📝 update README

This commit is contained in:
ValKmjolnir 2023-10-04 11:52:09 +08:00
parent d69dd0b03f
commit 63b0112b9d
8 changed files with 134 additions and 80 deletions

View File

@ -21,6 +21,7 @@
* [__Difference__](#difference-between-andys-and-this-interpreter)
* [__Trace Back Info__](#trace-back-info)
* [__Debugger__](#debugger)
* [__REPL__](#repl)
__Contact us if having great ideas to share!__
@ -613,19 +614,24 @@ that is really inconvenient.
Luckily, we have developed some useful native-functions to help you add modules that created by you.
After 2021/12/3, there are some new functions added to `lib.nas`:
Functions used to load dynamic libraries are added to `std/dylib.nas`:
```javascript
var dylib={
dlopen: func(libname){
...
},
dlclose: func(lib){return __dlclose; },
dlcall: func(ptr,args...){return __dlcallv},
limitcall: func(arg_size=0){
...
}
};
var dlopen = func(libname) {
...
}
var dlclose = func(lib) {
...
}
var dlcall = func(ptr, args...) {
...
}
var limitcall = func(arg_size = 0) {
...
}
```
As you could see, these functions are used to load dynamic libraries into the nasal runtime and execute.
@ -636,21 +642,26 @@ First, write a cpp file that you want to generate the dynamic lib, take the `fib
```C++
// add header file nasal.h to get api
#include "nasal.h"
double fibonaci(double x){
if(x<=2)
double fibonaci(double x) {
if (x<=2) {
return x;
}
return fibonaci(x-1)+fibonaci(x-2);
}
// module functions' parameter list example
var fib(var* args,usize size,gc* ngc){
var fib(var* args, usize size, gc* ngc) {
if (!size) {
return nas_err("fib", "lack arguments");
}
// the arguments are generated into a vm_vec: args
// get values from the vector that must be used here
var num=args[0];
var num = args[0];
// if you want your function safer, try this
// nas_err will print the error info on screen
// and return vm_null for runtime to interrupt
if(num.type!=vm_num)
return nas_err("extern_fib","\"num\" must be number");
if(num.type!=vm_num) {
return nas_err("extern_fib", "\"num\" must be number");
}
// ok, you must know that vm_num now is not managed by gc
// if want to return a gc object, use ngc->alloc(type)
// usage of gc is the same as adding a native function
@ -659,9 +670,9 @@ var fib(var* args,usize size,gc* ngc){
// then put function name and address into this table
// make sure the end of the table is {nullptr,nullptr}
mod_func func_tbl[]={
{"fib",fib},
{nullptr,nullptr}
module_func_info func_tbl[] = {
{"fib", fib},
{nullptr, nullptr}
};
// must write this function, this will help nasal to
@ -669,7 +680,7 @@ mod_func func_tbl[]={
// the reason why using this way to get function pointer
// is because `var` has constructors, which is not compatiable in C
// so "extern "C" var fib" may get compilation warnings
extern "C" mod_func get(){
extern "C" module_func_info* get() {
return func_tbl;
}
```
@ -693,10 +704,11 @@ Windows(`.dll`):
Then we write a test nasal file to run this fib function, using `os.platform()` we could write a cross-platform program:
```javascript
var dlhandle=dylib.dlopen("libfib."~(os.platform()=="windows"?"dll":"so"));
var fib=dlhandle.fib;
for(var i=1;i<30;i+=1)
println(dylib.dlcall(fib,i));
import.std.dylib;
var dlhandle = dylib.dlopen("libfib."~(os.platform()=="windows"?"dll":"so"));
var fib = dlhandle.fib;
for(var i = 1; i<30; i+=1)
println(dylib.dlcall(fib, i));
dylib.dlclose(dlhandle.lib);
```
@ -709,11 +721,12 @@ dylib.dlclose(dlhandle.lib);
`dylib.limitcall` is used to get `dlcall` function that has limited parameter size, this function will prove the performance of your code because it does not use `vm_vec` to store the arguments, instead it uses local scope to store them, so this could avoid frequently garbage collecting. And the code above could also be written like this:
```javascript
var dlhandle=dylib.dlopen("libfib."~(os.platform()=="windows"?"dll":"so"));
var fib=dlhandle.fib;
var invoke=dylib.limitcall(1); # this means the called function has only one parameter
for(var i=1;i<30;i+=1)
println(invoke(fib,i));
import.std.dylib;
var dlhandle = dylib.dlopen("libfib."~(os.platform()=="windows"?"dll":"so"));
var fib = dlhandle.fib;
var invoke = dylib.limitcall(1); # this means the called function has only one parameter
for(var i = 1; i<30; i+=1)
println(invoke(fib, i));
dylib.dlclose(dlhandle.lib);
```
@ -998,3 +1011,10 @@ vm stack (0x7fffd0259138 <sp+65>, limit 10, total 7)
```
</details>
## REPL
We added experimental repl interpreter in v11.0.
