开销,卸载 ANode 并不会自动删除该虚拟环境,如果您确认不需要 Python 的虚拟环境,可以手动删除。
## 启动及停止服务
安装 ANode 以后,可以使用`systemctl`来管理 ANode 的服务。使用如下命令可以启动/停止/检查状态。
安装 ANode 以后,可以使用 `systemctl` 来管理 ANode 的服务。使用如下命令可以启动/停止/检查状态。
```bash
systemctl start taosanoded
@ -50,27 +50,27 @@ systemctl status taosanoded
### 配置说明
Anode 提供的 RestFul 服务使用 uWSGI 驱动,因此 ANode 的配置和 uWSGI 的配置在同一个配置文件中,具体如下:
Anode 提供的 RestFul 服务使用 uWSGI 驱动,因此 ANode 和 uWSGI 的配置信息存放在同一个配置文件中,具体如下:
```ini
[uwsgi]
# charset
env=LC_ALL=en_US.UTF-8
env = LC_ALL = en_US.UTF-8
# ip:port
http = 127.0.0.1:6050
# the local unix socket file than communicate to Nginx
#socket = 127.0.0.1:8001
#socket-timeout=10
#socket-timeout = 10
# base directory
chdir = /usr/local/taos/taosanode/lib
# initialize python file
wsgi-file = /usr/local/taos/taosanode/lib/app.py
wsgi-file = /usr/local/taos/taosanode/lib/taos/app.py
# invoke app model
# call module of uWSGI
callable = app
# auto remove unix Socket and pid file when stopping
@ -80,10 +80,10 @@ vacuum = true
#chmod-socket = 664
# uWSGI pid
uid=root
uid = root
# uWSGI gid
gid=root
gid = root
# main process
master = true
@ -92,25 +92,27 @@ master = true
processes = 2
# pid file
pidfile = /usr/local/taos/taosanode/uwsgi.pid
pidfile = /usr/local/taos/taosanode/taosanode.pid
# enable threads
enable-threads=true
enable-threads = true
# the number of threads for each process
threads=2
threads = 4
# memory useage report
memory-report = true
# smooth restart
reload-mercy = 10
# conflict with systemctl, so do NOT uncomment this
# daemonize = /var/log/taos/taosanode/taosanode.log
# set log
# log directory
logto = /var/log/taos/taosanode/taosanode.log
# monitor server
# wWSGI monitor port
stats = 127.0.0.1:8387
# python virtual environment directory
@ -121,10 +123,13 @@ virtualenv = /usr/local/taos/taosanode/venv/
app-log = /var/log/taos/taosanode/taosanode.app.log
# model storage directory
model-dir=/usr/local/taos/taosanode/model/
model-dir = /usr/local/taos/taosanode/model/
# default log level
log-level = DEBUG
# draw the query results
draw-result = 0
```
**提示**
@ -137,7 +142,7 @@ log-level = DEBUG
```sql
CREATE ANODE {node_url}
```
node_url 是提供服务的 ANode 的 IP 和 PORT, 例如:`create anode 'http://localhost:6050'`。启动 ANode 以后如果不注册到 TDengine 集群中,无法提供正常的服务。不建议 ANode 注册到两个或多个集群中。
node_url 是提供服务的 ANode 的 IP 和 PORT, 例如:`create anode 'http://localhost:6050'`。启动 ANode 以后如果不注册到 TDengine 集群中,无法提供正常的服务。不建议 ANode 注册到两个或多个集群中。
#### 查看 ANode
列出集群中所有的数据分析节点,包括其 `FQDN`, `PORT`, `STATUS`
@ -167,24 +172,23 @@ DROP ANODE {anode_id}
