Merge pull request 'merge code' (#24) from develop into prepare_for_master

This commit is contained in:
wgzAIIT 2022-11-16 16:16:14 +08:00
commit c0d3d04f83
174 changed files with 25985 additions and 485 deletions

View File

@ -26,6 +26,131 @@ menu "test app"
endif
endif
menuconfig USER_TEST_FS
bool "Config test fs with sd or usb"
default n
if USER_TEST_FS
if ADD_XIZI_FETURES
config FPATH
string "Set test file path"
default "/test_file"
endif
endif
menuconfig USER_TEST_GPIO
select BSP_USING_GPIO
select RESOURCES_PIN
select BSP_USING_LED
select BSP_USING_KEY
bool "Config test gpio with led and key"
default n
if USER_TEST_GPIO
if ADD_XIZI_FETURES
config GPIO_DEV_DRIVER
string "Set gpio dev path"
default "/dev/pin_dev"
endif
endif
menuconfig USER_TEST_LORA
select BSP_USING_UART
select BSP_USING_GPIO
select RESOURCES_PIN
select BSP_USING_UART2
select BSP_USING_LORA
bool "Config test uart(loraE220)"
default n
if USER_TEST_LORA
if ADD_XIZI_FETURES
config LORA_UART_DEV_DRIVER
string "Set uart dev path"
default "/dev/uart2_dev2"
config LORA_PIN_DEV_DRIVER
string "Set pin dev path"
default "/dev/pin_dev"
endif
endif
menuconfig USER_TEST_RS485
select BSP_USING_UART
select BSP_USING_GPIO
select RESOURCES_PIN
select BSP_USING_UART1
bool "Config test uart(RS485)"
default n
if USER_TEST_RS485
if ADD_XIZI_FETURES
config RS485_UART_DEV_DRIVER
string "Set uart dev path"
default "/dev/uart1_dev1"
config RS485_PIN_DEV_DRIVER
string "Set pin dev path"
default "/dev/pin_dev"
endif
endif
menuconfig USER_TEST_RTC
select BSP_USING_RTC
bool "Config test rtc"
default n
if USER_TEST_RTC
if ADD_XIZI_FETURES
config RTC_DEV_DRIVER
string "Set rtc dev path"
default "/dev/rtc_dev"
endif
endif
menuconfig USER_TEST_HWTIMER
select BSP_USING_HWTIMER
select BSP_USING_GPIO
bool "Config test hwtimer"
default n
if USER_TEST_HWTIMER
if ADD_XIZI_FETURES
config HWTIMER_PIN_DEV_DRIVER
string "Set pin dev path"
default "/dev/pin_dev"
endif
endif
menuconfig USER_TEST_WDT
select BSP_USING_WDT0
bool "Config test watchdog"
default n
if USER_TEST_WDT
if ADD_XIZI_FETURES
config WDT0_DEV_DRIVER
string "Set wdt dev path"
default "/dev/wdt0_dev0"
endif
endif
menuconfig USER_TEST_LCD_EDU
select BSP_USING_LCD
bool "Config test lcd in PrivOpen"
default n
if USER_TEST_LCD_EDU
if ADD_XIZI_FETURES
config EDU_LCD_DEV_DRIVER
string "Set lcd dev path"
default "/dev/lcd_dev"
endif
endif
menuconfig USER_TEST_I2C
select BSP_USING_I2C
bool "Config test i2c"
default n
if USER_TEST_I2C
if ADD_XIZI_FETURES
config I2C_DEV_DRIVER
string "Set i2c dev path"
default "/dev/i2c1_dev0"
endif
endif
config USER_TEST_SEMC
bool "Config test semc sdram"
default n
@ -33,5 +158,7 @@ menu "test app"
config USER_TEST_LCD
bool "Config test lcd device"
default n
endif
endmenu

View File

@ -33,6 +33,10 @@ ifeq ($(CONFIG_ADD_XIZI_FETURES),y)
SRC_FILES += test_dac.c
endif
ifeq ($(CONFIG_USER_TEST_FS),y)
SRC_FILES += test_fs.c
endif
ifeq ($(CONFIG_USER_TEST_SEMC),y)
SRC_FILES += test_extsram.c
endif
@ -41,5 +45,37 @@ ifeq ($(CONFIG_ADD_XIZI_FETURES),y)
SRC_FILES +=
endif
ifeq ($(CONFIG_USER_TEST_I2C),y)
SRC_FILES += test_i2c.c
endif
ifeq ($(CONFIG_USER_TEST_GPIO),y)
SRC_FILES += test_gpio.c
endif
ifeq ($(CONFIG_USER_TEST_LORA),y)
SRC_FILES += test_loraE220.c
endif
ifeq ($(CONFIG_USER_TEST_RTC),y)
SRC_FILES += test_rtc.c
endif
ifeq ($(CONFIG_USER_TEST_RS485),y)
SRC_FILES += test_rs485.c
endif
ifeq ($(CONFIG_USER_TEST_HWTIMER),y)
SRC_FILES += test_hwtimer.c
endif
ifeq ($(CONFIG_USER_TEST_LCD_EDU),y)
SRC_FILES += test_lcd_edu.c
endif
ifeq ($(CONFIG_USER_TEST_WDT),y)
SRC_FILES += test_wdt.c
endif
include $(KERNEL_ROOT)/compiler.mk
endif

View File

@ -0,0 +1,62 @@
#include <stdio.h>
#include <string.h>
#include <transform.h>
#define MAX_READ_LENGTH 1000
// sd card here is loaded as "/"
void TestFs(void)
{
//open the file in sdcard
int fd = open(FPATH,O_RDWR|O_CREAT);
if(fd<0){
printf("fs fd open error:%d\n",fd);
return;
}
char filewords[MAX_READ_LENGTH];
memset(filewords,0,MAX_READ_LENGTH);
const char *input_words = "these words are going to write in fs\n";
//read and write then close file
int err_flag = read(fd,filewords,MAX_READ_LENGTH);
if(err_flag<0){
printf("read failed,error:%d\n",err_flag);
return;
}
printf("read data is \n%s\n",filewords);
err_flag = write(fd,input_words,strlen(input_words));
if(err_flag<0){
printf("write failed,error:%d\n",err_flag);
return;
}
err_flag = close(fd);
if(err_flag<0){
printf("close failed,error %d\n",err_flag);
return ;
}
//re-open the file and re-read the file
fd = open(FPATH,O_RDWR);
if(fd<0){
printf("fs fd open error:%d\n",fd);
return;
}
err_flag = read(fd,filewords,MAX_READ_LENGTH);
if(err_flag<0){
printf("read failed,error:%d\n",err_flag);
return;
}
printf("read data is \n%s\n",filewords);
err_flag = close(fd);
if(err_flag<0){
printf("close failed,error:%d\n",err_flag);
return;
}
return;
}
PRIV_SHELL_CMD_FUNCTION(TestFs, a sd or usb filesystem test sample, PRIV_SHELL_CMD_MAIN_ATTR);

View File

@ -0,0 +1,73 @@
#include <stdio.h>
#include <string.h>
#include <transform.h>
#define BSP_LED_PIN 29
#define BSP_KEY_PIN 31
#define NULL_PARAMETER 0
void TestGpio(void)
{
int pin_fd = PrivOpen(GPIO_DEV_DRIVER, O_RDWR);
if(pin_fd<0){
printf("open pin fd error:%d\n",pin_fd);
return;
}
//config led pin in board
struct PinParam parameter;
parameter.cmd = GPIO_CONFIG_MODE;
parameter.pin = BSP_LED_PIN;
parameter.mode = GPIO_CFG_OUTPUT;
struct PrivIoctlCfg ioctl_cfg;
ioctl_cfg.ioctl_driver_type = PIN_TYPE;
ioctl_cfg.args = (void *)&parameter;
if (0 != PrivIoctl(pin_fd, OPE_CFG, &ioctl_cfg)) {
printf("ioctl pin fd error %d\n", pin_fd);
PrivClose(pin_fd);
return;
}
//config key pin in board
parameter.pin = BSP_KEY_PIN;
parameter.mode = GPIO_CFG_INPUT;
if (0 != PrivIoctl(pin_fd, OPE_CFG, &ioctl_cfg)) {
printf("ioctl pin fd error %d\n", pin_fd);
PrivClose(pin_fd);
return;
}
struct PinStat pin_led;
struct PinStat pin_key;
pin_led.pin = BSP_LED_PIN;
pin_key.pin = BSP_KEY_PIN;
//recycle read pin and write pin until key break
while(1){
if(0>PrivRead(pin_fd,&pin_key,NULL_PARAMETER)){
printf("read pin fd error %d\n", pin_fd);
PrivClose(pin_fd);
return;
}
//led on if key pressed,or led off
if(pin_key.val){
pin_led.val = GPIO_HIGH;
}else{
pin_led.val = GPIO_LOW;
}
if(0>PrivWrite(pin_fd,&pin_led,NULL_PARAMETER)){
printf("write pin fd error %d\n", pin_fd);
PrivClose(pin_fd);
return;
}
}
}
PRIV_SHELL_CMD_FUNCTION(TestGpio, a gpio test sample, PRIV_SHELL_CMD_MAIN_ATTR);

View File

@ -0,0 +1,62 @@
#include <stdio.h>
#include <string.h>
#include <transform.h>
#define BSP_LED_PIN 29
#define NULL_PARAMETER 0
static uint16_t pinval=0;
void ledflip(void *parameter)
{
int tmp_fd = *(int*)parameter;
struct PinStat pin_led;
pin_led.pin = BSP_LED_PIN;
pin_led.val = !pinval;
pinval = !pinval;
PrivWrite(tmp_fd,&pin_led,NULL_PARAMETER);
printf("Timer has callback once\n");
}
void TestHwTimer(int argc, char *argv[])
{
x_ticks_t period = 100;//uint:10ms
if(argc>1){
period = (x_ticks_t)atoi(argv[1]);
}
int pin_fd = PrivOpen(HWTIMER_PIN_DEV_DRIVER, O_RDWR);
if(pin_fd<0){
printf("open pin fd error:%d\n",pin_fd);
return;
}
//config led pin in board
struct PinParam parameter;
parameter.cmd = GPIO_CONFIG_MODE;
parameter.pin = BSP_LED_PIN;
parameter.mode = GPIO_CFG_OUTPUT;
struct PrivIoctlCfg ioctl_cfg;
ioctl_cfg.ioctl_driver_type = PIN_TYPE;
ioctl_cfg.args = (void *)&parameter;
if (0 != PrivIoctl(pin_fd, OPE_CFG, &ioctl_cfg)) {
printf("ioctl pin fd error %d\n", pin_fd);
PrivClose(pin_fd);
return;
}
int32 timer_handle = KCreateTimer("LED on and off by 1s",&ledflip,&pin_fd,period,TIMER_TRIGGER_PERIODIC);
KTimerStartRun(timer_handle);
PrivTaskDelay(10000);
KTimerQuitRun(timer_handle);
KDeleteTimer(timer_handle);
}
PRIV_SHELL_CMD_FUNCTION(TestHwTimer, a timer test sample, PRIV_SHELL_CMD_MAIN_ATTR);

View File

@ -0,0 +1,50 @@
#include <stdio.h>
#include <string.h>
#include <transform.h>
#define I2C_SLAVE_ADDRESS 0x0012U
void TestI2C(void)
{
// config IIC pin(SCL:34.SDA:35) in menuconfig
int iic_fd = PrivOpen(I2C_DEV_DRIVER, O_RDWR);
if (iic_fd < 0)
{
printf("open iic_fd fd error:%d\n", iic_fd);
return;
}
printf("IIC open successful!\n");
// init iic
uint16 iic_address = I2C_SLAVE_ADDRESS;
struct PrivIoctlCfg ioctl_cfg;
ioctl_cfg.ioctl_driver_type = I2C_TYPE;
ioctl_cfg.args = (void *)&iic_address;
if (0 != PrivIoctl(iic_fd, OPE_INT, &ioctl_cfg))
{
printf("ioctl iic fd error %d\n", iic_fd);
PrivClose(iic_fd);
return;
}
printf("IIC configure successful!\n");
// I2C read and write
char tmp_buff[100];
while (1)
{
PrivTaskDelay(1000);
PrivWrite(iic_fd, "Hello World!\n", sizeof("Hello World!\n"));
printf("msg send:%s\n", "Hello World!\n");
PrivTaskDelay(1000);
memset(tmp_buff, 0, sizeof(tmp_buff));
PrivRead(iic_fd, tmp_buff, sizeof(tmp_buff));
printf("msg recv:%s\n", tmp_buff);
}
PrivClose(iic_fd);
return;
}
PRIV_SHELL_CMD_FUNCTION(TestI2C, a iic test sample, PRIV_SHELL_CMD_MAIN_ATTR);

View File

@ -0,0 +1,50 @@
#include <stdio.h>
#include <string.h>
#include <transform.h>
#define GRAPHIC_CTRL_RECT_UPDATE 0x00
#define LCD_STRING_TYPE 0
#define LCD_DOT_TYPE 1
#define LCD_FONT_RECT_WIDTH 150
#define LCD_FONT_RECT_HEIGHT 50
#define NULL_PARAMETER 0
void TestLcd(void)
{
int lcd_fd = PrivOpen(EDU_LCD_DEV_DRIVER, O_RDWR);
if (lcd_fd < 0)
{
printf("open lcd fd error:%d\n", lcd_fd);
return;
}
// draw text
LcdWriteParam graph_param;
graph_param.type = LCD_STRING_TYPE;
graph_param.string_info.x_pos = 0;
graph_param.string_info.y_pos = 0;
graph_param.string_info.width = 250;
graph_param.string_info.height = 24;
graph_param.string_info.font_size = 24;
graph_param.string_info.back_color = 0xFFFF;
graph_param.string_info.font_color = 0x0000;
graph_param.string_info.addr = "hello_world!";
PrivWrite(lcd_fd, &graph_param, NULL_PARAMETER);
uint16 color_select = 0xF800;
for (int i = 0; i < 5; i++)
{
graph_param.type = LCD_DOT_TYPE;
graph_param.pixel_info.x_startpos = 0;
graph_param.pixel_info.y_startpos = 50 * i;
graph_param.pixel_info.x_endpos = 320;
graph_param.pixel_info.y_endpos = 50 * i;
graph_param.pixel_info.pixel_color = &color_select;
PrivWrite(lcd_fd, &graph_param, NULL_PARAMETER);
}
PrivClose(lcd_fd);
}
PRIV_SHELL_CMD_FUNCTION(TestLcd, a lcd test sample, PRIV_SHELL_CMD_MAIN_ATTR);

View File

@ -0,0 +1,147 @@
#include <stdio.h>
#include <string.h>
#include <transform.h>
#define NULL_PARAMETER 0
#define E220_CFG_LENGTH
#define GPIOSET(fd, buf, bit) \
{ \
buf.val = bit; \
if (0 > PrivWrite(fd, &buf, NULL_PARAMETER)) \
{ \
printf("write pin fd error %d\n", fd); \
PrivClose(fd); \
return; \
} \
}
#define BSP_E220_M0_PIN 32
#define BSP_E220_M1_PIN 33
void TestLora(int argc, char *argv[])
{
char uart_recvbuff[100];
memset(uart_recvbuff, 0, sizeof(uart_recvbuff));
int pin_fd = PrivOpen(LORA_PIN_DEV_DRIVER, O_RDWR);
if (pin_fd < 0)
{
printf("open pin fd error:%d\n", pin_fd);
return;
}
int uart_fd = PrivOpen(LORA_UART_DEV_DRIVER, O_RDWR);
if (uart_fd < 0)
{
printf("open pin fd error:%d\n", uart_fd);
return;
}
printf("uart and pin fopen success\n");
struct PinStat pin_m0;
struct PinStat pin_m1;
pin_m0.pin = BSP_E220_M0_PIN;
pin_m1.pin = BSP_E220_M1_PIN;
// config led pin in board
struct PrivIoctlCfg ioctl_cfg;
struct PinParam pin_param;
pin_param.cmd = GPIO_CONFIG_MODE;
pin_param.mode = GPIO_CFG_OUTPUT;
pin_param.pin = BSP_E220_M0_PIN;
ioctl_cfg.ioctl_driver_type = PIN_TYPE;
ioctl_cfg.args = &pin_param;
if (0 != PrivIoctl(pin_fd, OPE_CFG, &ioctl_cfg))
{
printf("ioctl pin fd error %d\n", pin_fd);
PrivClose(pin_fd);
return;
}
pin_param.pin = BSP_E220_M1_PIN;
if (0 != PrivIoctl(pin_fd, OPE_CFG, &ioctl_cfg))
{
printf("ioctl pin fd error %d\n", pin_fd);
PrivClose(pin_fd);
return;
}
printf("pin configure success\n");
struct SerialDataCfg uart_cfg;
memset(&uart_cfg, 0, sizeof(struct SerialDataCfg));
// loraE220 support only 9600bps with 8N1 during initializing
uart_cfg.serial_baud_rate = BAUD_RATE_9600;
uart_cfg.serial_data_bits = DATA_BITS_8;
uart_cfg.serial_stop_bits = STOP_BITS_1;
uart_cfg.serial_parity_mode = PARITY_NONE;
uart_cfg.serial_bit_order = BIT_ORDER_LSB;
uart_cfg.serial_invert_mode = NRZ_NORMAL;
uart_cfg.serial_buffer_size = SERIAL_RB_BUFSZ;
uart_cfg.serial_timeout = 1000;
uart_cfg.is_ext_uart = 0;
ioctl_cfg.ioctl_driver_type = SERIAL_TYPE;
ioctl_cfg.args = (void *)&uart_cfg;
if (0 != PrivIoctl(uart_fd, OPE_INT, &ioctl_cfg))
{
printf("ioctl uart fd error %d\n", uart_fd);
PrivClose(uart_fd);
return;
}
printf("uart configure success\n");
GPIOSET(pin_fd, pin_m0, GPIO_HIGH);
GPIOSET(pin_fd, pin_m1, GPIO_HIGH);
printf("lora configure into sleep(configure) mode\n");
// send configure data, and receive the same length of data
char sendbuff[] = {0xC0, 0x00, 0x05, 0x19, 0x49, 0xE6, 0x00, 0x17}; // config as address 1949 CH17 36.8kps
PrivTaskDelay(2000);
printf("Sending lora configure information(SIZE:%d)\n", sizeof(sendbuff));
PrivWrite(uart_fd, sendbuff, sizeof(sendbuff));
printf("lora configure information send\n");
PrivTaskDelay(2000);
PrivRead(uart_fd, uart_recvbuff, sizeof(sendbuff));
printf("%x %x %x %x", uart_recvbuff[0], uart_recvbuff[1], uart_recvbuff[2], uart_recvbuff[3]);
printf("lora configure success\n");
// error when all bytes are 0xff
if (0xFF == (uart_recvbuff[0] & uart_recvbuff[1] & uart_recvbuff[2]))
{
printf("from lora receive error:%d\n", 0xff);
return;
}
uart_cfg.serial_baud_rate = BAUD_RATE_115200;
if (0 != PrivIoctl(uart_fd, OPE_INT, &ioctl_cfg))
{
printf("ioctl uart fd error %d\n", uart_fd);
PrivClose(uart_fd);
return;
}
// into transparent transmission mode
GPIOSET(pin_fd, pin_m0, GPIO_LOW);
GPIOSET(pin_fd, pin_m1, GPIO_LOW);
// receive and send "Hello World"
while (1)
{
PrivTaskDelay(500);
PrivWrite(uart_fd, "Hello_World!", sizeof("Hello_World!"));
printf("Data Send:\n%s\n", "Hello_World!");
PrivTaskDelay(500);
memset(uart_recvbuff, 0, sizeof(uart_recvbuff));
PrivRead(uart_fd, uart_recvbuff, sizeof(uart_recvbuff));
printf("Receive Data is :\n%s\n", uart_recvbuff);
}
PrivClose(pin_fd);
PrivClose(uart_fd);
}
PRIV_SHELL_CMD_FUNCTION(TestLora, a lora test sample, PRIV_SHELL_CMD_MAIN_ATTR);

View File

@ -0,0 +1,86 @@
#include <stdio.h>
#include <string.h>
#include <transform.h>
#define BSP_485_DIR_PIN 24
void Test485(void)
{
int pin_fd = PrivOpen(RS485_PIN_DEV_DRIVER, O_RDWR);
if (pin_fd < 0)
{
printf("open pin fd error:%d\n", pin_fd);
return;
}
int uart_fd = PrivOpen(RS485_UART_DEV_DRIVER, O_RDWR);
if (uart_fd < 0)
{
printf("open pin fd error:%d\n", uart_fd);
return;
}
printf("uart and pin fopen success\n");
//config led pin in board
struct PinParam pin_parameter;
memset(&pin_parameter, 0, sizeof(struct PinParam));
pin_parameter.cmd = GPIO_CONFIG_MODE;
pin_parameter.pin = BSP_485_DIR_PIN;
pin_parameter.mode = GPIO_CFG_OUTPUT;
struct PrivIoctlCfg ioctl_cfg;
ioctl_cfg.ioctl_driver_type = PIN_TYPE;
ioctl_cfg.args = (void *)&pin_parameter;
if (0 != PrivIoctl(pin_fd, OPE_CFG, &ioctl_cfg)) {
printf("ioctl pin fd error %d\n", pin_fd);
PrivClose(pin_fd);
return;
}
struct SerialDataCfg uart_cfg;
memset(&uart_cfg, 0, sizeof(struct SerialDataCfg));
uart_cfg.serial_baud_rate = BAUD_RATE_115200;
uart_cfg.serial_data_bits = DATA_BITS_8;
uart_cfg.serial_stop_bits = STOP_BITS_1;
uart_cfg.serial_parity_mode = PARITY_NONE;
uart_cfg.serial_bit_order = BIT_ORDER_LSB;
uart_cfg.serial_invert_mode = NRZ_NORMAL;
uart_cfg.serial_buffer_size = SERIAL_RB_BUFSZ;
uart_cfg.serial_timeout = 1000;
uart_cfg.is_ext_uart = 0;
ioctl_cfg.ioctl_driver_type = SERIAL_TYPE;
ioctl_cfg.args = (void *)&uart_cfg;
if (0 != PrivIoctl(uart_fd, OPE_INT, &ioctl_cfg))
{
printf("ioctl uart fd error %d\n", uart_fd);
PrivClose(uart_fd);
return;
}
struct PinStat pin_dir;
pin_dir.pin = BSP_485_DIR_PIN;
while (1)
{
pin_dir.val = GPIO_HIGH;
PrivWrite(pin_fd,&pin_dir,0);
PrivWrite(uart_fd,"Hello world!\n",sizeof("Hello world!\n"));
PrivTaskDelay(100);
pin_dir.val = GPIO_LOW;
PrivWrite(pin_fd,&pin_dir,0);
char recv_buff[100];
memset(recv_buff,0,sizeof(recv_buff));
PrivRead(uart_fd,recv_buff,20);
printf("%s",recv_buff);
PrivTaskDelay(100);
}
PrivClose(pin_fd);
PrivClose(uart_fd);
return;
}
PRIV_SHELL_CMD_FUNCTION(Test485, a RS485 test sample, PRIV_SHELL_CMD_MAIN_ATTR);

View File

@ -0,0 +1,38 @@
#include <stdio.h>
#include <string.h>
#include <transform.h>
void TestRTC(int argc,char *argv[])
{
int rtc_fd = PrivOpen(RTC_DEV_DRIVER, O_RDWR);
if(rtc_fd<0){
printf("open rtc fd error:%d\n",rtc_fd);
return;
}
if(argc>1){
int times = atoi(argv[1]);
printf("Time will be printf %d times\n",times);
struct RtcDrvConfigureParam rtc_para;
rtc_para.rtc_operation_cmd = OPER_RTC_SET_TIME;
*(rtc_para.time) = 0;
struct PrivIoctlCfg ioctl_cfg;
ioctl_cfg.ioctl_driver_type = RTC_TYPE;
ioctl_cfg.args = (void *)&rtc_para;
PrivIoctl(rtc_fd,0,&ioctl_cfg);
rtc_para.rtc_operation_cmd = OPER_RTC_GET_TIME;
for(size_t i=0;i<times;i++){
PrivIoctl(rtc_fd,0,&ioctl_cfg);
printf("The time now is %d\n",*(rtc_para.time));
PrivTaskDelay(5000);
}
}
PrivClose(rtc_fd);
return;
}
PRIV_SHELL_CMD_FUNCTION(TestRTC, a rtc test sample, PRIV_SHELL_CMD_MAIN_ATTR);

View File

@ -0,0 +1,45 @@
#include <stdio.h>
#include <string.h>
#include <transform.h>
void TestWDT(int argc, char *agrv[])
{
int wdt_fd = PrivOpen(WDT0_DEV_DRIVER, O_RDWR);
if (wdt_fd < 0)
{
printf("open wdt_fd fd error:%d\n", wdt_fd);
return;
}
printf("hw watchdog open!\n");
// init watchdog
int wdt_time = 1000;
struct PrivIoctlCfg ioctl_cfg;
ioctl_cfg.ioctl_driver_type = WDT_TYPE;
ioctl_cfg.args = (void *)&wdt_time;
if (0 != PrivIoctl(wdt_fd, OPER_WDT_SET_TIMEOUT, &ioctl_cfg))
{
printf("ioctl wdt fd error %d\n", wdt_fd);
PrivClose(wdt_fd);
return;
}
int test_counter = 100;
// wdt feed or not according to argc,if argc!=1 then dog won't be feed
while (test_counter--)
{
if (1 == argc)
{
printf("dog is feed\n");
PrivIoctl(wdt_fd, OPER_WDT_KEEPALIVE, &ioctl_cfg); // feed dog
}
PrivTaskDelay(100);
}
PrivClose(wdt_fd);
return;
}
PRIV_SHELL_CMD_FUNCTION(TestWDT, a wdt test sample, PRIV_SHELL_CMD_MAIN_ATTR);

View File

@ -169,6 +169,7 @@ int PrivIoctl(int fd, int cmd, void *args)
case LCD_TYPE:
ret = PrivLcdIoctl(fd, cmd, ioctl_cfg->args);
break;
case RTC_TYPE:
case ADC_TYPE:
case DAC_TYPE:
case WDT_TYPE:

View File

@ -149,6 +149,7 @@ enum IoctlDriverType
ADC_TYPE,
DAC_TYPE,
WDT_TYPE,
RTC_TYPE,
DEFAULT_TYPE,
};
@ -193,6 +194,12 @@ typedef struct
uint16_t press;
}TouchDataParam;
struct RtcDrvConfigureParam
{
int rtc_operation_cmd;
time_t *time;
};
#define PRIV_SYSTICK_GET (CurrentTicksGain())
#define PRIV_LCD_DEV "/dev/lcd_dev"
#define MY_DISP_HOR_RES BSP_LCD_Y_MAX

View File

@ -0,0 +1,16 @@
void InvalidInsCache()
{
PlatInvalidInsCache();
}
void InvalidDataCache(unsigned long start, unsigned long end)
{
PlatInvalidDateCache(start, end);
}
void CleanDataCache(unsigned long start, unsigned long end)
{
PlatCleanDateCache(start, end);
}

View File

@ -48,7 +48,7 @@ Modification:
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
;</h>
*/
.equ Stack_Size, 0x00002000
.equ Stack_Size, 0x00004000
.section .stack
.align 3
@ -60,26 +60,6 @@ __StackLimit:
__StackTop:
.size __StackTop, . - __StackTop
/*
;<h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
;</h>
*/
.equ Heap_Size, 0x00002000
.if Heap_Size != 0 /* Heap is provided */
.section .heap
.align 3
.globl __HeapBase
.globl __HeapLimit
__HeapBase:
.space Heap_Size
.size __HeapBase, . - __HeapBase
__HeapLimit:
.size __HeapLimit, . - __HeapLimit
.endif
/*
;<h> Reset handler start.
*/

View File

@ -35,9 +35,11 @@ menu "aiit-arm32-board feature"
menu "config board peripheral"
config MOUNT_SDCARD
bool "mount cd card"
bool
default n
config MOUNT_USB
bool
default n
select BSP_USING_SDIO
endmenu
endmenu
endmenu

View File

@ -51,6 +51,7 @@ extern int HwSramInit(void);
extern int Stm32HwAdcInit(void);
extern int Stm32HwDacInit(void);
extern int Stm32HwLcdInit(void);
extern int Stm32HwUsbInit(void);
static void ClockConfiguration()
{
@ -147,6 +148,11 @@ struct InitSequenceDesc _board_init[] =
#ifdef BSP_USING_SDIO
{"hw sdcard init",HwSdioInit},
#endif
#ifdef BSP_USING_USB
#ifdef BSP_USING_STM32_USBH
{ "hw usb", Stm32HwUsbInit },
#endif
#endif
#ifdef BSP_USING_EXTMEM
{ "hw extern sram", HwSramInit },
#endif

View File

@ -396,7 +396,7 @@ static const struct LoraDevDone lora_done =
* @param bus_name spi bus name
* @param dev_name spi dev name
* @param drv_name spi drv name
* @param flash_name flash dev name
* @param lora_name lora name
*/
SpiLoraDeviceType SpiLoraInit(char *bus_name, char *dev_name, char *drv_name, char *lora_name)
{
@ -493,7 +493,7 @@ int LoraSx12xxSpiDeviceInit(void)
return EOK;
}
//#define LORA_TEST
#define LORA_TEST
#ifdef LORA_TEST
/*Just for lora test*/
static struct Bus *bus;
@ -504,11 +504,11 @@ void LoraOpen(void)
{
x_err_t ret = EOK;
ret = LoraSx12xxSpiDeviceInit();
if (EOK != ret) {
KPrintf("LoraSx12xxSpiDeviceInit failed\n");
return;
}
// ret = LoraSx12xxSpiDeviceInit();
// if (EOK != ret) {
// KPrintf("LoraSx12xxSpiDeviceInit failed\n");
// return;
// }
bus = BusFind(SPI_BUS_NAME_2);
dev = BusFindDevice(bus, SX12XX_DEVICE_NAME);

View File

@ -103,7 +103,7 @@ static x_err_t Stm32SpiInit(struct Stm32Spi *SpiDrv, struct SpiMasterParam *cfg)
SPI_InitTypeDef *SpiInit = &SpiDrv->init;
if (cfg->spi_work_mode & DEV_SPI_SLAVE)
if (cfg->spi_work_mode & SPI_DEV_SLAVE)
{
SpiInit->SPI_Mode = SPI_Mode_Slave;
}

View File

@ -784,12 +784,12 @@ uint32_t SX1276LoraChannelEmpty( void )
if(result == RF_CHANNEL_EMPTY)
{
KPrintf("\nLora--信道可用(RF_CHANNEL_EMPTY\n");
KPrintf("\nLora--RF_CHANNEL_EMPTY\n");
return 0;
}
else if(result == RF_CHANNEL_ACTIVITY_DETECTED)
{
KPrintf("\nLora--信道正被占用(RF_CHANNEL_ACTIVITY_DETECTED\n");
KPrintf("\nLora--RF_CHANNEL_ACTIVITY_DETECTED\n");
return 1;
}
else

View File

@ -1,6 +1,6 @@
config BSP_USING_STM32_USBH
bool "Using usb host"
default y
default n
if BSP_USING_STM32_USBH
config USB_BUS_NAME
string "usb bus name"
@ -11,5 +11,15 @@ config BSP_USING_STM32_USBH
config USB_DEVICE_NAME
string "usb bus device name"
default "usb_dev"
config MOUNT_USB_FS
bool "mount usb file system"
default y
select MOUNT_USB
if MOUNT_USB_FS
config MOUNT_USB_FS_TYPE
int "choose file system type : FATFS(0) LWEXT4(3)"
default 0
endif
endif

View File

@ -25,6 +25,14 @@
uint32 UdiskRead_new_api(void *dev, struct BusBlockReadParam *read_param);
uint32 UdiskWirte_new_api(void *dev, struct BusBlockWriteParam *write_param);
#ifdef MOUNT_USB
int MountUsb(void)
{
STM32USBHostRegister();
return 0;
}
#endif
static uint32 UdiskOpenNewApi(void *dev)
{
return EOK;

View File

@ -37,7 +37,7 @@ menu "aiit-riscv64-board feature"
menu "config board peripheral"
config MOUNT_SDCARD
bool "mount cd card"
bool "mount sd card"
default n
select BSP_USING_SDIO
config MOUNT_USB

View File

@ -71,7 +71,7 @@ extern int HwCh376Init(void);
* @description: Mount USB
* @return 0
*/
int MountUSB(void)
int MountUsb(void)
{
if (MountFilesystem(USB_BUS_NAME, USB_DEVICE_NAME, USB_DRIVER_NAME, FSTYPE_CH376, "/") == 0)
KPrintf("usb mount to '/'");

View File

@ -389,7 +389,7 @@ static const struct LoraDevDone lora_done =
* @param bus_name spi bus name
* @param dev_name spi dev name
* @param drv_name spi drv name
* @param flash_name flash dev name
* @param lora_name lora name
*/
SpiLoraDeviceType SpiLoraInit(char *bus_name, char *dev_name, char *drv_name, char *lora_name)
{