Use this command to use the repl interpreter:
> nasal -r

View File

@ -21,6 +21,7 @@
* [__特殊之处__](#与andy解释器的不同之处)
* [__堆栈追踪信息__](#堆栈追踪信息)
* [__调试器__](#调试器)
* [__交互解释器__](#交互解释器)
__如果有好的意见或建议欢迎联系我们!__
@ -591,19 +592,24 @@ import("./dirname/dirname/filename.nas");
如果只有上文中那种方式来添加你自定义的函数到nasal中这肯定是非常麻烦的。
因此,我们实现了一组实用的内置函数来帮助你添加你自己创建的模块。
在2021/12/3更新后我们给`lib.nas`添加了下面的这一批函数:
用于加载动态库的函数在`std/dylib.nas`中:
```javascript
var dylib={
dlopen: func(libname){
...
},
dlclose: func(lib){return __dlclose; },
dlcall: func(ptr,args...){return __dlcallv},
limitcall: func(arg_size=0){
...
}
};
var dlopen = func(libname) {
...
}
var dlclose = func(lib) {
...
}
var dlcall = func(ptr, args...) {
...
}
var limitcall = func(arg_size = 0) {
...
}
```
这些函数是用来加载动态库的这样nasal解释器可以根据用户需求灵活加载动态库来执行。让我们看看这些函数该如何使用。
@ -613,36 +619,41 @@ var dylib={
```C++
// 这个头文件得加上因为我们需要拿到nasal的api
#include "nasal.h"
double fibonaci(double x){
if(x<=2)
double fibonaci(double x) {
if (x<=2) {
return x;
}
return fibonaci(x-1)+fibonaci(x-2);
}
// 模块函数的参数列表一律以这个为准
var fib(var* args,usize size,gc* ngc){
var fib(var* args, usize size, gc* ngc) {
if (!size) {
return nas_err("fib", "lack arguments");
}
// 传参会给予一个var指针指向一个vm_vec的data()
var num=args[0];
var num = args[0];
// 如果你想让这个函数有更强的稳定性,那么一定要进行合法性检查
// nas_err会输出错误信息并返回错误类型让虚拟机终止执行
if(num.type!=vm_num)
return nas_err("extern_fib","\"num\" must be number");
if(num.type!=vm_num) {
return nas_err("extern_fib", "\"num\" must be number");
}
// vm_num作为普通的数字类型不是内存管理的对象所以无需申请
// 如果需要返回内存管理的对象请使用ngc->alloc(type)
return var::num(fibonaci(num.tonum()));
}
// 然后将函数名字和函数地址放到一个表里,一定要记住表尾是{nullptr,nullptr}
mod_func func_tbl[]={
{"fib",fib},
{nullptr,nullptr}
module_func_info func_tbl[] = {
{"fib", fib},
{nullptr, nullptr}
};
// 必须实现这个函数, 这样nasal可以通过字符串名字获得函数指针
// 之所以用这种方式来获取函数指针, 是因为`var`是有构造函数的
// 有构造函数的类型作为返回值, 和C是不兼容的, 这导致
// 类似 "extern "C" var fib" 的写法会得到编译错误
extern "C" mod_func get(){
extern "C" module_func_info* get() {
return func_tbl;
}
```
@ -667,10 +678,11 @@ Windows(`.dll`):
下面例子中`os.platform()`是用来检测当前运行的系统环境的,这样可以实现跨平台:
```javascript
var dlhandle=dylib.dlopen("libfib."~(os.platform()=="windows"?"dll":"so"));
var fib=dlhandle.fib;
for(var i=1;i<30;i+=1)
println(dylib.dlcall(fib,i));
import.std.dylib;
var dlhandle = dylib.dlopen("libfib."~(os.platform()=="windows"?"dll":"so"));
var fib = dlhandle.fib;
for(var i = 1; i<30; i+=1)
println(dylib.dlcall(fib, i));
dylib.dlclose(dlhandle.lib);
```
@ -683,15 +695,16 @@ dylib.dlclose(dlhandle.lib);
`dylib.limitcall`用于获取使用固定长度传参的 `dlcall` 函数,这种函数可以提高你的程序运行效率,因为它不需要用 `vm_vec` 来存储传入参数,而是使用局部作用域来直接存储,从而避免了频繁调用可能导致的频繁垃圾收集。所以上面展示的代码同样可以这样写:
```javascript
var dlhandle=dylib.dlopen("libfib."~(os.platform()=="windows"?"dll":"so"));
var fib=dlhandle.fib;
var invoke=dylib.limitcall(1); # this means the called function has only one parameter
for(var i=1;i<30;i+=1)
println(invoke(fib,i));
import.std.dylib;
var dlhandle = dylib.dlopen("libfib."~(os.platform()=="windows"?"dll":"so"));
var fib = dlhandle.fib;
var invoke = dylib.limitcall(1); # this means the called function has only one parameter
for(var i = 1; i<30; i+=1)
println(invoke(fib, i));
dylib.dlclose(dlhandle.lib);
```
如果接下来你看到了这个运行结果,恭喜你!