#### 白噪声检查
平台提供 Restful的服务检测输入时间序列是否是白噪声时间序列White Noise Data, WND白噪声时间序列及随机数序列。
此外,分析平台要求输入的数据不能是 , 因此针对的所有数据均默认进行 白噪声检查。当前白噪声检查采用通行的 `Ljung-Box`检验,`Ljung-Box` 统计量检查过程需要遍历整个输入序列并进行计算。
分析平台提供的 Restful 服务要求输入的时间序列不能是白噪声时间序列White Noise Data, WND和随机数序列 , 因此针对所有数据均默认进行白噪声检查。当前白噪声检查采用通行的 `Ljung-Box` 检验,`Ljung-Box` 统计量检查过程需要遍历整个输入序列并进行计算。
如果用户能够明确输入序列一定不是白噪声序列,那么可以通过输入参数,指定预测之前忽略该检查,从而节省分析过程的 CPU 计算资源。
同时支持独立地针对输入序列进行白噪声检测(该检测功能暂不独立对外开放)。
#### 数据重采样和时间戳对齐
数据分析平台支持将输入数据进行重采样预处理,从而确保输出结果按照用户指定的等间隔进行处理。处理过程分为两种类别:
分析平台支持将输入数据进行重采样预处理,从而确保输出结果按照用户指定的等间隔进行处理。处理过程分为两种类别:
- 数据时间戳对齐。由于真实数据时间可能并非严格按照查询指定的时间戳输入。此时数据平台将自动将数据的时间间隔按照指定的时间间隔进行对齐。例如有输入时间序列:[11, 22, 29, 41],用户指定时间间隔为 10那么该序列将被对齐重整为以下序列 [10, 20, 30, 40]。
- 数据时间重采样。用户输入的时间序列其采样频率超过了指定的查询需要获得结果的时间间隔,例如输入原始数据是 5 但是输出结果的频率是 10. [0 5 10 15 20 25 30],那么该输入数据列将重采用为间隔 为 10 的输入序列,其结果如下 [0, 10, 2030]。[5, 15, 25] 处的数据将被丢弃。
- 数据时间戳对齐。由于真实数据可能并非严格按照查询指定的时间戳输入。此时分析平台会自动将数据的时间间隔按照指定的时间间隔进行对齐。例如输入时间序列 [11, 22, 29, 41],用户指定时间间隔为 10该序列将被对齐重整为以下序列 [10, 20, 30, 40]。
- 数据时间重采样。用户输入时间序列的采样频率超过了输出结果的频率,例如输入时间序列的采样频率是 5输出结果的频率是 10输入时间序列 [0 5 10 15 20 25 30] 将被重采用为间隔 为 10 的序列 [0, 10, 2030][5, 15, 25] 处的数据将被丢弃。
需要注意的是,数据输入平台不支持缺失数据补齐后进行的预测分析,如果输入时间序列数据[11, 22, 29, 49],并且用户要求的时间间隔为 10 重整对齐后的序列是 [10, 20, 30, 50] 那么该序列进行预测分析将返回错误。
需要注意的是,数据输入平台不支持缺失数据补齐后进行的预测分析,如果输入时间序列数据 [11, 22, 29, 49],并且用户要求的时间间隔为 10重整对齐后的序列是 [10, 20, 30, 50] 那么该序列进行预测分析将返回错误。
#### 时序数据异常检测
异常检测是针对输入的时序数据,使用预设或用户指定的算法确定时间序列中**可能**出现异常时间序列点,对于时间序列中若干个连续的异常点,将自动合并成为一个连续的(闭区间)异常窗口。对于只有单个点的场景,异常窗口窗口退化成为一个起始时间和结束时间相同的点。
异常检测是针对输入的时序数据,使用预设或用户指定的算法确定时间序列中**可能**出现异常时间序列点,对于时间序列中若干个连续的异常点,将自动合并成为一个连续的(闭区间)异常窗口。对于只有单个点的场景,异常窗口窗口退化成为一个起始时间和结束时间相同的点。
异常检测生成的异常窗口受检测算法和算法参数的共同影响,对于异常窗口范围内的数据,可以应用 TDengine 提供的聚合和标量函数进行查询或变换处理。
对于输入时间序列 (1, 20), (2, 22), (3, 91), (4, 120), (5, 18), (6, 19)。系统检测到 (3, 91), (4, 120) 为异常点,那么返回的异常窗口是闭区间 [3, 4]。
@ -201,18 +205,18 @@ algo=expr1
"}
```
1. `column`:进行时序数据异常检测的输入数据列,当前只支持单列输入,且只能是数值类型,不能是字符类型(例如:`NCHAR` `VARCHAR` `VARBINARY`等类型),**不支持函数表达式**。
2. `options`:字符串。其中使用 K/V 调用异常检测的算法,及与算法相关的参数。采用 逗号分隔的K/V字符串表示其中的字符串不需要使用单引号、双引号、或转意号等符号,不能使用中文及其他宽字符。例如:`algo=ksigma, k=2` 表示进行异常检测的算法是 ksigma该算法接受的输入参数是 2。
1. `column`:进行时序数据异常检测的输入数据列,当前只支持单列,且只能是数值类型,不能是字符类型(例如:`NCHAR` `VARCHAR` `VARBINARY`等类型),**不支持函数表达式**。
2. `options`:字符串。其中使用 K=V 调用异常检测算法及与算法相关的参数。采用逗号分隔的 K=V 字符串表示,其中的字符串不需要使用单引号、双引号、或转义号等符号,不能使用中文及其他宽字符。例如:`algo=ksigma,k=2` 表示进行异常检测的算法是 ksigma该算法接受的输入参数是 2。
3. 异常检测的结果可以作为外层查询的子查询输入,在 `SELECT` 子句中使用的聚合函数或标量函数与其他类型的窗口查询相同。
4. 输入数据默认进行白噪声检查,如果检查结果是输入数据是白噪声,将不会有任何(异常)窗口信息返回。