View File

@ -221,7 +221,7 @@ static uint32 SpiReadData(struct SpiHardwareDevice *spi_dev, struct SpiDataStand
{
SpiDeviceParam *dev_param = (SpiDeviceParam *)(spi_dev->haldev.private_data);
uint32 spi_read_length = 0;;
uint32 spi_read_length = 0;
uint8 device_id = dev_param->spi_slave_param->spi_slave_id;
uint8 device_master_id = dev_param->spi_dma_param->spi_master_id;
uint8 cs_gpio_pin = dev_param->spi_slave_param->spi_cs_gpio_pin;
@ -394,9 +394,15 @@ static int BoardSpiDevBend(struct SpiDmaParam *spi_initparam)
static struct SpiHardwareDevice spi_device2;
memset(&spi_device2, 0, sizeof(struct SpiHardwareDevice));
spi_initparam->spi_slave_id[SPI_DEVICE_SLAVE_ID_2] = SPI_DEVICE_SLAVE_ID_2;
spi_initparam->spi_cs_gpio_pin[SPI_DEVICE_SLAVE_ID_2] = SPI1_CS2_PIN;
spi_initparam->spi_cs_select_id[SPI_DEVICE_SLAVE_ID_2] = SPI_CHIP_SELECT_2;
static struct SpiSlaveParam spi_slaveparam2;
memset(&spi_slaveparam2, 0, sizeof(struct SpiSlaveParam));
spi_slaveparam2.spi_slave_id = SPI_DEVICE_SLAVE_ID_2;
spi_slaveparam2.spi_cs_gpio_pin = SPI1_CS2_PIN;
spi_slaveparam2.spi_cs_select_id = SPI_CHIP_SELECT_2;
spi_device2.spi_param.spi_dma_param = spi_initparam;
spi_device2.spi_param.spi_slave_param = &spi_slaveparam2;
spi_device2.spi_dev_done = &(spi_dev_done);
@ -417,9 +423,15 @@ static int BoardSpiDevBend(struct SpiDmaParam *spi_initparam)
static struct SpiHardwareDevice spi_device3;
memset(&spi_device3, 0, sizeof(struct SpiHardwareDevice));
spi_initparam->spi_slave_id[SPI_DEVICE_SLAVE_ID_3] = SPI_DEVICE_SLAVE_ID_3;
spi_initparam->spi_cs_gpio_pin[SPI_DEVICE_SLAVE_ID_3] = SPI1_CS3_PIN;
spi_initparam->spi_cs_select_id[SPI_DEVICE_SLAVE_ID_3] = SPI_CHIP_SELECT_3;
static struct SpiSlaveParam spi_slaveparam3;
memset(&spi_slaveparam3, 0, sizeof(struct SpiSlaveParam));
spi_slaveparam3.spi_slave_id = SPI_DEVICE_SLAVE_ID_3;
spi_slaveparam3.spi_cs_gpio_pin = SPI1_CS3_PIN;
spi_slaveparam3.spi_cs_select_id = SPI_CHIP_SELECT_3;
spi_device3.spi_param.spi_dma_param = spi_initparam;
spi_device3.spi_param.spi_slave_param = &spi_slaveparam3;
spi_device3.spi_dev_done = &(spi_dev_done);

View File

@ -784,12 +784,12 @@ uint32_t SX1276LoraChannelEmpty( void )
if(result == RF_CHANNEL_EMPTY)
{
KPrintf("\nLora--信道可用(RF_CHANNEL_EMPTY\n");
KPrintf("\nLora--RF_CHANNEL_EMPTY\n");
return 0;
}
else if(result == RF_CHANNEL_ACTIVITY_DETECTED)
{
KPrintf("\nLora--信道正被占用(RF_CHANNEL_ACTIVITY_DETECTED\n");
KPrintf("\nLora--RF_CHANNEL_ACTIVITY_DETECTED\n");
return 1;
}
else

View File

@ -32,16 +32,16 @@ CONFIG_BSP_USING_UART_HS=y
#
# General Purpose UARTs
#
CONFIG_BSP_USING_UART1=y
CONFIG_BSP_UART1_TXD_PIN=20
CONFIG_BSP_UART1_RXD_PIN=21
CONFIG_BSP_USING_UART2=y
CONFIG_BSP_UART2_TXD_PIN=28
CONFIG_BSP_UART2_RXD_PIN=27
CONFIG_BSP_USING_UART3=y
CONFIG_BSP_UART3_TXD_PIN=22
CONFIG_BSP_UART3_RXD_PIN=23
CONFIG___STACKSIZE__=4096
# CONFIG_BSP_USING_UART1=y
# CONFIG_BSP_UART1_TXD_PIN=20
# CONFIG_BSP_UART1_RXD_PIN=21
# CONFIG_BSP_USING_UART2=y
# CONFIG_BSP_UART2_TXD_PIN=28
# CONFIG_BSP_UART2_RXD_PIN=27
# CONFIG_BSP_USING_UART3=y
# CONFIG_BSP_UART3_TXD_PIN=22
# CONFIG_BSP_UART3_RXD_PIN=23
# CONFIG___STACKSIZE__=4096
#
# Hardware feature

View File

@ -44,10 +44,14 @@ Modification:
#include "fpioa.h"
#include "dmac.h"
#include "connect_gpio.h"
#include "connect_soft_spi.h"
#include "connect_rtc.h"
#include "connect_hwtimer.h"
#include "connect_wdt.h"
#if defined(FS_VFS)
#include <iot-vfs.h>
#endif
// #if defined(FS_VFS)
// #include <iot-vfs.h>
// #endif
#define CPU0 (0)
#define CPU1 (1)
@ -60,15 +64,15 @@ extern int HwTouchInit(void);
extern int HwCh376Init(void);
extern int HwLcdInit(void);
extern int HwSpiInit(void);
extern int HwSoftSPIInit(void);
#ifdef FS_CH376
#include <iot-vfs.h>
#ifdef MOUNT_USB
/**
* @description: Mount USB
* @return 0
*/
int MountUSB(void)
int MountUsb(void)
{
if (MountFilesystem(USB_BUS_NAME, USB_DEVICE_NAME, USB_DRIVER_NAME, FSTYPE_CH376, "/") == 0)
KPrintf("usb mount to '/'\n");
@ -78,23 +82,34 @@ int MountUSB(void)
return 0;
}
#endif
#ifdef MOUNT_SDCARD
#if defined(FS_VFS) && defined (MOUNT_SDCARD)
#include <iot-vfs.h>
#include <sd_spi.h>
extern SpiSdDeviceType SpiSdInit(struct Bus *bus, const char *dev_name, const char *drv_name, const char *sd_name);
/**
* @description: Mount SD card
* @return 0
*/
int MountSDCard(void)
int MountSDCard(void)
{
if (MountFilesystem(SDIO_BUS_NAME,SDIO_DEVICE_NAME ,SDIO_DRIVER_NAME , FSTYPE_CH376, "/") == 0)
KPrintf("sd card mount to '/'\n");
else
KPrintf("sd card mount to '/' failed!\n");
struct Bus *spi_bus;
spi_bus = BusFind(SOFT_SPI_BUS_NAME);
if (NONE == SpiSdInit(spi_bus, SOFT_SPI_DEVICE_NAME, SOFT_SPI_DRV_NAME, SPI_SD_NAME)) {
KPrintf("MountSDCard SpiSdInit error!\n");
return -1;
}
if (EOK != MountFilesystem(SOFT_SPI_BUS_NAME, SPI_SD_NAME, SOFT_SPI_DRV_NAME, FSTYPE_FATFS, "/")) {
return -1;
}
return 0;
KPrintf("SPI SD card fatfs mounted\n");
return 0;
}
#endif
#endif
void InitBss(void)
{
@ -172,6 +187,9 @@ struct InitSequenceDesc _board_init[] =
#ifdef BSP_USING_I2C
{ "hw_i2c", HwI2cInit },
#endif
#ifdef BSP_USING_RTC
{ "hw_rtc", HwRtcInit },
#endif
#ifdef BSP_USING_SPI
{ "hw_spi", HwSpiInit },
#endif
@ -183,10 +201,20 @@ struct InitSequenceDesc _board_init[] =
#endif
#ifdef BSP_USING_TOUCH
{"touch", HwTouchInit },
#endif
#ifdef BSP_USING_SOFT_SPI
{"soft_spi", HwSoftSPIInit },
#endif
#ifdef BSP_USING_HWTIMER
{"hw_timer", HwTimerInit },
#endif
#ifdef BSP_USING_WDT
{"hw_wdt", HwWdtInit },
#endif
{ " NONE ",NONE },
};
void InitBoardHardware(void)
{
int i = 0;

View File

@ -16,6 +16,16 @@ menuconfig BSP_USING_SPI
source "$BSP_DIR/third_party_driver/spi/Kconfig"
endif
menuconfig BSP_USING_SOFT_SPI
bool "Using SOFT_SPI device"
default n
select BSP_USING_SPI
select MOUNT_SDCARD
select FS_VFS
if BSP_USING_SOFT_SPI
source "$BSP_DIR/third_party_driver/soft_spi/Kconfig"
endif
menuconfig BSP_USING_LCD
bool "Using LCD device"
default n
@ -78,3 +88,27 @@ menuconfig BSP_USING_UART
if BSP_USING_UART
source "$BSP_DIR/third_party_driver/uart/Kconfig"
endif
menuconfig BSP_USING_RTC
bool "Using RTC device"
default y
select RESOURCES_RTC
if BSP_USING_RTC
source "$BSP_DIR/third_party_driver/rtc/Kconfig"
endif
menuconfig BSP_USING_HWTIMER
bool "Using TIMER device"
default y
select RESOURCES_HWTIMER
if BSP_USING_HWTIMER
source "$BSP_DIR/third_party_driver/timer/Kconfig"
endif
menuconfig BSP_USING_WDT
bool "Using WATCHDOG device"
default y
select RESOURCES_WDT
if BSP_USING_WDT
source "$BSP_DIR/third_party_driver/watchdog/Kconfig"
endif

View File

@ -40,4 +40,21 @@ ifeq ($(CONFIG_BSP_USING_LCD),y)
SRC_DIR += lcd
endif
ifeq ($(CONFIG_BSP_USING_SOFT_SPI),y)
SRC_DIR += soft_spi
endif
ifeq ($(CONFIG_BSP_USING_RTC),y)
SRC_DIR += rtc
endif
ifeq ($(CONFIG_BSP_USING_HWTIMER),y)
SRC_DIR += timer
endif
ifeq ($(CONFIG_BSP_USING_WDT),y)
SRC_DIR += watchdog
endif
include $(KERNEL_ROOT)/compiler.mk

View File

@ -75,12 +75,13 @@ static struct io_config
IOCONFIG(BSP_UART3_TXD_PIN, FUNC_UART3_RX),
IOCONFIG(BSP_UART3_RXD_PIN, FUNC_UART3_TX),
#endif
#ifdef BSP_USING_I2C1
#ifdef BSP_USING_I2C
IOCONFIG(BSP_I2C_SDA, FUNC_GPIO3),
IOCONFIG(BSP_I2C_SCL, FUNC_GPIO4),
#endif
#ifdef BSP_USING_TOUCH
IOCONFIG(BSP_TOUCH_TP_INT, HS_GPIO(FPIOA_TOUCH_TP_INT)),
// IOCONFIG(BSP_TOUCH_TP_INT, HS_GPIO(FPIOA_TOUCH_TP_INT)),
IOCONFIG(BSP_TOUCH_TP_INT, HS_GPIO(FUNC_GPIOHS30)),
#endif
#ifdef BSP_USING_CH438
@ -95,7 +96,31 @@ static struct io_config
IOCONFIG(BSP_CH438_D4_PIN, HS_GPIO(FPIOA_CH438_D4)),
IOCONFIG(BSP_CH438_D5_PIN, HS_GPIO(FPIOA_CH438_D5)),
IOCONFIG(BSP_CH438_D6_PIN, HS_GPIO(FPIOA_CH438_D6)),
IOCONFIG(BSP_CH438_D7_PIN, HS_GPIO(FPIOA_CH438_D7))
IOCONFIG(BSP_CH438_D7_PIN, HS_GPIO(FPIOA_CH438_D7)),
#endif
#ifdef BSP_USING_SOFT_SPI
IOCONFIG(BSP_SOFT_SPI_SCK_PIN, HS_GPIO(FPIOA_SOFT_SPI_SCK)),
IOCONFIG(BSP_SOFT_SPI_MIOS_PIN, HS_GPIO(FPIOA_SOFT_SPI_MIOS)),
IOCONFIG(BSP_SOFT_SPI_MSOI_PIN, HS_GPIO(FPIOA_SOFT_SPI_MSOI)),
IOCONFIG(BSP_SOFT_SPI_NCS_PIN, HS_GPIO(FPIOA_SOFT_SPI_NCS)),
#endif
#ifdef BSP_USING_LORA
IOCONFIG(BSP_E220_M0_PIN, HS_GPIO(FUNC_GPIOHS10)),
IOCONFIG(BSP_E220_M1_PIN, HS_GPIO(FUNC_GPIOHS11)),
#endif
#ifdef BSP_USING_RS485
IOCONFIG(BSP_485_DIR_PIN,HS_GPIO(FUNC_GPIOHS12));
#endif
#ifdef BSP_USING_LED
IOCONFIG(BSP_LED_PIN,FUNC_GPIO5);
#endif
#ifdef BSP_USING_KEY
IOCONFIG(BSP_KEY_PIN,FUNC_GPIO6);
#endif
};

View File

@ -12,6 +12,6 @@ if BSP_USING_I2C
string "i2c bus 1 driver name"
default "i2c1_drv"
config I2C_1_DEVICE_NAME_0
string "i2c bus 1 device 0 name"
default "i2c1_dev0"
string "i2c bus 1 device 0 name"
default "i2c1_dev0"
endif

View File

@ -0,0 +1,37 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_hwtimer.h
* @brief define aiit-riscv64-board hwtimer function and struct
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#ifndef CONNECT_HWTIMER_H
#define CONNECT_HWTIMER_H
#include <device.h>
#include "hardware_hwtimer.h"
#ifdef __cplusplus
extern "C" {
#endif
int HwTimerInit(void);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,36 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_rtc.h
* @brief define aiit-riscv64-board rtc function and struct
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#ifndef CONNECT_RTC_H
#define CONNECT_RTC_H
#include <device.h>
#ifdef __cplusplus
extern "C" {
#endif
int HwRtcInit(void);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,14 @@
#ifndef CONNECT_TF_H
#define CONNECT_TF_H
#ifdef __cplusplus
extern "C" {
#endif
int HwSoftSPIInit(void);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,36 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_wdt.h
* @brief define aiit-riscv64-board wdt function and struct
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#ifndef CONNECT_WDT_H
#define CONNECT_WDT_H
#include <device.h>
#ifdef __cplusplus
extern "C" {
#endif
int HwWdtInit(void);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -78,6 +78,36 @@ enum HS_GPIO_CONFIG
#define BSP_CH438_INT_PIN 35
#endif
#ifdef BSP_USING_SOFT_SPI
#define FPIOA_SOFT_SPI_SCK 26
#define FPIOA_SOFT_SPI_MIOS 25
#define FPIOA_SOFT_SPI_MSOI 27
#define FPIOA_SOFT_SPI_NCS 28
#define BSP_SOFT_SPI_SCK_PIN 26
#define BSP_SOFT_SPI_MIOS_PIN 25
#define BSP_SOFT_SPI_MSOI_PIN 27
#define BSP_SOFT_SPI_NCS_PIN 28
#endif
#ifdef BSP_USING_LED
#define BSP_LED_PIN 29
#endif
#ifdef BSP_USING_KEY
#define BSP_KEY_PIN 31
#endif
#ifdef BSP_USING_LORA
#define BSP_E220_M0_PIN 32
#define BSP_E220_M1_PIN 33
#endif
#ifdef BSP_USING_RS485
#define BSP_485_DIR_PIN 24
#endif
extern int IoConfigInit(void);
#endif

View File

@ -0,0 +1,171 @@
/* Copyright 2018 Canaan Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file hardware_hwtimer.h
* @brief add from Canaan k210 SDK
* https://canaan-creative.com/developer
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#ifndef __HARDWARE_HWTIMER_H__
#define __HARDWARE_HWTIMER_H__
#include <stdint.h>
#include <stddef.h>
#ifdef __cplusplus
extern "C" {
#endif
/* clang-format off */
typedef struct _timer_channel
{
/* TIMER_N Load Count Register (0x00+(N-1)*0x14) */
volatile uint32_t load_count;
/* TIMER_N Current Value Register (0x04+(N-1)*0x14) */
volatile uint32_t current_value;
/* TIMER_N Control Register (0x08+(N-1)*0x14) */
volatile uint32_t control;
/* TIMER_N Interrupt Clear Register (0x0c+(N-1)*0x14) */
volatile uint32_t eoi;
/* TIMER_N Interrupt Status Register (0x10+(N-1)*0x14) */
volatile uint32_t intr_stat;
} __attribute__((packed, aligned(4))) timer_channel_t;
typedef struct _kendryte_timer
{
/* TIMER_N Register (0x00-0x4c) */
volatile timer_channel_t channel[4];
/* reserverd (0x50-0x9c) */
volatile uint32_t resv1[20];
/* TIMER Interrupt Status Register (0xa0) */
volatile uint32_t intr_stat;
/* TIMER Interrupt Clear Register (0xa4) */
volatile uint32_t eoi;
/* TIMER Raw Interrupt Status Register (0xa8) */
volatile uint32_t raw_intr_stat;
/* TIMER Component Version Register (0xac) */
volatile uint32_t comp_version;
/* TIMER_N Load Count2 Register (0xb0-0xbc) */
volatile uint32_t load_count2[4];
} __attribute__((packed, aligned(4))) kendryte_timer_t;
typedef enum _timer_deivce_number
{
TIMER_DEVICE_0,
TIMER_DEVICE_1,
TIMER_DEVICE_2,
TIMER_DEVICE_MAX,
} timer_device_number_t;
typedef enum _timer_channel_number
{
TIMER_CHANNEL_0,
TIMER_CHANNEL_1,
TIMER_CHANNEL_2,
TIMER_CHANNEL_3,
TIMER_CHANNEL_MAX,
} timer_channel_number_t;
/* TIMER Control Register */
#define TIMER_CR_ENABLE 0x00000001
#define TIMER_CR_MODE_MASK 0x00000002
#define TIMER_CR_FREE_MODE 0x00000000
#define TIMER_CR_USER_MODE 0x00000002
#define TIMER_CR_INTERRUPT_MASK 0x00000004
#define TIMER_CR_PWM_ENABLE 0x00000008
/* clang-format on */
extern volatile kendryte_timer_t *const timer[3];
/**
* @brief Definitions for the timer callbacks
*/
typedef int (*timer_callback_t)(void *ctx);
/**
* @brief Set timer timeout
*
* @param[in] timer timer
* @param[in] channel channel
* @param[in] nanoseconds timeout
*
* @return the real timeout
*/
size_t timer_set_interval(timer_device_number_t timer_number, timer_channel_number_t channel, size_t nanoseconds);
/**
* @brief Init timer
*
* @param[in] timer timer
*/
void timer_init(timer_device_number_t timer_number);
/**
* @brief [DEPRECATED] Set timer timeout function
*
* @param[in] timer timer
* @param[in] channel channel
* @param[in] func timeout function
* @param[in] priority interrupt priority
*
*/
void timer_set_irq(timer_device_number_t timer_number, timer_channel_number_t channel, void(*func)(), uint32_t priority);
/**
* @brief Register timer interrupt user callback function
*
* @param[in] device The timer device number
* @param[in] channel The channel
* @param[in] is_one_shot Indicates if single shot
* @param[in] priority The priority
* @param[in] callback The callback function
* @param[in] ctx The context
*
* @return result
* - 0 Success
* - Other Fail
*/
int timer_irq_register(timer_device_number_t device, timer_channel_number_t channel, int is_single_shot, uint32_t priority, timer_callback_t callback, void *ctx);
/**
* @brief Deregister timer interrupt user callback function
*
* @param[in] device The timer device number
* @param[in] channel The channel
*
* @return result
* - 0 Success
* - Other Fail
*/
int timer_irq_unregister(timer_device_number_t device, timer_channel_number_t channel);
/**
* @brief Enable timer
*
* @param[in] timer timer
* @param[in] channel channel
* @param[in] enable Enable or disable
*
*/
void timer_set_enable(timer_device_number_t timer_number, timer_channel_number_t channel, uint32_t enable);
#ifdef __cplusplus
}
#endif
#endif /* __TIMER_H__ */

View File

@ -0,0 +1,448 @@
/* Copyright 2018 Canaan Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* @brief A real-time clock (RTC) is a computer clock that keeps track of
* the current time.
*/
/**
* @file hardware_rtc.h
* @brief add from Canaan k210 SDK
* https://canaan-creative.com/developer
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#ifndef __HARDWARE_RTC_H__
#define __HARDWARE_RTC_H__
#include <platform.h>
#include <stdint.h>
#include <time.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief RTC timer mode
*
* Timer mode selector
* | Mode | Description |
* |------|------------------------|
* | 0 | Timer pause |
* | 1 | Timer time running |
* | 2 | Timer time setting |
*/
typedef enum _rtc_timer_mode_e
{
/* 0: Timer pause */
RTC_TIMER_PAUSE,
/* 1: Timer time running */
RTC_TIMER_RUNNING,
/* 2: Timer time setting */
RTC_TIMER_SETTING,
/* Max count of this enum*/
RTC_TIMER_MAX
} rtc_timer_mode_t;
/*
* @brief RTC tick interrupt mode
*
* Tick interrupt mode selector
* | Mode | Description |
* |------|------------------------|
* | 0 | Interrupt every second |
* | 1 | Interrupt every minute |
* | 2 | Interrupt every hour |
* | 3 | Interrupt every day |
*/
typedef enum _rtc_tick_interrupt_mode_e
{
/* 0: Interrupt every second */
RTC_INT_SECOND,
/* 1: Interrupt every minute */
RTC_INT_MINUTE,
/* 2: Interrupt every hour */
RTC_INT_HOUR,
/* 3: Interrupt every day */
RTC_INT_DAY,
/* Max count of this enum*/
RTC_INT_MAX
} rtc_tick_interrupt_mode_t;
/**
* @brief RTC mask structure
*
* RTC mask structure for common use
*/
typedef struct _rtc_mask
{
/* Reserved */
uint32_t resv : 1;
/* Second mask */
uint32_t second : 1;
/* Minute mask */
uint32_t minute : 1;
/* Hour mask */
uint32_t hour : 1;
/* Week mask */
uint32_t week : 1;
/* Day mask */
uint32_t day : 1;
/* Month mask */
uint32_t month : 1;
/* Year mask */
uint32_t year : 1;
} __attribute__((packed, aligned(1))) rtc_mask_t;
/**
* @brief RTC register
*
* @note RTC register table
*
* | Offset | Name | Description |
* |-----------|----------------|-------------------------------------|
* | 0x00 | date | Timer date information |
* | 0x04 | time | Timer time information |
* | 0x08 | alarm_date | Alarm date information |
* | 0x0c | alarm_time | Alarm time information |
* | 0x10 | initial_count | Timer counter initial value |
* | 0x14 | current_count | Timer counter current value |
* | 0x18 | interrupt_ctrl | RTC interrupt settings |
* | 0x1c | register_ctrl | RTC register settings |
* | 0x20 | reserved0 | Reserved |
* | 0x24 | reserved1 | Reserved |
* | 0x28 | extended | Timer extended information |
*
*/
/**
* @brief Timer date information
*
* No. 0 Register (0x00)
*/
typedef struct _rtc_date
{
/* Week. Range [0,6]. 0 is Sunday. */
uint32_t week : 3;
/* Reserved */
uint32_t resv0 : 5;
/* Day. Range [1,31] or [1,30] or [1,29] or [1,28] */
uint32_t day : 5;
/* Reserved */
uint32_t resv1 : 3;
/* Month. Range [1,12] */
uint32_t month : 4;
/* Year. Range [0,99] */
uint32_t year : 12;
} __attribute__((packed, aligned(4))) rtc_date_t;
/**
* @brief Timer time information
*
* No. 1 Register (0x04)
*/
typedef struct _rtc_time
{
/* Reserved */
uint32_t resv0 : 10;
/* Second. Range [0,59] */
uint32_t second : 6;
/* Minute. Range [0,59] */
uint32_t minute : 6;
/* Reserved */
uint32_t resv1 : 2;
/* Hour. Range [0,23] */
uint32_t hour : 5;
/* Reserved */
uint32_t resv2 : 3;
} __attribute__((packed, aligned(4))) rtc_time_t;
/**
* @brief Alarm date information
*
* No. 2 Register (0x08)
*/
typedef struct _rtc_alarm_date
{
/* Alarm Week. Range [0,6]. 0 is Sunday. */
uint32_t week : 3;
/* Reserved */
uint32_t resv0 : 5;
/* Alarm Day. Range [1,31] or [1,30] or [1,29] or [1,28] */
uint32_t day : 5;
/* Reserved */
uint32_t resv1 : 3;
/* Alarm Month. Range [1,12] */
uint32_t month : 4;
/* Alarm Year. Range [0,99] */
uint32_t year : 12;
} __attribute__((packed, aligned(4))) rtc_alarm_date_t;
/**
* @brief Alarm time information
*
* No. 3 Register (0x0c)
*/
typedef struct _rtc_alarm_time
{
/* Reserved */
uint32_t resv0 : 10;
/* Alarm Second. Range [0,59] */
uint32_t second : 6;
/* Alarm Minute. Range [0,59] */
uint32_t minute : 6;
/* Reserved */
uint32_t resv1 : 2;
/* Alarm Hour. Range [0,23] */
uint32_t hour : 5;
/* Reserved */
uint32_t resv2 : 3;
} __attribute__((packed, aligned(4))) rtc_alarm_time_t;
/**
* @brief Timer counter initial value
*
* No. 4 Register (0x10)
*/
typedef struct _rtc_initial_count
{
/* RTC counter initial value */
uint32_t count : 32;
} __attribute__((packed, aligned(4))) rtc_initial_count_t;
/**
* @brief Timer counter current value
*
* No. 5 Register (0x14)
*/
typedef struct _rtc_current_count
{
/* RTC counter current value */
uint32_t count : 32;
} __attribute__((packed, aligned(4))) rtc_current_count_t;
/**
* @brief RTC interrupt settings
*
* No. 6 Register (0x18)
*/
typedef struct _rtc_interrupt_ctrl
{
/* Reserved */
uint32_t tick_enable : 1;
/* Alarm interrupt enable */
uint32_t alarm_enable : 1;
/* Tick interrupt enable */
uint32_t tick_int_mode : 2;
/* Reserved */
uint32_t resv : 20;
/* Alarm compare mask for interrupt */
uint32_t alarm_compare_mask : 8;
} __attribute__((packed, aligned(4))) rtc_interrupt_ctrl_t;
/**
* @brief RTC register settings
*
* No. 7 Register (0x1c)
*/
typedef struct _rtc_register_ctrl
{
/* RTC timer read enable */
uint32_t read_enable : 1;
/* RTC timer write enable */
uint32_t write_enable : 1;
/* Reserved */
uint32_t resv0 : 11;
/* RTC timer mask */
uint32_t TimerMask : 8;
/* RTC alarm mask */
uint32_t alarm_mask : 8;
/* RTC counter initial count value mask */
uint32_t initial_count_mask : 1;
/* RTC interrupt register mask */
uint32_t interrupt_register_mask : 1;
/* Reserved */
uint32_t resv1 : 1;
} __attribute__((packed, aligned(4))) rtc_register_ctrl_t;
/**
* @brief Reserved
*
* No. 8 Register (0x20)
*/
typedef struct _rtc_reserved0
{
/* Reserved */
uint32_t resv : 32;
} __attribute__((packed, aligned(4))) rtc_reserved0_t;
/**
* @brief Reserved
*
* No. 9 Register (0x24)
*/
typedef struct _rtc_reserved1
{
/* Reserved */
uint32_t resv : 32;
} __attribute__((packed, aligned(4))) rtc_reserved1_t;
/**
* @brief Timer extended information
*
* No. 10 Register (0x28)
*/
typedef struct _rtc_extended
{
/* Century. Range [0,31] */
uint32_t century : 5;
/* Is leap year. 1 is leap year, 0 is not leap year */
uint32_t leap_year : 1;
/* Reserved */
uint32_t resv : 26;
} __attribute__((packed, aligned(4))) rtc_extended_t;
/**
* @brief Real-time clock struct
*
* A real-time clock (RTC) is a computer clock that keeps track of
* the current time.
*/
typedef struct _rtc
{
/* No. 0 (0x00): Timer date information */
rtc_date_t date;
/* No. 1 (0x04): Timer time information */
rtc_time_t time;
/* No. 2 (0x08): Alarm date information */
rtc_alarm_date_t alarm_date;
/* No. 3 (0x0c): Alarm time information */
rtc_alarm_time_t alarm_time;
/* No. 4 (0x10): Timer counter initial value */
rtc_initial_count_t initial_count;
/* No. 5 (0x14): Timer counter current value */
rtc_current_count_t current_count;
/* No. 6 (0x18): RTC interrupt settings */
rtc_interrupt_ctrl_t interrupt_ctrl;
/* No. 7 (0x1c): RTC register settings */
rtc_register_ctrl_t register_ctrl;
/* No. 8 (0x20): Reserved */
rtc_reserved0_t reserved0;
/* No. 9 (0x24): Reserved */
rtc_reserved1_t reserved1;
/* No. 10 (0x28): Timer extended information */
rtc_extended_t extended;
} __attribute__((packed, aligned(4))) rtc_t;
/**
* @brief Real-time clock object
*/
extern volatile rtc_t *const rtc;
extern volatile uint32_t *const rtc_base;
/**
* @brief Set date time to RTC
*
* @param[in] year The year
* @param[in] month The month
* @param[in] day The day
* @param[in] hour The hour
* @param[in] minute The minute
* @param[in] second The second
*
* @return result
* - 0 Success
* - Other Fail
*/
int rtc_timer_set(int year, int month, int day, int hour, int minute, int second);
/**
* @brief Get date time from RTC
*
* @param year The year
* @param month The month
* @param day The day
* @param hour The hour
* @param minute The minute
* @param second The second
*
* @return result
* - 0 Success
* - Other Fail
*/
int rtc_timer_get(int *year, int *month, int *day, int *hour, int *minute, int *second);
/**
* @brief Initialize RTC
*
* @return Result
* - 0 Success
* - Other Fail
*/
int rtc_init(void);
/**
* @brief Set RTC in protect mode or not
*
* @param enable Enable flag
*
* @return result
* - 0 Success
* - Other Fail
*/
int rtc_protect_set(int enable);
/**
* @brief Set RTC timer mode
*
* @param timer_mode Timer mode
*
*/
void rtc_timer_set_mode(rtc_timer_mode_t timer_mode);
/**
* @brief Set RTC timer clock frequency
*
* @param frequency Frequency
*
* @return result
* - 0 Success
* - Other Fail
*/
int rtc_timer_set_clock_frequency(unsigned int frequency);
/**
* @brief Set RTC timer clock count value
*
* @param count Count
*
* @return result
* - 0 Success
* - Other Fail
*/
int rtc_timer_set_clock_count_value(unsigned int count);
#ifdef __cplusplus
}
#endif
#endif /* _DRIVER_RTC_H */