如果得到如下运行结果,恭喜你!
```bash
./nasal a.nas
@ -963,3 +976,9 @@ vm stack (0x7fffd0259138 <sp+65>, limit 10, total 7)
```
</details>
## 交互解释器
v11.0 版本新增了交互式解释器 (REPL),使用如下命令开启:
> nasal -r

View File

@ -15,7 +15,7 @@ double fibonaci(double x) {
var fib(var* args, usize size, gc* ngc) {
if (!size) {
return nas_err("fib","lack arguments");
return nas_err("fib", "lack arguments");
}
var num = args[0];
return var::num(fibonaci(num.tonum()));

View File

@ -357,7 +357,7 @@ public:
void set_first(expr* node) {first = node;}
void add_call(call* node) {calls.push_back(node);}
expr* get_first() {return first;}
std::vector<call*>& get_calls() {return calls;}
auto& get_calls() {return calls;}
void accept(ast_visitor*) override;
};

View File

@ -297,7 +297,8 @@ definition_expr* linker::generate_module_definition(code_block* block) {
auto def = new definition_expr(block->get_location());
def->set_identifier(new identifier(
block->get_location(),
generate_module_name(block->get_location().file)));
generate_module_name(block->get_location().file)
));
auto call = new call_expr(block->get_location());
auto func = new function(block->get_location());
@ -310,33 +311,44 @@ definition_expr* linker::generate_module_definition(code_block* block) {
return def;
}
code_block* linker::load(code_block* root, u16 fileindex) {
code_block* linker::load(code_block* program_root, u16 fileindex) {
auto tree = new code_block({0, 0, 0, 0, files[fileindex]});
// load library, this ast will be linked with root directly
// so no namespace is generated
// so no extra namespace is generated
if (!lib_loaded) {
auto tmp = import_nasal_lib();
link(tree, tmp);
delete tmp;
auto nasal_lib_code_block = import_nasal_lib();
// insert nasal lib code to the back of tree
link(tree, nasal_lib_code_block);
delete nasal_lib_code_block;
lib_loaded = true;
}
// load imported modules
for(auto i : root->get_expressions()) {
if (!import_check(i)) {
for(auto& import_ast_node : program_root->get_expressions()) {
if (!import_check(import_ast_node)) {
break;
}
auto tmp = import_regular_file((call_expr*)i);
tree->add_expression(generate_module_definition(tmp));
auto module_code_block = import_regular_file((call_expr*)import_ast_node);
// after importing the regular file as module, delete this node
const auto loc = import_ast_node->get_location();
delete import_ast_node;
// and replace the node with null_expr node
import_ast_node = new null_expr(loc);
// then we generate a function warping the code block,
// and export the necessary global symbols in this code block
// by generate a return statement, with a hashmap return value
tree->add_expression(generate_module_definition(module_code_block));
}
// add root to the back of tree
link(tree, root);
// insert program root to the back of tree
link(tree, program_root);
return tree;
}
const error& linker::link(
parse& parse, const std::string& self, bool spath = false) {
show_path = spath;
// initializing
// initializing file map
this_file = self;
files = {self};
module_load_stack = {self};

View File

@ -159,7 +159,7 @@ f64 dec2f(const char* str) {
if (*str) {
return nan("");
}
return ret*std::pow(10,negative*num_pow);
return ret*std::pow(10, negative*num_pow);
}
f64 str2num(const char* str) {
@ -226,7 +226,7 @@ std::string rawstr(const std::string& str, const usize maxlen) {
}
}
if (maxlen && ret.length()>maxlen) {
ret = ret.substr(0,maxlen)+"...";
ret = ret.substr(0, maxlen)+"...";
}
return ret;
}

View File

@ -116,7 +116,9 @@ void repl::execute() {
runtime.set_allow_repl_output_flag(true);
std::cout << "[nasal-repl] Initialization complete.\n\n";
std::cout << "Nasal REPL interpreter(experimental).\n";
// finish initialization, output version info
std::cout << "Nasal REPL interpreter version " << __nasver;
std::cout << " (" << __DATE__ << " " << __TIME__ << ")\n";
help();
while(true) {

View File

@ -233,4 +233,5 @@ for(var a=0;a<16;a+=1) {
}
}
print([0, 1, 2]~[3, 4, 5], "\n");
print([0, 1, 2]~[3, 4, 5], "\n");
print(num("4.94065645841246544176568792868e-324"), "\n");