4. 输入数据默认进行白噪声检查,如果输入数据是白噪声,将不会有任何(异常)窗口信息返回。
**参数说明**
|参数|含义|默认值|
|---|---|---|
|algo|异常检测调用的算法|iqr|
|wncheck|对输入数据列是否进行白噪声检查|取值为0或者1默认值为 1表示进行白噪声检查|
|wncheck|对输入数据列是否进行白噪声检查|取值为 0 或者 1默认值为 1表示进行白噪声检查|
异常检测的返回结果以窗口形式呈现,因此窗口查询相关的伪列在这种场景下仍然可用。可以使用的伪列如下:
异常检测的返回结果以窗口形式呈现,因此窗口查询相关的伪列在这种场景下仍然可用。可以使用的伪列如下:
1. `_WSTART` 异常窗口开始时间戳
2. `_WEND`:异常窗口结束时间戳
3. `_WDURATION`:异常窗口持续时间
@ -232,9 +236,9 @@ ANOMALY_WINDOW(i32, "algo=ksigma,k=2");
```
taos> SELECT _wstart, _wend, count(*) FROM ai.atb ANOMAYL_WINDOW(i32);
_wstart | _wend | count(*) |
============================================================================
2020-01-01 00:00:16.000 | 2020-01-01 00:00:16.001 | 1 |
_wstart | _wend | count(*) |
====================================================================
2020-01-01 00:00:16.000 | 2020-01-01 00:00:16.001 | 1 |
Query OK, 1 row(s) in set (0.028946s)
```
@ -267,7 +271,7 @@ algo=expr1
```
1. `column_expr`:预测的时序数据列。与异常检测相同,只支持数值类型输入。
2. `options`:异常检测函数的参数,使用规则与 anomaly_window 相同。预测还支持`conf`, `every`, `rows`, `start`, `rows` 几个参数,其含义如下:
2. `options`:异常检测函数的参数,使用规则与 anomaly_window 相同。预测还支持 `conf`, `every`, `rows`, `start`, `rows` 几个参数,其含义如下:
**参数说明**
@ -275,13 +279,13 @@ algo=expr1
|---|---|---|
|algo|预测分析使用的算法|holtwinters|
|wncheck|白噪声white noise data检查|默认值为 10 表示不进行检查|
|conf|预测数据的置信区间范围 ,取值范围[0, 100]|95|
|conf|预测数据的置信区间范围 ,取值范围 [0, 100]|95|
|every|预测数据的采样间隔|输入数据的采样间隔|
|start|预测结果的开始时间戳|输入数据最后一个时间戳加上一个采样时间段|
|rows|预测结果的记录数|10|
1. 预测查询结果新增了三个伪列,具体如下: `_FROWTS`:预测结果的时间戳、`_FLOW`:置信区间下界、`_FHIGH`:置信区间上界, 对于没有置信区间的预测算法,其置信区间同预测结果
2. 更改参数 `START`:返回预测结果的起始时间,改变这个起始时间不会影响返回的预测数值,只影响起始时间。
1. 预测查询结果新增了三个伪列,具体如下:`_FROWTS`:预测结果的时间戳、`_FLOW`:置信区间下界、`_FHIGH`:置信区间上界, 对于没有置信区间的预测算法,其置信区间同预测结果
2. 更改参数 `START`:返回预测结果的起始时间,改变起始时间不会影响返回的预测数值,只影响起始时间。
3. `EVERY`:可以与输入数据的采样频率不同。采样频率只能低于或等于输入数据采样频率,不能**高于**输入数据的采样频率。
4. 对于某些不需要计算置信区间的算法,即使指定了置信区间,返回的结果中其上下界退化成为一个点。
@ -292,12 +296,12 @@ algo=expr1
SELECT _flow, _fhigh, _frowts, FORECAST(i32, "algo=arima")
FROM ai.ftb;
--- 使用 arima 算法进行预测输入数据的是周期数据每10个采样点是一个周期。返回置信区间是 95%.
--- 使用 arima 算法进行预测,输入数据的是周期数据,每 10 个采样点是一个周期。返回置信区间是 95%.
SELECT _flow, _fhigh, _frowts, FORECAST(i32, "algo=arima,alpha=95,period=10")
FROM ai.ftb;
```
```
taos> select _flow, _fhigh, _frowts, forecast(i32) from ai.ftb;
taos> select _flow, _fhigh, _frowts, forecast(i32) from ai.ftb;
_flow | _fhigh | _frowts | forecast(i32) |
========================================================================================
10.5286684 | 41.8038254 | 2020-01-01 00:01:35.001 | 26 |