View File

@ -0,0 +1,180 @@
/* Copyright 2018 Canaan Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file wdt.h
* @brief add from Canaan k210 SDK
* https://canaan-creative.com/developer
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#ifndef __WDT_H__
#define __WDT_H__
#include <stdint.h>
#include <stddef.h>
#include <plic.h>
#ifdef __cplusplus
extern "C" {
#endif
/* clang-format off */
typedef struct _wdt
{
/* WDT Control Register (0x00) */
volatile uint32_t cr;
/* WDT Timeout Range Register (0x04) */
volatile uint32_t torr;
/* WDT Current Counter Value Register (0x08) */
volatile uint32_t ccvr;
/* WDT Counter Restart Register (0x0c) */
volatile uint32_t crr;
/* WDT Interrupt Status Register (0x10) */
volatile uint32_t stat;
/* WDT Interrupt Clear Register (0x14) */
volatile uint32_t eoi;
/* reserverd (0x18) */
volatile uint32_t resv1;
/* WDT Protection level Register (0x1c) */
volatile uint32_t prot_level;
/* reserved (0x20-0xe0) */
volatile uint32_t resv4[49];
/* WDT Component Parameters Register 5 (0xe4) */
volatile uint32_t comp_param_5;
/* WDT Component Parameters Register 4 (0xe8) */
volatile uint32_t comp_param_4;
/* WDT Component Parameters Register 3 (0xec) */
volatile uint32_t comp_param_3;
/* WDT Component Parameters Register 2 (0xf0) */
volatile uint32_t comp_param_2;
/* WDT Component Parameters Register 1 (0xf4) */
volatile uint32_t comp_param_1;
/* WDT Component Version Register (0xf8) */
volatile uint32_t comp_version;
/* WDT Component Type Register (0xfc) */
volatile uint32_t comp_type;
} __attribute__((packed, aligned(4))) wdt_t;
typedef enum _wdt_device_number
{
WDT_DEVICE_0,
WDT_DEVICE_1,
WDT_DEVICE_MAX,
} wdt_device_number_t;
#define WDT_RESET_ALL 0x00000000U
#define WDT_RESET_CPU 0x00000001U
/* WDT Control Register */
#define WDT_CR_ENABLE 0x00000001U
#define WDT_CR_RMOD_MASK 0x00000002U
#define WDT_CR_RMOD_RESET 0x00000000U
#define WDT_CR_RMOD_INTERRUPT 0x00000002U
#define WDT_CR_RPL_MASK 0x0000001CU
#define WDT_CR_RPL(x) ((x) << 2)
/* WDT Timeout Range Register */
#define WDT_TORR_TOP_MASK 0x000000FFU
#define WDT_TORR_TOP(x) ((x) << 4 | (x) << 0)
/* WDT Current Counter Value Register */
#define WDT_CCVR_MASK 0xFFFFFFFFU
/* WDT Counter Restart Register */
#define WDT_CRR_MASK 0x00000076U
/* WDT Interrupt Status Register */
#define WDT_STAT_MASK 0x00000001U
/* WDT Interrupt Clear Register */
#define WDT_EOI_MASK 0x00000001U
/* WDT Protection level Register */
#define WDT_PROT_LEVEL_MASK 0x00000007U
/* WDT Component Parameter Register 5 */
#define WDT_COMP_PARAM_5_CP_WDT_USER_TOP_MAX_MASK 0xFFFFFFFFU
/* WDT Component Parameter Register 4 */
#define WDT_COMP_PARAM_4_CP_WDT_USER_TOP_INIT_MAX_MASK 0xFFFFFFFFU
/* WDT Component Parameter Register 3 */
#define WDT_COMP_PARAM_3_CD_WDT_TOP_RST_MASK 0xFFFFFFFFU
/* WDT Component Parameter Register 2 */
#define WDT_COMP_PARAM_3_CP_WDT_CNT_RST_MASK 0xFFFFFFFFU
/* WDT Component Parameter Register 1 */
#define WDT_COMP_PARAM_1_WDT_ALWAYS_EN_MASK 0x00000001U
#define WDT_COMP_PARAM_1_WDT_DFLT_RMOD_MASK 0x00000002U
#define WDT_COMP_PARAM_1_WDT_DUAL_TOP_MASK 0x00000004U
#define WDT_COMP_PARAM_1_WDT_HC_RMOD_MASK 0x00000008U
#define WDT_COMP_PARAM_1_WDT_HC_RPL_MASK 0x00000010U
#define WDT_COMP_PARAM_1_WDT_HC_TOP_MASK 0x00000020U
#define WDT_COMP_PARAM_1_WDT_USE_FIX_TOP_MASK 0x00000040U
#define WDT_COMP_PARAM_1_WDT_PAUSE_MASK 0x00000080U
#define WDT_COMP_PARAM_1_APB_DATA_WIDTH_MASK 0x00000300U
#define WDT_COMP_PARAM_1_WDT_DFLT_RPL_MASK 0x00001C00U
#define WDT_COMP_PARAM_1_WDT_DFLT_TOP_MASK 0x000F0000U
#define WDT_COMP_PARAM_1_WDT_DFLT_TOP_INIT_MASK 0x00F00000U
#define WDT_COMP_PARAM_1_WDT_CNT_WIDTH_MASK 0x1F000000U
/* WDT Component Version Register */
#define WDT_COMP_VERSION_MASK 0xFFFFFFFFU
/* WDT Component Type Register */
#define WDT_COMP_TYPE_MASK 0xFFFFFFFFU
/* clang-format on */
/**
* @brief Feed wdt
*/
void wdt_feed(wdt_device_number_t id);
/**
* @brief Start wdt
*
* @param[in] id Wdt id 0 or 1
* @param[in] time_out_ms Wdt trigger time
* @param[in] on_irq Wdt interrupt callback
*
*/
void wdt_start(wdt_device_number_t id, uint64_t time_out_ms, plic_irq_callback_t on_irq);
/**
* @brief Start wdt
*
* @param[in] id Wdt id 0 or 1
* @param[in] time_out_ms Wdt trigger time
* @param[in] on_irq Wdt interrupt callback
* @param[in] ctx Param of callback
*
* @return Wdt time
*
*/
uint32_t wdt_init(wdt_device_number_t id, uint64_t time_out_ms, plic_irq_callback_t on_irq, void *ctx);
/**
* @brief Stop wdt
*
* @param[in] id Wdt id 0 or 1
*
*/
void wdt_stop(wdt_device_number_t id);
/**
* @brief Clear wdt interrupt
*
* @param[in] id Wdt id 0 or 1
*
*/
void wdt_clear_interrupt(wdt_device_number_t id);
#ifdef __cplusplus
}
#endif
#endif /* __WDT_H__ */

View File

@ -0,0 +1,11 @@
if BSP_USING_RTC
config RTC_BUS_NAME
string "rtc bus name"
default "rtc"
config RTC_DRV_NAME
string "rtc bus driver name"
default "rtc_drv"
config RTC_DEVICE_NAME
string "rtc bus device name"
default "rtc_dev"
endif

View File

@ -0,0 +1,3 @@
SRC_FILES := connect_rtc.c hardware_rtc.c
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,183 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_rtc.c
* @brief support aiit-riscv64-board rtc function and register to bus framework
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#include <connect_rtc.h>
#include <hardware_rtc.h>
#include <stdint.h>
#include <stdlib.h>
#include <sysctl.h>
#include <time.h>
static int GetWeekDay(int year, int month, int day)
{
/* Magic method to get weekday */
int weekday = (day += month < 3 ? year-- : year - 2,
23 * month / 9 + day + 4 + year / 4 - year / 100 + year / 400) % 7;
return weekday;
}
static uint32 RtcConfigure(void *drv, struct BusConfigureInfo *configure_info)
{
NULL_PARAM_CHECK(drv);
struct RtcDriver *rtc_drv = (struct RtcDriver *)drv;
struct RtcDrvConfigureParam *drv_param = (struct RtcDrvConfigureParam *)configure_info->private_data;
int cmd = drv_param->rtc_operation_cmd;
time_t *time = drv_param->time;
switch (cmd)
{
case OPER_RTC_GET_TIME:
{
struct tm ct;
int year,month,day,hour,minute,second;
memset(&ct,0,sizeof(struct tm));
rtc_timer_get(&year, &month, &day, &hour, &minute, &second);
ct.tm_year = year - 1900;
ct.tm_mon = month - 1;
ct.tm_mday = day;
ct.tm_wday = GetWeekDay(year, month, day);
ct.tm_hour = hour;
ct.tm_min = minute;
ct.tm_sec = second;
*time = mktime(&ct);
}
break;
case OPER_RTC_SET_TIME:
{
struct tm *ct;
struct tm tm_new;
x_base lock;
lock = CriticalAreaLock();
ct = localtime(time);
memcpy(&tm_new, ct, sizeof(struct tm));
CriticalAreaUnLock(lock);
sysctl_reset(SYSCTL_RESET_RTC);
sysctl_clock_enable(SYSCTL_CLOCK_RTC);
rtc_protect_set(0);
rtc_timer_set_clock_frequency(SysctlClockGetFreq(SYSCTL_CLOCK_IN0));
rtc_timer_set_clock_count_value(1);
rtc_timer_set_mode(RTC_TIMER_RUNNING);
if (rtc_timer_set(tm_new.tm_year+1900,tm_new.tm_mon+1,tm_new.tm_mday,
tm_new.tm_hour,tm_new.tm_min,tm_new.tm_sec)==-1)
return ERROR;
}
break;
}
return EOK;
}
/*manage the rtc device operations*/
static const struct RtcDevDone dev_done =
{
.open = NONE,
.close = NONE,
.write = NONE,
.read = NONE,
};
static int BoardRtcBusInit(struct RtcBus *rtc_bus, struct RtcDriver *rtc_driver)
{
x_err_t ret = EOK;
/*Init the rtc bus */
ret = RtcBusInit(rtc_bus, RTC_BUS_NAME);
if (EOK != ret) {
KPrintf("HwRtcInit RtcBusInit error %d\n", ret);
return ERROR;
}
/*Init the rtc driver*/
ret = RtcDriverInit(rtc_driver, RTC_DRV_NAME);
if (EOK != ret) {
KPrintf("HwRtcInit RtcDriverInit error %d\n", ret);
return ERROR;
}
/*Attach the rtc driver to the rtc bus*/
ret = RtcDriverAttachToBus(RTC_DRV_NAME, RTC_BUS_NAME);
if (EOK != ret) {
KPrintf("HwRtcInit RtcDriverAttachToBus error %d\n", ret);
return ERROR;
}
return ret;
}
/*Attach the rtc device to the rtc bus*/
static int BoardRtcDevBend(void)
{
x_err_t ret = EOK;
static struct RtcHardwareDevice rtc_device;
memset(&rtc_device, 0, sizeof(struct RtcHardwareDevice));
rtc_device.dev_done = &(dev_done);
ret = RtcDeviceRegister(&rtc_device, NONE, RTC_DEVICE_NAME);
if (EOK != ret) {
KPrintf("HwRtcInit RtcDeviceInit device %s error %d\n", RTC_DEVICE_NAME, ret);
return ERROR;
}
ret = RtcDeviceAttachToBus(RTC_DEVICE_NAME, RTC_BUS_NAME);
if (EOK != ret) {
KPrintf("HwRtcInit RtcDeviceAttachToBus device %s error %d\n", RTC_DEVICE_NAME, ret);
return ERROR;
}
return ret;
}
int HwRtcInit(void)
{
x_err_t ret = EOK;
static struct RtcBus rtc_bus;
memset(&rtc_bus, 0, sizeof(struct RtcBus));
static struct RtcDriver rtc_driver;
memset(&rtc_driver, 0, sizeof(struct RtcDriver));
rtc_driver.configure = &(RtcConfigure);
ret = BoardRtcBusInit(&rtc_bus, &rtc_driver);
if (EOK != ret) {
KPrintf("HwRtcInit error ret %u\n", ret);
return ERROR;
}
ret = BoardRtcDevBend();
if (EOK != ret) {
KPrintf("HwRtcInit error ret %u\n", ret);
}
rtc_init();
return ret;
}

View File

@ -0,0 +1,597 @@
/* Copyright 2018 Canaan Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file hardware_rtc.c
* @brief add from Canaan k210 SDK
* https://canaan-creative.com/developer
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#include <encoding.h>
#include <hardware_rtc.h>
#include <stdint.h>
#include <stdlib.h>
#include <sysctl.h>
#include <time.h>
volatile rtc_t *const rtc = (volatile rtc_t *)RTC_BASE_ADDR;
struct tm rtc_date_time;
void rtc_timer_set_mode(rtc_timer_mode_t timer_mode)
{
rtc_register_ctrl_t register_ctrl = rtc->register_ctrl;
switch (timer_mode)
{
case RTC_TIMER_PAUSE:
register_ctrl.read_enable = 0;
register_ctrl.write_enable = 0;
break;
case RTC_TIMER_RUNNING:
register_ctrl.read_enable = 1;
register_ctrl.write_enable = 0;
break;
case RTC_TIMER_SETTING:
register_ctrl.read_enable = 0;
register_ctrl.write_enable = 1;
break;
default:
register_ctrl.read_enable = 0;
register_ctrl.write_enable = 0;
break;
}
rtc->register_ctrl = register_ctrl;
}
rtc_timer_mode_t rtc_timer_get_mode(void)
{
rtc_register_ctrl_t register_ctrl = rtc->register_ctrl;
rtc_timer_mode_t timer_mode = RTC_TIMER_PAUSE;
if ((!register_ctrl.read_enable) && (!register_ctrl.write_enable))
{
/* RTC_TIMER_PAUSE */
timer_mode = RTC_TIMER_PAUSE;
}
else if ((register_ctrl.read_enable) && (!register_ctrl.write_enable))
{
/* RTC_TIMER_RUNNING */
timer_mode = RTC_TIMER_RUNNING;
}
else if ((!register_ctrl.read_enable) && (register_ctrl.write_enable)) {
/* RTC_TIMER_SETTING */
timer_mode = RTC_TIMER_SETTING;
}
else
{
/* Something is error, reset timer mode */
rtc_timer_set_mode(timer_mode);
}
return timer_mode;
}
static inline int rtc_in_range(int value, int min, int max)
{
return ((value >= min) && (value <= max));
}
int rtc_timer_set_tm(const struct tm *tm)
{
rtc_date_t timer_date;
rtc_time_t timer_time;
rtc_extended_t timer_extended;
if (tm)
{
/*
* Range of tm->tm_sec could be [0,61]
*
* Range of tm->tm_sec allows for a positive leap second. Two
* leap seconds in the same minute are not allowed (the C90
* range 0..61 was a defect)
*/
if (rtc_in_range(tm->tm_sec, 0, 59))
timer_time.second = tm->tm_sec;
else
return -1;
/* Range of tm->tm_min could be [0,59] */
if (rtc_in_range(tm->tm_min, 0, 59))
timer_time.minute = tm->tm_min;
else
return -1;
/* Range of tm->tm_hour could be [0, 23] */
if (rtc_in_range(tm->tm_hour, 0, 23))
timer_time.hour = tm->tm_hour;
else
return -1;
/* Range of tm->tm_mday could be [1, 31] */
if (rtc_in_range(tm->tm_mday, 1, 31))
timer_date.day = tm->tm_mday;
else
return -1;
/*
* Range of tm->tm_mon could be [0, 11]
* But in this RTC, date.month should be [1, 12]
*/
if (rtc_in_range(tm->tm_mon, 0, 11))
timer_date.month = tm->tm_mon + 1;
else
return -1;
/*
* Range of tm->tm_year is the years since 1900
* But in this RTC, year is split into year and century
* In this RTC, century range is [0,31], year range is [0,99]
*/
int human_year = tm->tm_year + 1900;
int rtc_year = human_year % 100;
int rtc_century = human_year / 100;
if (rtc_in_range(rtc_year, 0, 99) &&
rtc_in_range(rtc_century, 0, 31))
{
timer_date.year = rtc_year;
timer_extended.century = rtc_century;
}
else
return -1;
/* Range of tm->tm_wday could be [0, 6] */
if (rtc_in_range(tm->tm_wday, 0, 6))
timer_date.week = tm->tm_wday;
else
return -1;
/* Set RTC mode to timer setting mode */
rtc_timer_set_mode(RTC_TIMER_SETTING);
/* Write value to RTC */
rtc->date = timer_date;
rtc->time = timer_time;
rtc->extended = timer_extended;
/* Get CPU current freq */
unsigned long freq = SysctlClockGetFreq(SYSCTL_CLOCK_CPU);
/* Set threshold to 1/26000000 s */
freq = freq / 26000000;
/* Get current CPU cycle */
unsigned long start_cycle = read_cycle();
/* Wait for 1/26000000 s to sync data */
while (read_cycle() - start_cycle < freq)
continue;
/* Set RTC mode to timer running mode */
rtc_timer_set_mode(RTC_TIMER_RUNNING);
}
return 0;
}
int rtc_timer_set_alarm_tm(const struct tm *tm)
{
rtc_alarm_date_t alarm_date;
rtc_alarm_time_t alarm_time;
if (tm) {
/*
* Range of tm->tm_sec could be [0,61]
*
* Range of tm->tm_sec allows for a positive leap second. Two
* leap seconds in the same minute are not allowed (the C90
* range 0..61 was a defect)
*/
if (rtc_in_range(tm->tm_sec, 0, 59))
alarm_time.second = tm->tm_sec;
else
return -1;
/* Range of tm->tm_min could be [0,59] */
if (rtc_in_range(tm->tm_min, 0, 59))
alarm_time.minute = tm->tm_min;
else
return -1;
/* Range of tm->tm_hour could be [0, 23] */
if (rtc_in_range(tm->tm_hour, 0, 23))
alarm_time.hour = tm->tm_hour;
else
return -1;
/* Range of tm->tm_mday could be [1, 31] */
if (rtc_in_range(tm->tm_mday, 1, 31))
alarm_date.day = tm->tm_mday;
else
return -1;
/*
* Range of tm->tm_mon could be [0, 11]
* But in this RTC, date.month should be [1, 12]
*/
if (rtc_in_range(tm->tm_mon, 0, 11))
alarm_date.month = tm->tm_mon + 1;
else
return -1;
/*
* Range of tm->tm_year is the years since 1900
* But in this RTC, year is split into year and century
* In this RTC, century range is [0,31], year range is [0,99]
*/
int human_year = tm->tm_year + 1900;
int rtc_year = human_year % 100;
int rtc_century = human_year / 100;
if (rtc_in_range(rtc_year, 0, 99) &&
rtc_in_range(rtc_century, 0, 31))
{
alarm_date.year = rtc_year;
} else
return -1;
/* Range of tm->tm_wday could be [0, 6] */
if (rtc_in_range(tm->tm_wday, 0, 6))
alarm_date.week = tm->tm_wday;
else
return -1;
/* Write value to RTC */
rtc->alarm_date = alarm_date;
rtc->alarm_time = alarm_time;
}
return 0;
}
static int rtc_year_is_leap(int year)
{
return (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);
}
static int rtc_get_yday(int year, int month, int day)
{
static const int days[2][13] =
{
{0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
{0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}
};
int leap = rtc_year_is_leap(year);
return days[leap][month] + day;
}
static int rtc_get_wday(int year, int month, int day)
{
/* Magic method to get weekday */
int weekday = (day += month < 3 ? year-- : year - 2, 23 * month / 9 + day + 4 + year / 4 - year / 100 + year / 400) % 7;
return weekday;
}
struct tm *rtc_timer_get_tm(void)
{
if (rtc_timer_get_mode() != RTC_TIMER_RUNNING)
return NULL;
rtc_date_t timer_date = rtc->date;
rtc_time_t timer_time = rtc->time;
rtc_extended_t timer_extended = rtc->extended;
struct tm *tm = &rtc_date_time;
tm->tm_sec = timer_time.second % 60;
tm->tm_min = timer_time.minute % 60;
tm->tm_hour = timer_time.hour % 24;
tm->tm_mday = (timer_date.day - 1) % 31 + 1;
tm->tm_mon = (timer_date.month - 1)% 12;
tm->tm_year = (timer_date.year % 100) + (timer_extended.century * 100) - 1900;
tm->tm_wday = timer_date.week;
tm->tm_yday = rtc_get_yday(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday);
tm->tm_isdst = -1;
return tm;
}
struct tm *rtc_timer_get_alarm_tm(void)
{
if (rtc_timer_get_mode() != RTC_TIMER_RUNNING)
return NULL;
rtc_alarm_date_t alarm_date = rtc->alarm_date;
rtc_alarm_time_t alarm_time = rtc->alarm_time;
rtc_extended_t timer_extended = rtc->extended;
struct tm *tm = &rtc_date_time;
tm->tm_sec = alarm_time.second % 60;
tm->tm_min = alarm_time.minute % 60;
tm->tm_hour = alarm_time.hour % 24;
tm->tm_mday = alarm_date.day % 31;
tm->tm_mon = (alarm_date.month % 12) - 1;
/* Alarm and Timer use same timer_extended.century */
tm->tm_year = (alarm_date.year % 100) + (timer_extended.century * 100) - 1900;
tm->tm_wday = alarm_date.week;
tm->tm_yday = rtc_get_yday(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday);
tm->tm_isdst = -1;
return tm;
}
int rtc_timer_set(int year, int month, int day, int hour, int minute, int second)
{
struct tm date_time =
{
.tm_sec = second,
.tm_min = minute,
.tm_hour = hour,
.tm_mday = day,
.tm_mon = month - 1,
.tm_year = year - 1900,
.tm_wday = rtc_get_wday(year, month, day),
.tm_yday = rtc_get_yday(year, month, day),
.tm_isdst = -1,
};
return rtc_timer_set_tm(&date_time);
}
int rtc_timer_get(int *year, int *month, int *day, int *hour, int *minute, int *second)
{
struct tm *tm = rtc_timer_get_tm();
if (tm)
{
if (year)
*year = tm->tm_year + 1900;
if (month)
*month = tm->tm_mon + 1;
if (day)
*day = tm->tm_mday;
if (hour)
*hour = tm->tm_hour;
if (minute)
*minute = tm->tm_min;
if (second)
*second = tm->tm_sec;
} else
return -1;
return 0;
}
int rtc_timer_set_alarm(int year, int month, int day, int hour, int minute, int second)
{
struct tm date_time = {
.tm_sec = second,
.tm_min = minute,
.tm_hour = hour,
.tm_mday = day,
.tm_mon = month - 1,
.tm_year = year - 1900,
.tm_wday = rtc_get_wday(year, month, day),
.tm_yday = rtc_get_yday(year, month, day),
.tm_isdst = -1,
};
return rtc_timer_set_alarm_tm(&date_time);
}
int rtc_timer_get_alarm(int *year, int *month, int *day, int *hour, int *minute, int *second)
{
struct tm *tm = rtc_timer_get_alarm_tm();
if (tm) {
if (year)
*year = tm->tm_year + 1900;
if (month)
*month = tm->tm_mon + 1;
if (day)
*day = tm->tm_mday;
if (hour)
*hour = tm->tm_hour;
if (minute)
*minute = tm->tm_min;
if (second)
*second = tm->tm_sec;
} else
return -1;
return 0;
}
int rtc_timer_set_clock_frequency(unsigned int frequency)
{
rtc_initial_count_t initial_count;
initial_count.count = frequency;
rtc_timer_set_mode(RTC_TIMER_SETTING);
rtc->initial_count = initial_count;
rtc_timer_set_mode(RTC_TIMER_RUNNING);
return 0;
}
unsigned int rtc_timer_get_clock_frequency(void)
{
return rtc->initial_count.count;
}
int rtc_timer_set_clock_count_value(unsigned int count)
{
rtc_current_count_t current_count;
current_count.count = count;
rtc_timer_set_mode(RTC_TIMER_SETTING);
rtc->current_count = current_count;
rtc_timer_set_mode(RTC_TIMER_RUNNING);
return 0;
}
unsigned int rtc_timer_get_clock_count_value(void)
{
return rtc->current_count.count;
}
int rtc_tick_interrupt_set(int enable)
{
rtc_interrupt_ctrl_t interrupt_ctrl = rtc->interrupt_ctrl;
interrupt_ctrl.tick_enable = enable;
rtc_timer_set_mode(RTC_TIMER_SETTING);
rtc->interrupt_ctrl = interrupt_ctrl;
rtc_timer_set_mode(RTC_TIMER_RUNNING);
return 0;
}
int rtc_tick_interrupt_get(void)
{
rtc_interrupt_ctrl_t interrupt_ctrl = rtc->interrupt_ctrl;
return interrupt_ctrl.tick_enable;
}
int rtc_tick_interrupt_mode_set(rtc_tick_interrupt_mode_t mode)
{
rtc_interrupt_ctrl_t interrupt_ctrl = rtc->interrupt_ctrl;
interrupt_ctrl.tick_int_mode = mode;
rtc_timer_set_mode(RTC_TIMER_SETTING);
rtc->interrupt_ctrl = interrupt_ctrl;
rtc_timer_set_mode(RTC_TIMER_RUNNING);
return 0;
}
rtc_tick_interrupt_mode_t rtc_tick_interrupt_mode_get(void)
{
rtc_interrupt_ctrl_t interrupt_ctrl = rtc->interrupt_ctrl;
return interrupt_ctrl.tick_int_mode;
}
int rtc_alarm_interrupt_set(int enable)
{
rtc_interrupt_ctrl_t interrupt_ctrl = rtc->interrupt_ctrl;
interrupt_ctrl.alarm_enable = enable;
rtc->interrupt_ctrl = interrupt_ctrl;
return 0;
}
int rtc_alarm_interrupt_get(void)
{
rtc_interrupt_ctrl_t interrupt_ctrl = rtc->interrupt_ctrl;
return interrupt_ctrl.alarm_enable;
}
int rtc_alarm_interrupt_mask_set(rtc_mask_t mask)
{
rtc_interrupt_ctrl_t interrupt_ctrl = rtc->interrupt_ctrl;
interrupt_ctrl.alarm_compare_mask = *(uint8_t *)&mask;
rtc->interrupt_ctrl = interrupt_ctrl;
return 0;
}
rtc_mask_t rtc_alarm_interrupt_mask_get(void)
{
rtc_interrupt_ctrl_t interrupt_ctrl = rtc->interrupt_ctrl;
uint8_t compare_mask = interrupt_ctrl.alarm_compare_mask;
return *(rtc_mask_t *)&compare_mask;
}
int rtc_protect_set(int enable)
{
rtc_register_ctrl_t register_ctrl = rtc->register_ctrl;
rtc_mask_t mask =
{
.second = 1,
/* Second mask */
.minute = 1,
/* Minute mask */
.hour = 1,
/* Hour mask */
.week = 1,
/* Week mask */
.day = 1,
/* Day mask */
.month = 1,
/* Month mask */
.year = 1,
};
rtc_mask_t unmask =
{
.second = 0,
/* Second mask */
.minute = 0,
/* Minute mask */
.hour = 0,
/* Hour mask */
.week = 0,
/* Week mask */
.day = 0,
/* Day mask */
.month = 0,
/* Month mask */
.year = 0,
};
if (enable)
{
/* Turn RTC in protect mode, no one can write time */
register_ctrl.TimerMask = *(uint8_t *)&unmask;
register_ctrl.alarm_mask = *(uint8_t *)&unmask;
register_ctrl.initial_count_mask = 0;
register_ctrl.interrupt_register_mask = 0;
}
else
{
/* Turn RTC in unprotect mode, everyone can write time */
register_ctrl.TimerMask = *(uint8_t *)&mask;
register_ctrl.alarm_mask = *(uint8_t *)&mask;
register_ctrl.initial_count_mask = 1;
register_ctrl.interrupt_register_mask = 1;
}
rtc_timer_set_mode(RTC_TIMER_SETTING);
rtc->register_ctrl = register_ctrl;
rtc_timer_set_mode(RTC_TIMER_RUNNING);
return 0;
}
int rtc_init(void)
{
/* Reset RTC */
sysctl_reset(SYSCTL_RESET_RTC);
/* Enable RTC */
sysctl_clock_enable(SYSCTL_CLOCK_RTC);
/* Unprotect RTC */
rtc_protect_set(0);
/* Set RTC clock frequency */
rtc_timer_set_clock_frequency(
SysctlClockGetFreq(SYSCTL_CLOCK_IN0)
);
rtc_timer_set_clock_count_value(1);
/* Set RTC mode to timer running mode */
rtc_timer_set_mode(RTC_TIMER_RUNNING);
return 0;
}

View File

@ -0,0 +1,43 @@
if BSP_USING_SOFT_SPI
config SOFT_SPI_BUS_NAME
string "soft spi bus 1 name"
default "soft_spi1_bus1"
config SOFT_SPI_DEVICE_NAME
string "soft spi dev 1 name"
default "soft_spi1_dev1"
config SOFT_SPI_DRV_NAME
string "soft spi drv 1 name"
default "soft_spi1_drv1"
config SOFT_SPI_SCK
int "soft spi sck pin"
default 26
config SOFT_SPI_MOSI
int "soft spi mosi pin"
default 27
config SOFT_SPI_MISO
int "soft spi miso pin"
default 25
config SOFT_SPI_CS0_PIN
int "soft spi cs pin"
default 28
config SOFT_SPI_DEVICE_SLAVE_ID
int "soft spi slave id"
default 0
config SOFT_SPI_CHIP_SELECT
int "soft spi chip selected"
default 0
config SOFT_SPI_CLK_DELAY
int "clk in microsecond"
default 0
endif

View File

@ -0,0 +1,3 @@
SRC_FILES := connect_soft_spi.c
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,295 @@
#include <xizi.h>
#include <device.h>
#include <fpioa.h>
#include <gpiohs.h>
#include "drv_io_config.h"
#include <plic.h>
#include <utils.h>
#include <connect_soft_spi.h>
#include <sleep.h>
#include <sd_spi.h>
#include <dev_spi.h>
#include <bus_spi.h>
static x_err_t softSPIinit(struct SpiDriver *spi_drv, struct BusConfigureInfo *cfg)
{
NULL_PARAM_CHECK(spi_drv);
NULL_PARAM_CHECK(cfg);
// mode CPOL = 0 CPHA = 0
gpiohs_set_drive_mode(SOFT_SPI_CS0_PIN, GPIO_DM_OUTPUT);
gpiohs_set_pin(SOFT_SPI_CS0_PIN, GPIO_PV_HIGH); // set the cs gpio high
gpiohs_set_drive_mode(SOFT_SPI_SCK, GPIO_DM_OUTPUT);
gpiohs_set_drive_mode(SOFT_SPI_MOSI, GPIO_DM_OUTPUT);
gpiohs_set_drive_mode(SOFT_SPI_MISO, GPIO_DM_INPUT);
gpiohs_set_pin(SOFT_SPI_SCK, GPIO_PV_LOW);
KPrintf("%s init done\n", SOFT_SPI_BUS_NAME);
return EOK;
}
static uint32 softSpiDrvConfigure(void *drv, struct BusConfigureInfo *configure_info)
{
NULL_PARAM_CHECK(drv);
NULL_PARAM_CHECK(configure_info);
x_err_t ret = EOK;
struct SpiDriver *spi_drv = (struct SpiDriver *)drv;
struct SpiMasterParam *spi_param;
switch (configure_info->configure_cmd)
{
case OPE_INT:
softSPIinit(spi_drv, configure_info);
break;
case OPE_CFG:
break;
default:
break;
}
return ret;
}
static void soft_spi_writebyte(struct SpiHardwareDevice *spi_dev, uint8_t data)
{
int8_t i = 0;
uint8_t temp = 0;
for (i = 0; i < 8; i++)
{
temp = ((data & 0x80) == 0x80) ? 1 : 0;
data = data << 1;
gpiohs_set_pin(SOFT_SPI_SCK, GPIO_PV_LOW);
usleep(SOFT_SPI_CLK_DELAY);
if (0 == temp)
{
gpiohs_set_pin(SOFT_SPI_MOSI, GPIO_PV_LOW);
}
else
{
gpiohs_set_pin(SOFT_SPI_MOSI, GPIO_PV_HIGH);
}
gpiohs_set_pin(SOFT_SPI_SCK, GPIO_PV_HIGH);
usleep(SOFT_SPI_CLK_DELAY);
}
gpiohs_set_pin(SOFT_SPI_SCK, GPIO_PV_LOW);
}
/* 读一个字节 */
static uint8_t soft_spi_readbyte(struct SpiHardwareDevice *spi_dev)
{
uint8_t i = 0;
uint8_t read_data = 0xFF;
for (i = 0; i < 8; i++)
{
read_data = read_data << 1;
gpiohs_set_pin(SOFT_SPI_SCK, GPIO_PV_LOW);
usleep(SOFT_SPI_CLK_DELAY);
gpiohs_set_pin(SOFT_SPI_SCK, GPIO_PV_HIGH);
usleep(SOFT_SPI_CLK_DELAY);
if (1 == gpiohs_get_pin(SOFT_SPI_MISO))
{
read_data = read_data | 0x01;
}
}
return read_data;
}
/* 读写一个字节 */
// this funcition is unverify until now!
static uint8_t soft_spi_readwritebyte(struct SpiHardwareDevice *spi_dev, uint8_t data)
{
uint8_t i = 0;
uint8_t temp = 0;
uint8_t read_data = 0xFF;
for (i = 0; i < 8; i++)
{
temp = ((data & 0x80) == 0x80) ? 1 : 0;
data = data << 1;
read_data = read_data << 1;
if (temp == 0)
{
gpiohs_set_pin(SOFT_SPI_MOSI, GPIO_PV_LOW);
}
else
{
gpiohs_set_pin(SOFT_SPI_MOSI, GPIO_PV_HIGH);
}
usleep(SOFT_SPI_CLK_DELAY);
gpiohs_set_pin(SOFT_SPI_SCK, GPIO_PV_HIGH);
usleep(SOFT_SPI_CLK_DELAY);
if (gpiohs_get_pin(SOFT_SPI_MISO) == 1)
{
read_data = read_data + 1;
}
}
return read_data;
}
static uint32 softSpiWriteData(struct SpiHardwareDevice *spi_dev, struct SpiDataStandard *spi_datacfg)
{
SpiDeviceParam *dev_param = (SpiDeviceParam *)(spi_dev->haldev.private_data);
uint8 cs_gpio_pin = dev_param->spi_slave_param->spi_cs_gpio_pin;
const uint8_t *data_buff = spi_datacfg->tx_buff;
int data_length = spi_datacfg->length;
if (NONE == spi_datacfg->tx_buff)
{
data_length = 0;
}
if (spi_datacfg->spi_chip_select)
{
gpiohs_set_pin(cs_gpio_pin, GPIO_PV_LOW);
}
for (size_t i = 0; i < data_length; i++)
{
soft_spi_writebyte(spi_dev, data_buff[i]);
}
if (spi_datacfg->spi_cs_release)
{
gpiohs_set_pin(cs_gpio_pin, GPIO_PV_HIGH);
}
spi_datacfg = spi_datacfg->next;
return EOK;
}
static uint32 softSpiReadData(struct SpiHardwareDevice *spi_dev, struct SpiDataStandard *spi_datacfg)
{
SpiDeviceParam *dev_param = (SpiDeviceParam *)(spi_dev->haldev.private_data);
uint8 cs_gpio_pin = dev_param->spi_slave_param->spi_cs_gpio_pin;
uint8_t *recv_buff = spi_datacfg->rx_buff;
int recv_length = spi_datacfg->length;
if (NONE == spi_datacfg->rx_buff)
{
recv_length = 0;
}
if (spi_datacfg->spi_chip_select)
{
gpiohs_set_pin(cs_gpio_pin, GPIO_PV_LOW);
}
for (size_t i = 0; i < recv_length; i++)
{
recv_buff[i] = soft_spi_readbyte(spi_dev);
}
if (spi_datacfg->spi_cs_release)
{
gpiohs_set_pin(cs_gpio_pin, GPIO_PV_HIGH);
}
spi_datacfg = spi_datacfg->next;
return spi_datacfg->length;
}
const struct SpiDevDone soft_spi_dev_done = {
.dev_close = NONE,
.dev_open = NONE,
.dev_read = softSpiReadData,
.dev_write = softSpiWriteData};
static int BoardSoftSpiBusInit(struct SpiBus *spi_bus, struct SpiDriver *spi_driver)
{
x_err_t ret = EOK;
/*Init the spi bus */
ret = SpiBusInit(spi_bus, SOFT_SPI_BUS_NAME);
if (EOK != ret)
{
KPrintf("Board_Spi_init SpiBusInit error %d\n", ret);
return ERROR;
}
/*Init the spi driver*/
ret = SpiDriverInit(spi_driver, SOFT_SPI_DRV_NAME);
if (EOK != ret)
{
KPrintf("Board_Spi_init SpiDriverInit error %d\n", ret);
return ERROR;
}
/*Attach the spi driver to the spi bus*/
ret = SpiDriverAttachToBus(SOFT_SPI_DRV_NAME, SOFT_SPI_BUS_NAME);
if (EOK != ret)
{
KPrintf("Board_Spi_init SpiDriverAttachToBus error %d\n", ret);
return ERROR;
}
return ret;
}
static int BoardSoftSpiDevBend(void)
{
x_err_t ret = EOK;
static struct SpiHardwareDevice spi_device0;
memset(&spi_device0, 0, sizeof(struct SpiHardwareDevice));
static struct SpiSlaveParam spi_slaveparam0;
memset(&spi_slaveparam0, 0, sizeof(struct SpiSlaveParam));
spi_slaveparam0.spi_slave_id = SOFT_SPI_DEVICE_SLAVE_ID;
spi_slaveparam0.spi_cs_gpio_pin = SOFT_SPI_CS0_PIN;
spi_slaveparam0.spi_cs_select_id = SOFT_SPI_CHIP_SELECT;
spi_device0.spi_param.spi_dma_param = NONE;
spi_device0.spi_param.spi_slave_param = &spi_slaveparam0;
spi_device0.spi_dev_done = &(soft_spi_dev_done);
ret = SpiDeviceRegister(&spi_device0, (void *)(&spi_device0.spi_param), SOFT_SPI_DEVICE_NAME);
if (EOK != ret)
{
KPrintf("Board_Spi_init SpiDeviceInit device %s error %d\n", SOFT_SPI_DEVICE_NAME, ret);
return ERROR;
}
ret = SpiDeviceAttachToBus(SOFT_SPI_DEVICE_NAME, SOFT_SPI_BUS_NAME);
if (EOK != ret)
{
KPrintf("Board_Spi_init SpiDeviceAttachToBus device %s error %d\n", SOFT_SPI_DEVICE_NAME, ret);
return ERROR;
}
return ret;
}
int HwSoftSPIInit(void)
{
x_err_t ret = EOK;
static struct SpiBus spi_bus;
memset(&spi_bus, 0, sizeof(struct SpiBus));
static struct SpiDriver spi_driver;
memset(&spi_driver, 0, sizeof(struct SpiDriver));
spi_driver.configure = &(softSpiDrvConfigure);
ret = BoardSoftSpiBusInit(&spi_bus, &spi_driver);
if (EOK != ret)
{
KPrintf("Board_Spi_Init error ret %u\n", ret);
return ERROR;
}
ret = BoardSoftSpiDevBend();
if (EOK != ret)
{
KPrintf("Board_Spi_Init error ret %u\n", ret);
return ERROR;
}
return ret;
}

View File

@ -100,26 +100,3 @@ if BSP_USING_SPI1
endif
endif
config BSP_USING_TP
bool "Using LCD touch "
default n
if BSP_USING_TP
config BSP_TP_SCK_PIN
int "TP SCK pin number"
default 42
config BSP_TP_NCS_PIN
int "TP NCS pin number"
default 43
config BSP_TP_MISO_PIN
int "TP MISO pin number"
default 44
config BSP_TP_IRQ_PIN
int "TP IRQ pin number"
default 45
config BSP_TP_MOSI_PIN
int "TP MOSI pin number"
default 46
endif

View File

@ -0,0 +1,19 @@
if BSP_USING_HWTIMER
config HWTIMER_BUS_NAME_1
string "hwtimer bus name"
default "hwtim1"
menuconfig ENABLE_TIM1
bool "enable TIM1"
default y
if ENABLE_TIM1
config HWTIMER_1_DEVICE_NAME_1
string "TIM1 dev name"
default "hwtim1_dev1"
config HWTIMER_DRIVER_NAME_1
string "TIM1 drv name"
default "hwtim1_drv"
endif
endif

View File

@ -0,0 +1,5 @@
SRC_FILES := hardware_hwtimer.c connect_hwtimer.c
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,153 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_hwtimer.c
* @brief support aiit-riscv64-board hwtimer function and register to bus framework
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#include <board.h>
#include <connect_hwtimer.h>
#include <fpioa.h>
#include <plic.h>
#include <stdio.h>
#include <sysctl.h>
#include <syslog.h>
static struct HwtimerCallBackInfo *ptim2_cb_info = NULL;
int timer_callback(void *ctx)
{
if (ptim2_cb_info) {
if (ptim2_cb_info->timeout_callback) {
ptim2_cb_info->timeout_callback(ptim2_cb_info->param);
}
}
return 0;
}
uint32 HwtimerOpen(void *dev)
{
struct HwtimerHardwareDevice *hwtimer_dev = dev;
ptim2_cb_info = &hwtimer_dev->hwtimer_param.cb_info;
plic_init();
sysctl_enable_irq();
timer_init(TIMER_DEVICE_1);
size_t real_time = timer_set_interval(TIMER_DEVICE_1, TIMER_CHANNEL_1, hwtimer_dev->hwtimer_param.period_millisecond *1000);
KPrintf("timer_set_interval -- real_time : %ld\n", real_time);
timer_irq_register(TIMER_DEVICE_1, TIMER_CHANNEL_1, !hwtimer_dev->hwtimer_param.repeat, 1, timer_callback, NULL);
timer_set_enable(TIMER_DEVICE_1, TIMER_CHANNEL_1, 1);
return EOK;
}
uint32 HwtimerClose(void *dev)
{
timer_set_enable(TIMER_DEVICE_1, TIMER_CHANNEL_1, 0);
return EOK;
}
/*manage the hwtimer device operations*/
static const struct HwtimerDevDone dev_done =
{
.open = HwtimerOpen,
.close = HwtimerClose,
.write = NONE,
.read = NONE,
};
/*Init hwtimer bus*/
static int BoardHwtimerBusInit(struct HwtimerBus *hwtimer_bus, struct HwtimerDriver *hwtimer_driver)
{
x_err_t ret = EOK;
/*Init the hwtimer bus */
ret = HwtimerBusInit(hwtimer_bus, HWTIMER_BUS_NAME_1);
if (EOK != ret) {
KPrintf("board_hwtimer_init HwtimerBusInit error %d\n", ret);
return ERROR;
}
/*Init the hwtimer driver*/
hwtimer_driver->configure = NONE;
ret = HwtimerDriverInit(hwtimer_driver, HWTIMER_DRIVER_NAME_1);
if (EOK != ret) {
KPrintf("board_hwtimer_init HwtimerDriverInit error %d\n", ret);
return ERROR;
}
/*Attach the hwtimer driver to the hwtimer bus*/
ret = HwtimerDriverAttachToBus(HWTIMER_DRIVER_NAME_1, HWTIMER_BUS_NAME_1);
if (EOK != ret) {
KPrintf("board_hwtimer_init USEDriverAttachToBus error %d\n", ret);
return ERROR;
}
return ret;
}
/*Attach the hwtimer device to the hwtimer bus*/
static int BoardHwtimerDevBend(void)
{
x_err_t ret = EOK;
static struct HwtimerHardwareDevice hwtimer_device_0;
memset(&hwtimer_device_0, 0, sizeof(struct HwtimerHardwareDevice));
hwtimer_device_0.dev_done = &dev_done;
ret = HwtimerDeviceRegister(&hwtimer_device_0, NONE, HWTIMER_1_DEVICE_NAME_1);
if (EOK != ret) {
KPrintf("BoardHwtimerDevBend HwtimerDeviceRegister device %s error %d\n", HWTIMER_1_DEVICE_NAME_1, ret);
return ERROR;
}
ret = HwtimerDeviceAttachToBus(HWTIMER_1_DEVICE_NAME_1, HWTIMER_BUS_NAME_1);
if (EOK != ret) {
KPrintf("BoardHwtimerDevBend HwtimerDeviceAttachToBus device %s error %d\n", HWTIMER_1_DEVICE_NAME_1, ret);
return ERROR;
}
return ret;
}
/*K210 BOARD HWTIMER INIT*/
int HwTimerInit(void)
{
x_err_t ret = EOK;
static struct HwtimerBus hwtimer_bus;
memset(&hwtimer_bus, 0, sizeof(struct HwtimerBus));
static struct HwtimerDriver hwtimer_driver;
memset(&hwtimer_driver, 0, sizeof(struct HwtimerDriver));
ret = BoardHwtimerBusInit(&hwtimer_bus, &hwtimer_driver);
if (EOK != ret) {
KPrintf("board_hwtimer_Init error ret %u\n", ret);
return ERROR;
}
ret = BoardHwtimerDevBend();
if (EOK != ret) {
KPrintf("board_hwtimer_Init error ret %u\n", ret);
return ERROR;
}
return ret;
}

View File

@ -0,0 +1,407 @@
/* Copyright 2018 Canaan Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file hardware_hwtimer.c
* @brief add from Canaan k210 SDK
* https://canaan-creative.com/developer
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#include <hardware_hwtimer.h>
#include <io.h>
#include <plic.h>
#include <stddef.h>
#include <sysctl.h>
#include <syslog.h>
#include <xs_isr.h>
#include <utils.h>
/**
* @brief Private definitions for the timer instance
*/
typedef struct timer_instance
{
timer_callback_t callback;
void *ctx;
bool single_shot;
} timer_instance_t;
typedef void(*irq_manager_callback_t)(int irq, void* arg);
volatile timer_instance_t timer_instance[TIMER_DEVICE_MAX][TIMER_CHANNEL_MAX];
volatile kendryte_timer_t *const timer[3] =
{
(volatile kendryte_timer_t *)TIMER0_BASE_ADDR,
(volatile kendryte_timer_t *)TIMER1_BASE_ADDR,
(volatile kendryte_timer_t *)TIMER2_BASE_ADDR
};
void timer_init(timer_device_number_t timer_number)
{
for(size_t i = 0; i < TIMER_CHANNEL_MAX; i++)
timer_instance[timer_number][i] = (const timer_instance_t) {
.callback = NULL,
.ctx = NULL,
.single_shot = 0,
};
sysctl_clock_enable(SYSCTL_CLOCK_TIMER0 + timer_number);
}
void timer_set_clock_div(timer_device_number_t timer_number, uint32_t div)
{
sysctl_clock_set_threshold(timer_number == 0 ? SYSCTL_THRESHOLD_TIMER0 :
timer_number == 1 ? SYSCTL_THRESHOLD_TIMER1 :
SYSCTL_THRESHOLD_TIMER2, div);
}
void timer_enable(timer_device_number_t timer_number, timer_channel_number_t channel)
{
timer[timer_number]->channel[channel].control |= TIMER_CR_ENABLE;
}
void timer_disable(timer_device_number_t timer_number, timer_channel_number_t channel)
{
timer[timer_number]->channel[channel].control &= (~TIMER_CR_ENABLE);
}
void timer_enable_pwm(timer_device_number_t timer_number, timer_channel_number_t channel)
{
timer[timer_number]->channel[channel].control |= TIMER_CR_PWM_ENABLE;
}
void timer_disable_pwm(timer_device_number_t timer_number, timer_channel_number_t channel)
{
timer[timer_number]->channel[channel].control &= (~TIMER_CR_PWM_ENABLE);
}
void timer_enable_interrupt(timer_device_number_t timer_number, timer_channel_number_t channel)
{
timer[timer_number]->channel[channel].control &= (~TIMER_CR_INTERRUPT_MASK);
}
void timer_disable_interrupt(timer_device_number_t timer_number, timer_channel_number_t channel)
{
timer[timer_number]->channel[channel].control |= TIMER_CR_INTERRUPT_MASK;
}
void timer_set_mode(timer_device_number_t timer_number, timer_channel_number_t channel, uint32_t mode)
{
timer[timer_number]->channel[channel].control &= (~TIMER_CR_MODE_MASK);
timer[timer_number]->channel[channel].control |= mode;
}
void timer_set_reload(timer_device_number_t timer_number, timer_channel_number_t channel, uint32_t count)
{
timer[timer_number]->channel[channel].load_count = count;
}
void timer_set_reload2(timer_device_number_t timer_number, timer_channel_number_t channel, uint32_t count)
{
timer[timer_number]->load_count2[channel] = count;
}
uint32_t timer_get_count(timer_device_number_t timer_number, timer_channel_number_t channel)
{
return timer[timer_number]->channel[channel].current_value;
}
uint32_t timer_get_reload(timer_device_number_t timer_number, timer_channel_number_t channel)
{
return timer[timer_number]->channel[channel].load_count;
}
uint32_t timer_get_reload2(timer_device_number_t timer_number, timer_channel_number_t channel)
{
return timer[timer_number]->load_count2[channel];
}
uint32_t timer_get_interrupt_status(timer_device_number_t timer_number)
{
return timer[timer_number]->intr_stat;
}
uint32_t timer_get_raw_interrupt_status(timer_device_number_t timer_number)
{
return timer[timer_number]->raw_intr_stat;
}
uint32_t timer_channel_get_interrupt_status(timer_device_number_t timer_number, timer_channel_number_t channel)
{
return timer[timer_number]->channel[channel].intr_stat;
}
void timer_clear_interrupt(timer_device_number_t timer_number)
{
timer[timer_number]->eoi = timer[timer_number]->eoi;
}
void timer_channel_clear_interrupt(timer_device_number_t timer_number, timer_channel_number_t channel)
{
timer[timer_number]->channel[channel].eoi = timer[timer_number]->channel[channel].eoi;
}
void timer_set_enable(timer_device_number_t timer_number, timer_channel_number_t channel, uint32_t enable)
{
if (enable)
timer[timer_number]->channel[channel].control = TIMER_CR_USER_MODE | TIMER_CR_ENABLE;
else
timer[timer_number]->channel[channel].control = TIMER_CR_INTERRUPT_MASK;
}
size_t timer_set_interval(timer_device_number_t timer_number, timer_channel_number_t channel, size_t useconds)
{
uint32_t clk_freq = SysctlClockGetFreq(SYSCTL_CLOCK_TIMER0 + timer_number);
double min_step = 1e6 / clk_freq;
size_t value = (size_t)(useconds / min_step);
configASSERT(value > 0 && value < UINT32_MAX);
timer[timer_number]->channel[channel].load_count = (uint32_t)value;
return (size_t)(min_step * value);
}
typedef void(*timer_ontick)();
timer_ontick time_irq[3][4] = { NULL };
static int timer_isr(void *parm)
{
uint32_t timer_number;
for (timer_number = 0; timer_number < 3; timer_number++)
{
if (parm == timer[timer_number])
break;
}
uint32_t channel = timer[timer_number]->intr_stat;
size_t i = 0;
for (i = 0; i < 4; i++)
{
if (channel & 1)
{
if (time_irq[timer_number][i])
(time_irq[timer_number][i])();
break;
}
channel >>= 1;
}
readl(&timer[timer_number]->eoi);
return 0;
}
void timer_set_irq(timer_device_number_t timer_number, timer_channel_number_t channel, void(*func)(), uint32_t priority)
{
time_irq[timer_number][channel] = func;
if (channel < 2)
{
plic_set_priority(IRQN_TIMER0A_INTERRUPT + timer_number * 2, priority);
plic_irq_register(IRQN_TIMER0A_INTERRUPT + timer_number * 2, timer_isr, (void *)timer[timer_number]);
plic_irq_enable(IRQN_TIMER0A_INTERRUPT + timer_number * 2);
}
else
{
plic_set_priority(IRQN_TIMER0B_INTERRUPT + timer_number * 2, priority);
plic_irq_register(IRQN_TIMER0B_INTERRUPT + timer_number * 2, timer_isr, (void *)timer[timer_number]);
plic_irq_enable(IRQN_TIMER0B_INTERRUPT + timer_number * 2);
}
}
/**
* @brief Get the timer irqn by device and channel object
*
* @note Internal function, not public
* @param device The device
* @param channel The channel
* @return plic_irq_t IRQ number
*/
static plic_irq_t get_timer_irqn_by_device_and_channel(timer_device_number_t device, timer_channel_number_t channel)
{
if (device < TIMER_DEVICE_MAX && channel < TIMER_CHANNEL_MAX) {
/*
* Select timer interrupt part
* Hierarchy of Timer interrupt to PLIC
* +---------+ +-----------+
* | 0+----+ | |
* | | +--+0A |
* | 1+----+ | |
* | TIMER0 | | |
* | 2+----+ | |
* | | +--+0B |
* | 3+----+ | |
* +---------+ | |
* | |
* +---------+ | |
* | 0+----+ | |
* | | +--+1A |
* | 1+----+ | |
* | TIMER1 | | PLIC |
* | 2+----+ | |
* | | +--+1B |
* | 3+----+ | |
* +---------+ | |
* | |
* +---------+ | |
* | 0+----+ | |
* | | +--+2A |
* | 1+----+ | |
* | TIMER2 | | |
* | 2+----+ | |
* | | +--+2B |
* | 3+----+ | |
* +---------+ +-----------+
*
*/
if (channel < 2) {
/* It is part A interrupt, offset + 0 */
return IRQN_TIMER0A_INTERRUPT + device * 2;
}
else {
/* It is part B interrupt, offset + 1 */
return IRQN_TIMER0B_INTERRUPT + device * 2;
}
}
return IRQN_NO_INTERRUPT;
}
/**
* @brief Process user callback function
*
* @note Internal function, not public
* @param device The timer device
* @param ctx The context
* @return int The callback result
*/
static int timer_interrupt_handler(timer_device_number_t device, void *ctx)
{
uint32_t channel_int_stat = timer[device]->intr_stat;
for (size_t i = 0; i < TIMER_CHANNEL_MAX; i++)
{
/* Check every bit for interrupt status */
if (channel_int_stat & 1)
{
if (timer_instance[device][i].callback) {
/* Process user callback function */
timer_instance[device][i].callback(timer_instance[device][i].ctx);
/* Check if this timer is a single shot timer */
if (timer_instance[device][i].single_shot) {
/* Single shot timer, disable it */
timer_set_enable(device, i, 0);
}
}
/* Clear timer interrupt flag for specific channel */
readl(&timer[device]->channel[i].eoi);
}
channel_int_stat >>= 1;
}
/*
* NOTE:
* Don't read timer[device]->eoi here, or you will lost some interrupt
* readl(&timer[device]->eoi);
*/
return 0;
}
/**
* @brief Callback function bus for timer interrupt
*
* @note Internal function, not public
* @param ctx The context
* @return int The callback result
*/
static void timer0_interrupt_callback(int irq, void *ctx)
{
timer_interrupt_handler(TIMER_DEVICE_0, ctx);
}
/**
* @brief Callback function bus for timer interrupt
*
* @note Internal function, not public
* @param ctx The context
* @return int The callback result
*/
static void timer1_interrupt_callback(int irq, void *ctx)
{
timer_interrupt_handler(TIMER_DEVICE_1, ctx);
}
/**
* @brief Callback function bus for timer interrupt
*
* @note Internal function, not public
* @param ctx The context
* @return int The callback result
*/
static void timer2_interrupt_callback(int irq, void *ctx)
{
timer_interrupt_handler(TIMER_DEVICE_2, ctx);
}
int timer_irq_register(timer_device_number_t device, timer_channel_number_t channel, int is_single_shot, uint32_t priority, timer_callback_t callback, void *ctx)
{
if (device < TIMER_DEVICE_MAX && channel < TIMER_CHANNEL_MAX) {
plic_irq_t irq_number = get_timer_irqn_by_device_and_channel(device, channel);
irq_manager_callback_t plic_irq_callback[TIMER_DEVICE_MAX] = {
timer0_interrupt_callback,
timer1_interrupt_callback,
timer2_interrupt_callback,
};
timer_instance[device][channel] = (const timer_instance_t) {
.callback = callback,
.ctx = ctx,
.single_shot = is_single_shot,
};
// plic_set_priority(irq_number, priority);
// plic_irq_register(irq_number, plic_irq_callback[device], (void *)&timer_instance[device]);
// plic_irq_enable(irq_number);
isrManager.done->registerIrq(irq_number, plic_irq_callback[device], NULL);
isrManager.done->enableIrq(irq_number);
return 0;
}
return -1;
}
int timer_irq_unregister(timer_device_number_t device, timer_channel_number_t channel)
{
if (device < TIMER_DEVICE_MAX && channel < TIMER_CHANNEL_MAX) {
timer_instance[device][channel] = (const timer_instance_t) {
.callback = NULL,
.ctx = NULL,
.single_shot = 0,
};
/* Combine 0 and 1 to A interrupt, 2 and 3 to B interrupt */
if ((!(timer_instance[device][TIMER_CHANNEL_0].callback ||
timer_instance[device][TIMER_CHANNEL_1].callback)) ||
(!(timer_instance[device][TIMER_CHANNEL_2].callback ||
timer_instance[device][TIMER_CHANNEL_3].callback))) {
plic_irq_t irq_number = get_timer_irqn_by_device_and_channel(device, channel);
plic_irq_unregister(irq_number);
}
return 0;
}
return -1;
}

View File

@ -10,8 +10,8 @@ if BSP_USING_TOUCH
default "touch_dev"
config BSP_TOUCH_TP_INT
int "touch int pin"
default 36
default 30
config FPIOA_TOUCH_TP_INT
int "fpioa touch int pin"
default 12
default 30
endif

View File

@ -24,21 +24,33 @@
#include <bus.h>
#include <gpiohs.h>
#include <fpioa.h>
#include "gsl2038firmware.h"
struct Finger {
uint8_t fingerID;
uint32_t x;
uint32_t y;
};
struct Touch_event {
uint8_t NBfingers;
struct Finger fingers[5];
};
// #define LCD_HEIGHT BSP_LCD_X_MAX
// #define LCD_WIDTH BSP_LCD_Y_MAX
#define DEFAULT_NUM 0x0D
#define TOUCH_ADDRESS 0x44
volatile bool SemReleaseFlag = 0;
static struct Bus* i2c_bus = NONE;
static struct Bus* pin_bus = NONE;
int touch_sem = 0;
POINT Pre_Touch_Point;
#define DATA_REG 0x80
#define STATUS_REG 0xE0
/* HERE WE IMPLEMENT I2C READING AND WRITING FROM SENSOR */
/* write sensor register data */
static x_err_t WriteReg(struct HardwareDev* dev, uint8 len, uint8* buf)
static x_err_t WriteReg(struct HardwareDev* dev, char* buf, int len)
{
struct BusBlockWriteParam write_param;
write_param.pos = 0;
@ -62,150 +74,10 @@ static x_err_t ReadRegs(struct HardwareDev* dev, uint8 len, uint8* buf)
return BusDevReadData(dev, &read_param);
}
/**
* i2c_transfer - execute a single I2C message
* @msgs: One or more messages to execute before STOP is issued to
* terminate the operation; each message begins with a START.
*/
int I2C_Transfer(struct i2c_msg* msg)
{
int16 ret = 0;
if (msg->flags & I2C_M_RD) //根据flag判断是读数据还是写数据
{
ret = ReadRegs(i2c_bus->owner_haldev, msg->len, msg->buf); //IIC读取数据
}
else
{
ret = WriteReg(i2c_bus->owner_haldev, msg->len, msg->buf); //IIC写入数据
} //正常完成的传输结构个数
return ret;
}
static int32_t GtpI2cWrite(uint8_t* buf, int32_t len)
{
struct i2c_msg msg;
int32_t ret = -1;
int32_t retries = 0;
msg.flags = !I2C_M_RD;
msg.len = len;
msg.buf = buf;
//msg.scl_rate = 300 * 1000; // for Rockchip, etc
while (retries < 5)
{
ret = I2C_Transfer(&msg);
if (ret == 1) { break; }
retries++;
}
if (retries >= 5)
{
KPrintf("I2C Write: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((uint16_t)(buf[0] << 8)) | buf[1]), len - 2, ret);
ret = -1;
}
return ret;
}
static int32_t GtpI2cRead(uint8_t* buf, int32_t len)
{
struct i2c_msg msgs[2];
int32_t ret = -1;
int32_t retries = 0;
// write reading addr.
msgs[0].flags = !I2C_M_RD;
msgs[0].len = GTP_ADDR_LENGTH;
msgs[0].buf = buf;
// read data at addr sended.
msgs[1].flags = I2C_M_RD;
msgs[1].len = len - GTP_ADDR_LENGTH;
msgs[1].buf = &buf[GTP_ADDR_LENGTH];
while (retries < 5)
{
ret = I2C_Transfer(&msgs[0]);
ret += I2C_Transfer(&msgs[1]);
if (ret == 2)break;
retries++;
}
if (retries >= 5)
{
KPrintf("I2C Read: 0x%04X, %d bytes %d times failed, errcode: %d! Process reset.\n", (((uint16_t)(buf[0] << 8)) | buf[1]), len - 2, retries, ret);
ret = -1;
}
return ret;
}
/* HERE WE IMPLEMENT TOUCH INIT */
int32_t GtpReadVersion(void)
{
int32_t ret = -1;
uint8_t buf[8] = { GTP_REG_VERSION >> 8, GTP_REG_VERSION & 0xff };
ret = GtpI2cRead(buf, sizeof(buf));
if (ret < 0)
{
KPrintf("GTP read version failed.\n");
return ret;
}
if (buf[5] == 0x00)
{
KPrintf("IC1 Version: %c%c%c_%02x%02x\n", buf[2], buf[3], buf[4], buf[7], buf[6]);
}
else
{
KPrintf("IC2 Version: %c%c%c%c_%02x%02x\n", buf[2], buf[3], buf[4], buf[5], buf[7], buf[6]);
}
return ret;
}
static int32_t GtpGetInfo(void)
{
uint8_t end_cmd[3] = { GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF, 0 };
uint8_t opr_buf[6] = { 0 };
int32_t ret = 0;
uint16_t abs_x_max = GTP_MAX_WIDTH;
uint16_t abs_y_max = GTP_MAX_HEIGHT;
uint8_t int_trigger_type = GTP_INT_TRIGGER;
opr_buf[0] = (uint8_t)((GTP_REG_CONFIG_DATA + 1) >> 8);
opr_buf[1] = (uint8_t)((GTP_REG_CONFIG_DATA + 1) & 0xFF);
if (GtpI2cRead(opr_buf, 6) < 0)
{
return -1;
}
abs_x_max = (opr_buf[3] << 8) + opr_buf[2];
abs_y_max = (opr_buf[5] << 8) + opr_buf[4];
opr_buf[0] = (uint8_t)((GTP_REG_CONFIG_DATA + 6) >> 8);
opr_buf[1] = (uint8_t)((GTP_REG_CONFIG_DATA + 6) & 0xFF);
if (GtpI2cRead(opr_buf, 3) < 0)
{
return 0;
}
int_trigger_type = opr_buf[2] & 0x03;
KPrintf("X_MAX = %d, Y_MAX = %d, TRIGGER = 0x%02x\n",
abs_x_max, abs_y_max, int_trigger_type);
if (GtpI2cWrite(end_cmd, 3) < 0)
{
KPrintf("I2C write end_cmd error!\n");
ret = 0;
}
return 0; ;
}
// not used in polling mode
static void GT9xx_PEN_IRQHandler(void* arg)
static void touch_pin_irqhandler(void* arg)
{
KPrintf("int hdr working.\n");
// KPrintf("int hdr working.\n");
if (!SemReleaseFlag)
{
KSemaphoreAbandon(touch_sem);
@ -213,20 +85,20 @@ static void GT9xx_PEN_IRQHandler(void* arg)
}
}
int32_t GT9xx_INT_INIT() {
int32_t touch_irq_init()
{
int32_t ret = -ERROR;
pin_bus = PinBusInitGet();
struct PinParam pin_param;
struct BusConfigureInfo pin_configure_info;
pin_bus = PinBusInitGet();
pin_configure_info.configure_cmd = OPE_CFG;
pin_configure_info.private_data = (void*)&pin_param;
pin_param.cmd = GPIO_CONFIG_MODE;
pin_param.pin = BSP_TOUCH_TP_INT;
pin_param.mode = GPIO_CFG_INPUT_PULLUP;
pin_param.mode = GPIO_CFG_INPUT;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
KPrintf("config pin_param %d input failed!\n", pin_param.pin);
@ -235,8 +107,8 @@ int32_t GT9xx_INT_INIT() {
pin_param.cmd = GPIO_IRQ_REGISTER;
pin_param.pin = BSP_TOUCH_TP_INT;
pin_param.irq_set.irq_mode = GPIO_IRQ_EDGE_FALLING;
pin_param.irq_set.hdr = GT9xx_PEN_IRQHandler;
pin_param.irq_set.irq_mode = GPIO_IRQ_EDGE_BOTH;
pin_param.irq_set.hdr = touch_pin_irqhandler;
pin_param.irq_set.args = NONE;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
@ -264,7 +136,7 @@ int32_t GT9xx_INT_INIT() {
return EOK;
}
int32_t I2C_Touch_Init() {
int32_t I2cTouchInit() {
// using static bus information
int32_t ret = -1;
/* find I2C device and get I2C handle */
@ -294,116 +166,68 @@ int32_t I2C_Touch_Init() {
// memset(&i2c_configure_info, 0, sizeof(struct BusConfigureInfo));
i2c_configure_info.configure_cmd = OPE_INT;
uint16 i2c_address = GTP_ADDRESS >> 1;
uint16 i2c_address = TOUCH_ADDRESS;
i2c_configure_info.private_data = (void*)&i2c_address;
BusDrvConfigure(i2c_bus->owner_driver, &i2c_configure_info);
// 3. init interruption
return GT9xx_INT_INIT();
return touch_irq_init();
}
/* HERE WE IMPLEMENT GET COORDINATE FUNCTION */
/**
* @brief
* @param
* @retval
*/
bool GetTouchEvent(POINT* touch_point, touch_event_t* touch_event)
void loadfw(struct HardwareDev *dev)
{
uint8_t addr;
uint8_t Wrbuf[5];
size_t source_len = sizeof(GSL2038_FW) / sizeof(struct fw_data);
uint8_t end_cmd[3] = { GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF, 0 };
uint8_t point_data[2 + 1 + 8 * GTP_MAX_TOUCH + 1] = { GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF };
uint8_t touch_num = 0;
uint8_t finger = 0;
static uint16_t pre_touch = 0;
for (size_t source_line = 0; source_line < source_len; source_line++) {
// addr = GSL2038_FW[source_line].offset;
memset(Wrbuf, 0 , 5);
Wrbuf[0] = GSL2038_FW[source_line].offset;
Wrbuf[1] = (char)(GSL2038_FW[source_line].val & 0x000000ff);
Wrbuf[2] = (char)((GSL2038_FW[source_line].val & 0x0000ff00) >> 8);
Wrbuf[3] = (char)((GSL2038_FW[source_line].val & 0x00ff0000) >> 16);
Wrbuf[4] = (char)((GSL2038_FW[source_line].val & 0xff000000) >> 24);
uint8_t* coor_data = NULL;
int32_t input_x = 0;
int32_t input_y = 0;
int32_t input_w = 0;
int32_t ret = -1;
ret = GtpI2cRead(point_data, 12);//10字节寄存器加2字节地址
if (ret < 0)
{
KPrintf("I2C transfer error. errno:%d\n ", ret);
return 0;
WriteReg(dev, Wrbuf,5);
}
}
finger = point_data[GTP_ADDR_LENGTH];//状态寄存器数据
void reset()
{
uint8_t REG[6] = {STATUS_REG, 0xE4, 0xbc, 0xbd, 0xbe, 0xbf};
uint8_t DATA[6] = {0x88, 0x04, 0x00, 0x00, 0x00, 0x00};
char reg_data[2];
if (finger == 0x00) //没有数据,退出
int i;
for (i = 0; i < sizeof(REG); ++i)
{
ret = 0;
goto exit_work_func;
// WriteReg(i2c_bus->owner_haldev, &REG[i],1);
// WriteReg(i2c_bus->owner_haldev, &DATA[i],1);
reg_data[0] = REG[i];
reg_data[1] = DATA[i];
WriteReg(i2c_bus->owner_haldev, reg_data,2);
MdelayKTask(10);
}
}
if ((finger & 0x80) == 0)//判断buffer status位
{
ret = 0;
goto exit_work_func;//坐标未就绪,数据无效
}
void startchip()
{
char reg_data[] = {0xE0, 0x00};
touch_num = finger & 0x0f;//坐标点数
if (touch_num > GTP_MAX_TOUCH)
{
ret = 0;
goto exit_work_func;//大于最大支持点数,错误退出
}
if (touch_num)
{
coor_data = &point_data[0 * 8 + 3];
input_x = coor_data[1] | (coor_data[2] << 8); //x坐标
input_y = coor_data[3] | (coor_data[4] << 8); //y坐标
input_w = coor_data[5] | (coor_data[6] << 8); //size
touch_point->X = input_x;
touch_point->Y = input_y;
*touch_event = kTouch_Down;
Pre_Touch_Point = *touch_point;
}
else if (pre_touch) //touch_ num=0 且pre_touch=0
{
*touch_point = Pre_Touch_Point;
*touch_event = kTouch_Up;
Pre_Touch_Point.X = -1;
Pre_Touch_Point.Y = -1;
}
pre_touch = touch_num;
exit_work_func:
{
ret = GtpI2cWrite(end_cmd, 3);
if (ret < 0)
{
KPrintf("I2C write end_cmd error!\n");
ret = 0;
}
}
return ret;
WriteReg(i2c_bus->owner_haldev, reg_data,2); // Registre
}
static uint32 TouchOpen(void* dev)
{
int32_t ret = -1;
int32_t ret = 0;
I2C_Touch_Init();
ret = GtpReadVersion();
if (ret < 0)
{
KPrintf("gtp read version error\n");
return ret;
}
I2cTouchInit();
ret = GtpGetInfo();
if (ret < 0)
{
KPrintf("gtp read info error\n");
return ret;
}
reset();
loadfw(i2c_bus->owner_haldev);
reset();
startchip();
touch_sem = KSemaphoreCreate(0);
if (touch_sem < 0) {
@ -416,7 +240,31 @@ static uint32 TouchOpen(void* dev)
static uint32 TouchClose(void* dev)
{
int32_t ret = -ERROR;
struct PinParam pin_param;
struct BusConfigureInfo pin_configure_info;
pin_configure_info.configure_cmd = OPE_CFG;
pin_configure_info.private_data = (void*)&pin_param;
pin_param.cmd = GPIO_IRQ_DISABLE;
pin_param.pin = BSP_TOUCH_TP_INT;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
KPrintf("disable pin_param %d irq failed!\n", pin_param.pin);
return -ERROR;
}
pin_param.cmd = GPIO_IRQ_FREE;
pin_param.pin = BSP_TOUCH_TP_INT;
ret = BusDrvConfigure(pin_bus->owner_driver, &pin_configure_info);
if (ret != EOK) {
KPrintf("register pin_param %d irq failed!\n", pin_param.pin);
return -ERROR;
}
KSemaphoreDelete(touch_sem);
return 0;
}
@ -424,23 +272,35 @@ static uint32 TouchRead(void* dev, struct BusBlockReadParam* read_param)
{
uint32 ret = -1;
x_err_t result;
POINT touch_point;
touch_point.X = -1;
touch_point.Y = -1;
touch_event_t touch_event;
uint8_t TOUCHRECDATA[24] = {0};
struct Touch_event ts_event;
char status_reg = 0x80;
struct TouchDataStandard* data = (struct TouchDataStandard*)read_param->buffer;
read_param->read_length = 0;
result = KSemaphoreObtain(touch_sem, 100);
if (GetTouchEvent(&touch_point, &touch_event))
{
data->x = touch_point.X;
data->y = touch_point.Y;
result = KSemaphoreObtain(touch_sem, 1000);
// if (EOK == result)
// {
memset(TOUCHRECDATA, 0, 24);
memset(&ts_event, 0, sizeof(struct Touch_event));
read_param->read_length = read_param->size;
ret = EOK;
}
SemReleaseFlag = 0;
WriteReg(i2c_bus->owner_haldev, &status_reg, 1);
ReadRegs(i2c_bus->owner_haldev, 24, TOUCHRECDATA);
ts_event.NBfingers = TOUCHRECDATA[0];
for (int i = 0; i < ts_event.NBfingers; i++)
{
ts_event.fingers[i].x = ((((uint32_t)TOUCHRECDATA[(i * 4) + 5]) << 8) | (uint32_t)TOUCHRECDATA[(i * 4) + 4]) & 0x00000FFF; // 12 bits of X coord
ts_event.fingers[i].y = ((((uint32_t)TOUCHRECDATA[(i * 4) + 7]) << 8) | (uint32_t)TOUCHRECDATA[(i * 4) + 6]) & 0x00000FFF;
ts_event.fingers[i].fingerID = (uint32_t)TOUCHRECDATA[(i * 4) + 7] >> 4; // finger that did the touch
printf("fingers[%d] x %d y %d id %d\n",i,ts_event.fingers[i].x,ts_event.fingers[i].y,ts_event.fingers[i].fingerID);
}
data->x = ts_event.fingers[ts_event.NBfingers - 1].x;
data->y = ts_event.fingers[ts_event.NBfingers - 1].y;
SemReleaseFlag = 0;
// }
return ret;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,34 @@
menuconfig BSP_USING_WDT0
bool "Using watchdog 0 "
default n
if BSP_USING_WDT0
config WDT_BUS_NAME_0
string "watchdog bus 0 name"
default "wdt0"
config WDT_DRIVER_NAME_0
string "watchdog driver 0 name"
default "wdt0_drv"
config WDT_0_DEVICE_NAME_0
string "watchdog device 0 name"
default "wdt0_dev0"
endif
menuconfig BSP_USING_WDT1
bool "Using watchdog 1 "
default n
if BSP_USING_WDT1
config WDT_BUS_NAME_1
string "watchdog bus 1 name"
default "wdt1"
config WDT_DRIVER_NAME_1
string "watchdog driver 1 name"
default "wdt1_drv"
config WDT_1_DEVICE_NAME_1
string "watchdog device 1 name"
default "wdt1_dev1"
endif

View File

@ -0,0 +1,6 @@
SRC_FILES := wdt.c connect_wdt.c
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,176 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_wdt.c
* @brief support aiit-riscv64-board watchdog function and register to bus framework
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#include <connect_wdt.h>
#include <wdt.h>
static uint32 WdtOpen(void *dev)
{
NULL_PARAM_CHECK(dev);
wdt_device_number_t id;
struct WdtHardwareDevice *wdt = (struct WdtHardwareDevice *)dev;
id = *(wdt_device_number_t *)wdt->private_data;
wdt_init(id, 4095, NONE, NONE);
return EOK;
}
static uint32 WdtConfigure(void *drv, struct BusConfigureInfo *args)
{
NULL_PARAM_CHECK(drv);
NULL_PARAM_CHECK(args);
struct WdtDriver *wdt = (struct WdtDriver *)drv;
wdt_device_number_t id = *(wdt_device_number_t *)wdt->private_data;
switch (args->configure_cmd)
{
case OPER_WDT_SET_TIMEOUT:
if (wdt_init(id, (uint64_t)*(int *)args->private_data, NONE, NONE) == 0) {
return ERROR;
}
break;
case OPER_WDT_KEEPALIVE:
wdt_feed(id);
break;
default:
return ERROR;
}
return EOK;
}
static const struct WdtDevDone dev_done =
{
WdtOpen,
NONE,
NONE,
NONE,
};
/**
* @description: Watchdog function
* @return success: EOK, failure: other
*/
int StartWatchdog(void)
{
//add feed watchdog task function
return EOK;
}
int HwWdtInit(void)
{
wdt_device_number_t id;
x_err_t ret = EOK;
#ifdef BSP_USING_WDT0
{
static struct WdtBus wdt0;
ret = WdtBusInit(&wdt0, WDT_BUS_NAME_0);
if (ret != EOK) {
KPrintf("Watchdog bus init error %d\n", ret);
return ERROR;
}
static struct WdtDriver drv0;
drv0.configure = WdtConfigure;
id = WDT_DEVICE_0;
drv0.private_data = &id;
ret = WdtDriverInit(&drv0, WDT_DRIVER_NAME_0);
if (ret != EOK) {
KPrintf("Watchdog driver init error %d\n", ret);
return ERROR;
}
ret = WdtDriverAttachToBus(WDT_DRIVER_NAME_0, WDT_BUS_NAME_0);
if (ret != EOK) {
KPrintf("Watchdog driver attach error %d\n", ret);
return ERROR;
}
static struct WdtHardwareDevice dev0;
dev0.dev_done = &dev_done;
dev0.private_data = &id;
ret = WdtDeviceRegister(&dev0, WDT_0_DEVICE_NAME_0);
if (ret != EOK) {
KPrintf("Watchdog device register error %d\n", ret);
return ERROR;
}
ret = WdtDeviceAttachToBus(WDT_0_DEVICE_NAME_0, WDT_BUS_NAME_0);
if (ret != EOK) {
KPrintf("Watchdog device register error %d\n", ret);
return ERROR;
}
}
#endif
#ifdef BSP_USING_WDT1
{
static struct WdtBus wdt1;
ret = WdtBusInit(&wdt1, WDT_BUS_NAME_1);
if (ret != EOK) {
KPrintf("Watchdog bus init error %d\n", ret);
return ERROR;
}
static struct WdtDriver drv1;
drv1.configure = WdtConfigure;
id = WDT_DEVICE_1;
drv1.private_data = &id;
ret = WdtDriverInit(&drv1, WDT_DRIVER_NAME_1);
if (ret != EOK) {
KPrintf("Watchdog driver init error %d\n", ret);
return ERROR;
}
ret = WdtDriverAttachToBus(WDT_DRIVER_NAME_1, WDT_BUS_NAME_1);
if (ret != EOK) {
KPrintf("Watchdog driver attach error %d\n", ret);
return ERROR;
}
static struct WdtHardwareDevice dev1;
dev1.dev_done = &dev_done;
dev1.private_data = &id;
ret = WdtDeviceRegister(&dev1, WDT_1_DEVICE_NAME_1);
if (ret != EOK) {
KPrintf("Watchdog device register error %d\n", ret);
return ERROR;
}
ret = WdtDeviceAttachToBus(WDT_1_DEVICE_NAME_1, WDT_BUS_NAME_1);
if (ret != EOK) {
KPrintf("Watchdog device register error %d\n", ret);
return ERROR;
}
}
#endif
return ret;
}

View File

@ -0,0 +1,125 @@
/* Copyright 2018 Canaan Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file wdt.c
* @brief add from Canaan k210 SDK
* https://canaan-creative.com/developer
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#include <math.h>
#include <platform.h>
#include <plic.h>
#include <stddef.h>
#include <sysctl.h>
#include <utils.h>
#include <wdt.h>
volatile wdt_t *const wdt[2] =
{
(volatile wdt_t *)WDT0_BASE_ADDR,
(volatile wdt_t *)WDT1_BASE_ADDR
};
static void wdt_enable(wdt_device_number_t id)
{
wdt[id]->crr = WDT_CRR_MASK;
wdt[id]->cr |= WDT_CR_ENABLE;
}
static void wdt_disable(wdt_device_number_t id)
{
wdt[id]->crr = WDT_CRR_MASK;
wdt[id]->cr &= (~WDT_CR_ENABLE);
}
static void wdt_set_timeout(wdt_device_number_t id, uint8_t timeout)
{
wdt[id]->torr = WDT_TORR_TOP(timeout);
}
static void wdt_response_mode(wdt_device_number_t id, uint8_t mode)
{
wdt[id]->cr &= (~WDT_CR_RMOD_MASK);
wdt[id]->cr |= mode;
}
static uint64_t wdt_get_pclk(wdt_device_number_t id)
{
return id ? SysctlClockGetFreq(SYSCTL_CLOCK_WDT1) : SysctlClockGetFreq(SYSCTL_CLOCK_WDT0);
}
static uint8_t wdt_get_top(wdt_device_number_t id, uint64_t timeout_ms)
{
uint64_t wdt_clk = wdt_get_pclk(id);
uint64_t ret = (timeout_ms * wdt_clk / 1000) >> 16;
if (ret)
ret = (uint32_t)log2(ret);
if (ret > 0xf)
ret = 0xf;
return (uint8_t)ret;
}
void wdt_feed(wdt_device_number_t id)
{
wdt[id]->crr = WDT_CRR_MASK;
}
void wdt_clear_interrupt(wdt_device_number_t id)
{
wdt[id]->eoi = wdt[id]->eoi;
}
void wdt_start(wdt_device_number_t id, uint64_t time_out_ms, plic_irq_callback_t on_irq)
{
sysctl_reset(id ? SYSCTL_RESET_WDT1 : SYSCTL_RESET_WDT0);
sysctl_clock_set_threshold(id ? SYSCTL_THRESHOLD_WDT1 : SYSCTL_THRESHOLD_WDT0, 0);
sysctl_clock_enable(id ? SYSCTL_CLOCK_WDT1 : SYSCTL_CLOCK_WDT0);
plic_set_priority(id ? IRQN_WDT1_INTERRUPT : IRQN_WDT0_INTERRUPT, 1);
plic_irq_enable(id ? IRQN_WDT1_INTERRUPT : IRQN_WDT0_INTERRUPT);
plic_irq_register(id ? IRQN_WDT1_INTERRUPT : IRQN_WDT0_INTERRUPT, on_irq, NULL);
wdt_response_mode(id, WDT_CR_RMOD_INTERRUPT);
uint8_t m_top = wdt_get_top(id, time_out_ms);
wdt_set_timeout(id, m_top);
wdt_enable(id);
}
uint32_t wdt_init(wdt_device_number_t id, uint64_t time_out_ms, plic_irq_callback_t on_irq, void *ctx)
{
sysctl_reset(id ? SYSCTL_RESET_WDT1 : SYSCTL_RESET_WDT0);
sysctl_clock_set_threshold(id ? SYSCTL_THRESHOLD_WDT1 : SYSCTL_THRESHOLD_WDT0, 0);
sysctl_clock_enable(id ? SYSCTL_CLOCK_WDT1 : SYSCTL_CLOCK_WDT0);
plic_set_priority(id ? IRQN_WDT1_INTERRUPT : IRQN_WDT0_INTERRUPT, 1);
plic_irq_enable(id ? IRQN_WDT1_INTERRUPT : IRQN_WDT0_INTERRUPT);
plic_irq_register(id ? IRQN_WDT1_INTERRUPT : IRQN_WDT0_INTERRUPT, on_irq, ctx);
wdt_response_mode(id, WDT_CR_RMOD_INTERRUPT);
uint8_t m_top = wdt_get_top(id, time_out_ms);
wdt_set_timeout(id, m_top);
wdt_enable(id);
return (1UL << (m_top + 16 + 1)) * 1000UL / wdt_get_pclk(id);
}
void wdt_stop(wdt_device_number_t id)
{
wdt_disable(id);
}

View File

@ -28,6 +28,12 @@ menu "hc32f4a0 feature"
endmenu
endmenu
config MOUNT_SDCARD
bool
default n
config MOUNT_USB
bool
default n
endmenu
menu "Hardware feature"

View File

@ -34,6 +34,18 @@ Modification:
#include <hc32_ll.h>
#include <connect_usart.h>
#ifdef BSP_USING_SDIO
#include <connect_sdio.h>
#endif
#ifdef BSP_USING_SPI
#include <connect_spi.h>
#endif
#ifdef BSP_USING_USB
#include <connect_usb.h>
#endif
extern void entry(void);
extern int HwUsartInit();
@ -46,15 +58,10 @@ void SystemClockConfig(void)
stc_clock_xtal_init_t stcXtalInit;
stc_clock_pll_init_t stcPLLHInit;
/* PCLK0, HCLK Max 240MHz */
/* PCLK1, PCLK4 Max 120MHz */
/* PCLK2, PCLK3 Max 60MHz */
/* EX BUS Max 120MHz */
CLK_SetClockDiv(CLK_BUS_CLK_ALL, \
(CLK_PCLK0_DIV1 | CLK_PCLK1_DIV2 | CLK_PCLK2_DIV4 | \
CLK_PCLK3_DIV4 | CLK_PCLK4_DIV2 | CLK_EXCLK_DIV2 | \
CLK_SetClockDiv(CLK_BUS_CLK_ALL,
(CLK_PCLK0_DIV1 | CLK_PCLK1_DIV2 | CLK_PCLK2_DIV4 |
CLK_PCLK3_DIV4 | CLK_PCLK4_DIV2 | CLK_EXCLK_DIV2 |
CLK_HCLK_DIV1));
(void)CLK_XtalStructInit(&stcXtalInit);
/* Config Xtal and enable Xtal */
stcXtalInit.u8Mode = CLK_XTAL_MD_OSC;
@ -64,26 +71,37 @@ void SystemClockConfig(void)
(void)CLK_XtalInit(&stcXtalInit);
(void)CLK_PLLStructInit(&stcPLLHInit);
stcPLLHInit.u8PLLState = CLK_PLL_ON;
stcPLLHInit.PLLCFGR = 0UL;
stcPLLHInit.PLLCFGR_f.PLLM = 1UL - 1UL;
#ifdef BSP_USING_USB
/* VCO = (8/1)*120 = 960MHz*/
stcPLLHInit.u8PLLState = CLK_PLL_ON;
stcPLLHInit.PLLCFGR = 0UL;
stcPLLHInit.PLLCFGR_f.PLLM = 1UL - 1UL;
stcPLLHInit.PLLCFGR_f.PLLN = 120UL - 1UL;
stcPLLHInit.PLLCFGR_f.PLLP = 4UL - 1UL;
stcPLLHInit.PLLCFGR_f.PLLQ = 4UL - 1UL;
stcPLLHInit.PLLCFGR_f.PLLR = 4UL - 1UL;
stcPLLHInit.PLLCFGR_f.PLLN = 120UL - 1UL;
#else
/* VCO = (8/1)*100 = 800MHz*/
stcPLLHInit.PLLCFGR_f.PLLN = 100UL - 1UL;
#endif
stcPLLHInit.PLLCFGR_f.PLLP = 4UL - 1UL;
stcPLLHInit.PLLCFGR_f.PLLQ = 4UL - 1UL;
stcPLLHInit.PLLCFGR_f.PLLR = 4UL - 1UL;
stcPLLHInit.PLLCFGR_f.PLLSRC = CLK_PLL_SRC_XTAL;
(void)CLK_PLLInit(&stcPLLHInit);
#ifdef BSP_USING_USB
/* Highspeed SRAM set to 0 Read/Write wait cycle */
SRAM_SetWaitCycle(SRAM_SRAMH, SRAM_WAIT_CYCLE0, SRAM_WAIT_CYCLE0);
/* SRAM1_2_3_4_backup set to 1 Read/Write wait cycle */
SRAM_SetWaitCycle((SRAM_SRAM123 | SRAM_SRAM4 | SRAM_SRAMB), SRAM_WAIT_CYCLE1, SRAM_WAIT_CYCLE1);
#else
/* Highspeed SRAM set to 1 Read/Write wait cycle */
SRAM_SetWaitCycle(SRAM_SRAMH, SRAM_WAIT_CYCLE1, SRAM_WAIT_CYCLE1);
/* SRAM1_2_3_4_backup set to 2 Read/Write wait cycle */
SRAM_SetWaitCycle((SRAM_SRAM123 | SRAM_SRAM4 | SRAM_SRAMB), SRAM_WAIT_CYCLE2, SRAM_WAIT_CYCLE2);
#endif
/* 0-wait @ 40MHz */
(void)EFM_SetWaitCycle(EFM_WAIT_CYCLE5);
EFM_SetWaitCycle(EFM_WAIT_CYCLE5);
/* 4 cycles for 200 ~ 250MHz */
GPIO_SetReadWaitCycle(GPIO_RD_WAIT4);
CLK_SetSysClockSrc(CLK_SYSCLK_SRC_PLL);
@ -98,7 +116,7 @@ void PeripheralClockConfig(void)
CLK_SetCANClockSrc(CLK_CAN2, CLK_CANCLK_SYSCLK_DIV6);
#endif
#if defined(RT_USING_ADC)
#if defined(BSP_USING_ADC)
CLK_SetPeriClockSrc(CLK_PERIPHCLK_PCLK);
#endif
}
@ -117,12 +135,26 @@ void SysTickConfiguration(void)
void SysTick_Handler(void)
{
x_base lock = 0;
lock = DISABLE_INTERRUPT();
TickAndTaskTimesliceUpdate();
ENABLE_INTERRUPT(lock);
}
struct InitSequenceDesc _board_init[] =
{
{ " NONE ",NONE },
#ifdef BSP_USING_SDIO
{ "sdio", HwSdioInit },
#endif
#ifdef BSP_USING_SPI
{ "spi", HwSpiInit },
#endif
#ifdef BSP_USING_USB
{ "usb", HwUsbHostInit },
#endif
{ " NONE ", NONE },
};
void InitBoardHardware()

View File

@ -35,11 +35,11 @@ Modification:
#include <stdint.h>
extern int __bss_end;
extern int __heap_start;
extern unsigned int g_service_table_start;
extern unsigned int g_service_table_end;
#define MEMORY_START_ADDRESS (&__bss_end)
#define MEMORY_START_ADDRESS (&__heap_start)
#define HC32F4_SRAM_SIZE 512
#define MEMORY_END_ADDRESS (0x1FFE0000 + HC32F4_SRAM_SIZE * 1024)

View File

@ -216,20 +216,18 @@ SECTIONS
__end__ = .;
PROVIDE(end = .);
PROVIDE(_end = .);
*(.heap*)
. = ALIGN(8);
__HeapLimit = .;
__StackLimit = .;
*(.stack*)
. = ALIGN(8);
__StackTop = .;
__heap_start = .;
} >RAM
.ARM.attributes 0 : { *(.ARM.attributes) }
PROVIDE(_stack = __StackTop);
PROVIDE(_Min_Heap_Size = __HeapLimit - __HeapBase);
PROVIDE(_Min_Stack_Size = __StackTop - __StackLimit);
__RamEnd = ORIGIN(RAM) + LENGTH(RAM);

View File

@ -5,3 +5,27 @@ menuconfig BSP_USING_UART
if BSP_USING_UART
source "$BSP_DIR/third_party_driver/usart/Kconfig"
endif
menuconfig BSP_USING_SPI
bool "Using SPI device"
default n
select RESOURCES_SPI
if BSP_USING_SPI
source "$BSP_DIR/third_party_driver/spi/Kconfig"
endif
menuconfig BSP_USING_SDIO
bool "Using SD CARD device"
default n
select RESOURCES_SDIO
if BSP_USING_SDIO
source "$BSP_DIR/third_party_driver/sdio/Kconfig"
endif
menuconfig BSP_USING_USB
bool "Using USB device"
default n
select RESOURCES_USB
if BSP_USING_USB
source "$BSP_DIR/third_party_driver/usb/Kconfig"
endif

View File

@ -4,4 +4,16 @@ ifeq ($(CONFIG_BSP_USING_UART),y)
SRC_DIR += usart
endif
ifeq ($(CONFIG_BSP_USING_SPI),y)
SRC_DIR += spi
endif
ifeq ($(CONFIG_BSP_USING_SDIO),y)
SRC_DIR += sdio
endif
ifeq ($(CONFIG_BSP_USING_USB),y)
SRC_DIR += usb
endif
include $(KERNEL_ROOT)/compiler.mk

View File

@ -101,7 +101,7 @@ extern "C"
#define LL_TMRA_ENABLE (DDL_ON)
#define LL_TRNG_ENABLE (DDL_ON)
#define LL_USART_ENABLE (DDL_ON)
#define LL_USB_ENABLE (DDL_OFF)
#define LL_USB_ENABLE (DDL_ON)
#define LL_VREF_ENABLE (DDL_OFF)
#define LL_WDT_ENABLE (DDL_ON)

View File

@ -4,4 +4,16 @@ ifeq ($(CONFIG_BSP_USING_UART),y)
SRC_FILES += hc32_ll_usart.c
endif
ifeq ($(CONFIG_BSP_USING_SDIO),y)
SRC_FILES += hc32_ll_sdioc.c
endif
ifeq ($(CONFIG_BSP_USING_SPI),y)
SRC_FILES += hc32_ll_spi.c
endif
ifeq ($(CONFIG_BSP_USING_USB),y)
SRC_FILES += hc32_ll_usb.c
endif
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,42 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_sdio.h
* @brief define hc32f4a0-board sdio function and struct
* @version 2.0
* @author AIIT XUOS Lab
* @date 2022-03-15
*/
#ifndef CONNECT_SDIO_H
#define CONNECT_SDIO_H
#include <device.h>
#include <hc32_ll_gpio.h>
#include <hc32_ll_fcg.h>
#include <hc32_ll_sdioc.h>
#include <hardware_sdio.h>
#ifdef __cplusplus
extern "C" {
#endif
#define SD_CARD_STACK_SIZE 2048
int HwSdioInit(void);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,39 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_spi.h
* @brief define hc32f4a0-board spi function and struct
* @version 2.0
* @author AIIT XUOS Lab
* @date 2022-10-17
*/
#ifndef CONNECT_SPI_H
#define CONNECT_SPI_H
#include <device.h>
#include <hardware_irq.h>
#include <hc32_ll_spi.h>
#include <hc32_ll_gpio.h>
#ifdef __cplusplus
extern "C" {
#endif
int HwSpiInit(void);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,61 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_spi_lora.h
* @brief define spi lora dev function and struct using bus driver framework
* @version 2.0
* @author AIIT XUOS Lab
* @date 2022-10-31
*/
#ifndef CONNECT_SPI_LORA_H
#define CONNECT_SPI_LORA_H
#include <device.h>
#include <hc32_ll_utility.h>
#include <connect_spi.h>
#include <radio.h>
#include <spi_lora_sx12xx.h>
#include <sx1276.h>
#include <sx1276-Hal.h>
#include <sx1276-LoRa.h>
#include <sx1276-LoRaMisc.h>
#ifdef __cplusplus
extern "C" {
#endif
//#define SPI_LORA_FREQUENCY 10000000
#define SPI_LORA_BUFFER_SIZE 256
typedef struct SpiLoraDevice *SpiLoraDeviceType;
struct LoraDevDone
{
uint32 (*open) (void *dev);
uint32 (*close) (void *dev);
uint32 (*write) (void *dev, struct BusBlockWriteParam *write_param);
uint32 (*read) (void *dev, struct BusBlockReadParam *read_param);
};
struct SpiLoraDevice
{
struct SpiHardwareDevice *spi_dev;
struct SpiHardwareDevice lora_dev;
};
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,54 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_usb.h
* @brief define hc32f4a0-board usb function and struct
* @version 2.0
* @author AIIT XUOS Lab
* @date 2022-11-07
*/
#ifndef CONNECT_USB_H
#define CONNECT_USB_H
#include <device.h>
#include <hc32_ll_utility.h>
#include <hc32_ll_gpio.h>
#include <usb_lib.h>
#include <usb_host_user.h>
#include <usb_host_driver.h>
#include <usb_host_core.h>
#include <usb_host_msc_class.h>
#include <usb_host_msc_scsi.h>
#include <usb_host_msc_bot.h>
#include <usb_host_int.h>
#if defined(FS_VFS)
#include <iot-vfs.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define USB_HOST_STACK_SIZE 4096
#define USB_SINGLE_BLOCK_SIZE 512
int HwUsbHostInit(void);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,298 @@
/**
*******************************************************************************
* @file sdioc/sdioc_sd/source/sd.h
* @brief This file contains all the functions prototypes of the Secure
* Digital(SD) driver library.
@verbatim
Change Logs:
Date Author Notes
2022-03-31 CDT First version
@endverbatim
*******************************************************************************
* Copyright (C) 2022, Xiaohua Semiconductor Co., Ltd. All rights reserved.
*
* This software component is licensed by XHSC under BSD 3-Clause license
* (the "License"); You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
*******************************************************************************
*/
/**
* @file hardware_sdio.h
* @brief define hc32f4a0-board sdio function and struct
* @version 2.0
* @author AIIT XUOS Lab
* @date 2022-10-18
*/
#ifndef __HARDWARE_SDIO_H__
#define __HARDWARE_SDIO_H__
/* C binding of definitions if building with C++ compiler */
#ifdef __cplusplus
extern "C"
{
#endif
/*******************************************************************************
* Include files
******************************************************************************/
#include "hc32_ll_sdioc.h"
#include "hc32_ll_dma.h"
#include "hc32_ll_utility.h"
/**
* @addtogroup HC32F4A0_DDL_Examples
* @{
*/
/**
* @addtogroup SDIOC_SD_Card
* @{
*/
/*******************************************************************************
* Global type definitions ('typedef')
******************************************************************************/
/**
* @defgroup SD_Global_Types SD Global Types
* @{
*/
/**
* @brief SD Card State enumeration structure definition
*/
typedef enum {
SD_CARD_STAT_IDLE = 0x00U, /*!< Card state is idle */
SD_CARD_STAT_RDY = 0x01U, /*!< Card state is ready */
SD_CARD_STAT_IDENTIFY = 0x02U, /*!< Card is in identification state */
SD_CARD_STAT_STANDBY = 0x03U, /*!< Card is in standby state */
SD_CARD_STAT_TRANS = 0x04U, /*!< Card is in transfer state */
SD_CARD_STAT_TX_DATA = 0x05U, /*!< Card is sending an operation */
SD_CARD_STAT_RX_DATA = 0x06U, /*!< Card is receiving operation information */
SD_CARD_STAT_PGM = 0x07U, /*!< Card is in programming state */
SD_CARD_STAT_DISCONNECT = 0x08U /*!< Card is disconnected */
} en_sd_card_state_t;
/**
* @brief SD Card Information Structure definition
*/
typedef struct {
uint32_t u32CardType; /*!< Specifies the card Type */
uint32_t u32CardVersion; /*!< Specifies the card version */
uint32_t u32Class; /*!< Specifies the class of the card class */
uint32_t u32RelativeCardAddr; /*!< Specifies the Relative Card Address */
uint32_t u32BlockNum; /*!< Specifies the Card Capacity in blocks */
uint32_t u32BlockSize; /*!< Specifies one block size in bytes */
uint32_t u32LogBlockNum; /*!< Specifies the Card logical Capacity in blocks */
uint32_t u32LogBlockSize; /*!< Specifies logical block size in bytes */
} stc_sd_card_info_t;
/**
* @brief SD Card Specific Data(CSD Register) Structure definition
*/
typedef struct {
uint8_t u8CSDStruct; /*!< CSD structure */
uint8_t u8Reserved1; /*!< Reserved */
uint8_t u8TAAC; /*!< Data read access time 1 */
uint8_t u8NSAC; /*!< Data read access time 2 in CLK cycles */
uint8_t u8MaxBusClkFreq; /*!< Max. bus clock frequency */
uint16_t u16CardCmdClass; /*!< Card command classes */
uint8_t u8ReadBlockLen; /*!< Max. read data block length */
uint8_t u8BlockReadPartial; /*!< Partial blocks for read allowed */
uint8_t u8WriteBlockMisalign; /*!< Write block misalignment */
uint8_t u8ReadBlockMisalign; /*!< Read block misalignment */
uint8_t u8DSRImplement; /*!< DSR implemented */
uint8_t u8Reserved2; /*!< Reserved */
uint32_t u32DeviceSize; /*!< Device Size */
uint8_t u8MaxReadCurrVDDMin; /*!< Max. read current @ VDD min */
uint8_t u8MaxReadCurrVDDMax; /*!< Max. read current @ VDD max */
uint8_t u8MaxWriteCurrVDDMin; /*!< Max. write current @ VDD min */
uint8_t u8MaxWriteCurrVDDMax; /*!< Max. write current @ VDD max */
uint8_t u8DeviceSizeMul; /*!< Device size multiplier */
uint8_t u8EraseSingleBlockEn; /*!< Erase single block enable */
uint8_t u8EraseSectorSize; /*!< Erase sector size */
uint8_t u8WriteProtectGroupSize; /*!< Write protect group size */
uint8_t u8WriteProtectGroupEn; /*!< Write protect group enable */
uint8_t u8Reserved3; /*!< Reserved */
uint8_t u8WriteSpeedFactor; /*!< Write speed factor */
uint8_t u8MaxWriteBlockLen; /*!< Max. write data block length */
uint8_t u8WriteBlockPartial; /*!< Partial blocks for write allowed */
uint8_t u8Reserved4; /*!< Reserved */
uint8_t u8FileFormatGroup; /*!< File format group */
uint8_t u8CopyFlag; /*!< Copy flag (OTP) */
uint8_t u8PermWriteProtect; /*!< Permanent write protection */
uint8_t u8TempWriteProtect; /*!< Temporary write protection */
uint8_t u8FileFormat; /*!< File format */
uint8_t u8Reserved5; /*!< Reserved */
uint8_t u8CRCChecksum; /*!< CSD CRC7 checksum */
uint8_t u8Reserved6; /*!< Always 1 */
} stc_sd_card_csd_t;
/**
* @brief SD Card Identification Data(CID Register) Structure definition
*/
typedef struct {
uint8_t u8ManufacturerID; /*!< Manufacturer ID */
uint16_t u16OemAppID; /*!< OEM/Application ID */
uint32_t u32ProductName1; /*!< Product Name part1 */
uint8_t u8ProductName2; /*!< Product Name part2 */
uint8_t u8ProductRevision; /*!< Product Revision */
uint32_t u32ProductSN; /*!< Product Serial Number */
uint8_t u8Reserved1; /*!< Reserved1 */
uint16_t u16ManufactDate; /*!< Manufacturing Date */
uint8_t u8CRCChecksum; /*!< CRC7 checksum */
uint8_t u8Reserved2; /*!< Always 1 */
} stc_sd_card_cid_t;
/**
* @brief SD Card Status Structure definition (returned by ACMD13)
*/
typedef struct {
uint8_t u8DataBusWidth; /*!< Shows the currently defined data bus width */
uint8_t u8SecuredMode; /*!< Card is in secured mode of operation */
uint16_t u16CardType; /*!< Carries information about card type */
uint32_t u32ProtectedAreaSize; /*!< Carries information about the capacity of protected area */
uint8_t u8SpeedClass; /*!< Carries information about the speed class of the card */
uint8_t u8PerformanceMove; /*!< Carries information about the card's performance move */
uint8_t u8AllocUnitSize; /*!< Carries information about the card's allocation unit size */
uint16_t u16EraseSize; /*!< Determines the number of AUs to be erased in one operation */
uint8_t u8EraseTimeout; /*!< Determines the timeout for any number of AU erase */
uint8_t u8EraseOffset; /*!< Carries information about the erase offset */
} stc_sd_card_status_t;
/**
* @brief SD handle Structure definition
*/
typedef struct {
CM_SDIOC_TypeDef *SDIOCx; /*!< Pointer to SDIOC registers base address */
stc_sdioc_init_t stcSdiocInit; /*!< SDIOC Initialize structure @ref stc_sdioc_init_t */
CM_DMA_TypeDef *DMAx; /*!< Pointer to DMA registers base address */
uint8_t u8DmaTxCh; /*!< Specifies the DMA channel used to send */
uint8_t u8DmaRxCh; /*!< Specifies the DMA channel used to receive */
uint8_t *pu8Buffer; /*!< Pointer to SD Tx/Rx transfer Buffer */
uint32_t u32Len; /*!< SD Tx/Rx Transfer length */
uint32_t u32Context; /*!< SD transfer context */
uint32_t u32ErrorCode; /*!< SD Card Error codes */
stc_sd_card_info_t stcSdCardInfo; /*!< SD Card information */
uint32_t u32CSD[4]; /*!< SD card specific data table */
uint32_t u32CID[4]; /*!< SD card identification number table */
uint32_t u32SCR[2]; /*!< SD Configuration Register table */
} stc_sd_handle_t;
/**
* @}
*/
/*******************************************************************************
* Global pre-processor symbols/macros ('#define')
******************************************************************************/
/**
* @defgroup SD_Global_Macros SD Global Macros
* @{
*/
/**
* @defgroup SD_Transfer_Context SD Transfer Context
* @{
*/
#define SD_CONTEXT_NONE (0x00UL) /*!< None */
#define SD_CONTEXT_RD_SINGLE_BLOCK (0x01UL) /*!< Read single block operation */
#define SD_CONTEXT_RD_MULTI_BLOCK (0x02UL) /*!< Read multiple blocks operation */
#define SD_CONTEXT_WR_SINGLE_BLOCK (0x10UL) /*!< Write single block operation */
#define SD_CONTEXT_WR_MULTI_BLOCK (0x20UL) /*!< Write multiple blocks operation */
#define SD_CONTEXT_INT (0x40UL) /*!< Process in Interrupt mode */
#define SD_CONTEXT_DMA (0x80UL) /*!< Process in DMA mode */
/**
* @}
*/
/**
* @defgroup SD_Support_Memory_Card SD Support Memory Card
* @{
*/
#define SD_CARD_SDSC (0x00UL)
#define SD_CARD_SDHC_SDXC (0x01UL)
#define SD_CARD_SECURED (0x03UL)
/**
* @}
*/
/**
* @defgroup SD_Support_Version SD Support Version
* @{
*/
#define SD_CARD_V1_X (0x00UL) /*!< SD Card version: 1.x */
#define SD_CARD_V2_X (0x01UL) /*!< SD Card version: 2.x */
/**
* @}
*/
/**
* @}
*/
/*******************************************************************************
* Global variable definitions ('extern')
******************************************************************************/
/*******************************************************************************
Global function prototypes (definition in C source)
******************************************************************************/
/**
* @addtogroup SD_Global_Functions
* @{
*/
int32_t SD_DeInit(stc_sd_handle_t *handle);
int32_t SD_Init(stc_sd_handle_t *handle);
int32_t SD_GetCardState(stc_sd_handle_t *handle, en_sd_card_state_t *peCardState);
int32_t SD_GetCardCID(const stc_sd_handle_t *handle, stc_sd_card_cid_t *pstcCardCID);
int32_t SD_GetCardCSD(stc_sd_handle_t *handle, stc_sd_card_csd_t *pstcCardCSD);
int32_t SD_GetCardStatus(stc_sd_handle_t *handle, stc_sd_card_status_t *pstcCardStatus);
int32_t SD_GetCardInfo(stc_sd_handle_t *handle, stc_sd_card_info_t *pstcCardInfo);
int32_t SD_GetErrorCode(const stc_sd_handle_t *handle, uint32_t *pu32ErrorCode);
/* Callback in non blocking modes */
void SD_IRQHandler(stc_sd_handle_t *handle);
void SD_TxCompleteCallback(stc_sd_handle_t *handle);
void SD_RxCompleteCallback(stc_sd_handle_t *handle);
void SD_ErrorCallback(stc_sd_handle_t *handle);
/* Polling Mode */
int32_t SD_Erase(stc_sd_handle_t *handle, uint32_t u32BlockStartAddr, uint32_t u32BlockEndAddr);
int32_t SD_ReadBlocks(stc_sd_handle_t *handle, uint32_t u32BlockAddr, uint16_t u16BlockCount,
uint8_t *pu8Data, uint32_t u32Timeout);
int32_t SD_WriteBlocks(stc_sd_handle_t *handle, uint32_t u32BlockAddr, uint16_t u16BlockCount,
uint8_t *pu8Data, uint32_t u32Timeout);
/* Interrupt Mode */
int32_t SD_ReadBlocks_INT(stc_sd_handle_t *handle, uint32_t u32BlockAddr, uint16_t u16BlockCount, uint8_t *pu8Data);
int32_t SD_WriteBlocks_INT(stc_sd_handle_t *handle, uint32_t u32BlockAddr, uint16_t u16BlockCount, uint8_t *pu8Data);
/* DMA Mode */
int32_t SD_ReadBlocks_DMA(stc_sd_handle_t *handle, uint32_t u32BlockAddr, uint16_t u16BlockCount, uint8_t *pu8Data);
int32_t SD_WriteBlocks_DMA(stc_sd_handle_t *handle, uint32_t u32BlockAddr, uint16_t u16BlockCount, uint8_t *pu8Data);
/* Abort */
int32_t SD_Abort(stc_sd_handle_t *handle);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __SD_H__ */
/*******************************************************************************
* EOF (not truncated)
******************************************************************************/

View File

@ -0,0 +1,24 @@
if BSP_USING_SDIO
config SDIO_BUS_NAME
string "sdio bus name"
default "sdio"
config SDIO_DRIVER_NAME
string "sdio driver name"
default "sdio_drv"
config SDIO_DEVICE_NAME
string "sdio device name"
default "sdio_dev"
config MOUNT_SDCARD_FS
bool "mount sd card file system : if y then not support usb-mount-fs"
default y
select MOUNT_SDCARD
if MOUNT_SDCARD_FS
config MOUNT_SDCARD_FS_TYPE
int "choose file system type : FATFS(0)"
default 0
endif
endif

View File

@ -0,0 +1,3 @@
SRC_FILES := connect_sdio.c hardware_sdio.c
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,349 @@
/**
*******************************************************************************
* @file sdioc/sdioc_sd/source/main.c
* @brief Main program of SDIOC SD card for the Device Driver Library.
@verbatim
Change Logs:
Date Author Notes
2022-03-31 CDT First version
@endverbatim
*******************************************************************************
* Copyright (C) 2022, Xiaohua Semiconductor Co., Ltd. All rights reserved.
*
* This software component is licensed by XHSC under BSD 3-Clause license
* (the "License"); You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
*******************************************************************************
*/
/**
* @file connect_sdio.c
* @brief support sdio function using bus driver framework on hc32f4a0 board
* @version 2.0
* @author AIIT XUOS Lab
* @date 2022-10-18
*/
/*************************************************
File name: connect_sdio.c
Description: support hc32f4a0-board sd card configure and sdio bus register function
Others:
History:
1. Date: 2022-01-24
Author: AIIT XUOS Lab
Modification:
1. support hc32f4a0-board sdio configure, write and read
2. support hc32f4a0-board sdio bus device and driver register
*************************************************/
#include <connect_sdio.h>
/* SD transfer mode */
#define SD_TRANS_MD_POLLING (0U)
#define SD_TRANS_MD_INT (1U)
#define SD_TRANS_MD_DMA (2U)
/* Populate the following macro with an value, reference "SD transfer mode" */
#define SD_TRANS_MD (SD_TRANS_MD_POLLING)
/* SDIOC configuration define */
#define SDIOC_SD_UINT (CM_SDIOC1)
#define SDIOC_SD_CLK (FCG1_PERIPH_SDIOC1)
/* CD = PB13 */
#define SDIOC_CD_PORT (GPIO_PORT_B)
#define SDIOC_CD_PIN (GPIO_PIN_13)
/* CK = PC12 */
#define SDIOC_CK_PORT (GPIO_PORT_C)
#define SDIOC_CK_PIN (GPIO_PIN_12)
/* CMD = PD02 */
#define SDIOC_CMD_PORT (GPIO_PORT_D)
#define SDIOC_CMD_PIN (GPIO_PIN_02)
/* D0 = PB07 */
#define SDIOC_D0_PORT (GPIO_PORT_B)
#define SDIOC_D0_PIN (GPIO_PIN_07)
/* D1 = PA08 */
#define SDIOC_D1_PORT (GPIO_PORT_A)
#define SDIOC_D1_PIN (GPIO_PIN_08)
/* D2 = PC10 */
#define SDIOC_D2_PORT (GPIO_PORT_C)
#define SDIOC_D2_PIN (GPIO_PIN_10)
/* D3 = PB05 */
#define SDIOC_D3_PORT (GPIO_PORT_B)
#define SDIOC_D3_PIN (GPIO_PIN_05)
static stc_sd_handle_t gSdHandle;
static int sd_lock = -1;
static void SdCardConfig(void)
{
/* Enable SDIOC clock */
FCG_Fcg1PeriphClockCmd(SDIOC_SD_CLK, ENABLE);
/* SDIOC pins configuration */
stc_gpio_init_t stcGpioInit;
(void)GPIO_StructInit(&stcGpioInit);
stcGpioInit.u16PinState = PIN_STAT_RST;
stcGpioInit.u16PinDir = PIN_DIR_IN;
(void)GPIO_Init(SDIOC_CD_PORT, SDIOC_CD_PIN, &stcGpioInit);
GPIO_SetFunc(SDIOC_CK_PORT, SDIOC_CK_PIN, GPIO_FUNC_9);
GPIO_SetFunc(SDIOC_CMD_PORT, SDIOC_CMD_PIN, GPIO_FUNC_9);
GPIO_SetFunc(SDIOC_D0_PORT, SDIOC_D0_PIN, GPIO_FUNC_9);
GPIO_SetFunc(SDIOC_D1_PORT, SDIOC_D1_PIN, GPIO_FUNC_9);
GPIO_SetFunc(SDIOC_D2_PORT, SDIOC_D2_PIN, GPIO_FUNC_9);
GPIO_SetFunc(SDIOC_D3_PORT, SDIOC_D3_PIN, GPIO_FUNC_9);
/* Configure structure initialization */
gSdHandle.SDIOCx = SDIOC_SD_UINT;
gSdHandle.stcSdiocInit.u32Mode = SDIOC_MD_SD;
gSdHandle.stcSdiocInit.u8CardDetect = SDIOC_CARD_DETECT_CD_PIN_LVL;
gSdHandle.stcSdiocInit.u8SpeedMode = SDIOC_SPEED_MD_HIGH;
gSdHandle.stcSdiocInit.u8BusWidth = SDIOC_BUS_WIDTH_4BIT;
gSdHandle.stcSdiocInit.u16ClockDiv = SDIOC_CLK_DIV2;
gSdHandle.DMAx = NULL;
}
static uint32 SdioConfigure(void *drv, struct BusConfigureInfo *configure_info)
{
NULL_PARAM_CHECK(drv);
NULL_PARAM_CHECK(configure_info);
if (configure_info->configure_cmd == OPER_BLK_GETGEOME) {
NULL_PARAM_CHECK(configure_info->private_data);
struct DeviceBlockArrange *args = (struct DeviceBlockArrange *)configure_info->private_data;
args->size_perbank = gSdHandle.stcSdCardInfo.u32BlockSize;
args->block_size = gSdHandle.stcSdCardInfo.u32BlockSize;
args->bank_num = gSdHandle.stcSdCardInfo.u32BlockNum;
}
return EOK;
}
static uint32 SdioOpen(void *dev)
{
NULL_PARAM_CHECK(dev);
if(sd_lock >= 0) {
KSemaphoreDelete(sd_lock);
}
sd_lock = KSemaphoreCreate(1);
if (sd_lock < 0){
return ERROR;
}
return EOK;
}
static uint32 SdioClose(void *dev)
{
NULL_PARAM_CHECK(dev);
KSemaphoreDelete(sd_lock);
return EOK;
}
static uint32 SdioRead(void *dev, struct BusBlockReadParam *read_param)
{
uint8 ret = EOK;
uint32 sector = read_param->pos;
uint32 block_num = read_param->size;
uint8 *read_buffer = (uint8 *)read_param->buffer;
KSemaphoreObtain(sd_lock, WAITING_FOREVER);
if (LL_OK != SD_ReadBlocks(&gSdHandle, sector, block_num, read_buffer, 2000UL)) {
KPrintf("Read data blocks failed.\r\n");
return 0;
}
KSemaphoreAbandon(sd_lock);
return read_param->size;
}
static uint32 SdioWrite(void *dev, struct BusBlockWriteParam *write_param)
{
uint8 ret = EOK;
uint32 sector = write_param->pos;
uint32 block_num = write_param->size;
uint8 *write_buffer = (uint8 *)write_param->buffer;
KSemaphoreObtain(sd_lock, WAITING_FOREVER);
if (LL_OK != SD_WriteBlocks(&gSdHandle, sector, block_num, write_buffer, 2000U)) {
KPrintf("Write data blocks failed.\r\n");
return 0;
}
KSemaphoreAbandon(sd_lock);
return write_param->size;
}
static int SdioControl(struct HardwareDev *dev, struct HalDevBlockParam *block_param)
{
NULL_PARAM_CHECK(dev);
if (OPER_BLK_GETGEOME == block_param->cmd) {
block_param->dev_block.size_perbank = gSdHandle.stcSdCardInfo.u32BlockSize;
block_param->dev_block.block_size = gSdHandle.stcSdCardInfo.u32BlockSize;
block_param->dev_block.bank_num = gSdHandle.stcSdCardInfo.u32BlockNum;
}
return EOK;
}
static struct SdioDevDone dev_done =
{
SdioOpen,
SdioClose,
SdioWrite,
SdioRead,
};
#if defined(FS_VFS) && defined(MOUNT_SDCARD_FS)
#include <iot-vfs.h>
/**
* @description: Mount SD card
* @return 0
*/
static int MountSDCardFs(enum FilesystemType fs_type)
{
if (MountFilesystem(SDIO_BUS_NAME, SDIO_DEVICE_NAME, SDIO_DRIVER_NAME, fs_type, "/") == 0)
KPrintf("Sd card mount to '/'");
else
KPrintf("Sd card mount to '/' failed!");
return 0;
}
#endif
static void SdCardAttach(void)
{
static stc_sd_handle_t *sd_handle = &gSdHandle;
KPrintf("\r\nCard inserted.\r\n");
/* Reset and init SDIOC */
if (LL_OK != SDIOC_SWReset(sd_handle->SDIOCx, SDIOC_SW_RST_ALL)) {
KPrintf("Reset SDIOC failed!\r\n");
} else if (LL_OK != SD_Init(sd_handle)) {
KPrintf("SD card initialize failed!\r\n");
} else {
KPrintf("SD card init done!\r\n");
}
#ifdef MOUNT_SDCARD_FS
/*mount file system*/
MountSDCardFs(MOUNT_SDCARD_FS_TYPE);
#endif
}
static void SdCardDetach(void)
{
/*unmount file system*/
KPrintf("\r\nCard detect extracted.\r\n");
#ifdef MOUNT_SDCARD_FS
UnmountFileSystem("/");
#endif
}
static uint8 SdCardReadCd(void)
{
en_pin_state_t sd_cd_state = GPIO_ReadInputPins(SDIOC_CD_PORT, SDIOC_CD_PIN);
if (PIN_RESET == sd_cd_state) {
return 0;
} else {
return 1;
}
}
static void SdCardTask(void* parameter)
{
static int sd_card_status = 0;
while (1) {
if (!SdCardReadCd()) {
if (!sd_card_status) {
SdCardAttach();
sd_card_status = 1;
}
} else {
if (sd_card_status) {
SdCardDetach();
sd_card_status = 0;
}
}
}
}
#ifdef MOUNT_SDCARD
int MountSDCard()
{
int sd_card_task = 0;
sd_card_task = KTaskCreate("sd_card", SdCardTask, NONE,
SD_CARD_STACK_SIZE, 8);
if(sd_card_task < 0) {
KPrintf("sd_card_task create failed ...%s %d.\n", __FUNCTION__,__LINE__);
return ERROR;
}
StartupKTask(sd_card_task);
return EOK;
}
#endif
int HwSdioInit(void)
{
x_err_t ret = EOK;
static struct SdioBus sdio_bus;
static struct SdioDriver sdio_drv;
static struct SdioHardwareDevice sdio_dev;
memset(&sdio_bus, 0, sizeof(struct SdioBus));
memset(&sdio_drv, 0, sizeof(struct SdioDriver));
memset(&sdio_dev, 0, sizeof(struct SdioHardwareDevice));
SdCardConfig();
ret = SdioBusInit(&sdio_bus, SDIO_BUS_NAME);
if (ret != EOK) {
KPrintf("Sdio bus init error %d\n", ret);
return ERROR;
}
ret = SdioDriverInit(&sdio_drv, SDIO_DRIVER_NAME);
if (ret != EOK) {
KPrintf("Sdio driver init error %d\n", ret);
return ERROR;
}
ret = SdioDriverAttachToBus(SDIO_DRIVER_NAME, SDIO_BUS_NAME);
if (ret != EOK) {
KPrintf("Sdio driver attach error %d\n", ret);
return ERROR;
}
sdio_dev.dev_done = &dev_done;
sdio_dev.haldev.dev_block_control = SdioControl;
ret = SdioDeviceRegister(&sdio_dev, SDIO_DEVICE_NAME);
if (ret != EOK) {
KPrintf("Sdio device register error %d\n", ret);
return ERROR;
}
ret = SdioDeviceAttachToBus(SDIO_DEVICE_NAME, SDIO_BUS_NAME);
if (ret != EOK) {
KPrintf("Sdio device register error %d\n", ret);
return ERROR;
}
return ret;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,42 @@
if BSP_USING_SPI
config BSP_USING_SPI1
bool "Using spi1"
default y
if BSP_USING_SPI1
config SPI_BUS_NAME_1
string "spi bus 1 name"
default "spi1"
config SPI_1_DEVICE_NAME_0
string "spi bus 1 device 0 name"
default "spi1_dev0"
config SPI_1_DRV_NAME
string "spi bus 1 driver name"
default "spi1_drv"
menuconfig RESOURCES_SPI_LORA
bool "Using spi lora function"
default n
if RESOURCES_SPI_LORA
config SX12XX_DEVICE_NAME
string "SX12XX(SX1278 SX1276) lora device name"
default "spi1_lora"
endif
endif
config BSP_USING_SPI6
bool "Using spi6"
default n
if BSP_USING_SPI6
config SPI_BUS_NAME_6
string "spi bus 6 name"
default "spi6"
config SPI_6_DEVICE_NAME_0
string "spi bus 6 device 0 name"
default "spi6_dev0"
config SPI_6_DRV_NAME
string "spi bus 6 driver name"
default "spi6_drv"
endif
endif

View File

@ -0,0 +1,8 @@
SRC_FILES := connect_spi.c
ifeq ($(CONFIG_RESOURCES_SPI_LORA),y)
SRC_DIR := third_party_spi_lora
SRC_FILES += connect_lora_spi.c
endif
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,469 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_lora_spi.c
* @brief support to register spi lora pointer and function
* @version 2.0
* @author AIIT XUOS Lab
* @date 2022-10-31
*/
#include <connect_spi_lora.h>
/* RST = PI02 */
#define LORA_RST_PORT (GPIO_PORT_I)
#define LORA_RST_PIN (GPIO_PIN_02)
static struct HardwareDev *g_spi_lora_dev;
tRadioDriver *Radio = NONE;
void SX1276InitIo(void)
{
stc_gpio_init_t stcGpioInit;
(void)GPIO_StructInit(&stcGpioInit);
stcGpioInit.u16PinState = PIN_STAT_RST;
stcGpioInit.u16PinDir = PIN_DIR_OUT;
(void)GPIO_Init(LORA_RST_PORT, LORA_RST_PIN, &stcGpioInit);
}
inline void SX1276WriteRxTx(uint8_t txEnable)
{
if (txEnable != 0) {
/*to do*/
} else {
/*to do*/
}
}
void SX1276SetReset(uint8_t state)
{
if (state == RADIO_RESET_ON) {
GPIO_ResetPins(LORA_RST_PORT, LORA_RST_PIN);
} else {
stc_gpio_init_t stcGpioInit;
(void)GPIO_StructInit(&stcGpioInit);
stcGpioInit.u16PinDir = PIN_DIR_IN;
(void)GPIO_Init(LORA_RST_PORT, LORA_RST_PIN, &stcGpioInit);
}
}
//Not-necessary Function
uint8_t SX1276ReadDio0(void)
{
return 1;
}
uint8_t SX1276ReadDio1(void)
{
return 1;
}
uint8_t SX1276ReadDio2(void)
{
return 1;
}
uint8_t SX1276ReadDio3(void)
{
return 1;
}
uint8_t SX1276ReadDio4(void)
{
return 1;
}
uint8_t SX1276ReadDio5(void)
{
return 1;
}
void SX1276WriteBuffer(uint8_t addr, uint8_t *buffer, uint8_t size)
{
struct BusBlockWriteParam write_param;
uint8 write_addr = addr | 0x80;
BusDevOpen(g_spi_lora_dev);
write_param.buffer = (void *)&write_addr;
write_param.size = 1;
BusDevWriteData(g_spi_lora_dev, &write_param);
write_param.buffer = (void *)buffer;
write_param.size = size;
BusDevWriteData(g_spi_lora_dev, &write_param);
BusDevClose(g_spi_lora_dev);
}
void SX1276ReadBuffer(uint8_t addr, uint8_t *buffer, uint8_t size)
{
struct BusBlockWriteParam write_param;
struct BusBlockReadParam read_param;
uint8 write_addr = addr & 0x7F;
BusDevOpen(g_spi_lora_dev);
write_param.buffer = (void *)&write_addr;
write_param.size = 1;
BusDevWriteData(g_spi_lora_dev, &write_param);
read_param.buffer = (void *)buffer;
read_param.size = size;
BusDevReadData(g_spi_lora_dev, &read_param);
BusDevClose(g_spi_lora_dev);
}
void SX1276WriteFifo(uint8_t *buffer, uint8_t size)
{
SX1276WriteBuffer(0, buffer, size);
}
void SX1276ReadFifo(uint8_t *buffer, uint8_t size)
{
SX1276ReadBuffer(0, buffer, size);
}
void SX1276Write(uint8_t addr, uint8_t data)
{
SX1276WriteBuffer(addr, &data, 1);
}
void SX1276Read(uint8_t addr, uint8_t *data)
{
SX1276ReadBuffer(addr, data, 1);
}
uint8_t Sx1276SpiCheck(void)
{
uint8_t test = 0;
tLoRaSettings settings;
SX1276Read(REG_LR_VERSION, &test);
KPrintf("version code of the chip is 0x%x\n", test);
settings.RFFrequency = SX1276LoRaGetRFFrequency();
KPrintf("SX1278 Lora parameters are :\nRFFrequency is %d\n", settings.RFFrequency);
settings.Power = SX1276LoRaGetRFPower();
KPrintf("RFPower is %d\n",settings.Power);
settings.SignalBw = SX1276LoRaGetSignalBandwidth();
KPrintf("SignalBw is %d\n",settings.SignalBw);
settings.SpreadingFactor = SX1276LoRaGetSpreadingFactor();
KPrintf("SpreadingFactor is %d\n",settings.SpreadingFactor);
/*SPI confirm*/
SX1276Write(REG_LR_HOPPERIOD, 0x91);
SX1276Read(REG_LR_HOPPERIOD, &test);
if (test != 0x91) {
return 0;
}
return test;
}
/**
* This function supports to write data to the lora.
*
* @param dev lora dev descriptor
* @param write_param lora dev write datacfg param
*/
static uint32 SpiLoraWrite(void *dev, struct BusBlockWriteParam *write_param)
{
NULL_PARAM_CHECK(dev);
NULL_PARAM_CHECK(write_param);
if (write_param->size > 256) {
KPrintf("SpiLoraWrite ERROR:The message is too long!\n");
return ERROR;
} else {
SX1276SetTxPacket(write_param->buffer, write_param->size);
while(SX1276Process() != RF_TX_DONE);
KPrintf("SpiLoraWrite success!\n");
}
return EOK;
}
/**
* This function supports to read data from the lora.
*
* @param dev lora dev descriptor
* @param read_param lora dev read datacfg param
*/
static uint32 SpiLoraRead(void *dev, struct BusBlockReadParam *read_param)
{
NULL_PARAM_CHECK(dev);
NULL_PARAM_CHECK(read_param);
int read_times = 100;
SX1276StartRx();
KPrintf("SpiLoraRead Ready!\n");
while (read_times) {
if (SX1276Process() != RF_RX_DONE) {
read_times --;
MdelayKTask(500);
} else {
break;
}
}
if (read_times > 0) {
SX1276GetRxPacket(read_param->buffer, (uint16 *)&read_param->read_length);
} else {
read_param->read_length = 0;
}
return read_param->read_length;
}
static uint32 SpiLoraOpen(void *dev)
{
NULL_PARAM_CHECK(dev);
KPrintf("SpiLoraOpen start\n");
x_err_t ret = EOK;
static x_bool lora_init_status = RET_FALSE;
if (RET_TRUE == lora_init_status) {
return EOK;
}
struct HardwareDev *haldev = (struct HardwareDev *)dev;
struct SpiHardwareDevice *lora_dev = CONTAINER_OF(haldev, struct SpiHardwareDevice, haldev);
NULL_PARAM_CHECK(lora_dev);
SpiLoraDeviceType spi_lora_dev = CONTAINER_OF(lora_dev, struct SpiLoraDevice, lora_dev);
NULL_PARAM_CHECK(spi_lora_dev);
struct Driver *spi_drv = spi_lora_dev->spi_dev->haldev.owner_bus->owner_driver;
struct BusConfigureInfo configure_info;
struct SpiMasterParam spi_master_param;
spi_master_param.spi_data_bit_width = 8;
spi_master_param.spi_work_mode = SPI_MODE_0 | SPI_MSB;
configure_info.configure_cmd = OPE_CFG;
configure_info.private_data = (void *)&spi_master_param;
ret = BusDrvConfigure(spi_drv, &configure_info);
if (ret) {
KPrintf("spi drv OPE_CFG error drv %8p cfg %8p\n", spi_drv, &spi_master_param);
return ERROR;
}
configure_info.configure_cmd = OPE_INT;
ret = BusDrvConfigure(spi_drv, &configure_info);
if (ret) {
KPrintf("spi drv OPE_INT error drv %8p\n", spi_drv);
return ERROR;
}
SX1276Init();
if (0x91 != Sx1276SpiCheck()) {
KPrintf("LoRa check failed!\n!");
} else {
Radio = RadioDriverInit();
KPrintf("LoRa check ok!\nNote: The length of the message that can be sent in a single time is 256 characters\n");
}
lora_init_status = RET_TRUE;
return ret;
}
static uint32 SpiLoraClose(void *dev)
{
NULL_PARAM_CHECK(dev);
return EOK;
}
static const struct LoraDevDone lora_done =
{
.open = SpiLoraOpen,
.close = SpiLoraClose,
.write = SpiLoraWrite,
.read = SpiLoraRead,
};
/**
* This function supports to init spi_lora_dev
*
* @param bus_name spi bus name
* @param dev_name spi dev name
* @param drv_name spi drv name
* @param lora_name lora dev name
*/
SpiLoraDeviceType SpiLoraInit(char *bus_name, char *dev_name, char *drv_name, char *lora_name)
{
NULL_PARAM_CHECK(dev_name);
NULL_PARAM_CHECK(drv_name);
NULL_PARAM_CHECK(lora_name);
NULL_PARAM_CHECK(bus_name);
x_err_t ret;
static HardwareDevType haldev;
haldev = SpiDeviceFind(dev_name, TYPE_SPI_DEV);
if (NONE == haldev) {
KPrintf("SpiLoraInit find spi haldev %s error! \n", dev_name);
return NONE;
}
SpiLoraDeviceType spi_lora_dev = (SpiLoraDeviceType)malloc(sizeof(struct SpiLoraDevice));
if (NONE == spi_lora_dev) {
KPrintf("SpiLoraInit malloc spi_lora_dev failed\n");
free(spi_lora_dev);
return NONE;
}
memset(spi_lora_dev, 0, sizeof(struct SpiLoraDevice));
spi_lora_dev->spi_dev = CONTAINER_OF(haldev, struct SpiHardwareDevice, haldev);
spi_lora_dev->lora_dev.spi_dev_flag = RET_TRUE;
spi_lora_dev->lora_dev.haldev.dev_done = (struct HalDevDone *)&lora_done;
struct Driver *spi_driver = SpiDriverFind(drv_name, TYPE_SPI_DRV);
if (NONE == spi_driver) {
KPrintf("SpiLoraInit find spi driver %s error! \n", drv_name);
free(spi_lora_dev);
return NONE;
}
//spi drv get spi dev param (SpiDeviceParam)
spi_driver->private_data = spi_lora_dev->spi_dev->haldev.private_data;
spi_lora_dev->spi_dev->haldev.owner_bus->owner_driver = spi_driver;
ret = SpiDeviceRegister(&spi_lora_dev->lora_dev, spi_lora_dev->spi_dev->haldev.private_data, lora_name);
if (EOK != ret) {
KPrintf("SpiLoraInit SpiDeviceRegister device %s error %d\n", lora_name, ret);
free(spi_lora_dev);
return NONE;
}
ret = SpiDeviceAttachToBus(lora_name, bus_name);
if (EOK != ret) {
KPrintf("SpiLoraInit SpiDeviceAttachToBus device %s error %d\n", lora_name, ret);
free(spi_lora_dev);
return NONE;
}
g_spi_lora_dev = &spi_lora_dev->spi_dev->haldev;
return spi_lora_dev;
}
/**
* This function supports to release spi_lora_dev
*
* @param spi_lora_dev spi lora descriptor
*/
uint32 SpiLoraRelease(SpiLoraDeviceType spi_lora_dev)
{
NULL_PARAM_CHECK(spi_lora_dev);
x_err_t ret;
DeviceDeleteFromBus(spi_lora_dev->lora_dev.haldev.owner_bus, &spi_lora_dev->lora_dev.haldev);
free(spi_lora_dev);
return EOK;
}
int LoraSx12xxSpiDeviceInit(void)
{
#ifdef BSP_USING_SPI1
if (NONE == SpiLoraInit(SPI_BUS_NAME_1, SPI_1_DEVICE_NAME_0, SPI_1_DRV_NAME, SX12XX_DEVICE_NAME)) {
return ERROR;
}
#endif
return EOK;
}
#define LORA_TEST
#ifdef LORA_TEST
/*Just for lora test*/
static struct Bus *bus;
static struct HardwareDev *dev;
void LoraOpen(void)
{
x_err_t ret = EOK;
bus = BusFind(SPI_BUS_NAME_1);
dev = BusFindDevice(bus, SX12XX_DEVICE_NAME);
ret = SpiLoraOpen(dev);
if (EOK != ret) {
KPrintf("LoRa init failed\n");
return;
}
KPrintf("LoRa init succeed\n");
return;
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0)|SHELL_CMD_TYPE(SHELL_TYPE_CMD_MAIN),
LoraOpen, LoraOpen, open lora device and read parameters );
static void LoraReceive(void)
{
uint32 read_length = 0;
struct BusBlockReadParam read_param;
memset(&read_param, 0, sizeof(struct BusBlockReadParam));
read_param.buffer = malloc(SPI_LORA_BUFFER_SIZE);
read_length = SpiLoraRead(dev, &read_param);
KPrintf("LoraReceive length %d\n", read_length);
for (int i = 0; i < read_length; i ++) {
KPrintf("i %d data 0x%x\n", i, ((uint8 *)read_param.buffer)[i]);
}
free(read_param.buffer);
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0)|SHELL_CMD_TYPE(SHELL_TYPE_CMD_FUNC)|SHELL_CMD_PARAM_NUM(0),
LoraReceive, LoraReceive, lora wait message );
static void LoraSend(int argc, char *argv[])
{
char Msg[SPI_LORA_BUFFER_SIZE] = {0};
struct BusBlockWriteParam write_param;
memset(&write_param, 0, sizeof(struct BusBlockWriteParam));
if (argc == 2) {
strncpy(Msg, argv[1], SPI_LORA_BUFFER_SIZE);
write_param.buffer = Msg;
write_param.size = strlen(Msg);
KPrintf("LoraSend data %s length %d\n", Msg, strlen(Msg));
SpiLoraWrite(dev, &write_param);
}
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0)|SHELL_CMD_TYPE(SHELL_TYPE_CMD_MAIN),
LoraSend, LoraSend, lora send message );
#endif

View File

@ -0,0 +1,585 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_spi.c
* @brief support hc32f4a0-board spi function and register to bus framework
* @version 2.0
* @author AIIT XUOS Lab
* @date 2022-10-17
*/
/*************************************************
File name: connect_spi.c
Description: support hc32f4a0-board spi function and register to bus framework
Others:
History:
1. Date: 2022-10-17
Author: AIIT XUOS Lab
Modification:
1. support hc32f4a0-board spi configure, write and read
2. support hc32f4a0-board spi bus device and driver register
3. SPI1 for LoRa, SPI6 using J12-pin-header to connect
*************************************************/
#include <connect_spi.h>
#define SPI1_MASTER_SLAVE_MODE (SPI_MASTER)
/* SPI1 definition */
#define SPI1_UNIT (CM_SPI1)
#define SPI1_CLK (FCG1_PERIPH_SPI1)
/* SS = PI01 */
#define SPI1_SS_PORT (GPIO_PORT_I)
#define SPI1_SS_PIN (GPIO_PIN_01)
/* SCK = PH14 */
#define SPI1_SCK_PORT (GPIO_PORT_H)
#define SPI1_SCK_PIN (GPIO_PIN_14)
#define SPI1_SCK_FUNC (GPIO_FUNC_40)
/* MOSI = PI00 */
#define SPI1_MOSI_PORT (GPIO_PORT_I)
#define SPI1_MOSI_PIN (GPIO_PIN_00)
#define SPI1_MOSI_FUNC (GPIO_FUNC_41)
/* MISO = PH15 */
#define SPI1_MISO_PORT (GPIO_PORT_H)
#define SPI1_MISO_PIN (GPIO_PIN_15)
#define SPI1_MISO_FUNC (GPIO_FUNC_42)
#define SPI1_DEVICE_SLAVE_ID_0 0
/* SPI6 definition */
#define SPI6_UNIT (CM_SPI6)
#define SPI6_CLK (FCG1_PERIPH_SPI6)
/* SS = PI01 */
#define SPI6_SS_PORT (GPIO_PORT_I)
#define SPI6_SS_PIN (GPIO_PIN_01)
/* SCK = PH14 */
#define SPI6_SCK_PORT (GPIO_PORT_H)
#define SPI6_SCK_PIN (GPIO_PIN_14)
#define SPI6_SCK_FUNC (GPIO_FUNC_40)
/* MOSI = PI00 */
#define SPI6_MOSI_PORT (GPIO_PORT_I)
#define SPI6_MOSI_PIN (GPIO_PIN_00)
#define SPI6_MOSI_FUNC (GPIO_FUNC_41)
/* MISO = PH15 */
#define SPI6_MISO_PORT (GPIO_PORT_H)
#define SPI6_MISO_PIN (GPIO_PIN_15)
#define SPI6_MISO_FUNC (GPIO_FUNC_42)
#define SPI6_DEVICE_SLAVE_ID_0 0
static void HwSpiEnable(CM_SPI_TypeDef *SPIx)
{
/* Check if the SPI is already enabled */
if (SPI_CR1_SPE != (SPIx->CR1 & SPI_CR1_SPE)) {
SPI_Cmd(SPIx, ENABLE);
}
}
/*Init the spi sdk intetface */
static uint32 SpiSdkInit(struct SpiDriver *spi_drv)
{
NULL_PARAM_CHECK(spi_drv);
stc_spi_init_t stcSpiInit;
stc_gpio_init_t stcGpioInit;
SpiDeviceParam *dev_param = (SpiDeviceParam *)(spi_drv->driver.private_data);
#ifdef BSP_USING_SPI1
/* Configure Port */
(void)GPIO_StructInit(&stcGpioInit);
stcGpioInit.u16PinState = PIN_STAT_RST;
stcGpioInit.u16PinDir = PIN_DIR_OUT;
(void)GPIO_Init(SPI1_SS_PORT, SPI1_SS_PIN, &stcGpioInit);
GPIO_SetPins(SPI1_SS_PORT, SPI1_SS_PIN);
GPIO_SetFunc(SPI1_SCK_PORT, SPI1_SCK_PIN, SPI1_SCK_FUNC);
GPIO_SetFunc(SPI1_MOSI_PORT, SPI1_MOSI_PIN, SPI1_MOSI_FUNC);
GPIO_SetFunc(SPI1_MISO_PORT, SPI1_MISO_PIN, SPI1_MISO_FUNC);
/* Configuration SPI */
FCG_Fcg1PeriphClockCmd(SPI1_CLK, ENABLE);
SPI_StructInit(&stcSpiInit);
stcSpiInit.u32WireMode = SPI_4_WIRE;
stcSpiInit.u32TransMode = SPI_FULL_DUPLEX;
stcSpiInit.u32MasterSlave = SPI1_MASTER_SLAVE_MODE;
stcSpiInit.u32Parity = SPI_PARITY_INVD;
if (SPI_MODE_0 == dev_param->spi_master_param->spi_work_mode & 0x3) {
stcSpiInit.u32SpiMode = SPI_MD_0;
} else if (SPI_MODE_1 == dev_param->spi_master_param->spi_work_mode & 0x3) {
stcSpiInit.u32SpiMode = SPI_MD_1;
} else if (SPI_MODE_2 == dev_param->spi_master_param->spi_work_mode & 0x3) {
stcSpiInit.u32SpiMode = SPI_MD_2;
} else if (SPI_MODE_3 == dev_param->spi_master_param->spi_work_mode & 0x3) {
stcSpiInit.u32SpiMode = SPI_MD_3;
}
stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV64;
if (8 == dev_param->spi_master_param->spi_data_bit_width) {
stcSpiInit.u32DataBits = SPI_DATA_SIZE_8BIT;
} else if (7 == dev_param->spi_master_param->spi_data_bit_width) {
stcSpiInit.u32DataBits = SPI_DATA_SIZE_7BIT;
}
if (SPI_LSB == dev_param->spi_master_param->spi_work_mode & 0x4) {
stcSpiInit.u32FirstBit = SPI_FIRST_LSB;
} else if(SPI_MSB == dev_param->spi_master_param->spi_work_mode & 0x4) {
stcSpiInit.u32FirstBit = SPI_FIRST_MSB;
}
stcSpiInit.u32FrameLevel = SPI_1_FRAME;
(void)SPI_Init(SPI1_UNIT, &stcSpiInit);
SPI_Cmd(SPI1_UNIT, ENABLE);
#endif
#ifdef BSP_USING_SPI6
/* Configure Port */
(void)GPIO_StructInit(&stcGpioInit);
stcGpioInit.u16PinState = PIN_STAT_RST;
stcGpioInit.u16PinDir = PIN_DIR_OUT;
(void)GPIO_Init(SPI6_SS_PORT, SPI6_SS_PIN, &stcGpioInit);
GPIO_SetPins(SPI6_SS_PORT, SPI6_SS_PIN);
GPIO_SetFunc(SPI6_SCK_PORT, SPI6_SCK_PIN, SPI6_SCK_FUNC);
GPIO_SetFunc(SPI6_MOSI_PORT, SPI6_MOSI_PIN, SPI6_MOSI_FUNC);
GPIO_SetFunc(SPI6_MISO_PORT, SPI6_MISO_PIN, SPI6_MISO_FUNC);
/* Configuration SPI */
FCG_Fcg1PeriphClockCmd(SPI6_CLK, ENABLE);
SPI_StructInit(&stcSpiInit);
stcSpiInit.u32WireMode = SPI_4_WIRE;
stcSpiInit.u32TransMode = SPI_FULL_DUPLEX;
stcSpiInit.u32MasterSlave = SPI1_MASTER_SLAVE_MODE;
stcSpiInit.u32Parity = SPI_PARITY_INVD;
if (SPI_MODE_0 == dev_param->spi_master_param->spi_work_mode & 0x3) {
stcSpiInit.u32SpiMode = SPI_MD_0;
} else if (SPI_MODE_1 == dev_param->spi_master_param->spi_work_mode & 0x3) {
stcSpiInit.u32SpiMode = SPI_MD_1;
} else if (SPI_MODE_2 == dev_param->spi_master_param->spi_work_mode & 0x3) {
stcSpiInit.u32SpiMode = SPI_MD_2;
} else if (SPI_MODE_3 == dev_param->spi_master_param->spi_work_mode & 0x3) {
stcSpiInit.u32SpiMode = SPI_MD_3;
}
stcSpiInit.u32BaudRatePrescaler = SPI_BR_CLK_DIV64;
if (8 == dev_param->spi_master_param->spi_data_bit_width) {
stcSpiInit.u32DataBits = SPI_DATA_SIZE_8BIT;
} else if (7 == dev_param->spi_master_param->spi_data_bit_width) {
stcSpiInit.u32DataBits = SPI_DATA_SIZE_7BIT;
}
if (SPI_LSB == dev_param->spi_master_param->spi_work_mode & 0x4) {
stcSpiInit.u32FirstBit = SPI_FIRST_LSB;
} else if(SPI_MSB == dev_param->spi_master_param->spi_work_mode & 0x4) {
stcSpiInit.u32FirstBit = SPI_FIRST_MSB;
}
stcSpiInit.u32FrameLevel = SPI_1_FRAME;
(void)SPI_Init(SPI6_UNIT, &stcSpiInit);
SPI_Cmd(SPI6_UNIT, ENABLE);
#endif
return EOK;
}
static uint32 SpiSdkCfg(struct SpiDriver *spi_drv, struct SpiMasterParam *spi_param)
{
NULL_PARAM_CHECK(spi_drv);
NULL_PARAM_CHECK(spi_param);
SpiDeviceParam *dev_param = (SpiDeviceParam *)(spi_drv->driver.private_data);
dev_param->spi_master_param = spi_param;
dev_param->spi_master_param->spi_work_mode = dev_param->spi_master_param->spi_work_mode & SPI_MODE_MASK;
return EOK;
}
/*Configure the spi device param, make sure struct (configure_info->private_data) = (SpiMasterParam)*/
static uint32 SpiDrvConfigure(void *drv, struct BusConfigureInfo *configure_info)
{
NULL_PARAM_CHECK(drv);
NULL_PARAM_CHECK(configure_info);
x_err_t ret = EOK;
struct SpiDriver *spi_drv = (struct SpiDriver *)drv;
struct SpiMasterParam *spi_param;
switch (configure_info->configure_cmd)
{
case OPE_INT:
ret = SpiSdkInit(spi_drv);
break;
case OPE_CFG:
spi_param = (struct SpiMasterParam *)configure_info->private_data;
ret = SpiSdkCfg(spi_drv, spi_param);
break;
default:
break;
}
return ret;
}
static uint32 SpiWriteData(struct SpiHardwareDevice *spi_dev, struct SpiDataStandard *spi_datacfg)
{
SpiDeviceParam *dev_param = (SpiDeviceParam *)(spi_dev->haldev.private_data);
uint8 cs_gpio_pin = dev_param->spi_slave_param->spi_cs_gpio_pin;
uint8 cs_gpio_port = dev_param->spi_slave_param->spi_cs_gpio_port;
CM_SPI_TypeDef *spi = spi_dev->haldev.owner_bus->private_data;
int i = 0;
uint32 ret = EOK;
int32 spi_write_status = 0;
while (NONE != spi_datacfg) {
if (spi_datacfg->spi_chip_select) {
GPIO_ResetPins(cs_gpio_port, cs_gpio_pin);
}
if (spi_datacfg->length) {
uint8 *tx_buff = x_malloc(spi_datacfg->length);
if ((spi_datacfg->tx_buff) && (tx_buff)) {
memset(tx_buff, 0, spi_datacfg->length);
for (i = 0; i < spi_datacfg->length; i++) {
tx_buff[i] = ((uint8 *)spi_datacfg->tx_buff)[i];
}
HwSpiEnable(spi);
spi_write_status = SPI_Trans(spi, tx_buff, spi_datacfg->length, 1000);
while (RESET != SPI_GetStatus(spi, SPI_FLAG_IDLE));
if (LL_OK == spi_write_status) {
ret = ERROR;
}
}
if (tx_buff) {
x_free(tx_buff);
}
SPI_ClearStatus(spi, SPI_FLAG_CLR_ALL | SPI_FLAG_RX_BUF_FULL);
}
if (spi_datacfg->spi_cs_release) {
GPIO_SetPins(cs_gpio_port, cs_gpio_pin);
}
spi_datacfg = spi_datacfg->next;
}
return ret;
}
static uint32 SpiReadData(struct SpiHardwareDevice *spi_dev, struct SpiDataStandard *spi_datacfg)
{
SpiDeviceParam *dev_param = (SpiDeviceParam *)(spi_dev->haldev.private_data);
uint8 cs_gpio_pin = dev_param->spi_slave_param->spi_cs_gpio_pin;
uint8 cs_gpio_port = dev_param->spi_slave_param->spi_cs_gpio_port;
CM_SPI_TypeDef *spi = spi_dev->haldev.owner_bus->private_data;
int i = 0;
int32 spi_read_status = 0;
uint32 spi_read_length = 0;
while (NONE != spi_datacfg) {
if (spi_datacfg->spi_chip_select) {
GPIO_ResetPins(cs_gpio_port, cs_gpio_pin);
}
if (spi_datacfg->length) {
uint8_t *rx_buff = x_malloc(spi_datacfg->length);
if ((spi_datacfg->rx_buff) && (rx_buff)) {
memset(rx_buff, 0xFF, spi_datacfg->length);
HwSpiEnable(spi);
spi_read_status = SPI_Receive(spi, rx_buff, spi_datacfg->length, 1000);
while (RESET != SPI_GetStatus(spi, SPI_FLAG_IDLE));
if (LL_OK == spi_read_status) {
for (i = 0; i < spi_datacfg->length; i++) {
((uint8_t *)spi_datacfg->rx_buff)[i] = rx_buff[i];
}
}
}
if (rx_buff) {
x_free(rx_buff);
}
SPI_ClearStatus(spi, SPI_FLAG_CLR_ALL | SPI_FLAG_RX_BUF_FULL);
}
if (spi_datacfg->spi_cs_release) {
GPIO_SetPins(cs_gpio_port, cs_gpio_pin);
}
spi_read_length += spi_datacfg->length;
spi_datacfg = spi_datacfg->next;
}
return spi_read_length;
}
/*manage the spi device operations*/
static const struct SpiDevDone spi_dev_done =
{
.dev_open = NONE,
.dev_close = NONE,
.dev_write = SpiWriteData,
.dev_read = SpiReadData,
};
static int BoardSpiBusInit(struct SpiBus *spi_bus, struct SpiDriver *spi_driver, const char *bus_name, const char *drv_name)
{
x_err_t ret = EOK;
/*Init the spi bus */
ret = SpiBusInit(spi_bus, bus_name);
if (EOK != ret) {
KPrintf("Board_Spi_init SpiBusInit error %d\n", ret);
return ERROR;
}
/*Init the spi driver*/
ret = SpiDriverInit(spi_driver, drv_name);
if (EOK != ret) {
KPrintf("Board_Spi_init SpiDriverInit error %d\n", ret);
return ERROR;
}
/*Attach the spi driver to the spi bus*/
ret = SpiDriverAttachToBus(drv_name, bus_name);
if (EOK != ret) {
KPrintf("Board_Spi_init SpiDriverAttachToBus error %d\n", ret);
return ERROR;
}
return ret;
}
/*Attach the spi device to the spi bus*/
static int BoardSpiDevBend(void)
{
x_err_t ret = EOK;
#ifdef SPI_1_DEVICE_NAME_0
static struct SpiHardwareDevice spi1_device0;
memset(&spi1_device0, 0, sizeof(struct SpiHardwareDevice));
static struct SpiSlaveParam spi1_slaveparam0;
memset(&spi1_slaveparam0, 0, sizeof(struct SpiSlaveParam));
spi1_slaveparam0.spi_slave_id = SPI1_DEVICE_SLAVE_ID_0;
spi1_slaveparam0.spi_cs_gpio_pin = SPI1_SS_PIN;
spi1_slaveparam0.spi_cs_gpio_port = SPI1_SS_PORT;
spi1_device0.spi_param.spi_slave_param = &spi1_slaveparam0;
spi1_device0.spi_dev_done = &(spi_dev_done);
ret = SpiDeviceRegister(&spi1_device0, (void *)(&spi1_device0.spi_param), SPI_1_DEVICE_NAME_0);
if (EOK != ret) {
KPrintf("BoardSpiDevBend SpiDeviceRegister device %s error %d\n", SPI_1_DEVICE_NAME_0, ret);
return ERROR;
}
ret = SpiDeviceAttachToBus(SPI_1_DEVICE_NAME_0, SPI_BUS_NAME_1);
if (EOK != ret) {
KPrintf("BoardSpiDevBend SpiDeviceAttachToBus device %s error %d\n", SPI_1_DEVICE_NAME_0, ret);
return ERROR;
}
#endif
#ifdef SPI_6_DEVICE_NAME_0
static struct SpiHardwareDevice spi6_device0;
memset(&spi6_device0, 0, sizeof(struct SpiHardwareDevice));
static struct SpiSlaveParam spi6_slaveparam0;
memset(&spi6_slaveparam0, 0, sizeof(struct SpiSlaveParam));
spi6_slaveparam0.spi_slave_id = SPI1_DEVICE_SLAVE_ID_0;
spi6_slaveparam0.spi_cs_gpio_pin = SPI6_SS_PIN;
spi6_slaveparam0.spi_cs_gpio_port = SPI6_SS_PORT;
spi6_device0.spi_param.spi_slave_param = &spi6_slaveparam0;
spi6_device0.spi_dev_done = &(spi_dev_done);
ret = SpiDeviceRegister(&spi6_device0, (void *)(&spi6_device0.spi_param), SPI_6_DEVICE_NAME_0);
if (EOK != ret) {
KPrintf("BoardSpiDevBend SpiDeviceRegister device %s error %d\n", SPI_6_DEVICE_NAME_0, ret);
return ERROR;
}
ret = SpiDeviceAttachToBus(SPI_6_DEVICE_NAME_0, SPI_BUS_NAME_6);
if (EOK != ret) {
KPrintf("BoardSpiDevBend SpiDeviceAttachToBus device %s error %d\n", SPI_6_DEVICE_NAME_0, ret);
return ERROR;
}
#endif
return ret;
}
int HwSpiInit(void)
{
x_err_t ret = EOK;
#ifdef BSP_USING_SPI1
static struct SpiBus spi1_bus;
memset(&spi1_bus, 0, sizeof(struct SpiBus));
static struct SpiDriver spi1_driver;
memset(&spi1_driver, 0, sizeof(struct SpiDriver));
spi1_bus.private_data = SPI1_UNIT;
spi1_driver.configure = SpiDrvConfigure;
ret = BoardSpiBusInit(&spi1_bus, &spi1_driver, SPI_BUS_NAME_1, SPI_1_DRV_NAME);
if (EOK != ret) {
KPrintf("BoardSpiBusInit error ret %u\n", ret);
return ERROR;
}
ret = BoardSpiDevBend();
if (EOK != ret) {
KPrintf("BoardSpiDevBend error ret %u\n", ret);
return ERROR;
}
#endif
#ifdef BSP_USING_SPI6
static struct SpiBus spi6_bus;
memset(&spi6_bus, 0, sizeof(struct SpiBus));
static struct SpiDriver spi6_driver;
memset(&spi6_driver, 0, sizeof(struct SpiDriver));
spi6_bus.private_data = SPI6_UNIT;
spi6_driver.configure = SpiDrvConfigure;
ret = BoardSpiBusInit(&spi6_bus, &spi6_driver, SPI_BUS_NAME_6, SPI_6_DRV_NAME);
if (EOK != ret) {
KPrintf("BoardSpiBusInit error ret %u\n", ret);
return ERROR;
}
ret = BoardSpiDevBend();
if (EOK != ret) {
KPrintf("BoardSpiDevBend error ret %u\n", ret);
return ERROR;
}
#endif
return ret;
}
/*Just for lora test*/
static struct Bus *bus;
static struct HardwareDev *dev;
static struct Driver *drv;
static uint32 TestSpiLoraOpen(void)
{
NULL_PARAM_CHECK(drv);
KPrintf("SpiLoraOpen start\n");
x_err_t ret = EOK;
struct BusConfigureInfo configure_info;
struct SpiMasterParam spi_master_param;
spi_master_param.spi_data_bit_width = 8;
spi_master_param.spi_work_mode = SPI_MODE_0 | SPI_MSB;
configure_info.configure_cmd = OPE_CFG;
configure_info.private_data = (void *)&spi_master_param;
ret = BusDrvConfigure(drv, &configure_info);
if (ret) {
KPrintf("spi drv OPE_CFG error drv %8p cfg %8p\n", drv, &spi_master_param);
return ERROR;
}
configure_info.configure_cmd = OPE_INT;
ret = BusDrvConfigure(drv, &configure_info);
if (ret) {
KPrintf("spi drv OPE_INT error drv %8p\n", drv);
return ERROR;
}
return ret;
}
static void TestSpiRead(void)
{
struct BusBlockWriteParam write_param;
struct BusBlockReadParam read_param;
uint8 write_addr = 0x06 & 0x7F;
uint8 read_data = 0;
BusDevOpen(dev);
write_param.buffer = (void *)&write_addr;
write_param.size = 1;
BusDevWriteData(dev, &write_param);
read_param.buffer = (void *)&read_data;
read_param.size = 1;
BusDevReadData(dev, &read_param);
BusDevClose(dev);
KPrintf("read data from lora 0x06 register, receive data 0x%x\n", read_data);
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0)|SHELL_CMD_TYPE(SHELL_TYPE_CMD_MAIN),
TestSpiRead, TestSpiRead, read data from lora register);
void TestLoraOpen(void)
{
x_err_t ret = EOK;
bus = BusFind(SPI_BUS_NAME_1);
dev = BusFindDevice(bus, SPI_1_DEVICE_NAME_0);
drv = BusFindDriver(bus, SPI_1_DRV_NAME);
bus->match(drv, dev);
ret = TestSpiLoraOpen();
if (EOK != ret) {
KPrintf("LoRa init failed\n");
return;
}
KPrintf("LoRa init succeed\n");
return;
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0)|SHELL_CMD_TYPE(SHELL_TYPE_CMD_MAIN),
TestLoraOpen, TestLoraOpen, open lora device and read parameters);

View File

@ -0,0 +1,5 @@
ifeq ($(CONFIG_RESOURCES_SPI_LORA),y)
SRC_DIR := sx12xx
endif
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,3 @@
SRC_DIR := src
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,51 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file spi_lora_sx12xx.h
* @brief define spi lora driver function
* @version 2.0
* @author AIIT XUOS Lab
* @date 2022-10-31
*/
#ifndef SPI_LORA_SX12XX_H
#define SPI_LORA_SX12XX_H
#include <connect_spi_lora.h>
#ifdef __cplusplus
extern "C" {
#endif
uint8_t SX1276ReadDio0(void);
uint8_t SX1276ReadDio1(void);
uint8_t SX1276ReadDio2(void);
uint8_t SX1276ReadDio3(void);
uint8_t SX1276ReadDio4(void);
uint8_t SX1276ReadDio5(void);
void SX1276Write(uint8_t addr, uint8_t data);
void SX1276Read(uint8_t addr, uint8_t *data);
void SX1276WriteBuffer(uint8_t addr, uint8_t *buffer, uint8_t size);
void SX1276ReadBuffer(uint8_t addr, uint8_t *buffer, uint8_t size);
void SX1276WriteFifo(uint8_t *buffer, uint8_t size);
void SX1276ReadFifo(uint8_t *buffer, uint8_t size);
void SX1276SetReset(uint8_t state);
uint8_t Sx1276SpiCheck(void);
void SX1276WriteRxTx(uint8_t txEnable);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,3 @@
SRC_DIR := radio
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,3 @@
SRC_FILES := radio.c sx1276-Fsk.c sx1276-FskMisc.c sx1276-LoRa.c sx1276-LoRaMisc.c sx1276.c
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,96 @@
/*
* THE FOLLOWING FIRMWARE IS PROVIDED: (1) "AS IS" WITH NO WARRANTY; AND
* (2)TO ENABLE ACCESS TO CODING INFORMATION TO GUIDE AND FACILITATE CUSTOMER.
* CONSEQUENTLY, SEMTECH SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
* CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
* OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION
* CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* Copyright (C) SEMTECH S.A.
*/
/*!
* \file platform.h
* \brief
*
* \version 1.0
* \date Nov 21 2012
* \author Miguel Luis
*/
/*************************************************
File name: platform.h
Description: support aiit board configure and register function
History:
1. Date: 2021-04-25
Author: AIIT XUOS Lab
Modification:
1. replace original macro and basic date type with AIIT XUOS Lab's own defination
*************************************************/
#ifndef __PLATFORM_H__
#define __PLATFORM_H__
#ifndef __GNUC__
#define inline
#endif
/*!
* Platform definition
*/
#define Bleeper 3
#define SX1243ska 2
#define SX12xxEiger 1
#define SX12000DVK 0
/*!
* Platform choice. Please uncoment the PLATFORM define and choose your platform
* or add/change the PLATFORM definition on the compiler Defines option
*/
#define PLATFORM SX12xxEiger
#if( PLATFORM == SX12xxEiger )
/*!
* Radio choice. Please uncomment the wanted radio and comment the others
* or add/change wanted radio definition on the compiler Defines option
*/
//#define USE_SX1232_RADIO
//#define USE_SX1272_RADIO
#define USE_SX1276_RADIO
//#define USE_SX1243_RADIO
/*!
* Module choice. There are three existing module with the SX1276.
* Please set the connected module to the value 1 and set the others to 0
*/
#ifdef USE_SX1276_RADIO
#define MODULE_SX1276RF1IAS 0
#define MODULE_SX1276RF1JAS 0
#define MODULE_SX1276RF1KAS 1
#endif
#include <spi_lora_sx12xx.h>
#define USE_UART 0
#elif( PLATFORM == SX12000DVK )
/*!
* Radio choice. Please uncomment the wanted radio and comment the others
* or add/change wanted radio definition on the compiler Defines option
*/
//#define USE_SX1232_RADIO
#define USE_SX1272_RADIO
//#define USE_SX1276_RADIO
//#define USE_SX1243_RADIO
#include "sx1200dvk/sx1200dvk.h"
#elif( PLATFORM == SX1243ska )
#elif( PLATFORM == Bleeper )
#define USE_SX1272_RADIO
#include "bleeper/bleeper.h"
#define USE_UART 0
#else
#error "Missing define: Platform (ie. SX12xxEiger)"
#endif
#endif // __PLATFORM_H__

View File

@ -0,0 +1,75 @@
/*
* THE FOLLOWING FIRMWARE IS PROVIDED: (1) "AS IS" WITH NO WARRANTY; AND
* (2)TO ENABLE ACCESS TO CODING INFORMATION TO GUIDE AND FACILITATE CUSTOMER.
* CONSEQUENTLY, SEMTECH SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
* CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
* OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION
* CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* Copyright (C) SEMTECH S.A.
*/
/*!
* \file radio.c
* \brief Generic radio driver ( radio abstraction )
*
* \version 2.0.0
* \date Nov 21 2012
* \author Miguel Luis
*
* Last modified by Gregory Cristian on Apr 25 2013
*/
/*************************************************
File name: radio.c
Description: support aiit board configure and register function
History:
1. Date: 2021-04-25
Author: AIIT XUOS Lab
Modification:
1. replace original macro and basic date type with AIIT XUOS Lab's own defination
*************************************************/
#include <stdint.h>
#include "platform.h"
#include "radio.h"
#if defined( USE_SX1232_RADIO )
#include "sx1232.h"
#elif defined( USE_SX1272_RADIO )
#include "sx1272.h"
#elif defined( USE_SX1276_RADIO )
#include "sx1276.h"
#else
#error "Missing define: USE_XXXXXX_RADIO (ie. USE_SX1272_RADIO)"
#endif
tRadioDriver RadioDriver;
tRadioDriver* RadioDriverInit( void )
{
#if defined( USE_SX1232_RADIO )
RadioDriver.Init = SX1232Init;
RadioDriver.Reset = SX1232Reset;
RadioDriver.StartRx = SX1232StartRx;
RadioDriver.GetRxPacket = SX1232GetRxPacket;
RadioDriver.SetTxPacket = SX1232SetTxPacket;
RadioDriver.Process = SX1232Process;
#elif defined( USE_SX1272_RADIO )
RadioDriver.Init = SX1272Init;
RadioDriver.Reset = SX1272Reset;
RadioDriver.StartRx = SX1272StartRx;
RadioDriver.GetRxPacket = SX1272GetRxPacket;
RadioDriver.SetTxPacket = SX1272SetTxPacket;
RadioDriver.Process = SX1272Process;
#elif defined( USE_SX1276_RADIO )
RadioDriver.Init = SX1276Init;
RadioDriver.Reset = SX1276Reset;
RadioDriver.StartRx = SX1276StartRx;
RadioDriver.GetRxPacket = SX1276GetRxPacket;
RadioDriver.SetTxPacket = SX1276SetTxPacket;
RadioDriver.Process = SX1276Process;
RadioDriver.ChannelEmpty = SX1276ChannelEmpty;
#else
#error "Missing define: USE_XXXXXX_RADIO (ie. USE_SX1272_RADIO)"
#endif
return &RadioDriver;
}

View File

@ -0,0 +1,77 @@
/*
* THE FOLLOWING FIRMWARE IS PROVIDED: (1) "AS IS" WITH NO WARRANTY; AND
* (2)TO ENABLE ACCESS TO CODING INFORMATION TO GUIDE AND FACILITATE CUSTOMER.
* CONSEQUENTLY, SEMTECH SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
* CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
* OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION
* CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* Copyright (C) SEMTECH S.A.
*/
/*!
* \file radio.h
* \brief Generic radio driver ( radio abstraction )
*
* \version 2.0.B2
* \date Nov 21 2012
* \author Miguel Luis
*
* Last modified by Gregory Cristian on Apr 25 2013
*/
/*************************************************
File name: radio.h
Description: support aiit board configure and register function
History:
1. Date: 2021-04-25
Author: AIIT XUOS Lab
Modification:
1. replace original macro and basic date type with AIIT XUOS Lab's own defination
*************************************************/
#ifndef __RADIO_H__
#define __RADIO_H__
/*!
* SX1272 and SX1276 General parameters definition
*/
#define LORA 1 // [0: OFF, 1: ON]
/*!
* RF process function return codes
*/
typedef enum
{
RF_IDLE,
RF_BUSY,
RF_RX_DONE,
RF_RX_TIMEOUT,
RF_TX_DONE,
RF_TX_TIMEOUT,
RF_LEN_ERROR,
RF_CHANNEL_EMPTY,
RF_CHANNEL_ACTIVITY_DETECTED,
}tRFProcessReturnCodes;
/*!
* Radio driver structure defining the different function pointers
*/
typedef struct sRadioDriver
{
void ( *Init )( void );
void ( *Reset )( void );
void ( *StartRx )( void );
void ( *GetRxPacket )( void *buffer, uint16_t *size );
void ( *SetTxPacket )( const void *buffer, uint16_t size );
uint32_t ( *Process )( void );
uint32_t ( *ChannelEmpty )(void );
}tRadioDriver;
/*!
* \brief Initializes the RadioDriver structure with specific radio
* functions.
*
* \retval radioDriver Pointer to the radio driver variable
*/
tRadioDriver* RadioDriverInit( void );
#endif // __RADIO_H__

View File

@ -0,0 +1,616 @@
/*
* THE FOLLOWING FIRMWARE IS PROVIDED: (1) "AS IS" WITH NO WARRANTY; AND
* (2)TO ENABLE ACCESS TO CODING INFORMATION TO GUIDE AND FACILITATE CUSTOMER.
* CONSEQUENTLY, SEMTECH SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
* CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
* OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION
* CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* Copyright (C) SEMTECH S.A.
*/
/*!
* \file sx1276.c
* \brief SX1276 RF chip driver
*
* \version 2.0.0
* \date May 6 2013
* \author Gregory Cristian
*
* Last modified by Miguel Luis on Jun 19 2013
*/
/*************************************************
File name: sx1276-Fsk.c
Description: support aiit board configure and register function
History:
1. Date: 2021-04-25
Author: AIIT XUOS Lab
Modification:
1. replace original macro and basic date type with AIIT XUOS Lab's own defination
*************************************************/
#include <string.h>
#include <math.h>
#include "platform.h"
#if defined( USE_SX1276_RADIO )
#include "radio.h"
#include "sx1276-Hal.h"
#include "sx1276.h"
#include "sx1276-FskMisc.h"
#include "sx1276-Fsk.h"
// Default settings
tFskSettings FskSettings =
{
870000000, // RFFrequency
9600, // Bitrate
50000, // Fdev
20, // Power
100000, // RxBw
150000, // RxBwAfc
true, // CrcOn
true, // AfcOn
255 // PayloadLength (set payload size to the maximum for variable mode, else set the exact payload length)
};
/*!
* SX1276 FSK registers variable
*/
tSX1276* SX1276;
/*!
* Local RF buffer for communication support
*/
static uint8_t RFBuffer[RF_BUFFER_SIZE];
/*!
* Chunk size of data write in buffer
*/
static uint8_t DataChunkSize = 32;
/*!
* RF state machine variable
*/
static uint8_t RFState = RF_STATE_IDLE;
/*!
* Rx management support variables
*/
/*!
* PacketTimeout holds the RF packet timeout
* SyncSize = [0..8]
* VariableSize = [0;1]
* AddressSize = [0;1]
* PayloadSize = [0..RF_BUFFER_SIZE]
* CrcSize = [0;2]
* PacketTimeout = ( ( 8 * ( VariableSize + AddressSize + PayloadSize + CrcSize ) / BR ) * 1000.0 ) + 1
* Computed timeout is in miliseconds
*/
static uint32_t PacketTimeout;
/*!
* Preamble2SyncTimeout
* Preamble2SyncTimeout = ( ( 8 * ( PremableSize + SyncSize ) / RFBitrate ) * 1000.0 ) + 1
* Computed timeout is in miliseconds
*/
static uint32_t Preamble2SyncTimeout;
static bool PreambleDetected = false;
static bool SyncWordDetected = false;
static bool PacketDetected = false;
static uint16_t RxPacketSize = 0;
static uint8_t RxBytesRead = 0;
static uint8_t TxBytesSent = 0;
static double RxPacketRssiValue;
static uint32_t RxPacketAfcValue;
static uint8_t RxGain = 1;
static uint32_t RxTimeoutTimer = 0;
static uint32_t Preamble2SyncTimer = 0;
/*!
* Tx management support variables
*/
static uint16_t TxPacketSize = 0;
static uint32_t TxTimeoutTimer = 0;
void SX1276FskInit( void )
{
RFState = RF_STATE_IDLE;
SX1276FskSetDefaults( );
SX1276ReadBuffer( REG_OPMODE, SX1276Regs + 1, 0x70 - 1 );
// Set the device in FSK mode and Sleep Mode
SX1276->RegOpMode = RF_OPMODE_MODULATIONTYPE_FSK | RF_OPMODE_SLEEP;
SX1276Write( REG_OPMODE, SX1276->RegOpMode );
SX1276->RegPaRamp = RF_PARAMP_MODULATIONSHAPING_01;
SX1276Write( REG_PARAMP, SX1276->RegPaRamp );
SX1276->RegLna = RF_LNA_GAIN_G1;
SX1276Write( REG_LNA, SX1276->RegLna );
if( FskSettings.AfcOn == true )
{
SX1276->RegRxConfig = RF_RXCONFIG_RESTARTRXONCOLLISION_OFF | RF_RXCONFIG_AFCAUTO_ON |
RF_RXCONFIG_AGCAUTO_ON | RF_RXCONFIG_RXTRIGER_PREAMBLEDETECT;
}
else
{
SX1276->RegRxConfig = RF_RXCONFIG_RESTARTRXONCOLLISION_OFF | RF_RXCONFIG_AFCAUTO_OFF |
RF_RXCONFIG_AGCAUTO_ON | RF_RXCONFIG_RXTRIGER_PREAMBLEDETECT;
}
SX1276->RegPreambleLsb = 8;
SX1276->RegPreambleDetect = RF_PREAMBLEDETECT_DETECTOR_ON | RF_PREAMBLEDETECT_DETECTORSIZE_2 |
RF_PREAMBLEDETECT_DETECTORTOL_10;
SX1276->RegRssiThresh = 0xFF;
SX1276->RegSyncConfig = RF_SYNCCONFIG_AUTORESTARTRXMODE_WAITPLL_ON | RF_SYNCCONFIG_PREAMBLEPOLARITY_AA |
RF_SYNCCONFIG_SYNC_ON |
RF_SYNCCONFIG_SYNCSIZE_4;
SX1276->RegSyncValue1 = 0x69;
SX1276->RegSyncValue2 = 0x81;
SX1276->RegSyncValue3 = 0x7E;
SX1276->RegSyncValue4 = 0x96;
SX1276->RegPacketConfig1 = RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE | RF_PACKETCONFIG1_DCFREE_OFF |
( FskSettings.CrcOn << 4 ) | RF_PACKETCONFIG1_CRCAUTOCLEAR_ON |
RF_PACKETCONFIG1_ADDRSFILTERING_OFF | RF_PACKETCONFIG1_CRCWHITENINGTYPE_CCITT;
SX1276FskGetPacketCrcOn( ); // Update CrcOn on FskSettings
SX1276->RegPayloadLength = FskSettings.PayloadLength;
// we can now update the registers with our configuration
SX1276WriteBuffer( REG_OPMODE, SX1276Regs + 1, 0x70 - 1 );
// then we need to set the RF settings
SX1276FskSetRFFrequency( FskSettings.RFFrequency );
SX1276FskSetBitrate( FskSettings.Bitrate );
SX1276FskSetFdev( FskSettings.Fdev );
SX1276FskSetDccBw( &SX1276->RegRxBw, 0, FskSettings.RxBw );
SX1276FskSetDccBw( &SX1276->RegAfcBw, 0, FskSettings.RxBwAfc );
SX1276FskSetRssiOffset( 0 );
#if( ( MODULE_SX1276RF1IAS == 1 ) || ( MODULE_SX1276RF1KAS == 1 ) )
if( FskSettings.RFFrequency > 860000000 )
{
SX1276FskSetPAOutput( RF_PACONFIG_PASELECT_RFO );
SX1276FskSetPa20dBm( false );
FskSettings.Power = 14;
SX1276FskSetRFPower( FskSettings.Power );
}
else
{
SX1276FskSetPAOutput( RF_PACONFIG_PASELECT_PABOOST );
SX1276FskSetPa20dBm( true );
FskSettings.Power = 20;
SX1276FskSetRFPower( FskSettings.Power );
}
#elif( MODULE_SX1276RF1JAS == 1 )
if( FskSettings.RFFrequency > 860000000 )
{
SX1276FskSetPAOutput( RF_PACONFIG_PASELECT_PABOOST );
SX1276FskSetPa20dBm( true );
FskSettings.Power = 20;
SX1276FskSetRFPower( FskSettings.Power );
}
else
{
SX1276FskSetPAOutput( RF_PACONFIG_PASELECT_RFO );
SX1276FskSetPa20dBm( false );
FskSettings.Power = 14;
SX1276FskSetRFPower( FskSettings.Power );
}
#endif
SX1276FskSetOpMode( RF_OPMODE_STANDBY );
// Calibrate the HF
SX1276FskRxCalibrate( );
}
void SX1276FskSetDefaults( void )
{
// REMARK: See SX1276 datasheet for modified default values.
SX1276Read( REG_VERSION, &SX1276->RegVersion );
}
void SX1276FskSetOpMode( uint8_t opMode )
{
static uint8_t opModePrev = RF_OPMODE_STANDBY;
static bool antennaSwitchTxOnPrev = true;
bool antennaSwitchTxOn = false;
opModePrev = SX1276->RegOpMode & ~RF_OPMODE_MASK;
if( opMode != opModePrev )
{
if( opMode == RF_OPMODE_TRANSMITTER )
{
antennaSwitchTxOn = true;
}
else
{
antennaSwitchTxOn = false;
}
if( antennaSwitchTxOn != antennaSwitchTxOnPrev )
{
antennaSwitchTxOnPrev = antennaSwitchTxOn;
RXTX( antennaSwitchTxOn ); // Antenna switch control
}
SX1276->RegOpMode = ( SX1276->RegOpMode & RF_OPMODE_MASK ) | opMode;
SX1276Write( REG_OPMODE, SX1276->RegOpMode );
}
}
uint8_t SX1276FskGetOpMode( void )
{
SX1276Read( REG_OPMODE, &SX1276->RegOpMode );
return SX1276->RegOpMode & ~RF_OPMODE_MASK;
}
int32_t SX1276FskReadFei( void )
{
SX1276ReadBuffer( REG_FEIMSB, &SX1276->RegFeiMsb, 2 ); // Reads the FEI value
return ( int32_t )( double )( ( ( uint16_t )SX1276->RegFeiMsb << 8 ) | ( uint16_t )SX1276->RegFeiLsb ) * ( double )FREQ_STEP;
}
int32_t SX1276FskReadAfc( void )
{
SX1276ReadBuffer( REG_AFCMSB, &SX1276->RegAfcMsb, 2 ); // Reads the AFC value
return ( int32_t )( double )( ( ( uint16_t )SX1276->RegAfcMsb << 8 ) | ( uint16_t )SX1276->RegAfcLsb ) * ( double )FREQ_STEP;
}
uint8_t SX1276FskReadRxGain( void )
{
SX1276Read( REG_LNA, &SX1276->RegLna );
return( SX1276->RegLna >> 5 ) & 0x07;
}
double SX1276FskReadRssi( void )
{
SX1276Read( REG_RSSIVALUE, &SX1276->RegRssiValue ); // Reads the RSSI value
return -( double )( ( double )SX1276->RegRssiValue / 2.0 );
}
uint8_t SX1276FskGetPacketRxGain( void )
{
return RxGain;
}
double SX1276FskGetPacketRssi( void )
{
return RxPacketRssiValue;
}
uint32_t SX1276FskGetPacketAfc( void )
{
return RxPacketAfcValue;
}
void SX1276FskStartRx( void )
{
SX1276FskSetRFState( RF_STATE_RX_INIT );
}
void SX1276FskGetRxPacket( void *buffer, uint16_t *size )
{
*size = RxPacketSize;
RxPacketSize = 0;
memcpy( ( void * )buffer, ( void * )RFBuffer, ( size_t )*size );
}
void SX1276FskSetTxPacket( const void *buffer, uint16_t size )
{
TxPacketSize = size;
memcpy( ( void * )RFBuffer, buffer, ( size_t )TxPacketSize );
RFState = RF_STATE_TX_INIT;
}
// Remark: SX1276 must be fully initialized before calling this function
uint16_t SX1276FskGetPacketPayloadSize( void )
{
uint16_t syncSize;
uint16_t variableSize;
uint16_t addressSize;
uint16_t payloadSize;
uint16_t crcSize;
syncSize = ( SX1276->RegSyncConfig & 0x07 ) + 1;
variableSize = ( ( SX1276->RegPacketConfig1 & 0x80 ) == 0x80 ) ? 1 : 0;
addressSize = ( ( SX1276->RegPacketConfig1 & 0x06 ) != 0x00 ) ? 1 : 0;
payloadSize = SX1276->RegPayloadLength;
crcSize = ( ( SX1276->RegPacketConfig1 & 0x10 ) == 0x10 ) ? 2 : 0;
return syncSize + variableSize + addressSize + payloadSize + crcSize;
}
// Remark: SX1276 must be fully initialized before calling this function
uint16_t SX1276FskGetPacketHeaderSize( void )
{
uint16_t preambleSize;
uint16_t syncSize;
preambleSize = ( ( uint16_t )SX1276->RegPreambleMsb << 8 ) | ( uint16_t )SX1276->RegPreambleLsb;
syncSize = ( SX1276->RegSyncConfig & 0x07 ) + 1;
return preambleSize + syncSize;
}
uint8_t SX1276FskGetRFState( void )
{
return RFState;
}
void SX1276FskSetRFState( uint8_t state )
{
RFState = state;
}
uint32_t SX1276FskProcess( void )
{
uint32_t result = RF_BUSY;
switch( RFState )
{
case RF_STATE_IDLE:
break;
// Rx management
case RF_STATE_RX_INIT:
// DIO mapping setup
if( ( SX1276->RegPacketConfig1 & RF_PACKETCONFIG1_CRC_ON ) == RF_PACKETCONFIG1_CRC_ON )
{
// CrcOk, FifoLevel, SyncAddr, FifoEmpty
SX1276->RegDioMapping1 = RF_DIOMAPPING1_DIO0_01 | RF_DIOMAPPING1_DIO1_00 | RF_DIOMAPPING1_DIO2_11 | RF_DIOMAPPING1_DIO3_00;
}
else
{
// PayloadReady, FifoLevel, SyncAddr, FifoEmpty
SX1276->RegDioMapping1 = RF_DIOMAPPING1_DIO0_00 | RF_DIOMAPPING1_DIO1_00 | RF_DIOMAPPING1_DIO2_11 | RF_DIOMAPPING1_DIO3_00;
}
// Preamble, Data
SX1276->RegDioMapping2 = RF_DIOMAPPING2_DIO4_11 | RF_DIOMAPPING2_DIO5_10 | RF_DIOMAPPING2_MAP_PREAMBLEDETECT;
SX1276WriteBuffer( REG_DIOMAPPING1, &SX1276->RegDioMapping1, 2 );
SX1276FskSetOpMode( RF_OPMODE_RECEIVER );
memset( RFBuffer, 0, ( size_t )RF_BUFFER_SIZE );
PacketTimeout = ( uint16_t )( round( ( 8.0 * ( ( double )SX1276FskGetPacketPayloadSize( ) ) / ( double )FskSettings.Bitrate ) * 1000.0 ) + 1.0 );
PacketTimeout = PacketTimeout + ( PacketTimeout >> 1 ); // Set the Packet timeout as 1.5 times the full payload transmission time
Preamble2SyncTimeout = PacketTimeout;
Preamble2SyncTimer = RxTimeoutTimer = GET_TICK_COUNT( );
SX1276->RegFifoThresh = RF_FIFOTHRESH_TXSTARTCONDITION_FIFONOTEMPTY | 0x20; // 32 bytes of data
SX1276Write( REG_FIFOTHRESH, SX1276->RegFifoThresh );
PreambleDetected = false;
SyncWordDetected = false;
PacketDetected = false;
RxBytesRead = 0;
RxPacketSize = 0;
RFState = RF_STATE_RX_SYNC;
break;
case RF_STATE_RX_SYNC:
if( ( DIO4 == 1 ) && ( PreambleDetected == false ) )// Preamble
{
PreambleDetected = true;
Preamble2SyncTimer = GET_TICK_COUNT( );
}
if( ( DIO2 == 1 ) && ( PreambleDetected == true ) && ( SyncWordDetected == false ) ) // SyncAddr
{
SyncWordDetected = true;
RxPacketRssiValue = SX1276FskReadRssi( );
RxPacketAfcValue = SX1276FskReadAfc( );
RxGain = SX1276FskReadRxGain( );
Preamble2SyncTimer = RxTimeoutTimer = GET_TICK_COUNT( );
RFState = RF_STATE_RX_RUNNING;
}
// Preamble 2 SyncAddr timeout
if( ( SyncWordDetected == false ) && ( PreambleDetected == true ) && ( ( GET_TICK_COUNT( ) - Preamble2SyncTimer ) > Preamble2SyncTimeout ) )
{
RFState = RF_STATE_RX_INIT;
SX1276Write( REG_RXCONFIG, SX1276->RegRxConfig | RF_RXCONFIG_RESTARTRXWITHPLLLOCK );
}
if( ( SyncWordDetected == false ) &&
( PreambleDetected == false ) &&
( PacketDetected == false ) &&
( ( GET_TICK_COUNT( ) - RxTimeoutTimer ) > PacketTimeout ) )
{
RFState = RF_STATE_RX_TIMEOUT;
}
break;
case RF_STATE_RX_RUNNING:
if( RxPacketSize > RF_BUFFER_SIZE_MAX )
{
RFState = RF_STATE_RX_LEN_ERROR;
break;
}
#if 1
if( DIO1 == 1 ) // FifoLevel
{
if( ( RxPacketSize == 0 ) && ( RxBytesRead == 0 ) ) // Read received packet size
{
if( ( SX1276->RegPacketConfig1 & RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE ) == RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE )
{
SX1276ReadFifo( ( uint8_t* )&RxPacketSize, 1 );
}
else
{
RxPacketSize = SX1276->RegPayloadLength;
}
}
if( ( RxPacketSize - RxBytesRead ) > ( SX1276->RegFifoThresh & 0x3F ) )
{
SX1276ReadFifo( ( RFBuffer + RxBytesRead ), ( SX1276->RegFifoThresh & 0x3F ) );
RxBytesRead += ( SX1276->RegFifoThresh & 0x3F );
}
else
{
SX1276ReadFifo( ( RFBuffer + RxBytesRead ), RxPacketSize - RxBytesRead );
RxBytesRead += ( RxPacketSize - RxBytesRead );
}
}
#endif
if( DIO0 == 1 ) // PayloadReady/CrcOk
{
RxTimeoutTimer = GET_TICK_COUNT( );
if( ( RxPacketSize == 0 ) && ( RxBytesRead == 0 ) ) // Read received packet size
{
if( ( SX1276->RegPacketConfig1 & RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE ) == RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE )
{
SX1276ReadFifo( ( uint8_t* )&RxPacketSize, 1 );
}
else
{
RxPacketSize = SX1276->RegPayloadLength;
}
SX1276ReadFifo( RFBuffer + RxBytesRead, RxPacketSize - RxBytesRead );
RxBytesRead += ( RxPacketSize - RxBytesRead );
PacketDetected = true;
RFState = RF_STATE_RX_DONE;
}
else
{
SX1276ReadFifo( RFBuffer + RxBytesRead, RxPacketSize - RxBytesRead );
RxBytesRead += ( RxPacketSize - RxBytesRead );
PacketDetected = true;
RFState = RF_STATE_RX_DONE;
}
}
// Packet timeout
if( ( PacketDetected == false ) && ( ( GET_TICK_COUNT( ) - RxTimeoutTimer ) > PacketTimeout ) )
{
RFState = RF_STATE_RX_TIMEOUT;
}
break;
case RF_STATE_RX_DONE:
RxBytesRead = 0;
RFState = RF_STATE_RX_INIT;
result = RF_RX_DONE;
break;
case RF_STATE_RX_TIMEOUT:
RxBytesRead = 0;
RxPacketSize = 0;
SX1276Write( REG_RXCONFIG, SX1276->RegRxConfig | RF_RXCONFIG_RESTARTRXWITHPLLLOCK );
RFState = RF_STATE_RX_INIT;
result = RF_RX_TIMEOUT;
break;
case RF_STATE_RX_LEN_ERROR:
RxBytesRead = 0;
RxPacketSize = 0;
SX1276Write( REG_RXCONFIG, SX1276->RegRxConfig | RF_RXCONFIG_RESTARTRXWITHPLLLOCK );
RFState = RF_STATE_RX_INIT;
result = RF_LEN_ERROR;
break;
// Tx management
case RF_STATE_TX_INIT:
// Packet DIO mapping setup
// PacketSent, FifoLevel, FifoFull, TxReady
SX1276->RegDioMapping1 = RF_DIOMAPPING1_DIO0_00 | RF_DIOMAPPING1_DIO1_00 | RF_DIOMAPPING1_DIO2_00 | RF_DIOMAPPING1_DIO3_01;
// LowBat, Data
SX1276->RegDioMapping2 = RF_DIOMAPPING2_DIO4_00 | RF_DIOMAPPING2_DIO5_10;
SX1276WriteBuffer( REG_DIOMAPPING1, &SX1276->RegDioMapping1, 2 );
SX1276->RegFifoThresh = RF_FIFOTHRESH_TXSTARTCONDITION_FIFONOTEMPTY | 0x18; // 24 bytes of data
SX1276Write( REG_FIFOTHRESH, SX1276->RegFifoThresh );
SX1276FskSetOpMode( RF_OPMODE_TRANSMITTER );
RFState = RF_STATE_TX_READY_WAIT;
TxBytesSent = 0;
break;
case RF_STATE_TX_READY_WAIT:
if( DIO3 == 1 ) // TxReady
{
if( ( SX1276->RegPacketConfig1 & RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE ) == RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE )
{
SX1276WriteFifo( ( uint8_t* )&TxPacketSize, 1 );
}
if( ( TxPacketSize > 0 ) && ( TxPacketSize <= 64 ) )
{
DataChunkSize = TxPacketSize;
}
else
{
DataChunkSize = 32;
}
SX1276WriteFifo( RFBuffer, DataChunkSize );
TxBytesSent += DataChunkSize;
TxTimeoutTimer = GET_TICK_COUNT( );
RFState = RF_STATE_TX_RUNNING;
}
break;
case RF_STATE_TX_RUNNING:
if( DIO1 == 0 ) // FifoLevel below thresold
{
if( ( TxPacketSize - TxBytesSent ) > DataChunkSize )
{
SX1276WriteFifo( ( RFBuffer + TxBytesSent ), DataChunkSize );
TxBytesSent += DataChunkSize;
}
else
{
// we write the last chunk of data
SX1276WriteFifo( RFBuffer + TxBytesSent, TxPacketSize - TxBytesSent );
TxBytesSent += TxPacketSize - TxBytesSent;
}
}
if( DIO0 == 1 ) // PacketSent
{
TxTimeoutTimer = GET_TICK_COUNT( );
RFState = RF_STATE_TX_DONE;
SX1276FskSetOpMode( RF_OPMODE_STANDBY );
}
// Packet timeout
if( ( GET_TICK_COUNT( ) - TxTimeoutTimer ) > TICK_RATE_MS( 1000 ) )
{
RFState = RF_STATE_TX_TIMEOUT;
}
break;
case RF_STATE_TX_DONE:
RFState = RF_STATE_IDLE;
result = RF_TX_DONE;
break;
case RF_STATE_TX_TIMEOUT:
RFState = RF_STATE_IDLE;
result = RF_TX_TIMEOUT;
break;
default:
break;
}
return result;
}
#endif // USE_SX1276_RADIO

View File

@ -0,0 +1,532 @@
/*
* THE FOLLOWING FIRMWARE IS PROVIDED: (1) "AS IS" WITH NO WARRANTY; AND
* (2)TO ENABLE ACCESS TO CODING INFORMATION TO GUIDE AND FACILITATE CUSTOMER.
* CONSEQUENTLY, SEMTECH SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
* CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
* OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION
* CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* Copyright (C) SEMTECH S.A.
*/
/*!
* \file sx1276-FskMisc.c
* \brief SX1276 RF chip high level functions driver
*
* \remark Optional support functions.
* These functions are defined only to easy the change of the
* parameters.
* For a final firmware the radio parameters will be known so
* there is no need to support all possible parameters.
* Removing these functions will greatly reduce the final firmware
* size.
*
* \version 2.0.0
* \date May 6 2013
* \author Gregory Cristian
*
* Last modified by Miguel Luis on Jun 19 2013
*/
/*************************************************
File name: sx1276-FskMisc.c
Description: support aiit board configure and register function
History:
1. Date: 2021-04-25
Author: AIIT XUOS Lab
Modification:
1. replace original macro and basic date type with AIIT XUOS Lab's own defination
*************************************************/
#include <math.h>
#include "platform.h"
#if defined( USE_SX1276_RADIO )
#include "sx1276-Hal.h"
#include "sx1276.h"
#include "sx1276-Fsk.h"
#include "sx1276-FskMisc.h"
extern tFskSettings FskSettings;
void SX1276FskSetRFFrequency( uint32_t freq )
{
FskSettings.RFFrequency = freq;
freq = ( uint32_t )( ( double )freq / ( double )FREQ_STEP );
SX1276->RegFrfMsb = ( uint8_t )( ( freq >> 16 ) & 0xFF );
SX1276->RegFrfMid = ( uint8_t )( ( freq >> 8 ) & 0xFF );
SX1276->RegFrfLsb = ( uint8_t )( freq & 0xFF );
SX1276WriteBuffer( REG_FRFMSB, &SX1276->RegFrfMsb, 3 );
}
uint32_t SX1276FskGetRFFrequency( void )
{
SX1276ReadBuffer( REG_FRFMSB, &SX1276->RegFrfMsb, 3 );
FskSettings.RFFrequency = ( ( uint32_t )SX1276->RegFrfMsb << 16 ) | ( ( uint32_t )SX1276->RegFrfMid << 8 ) | ( ( uint32_t )SX1276->RegFrfLsb );
FskSettings.RFFrequency = ( uint32_t )( ( double )FskSettings.RFFrequency * ( double )FREQ_STEP );
return FskSettings.RFFrequency;
}
void SX1276FskRxCalibrate( void )
{
// the function RadioRxCalibrate is called just after the reset so all register are at their default values
uint8_t regPaConfigInitVal;
uint32_t initialFreq;
// save register values;
SX1276Read( REG_PACONFIG, &regPaConfigInitVal );
initialFreq = SX1276FskGetRFFrequency( );
// Cut the PA just in case
SX1276->RegPaConfig = 0x00; // RFO output, power = -1 dBm
SX1276Write( REG_PACONFIG, SX1276->RegPaConfig );
// Set Frequency in HF band
SX1276FskSetRFFrequency( 860000000 );
// Rx chain re-calibration workaround
SX1276Read( REG_IMAGECAL, &SX1276->RegImageCal );
SX1276->RegImageCal = ( SX1276->RegImageCal & RF_IMAGECAL_IMAGECAL_MASK ) | RF_IMAGECAL_IMAGECAL_START;
SX1276Write( REG_IMAGECAL, SX1276->RegImageCal );
SX1276Read( REG_IMAGECAL, &SX1276->RegImageCal );
// rx_cal_run goes low when calibration in finished
while( ( SX1276->RegImageCal & RF_IMAGECAL_IMAGECAL_RUNNING ) == RF_IMAGECAL_IMAGECAL_RUNNING )
{
SX1276Read( REG_IMAGECAL, &SX1276->RegImageCal );
}
// reload saved values into the registers
SX1276->RegPaConfig = regPaConfigInitVal;
SX1276Write( REG_PACONFIG, SX1276->RegPaConfig );
SX1276FskSetRFFrequency( initialFreq );
}
void SX1276FskSetBitrate( uint32_t bitrate )
{
FskSettings.Bitrate = bitrate;
bitrate = ( uint16_t )( ( double )XTAL_FREQ / ( double )bitrate );
SX1276->RegBitrateMsb = ( uint8_t )( bitrate >> 8 );
SX1276->RegBitrateLsb = ( uint8_t )( bitrate & 0xFF );
SX1276WriteBuffer( REG_BITRATEMSB, &SX1276->RegBitrateMsb, 2 );
}
uint32_t SX1276FskGetBitrate( void )
{
SX1276ReadBuffer( REG_BITRATEMSB, &SX1276->RegBitrateMsb, 2 );
FskSettings.Bitrate = ( ( ( uint32_t )SX1276->RegBitrateMsb << 8 ) | ( ( uint32_t )SX1276->RegBitrateLsb ) );
FskSettings.Bitrate = ( uint16_t )( ( double )XTAL_FREQ / ( double )FskSettings.Bitrate );
return FskSettings.Bitrate;
}
void SX1276FskSetFdev( uint32_t fdev )
{
FskSettings.Fdev = fdev;
SX1276Read( REG_FDEVMSB, &SX1276->RegFdevMsb );
fdev = ( uint16_t )( ( double )fdev / ( double )FREQ_STEP );
SX1276->RegFdevMsb = ( ( SX1276->RegFdevMsb & RF_FDEVMSB_FDEV_MASK ) | ( ( ( uint8_t )( fdev >> 8 ) ) & ~RF_FDEVMSB_FDEV_MASK ) );
SX1276->RegFdevLsb = ( uint8_t )( fdev & 0xFF );
SX1276WriteBuffer( REG_FDEVMSB, &SX1276->RegFdevMsb, 2 );
}
uint32_t SX1276FskGetFdev( void )
{
SX1276ReadBuffer( REG_FDEVMSB, &SX1276->RegFdevMsb, 2 );
FskSettings.Fdev = ( ( ( uint32_t )( ( SX1276->RegFdevMsb << 8 ) & ~RF_FDEVMSB_FDEV_MASK ) ) | ( ( uint32_t )SX1276->RegFdevLsb ) );
FskSettings.Fdev = ( uint16_t )( ( double )FskSettings.Fdev * ( double )FREQ_STEP );
return FskSettings.Fdev;
}
void SX1276FskSetRFPower( int8_t power )
{
SX1276Read( REG_PACONFIG, &SX1276->RegPaConfig );
SX1276Read( REG_PADAC, &SX1276->RegPaDac );
if( ( SX1276->RegPaConfig & RF_PACONFIG_PASELECT_PABOOST ) == RF_PACONFIG_PASELECT_PABOOST )
{
if( ( SX1276->RegPaDac & 0x87 ) == 0x87 )
{
if( power < 5 )
{
power = 5;
}
if( power > 20 )
{
power = 20;
}
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_MAX_POWER_MASK ) | 0x70;
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power - 5 ) & 0x0F );
}
else
{
if( power < 2 )
{
power = 2;
}
if( power > 17 )
{
power = 17;
}
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_MAX_POWER_MASK ) | 0x70;
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power - 2 ) & 0x0F );
}
}
else
{
if( power < -1 )
{
power = -1;
}
if( power > 14 )
{
power = 14;
}
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_MAX_POWER_MASK ) | 0x70;
SX1276->RegPaConfig = ( SX1276->RegPaConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power + 1 ) & 0x0F );
}
SX1276Write( REG_PACONFIG, SX1276->RegPaConfig );
FskSettings.Power = power;
}
int8_t SX1276FskGetRFPower( void )
{
SX1276Read( REG_PACONFIG, &SX1276->RegPaConfig );
SX1276Read( REG_PADAC, &SX1276->RegPaDac );
if( ( SX1276->RegPaConfig & RF_PACONFIG_PASELECT_PABOOST ) == RF_PACONFIG_PASELECT_PABOOST )
{
if( ( SX1276->RegPaDac & 0x07 ) == 0x07 )
{
FskSettings.Power = 5 + ( SX1276->RegPaConfig & ~RF_PACONFIG_OUTPUTPOWER_MASK );
}
else
{
FskSettings.Power = 2 + ( SX1276->RegPaConfig & ~RF_PACONFIG_OUTPUTPOWER_MASK );
}
}
else
{
FskSettings.Power = -1 + ( SX1276->RegPaConfig & ~RF_PACONFIG_OUTPUTPOWER_MASK );
}
return FskSettings.Power;
}
/*!
* \brief Computes the Rx bandwidth with the mantisse and exponent
*
* \param [IN] mantisse Mantisse of the bandwidth value
* \param [IN] exponent Exponent of the bandwidth value
* \retval bandwidth Computed bandwidth
*/
static uint32_t SX1276FskComputeRxBw( uint8_t mantisse, uint8_t exponent )
{
// rxBw
if( ( SX1276->RegOpMode & RF_OPMODE_MODULATIONTYPE_FSK ) == RF_OPMODE_MODULATIONTYPE_FSK )
{
return ( uint32_t )( ( double )XTAL_FREQ / ( mantisse * ( double )pow( 2, exponent + 2 ) ) );
}
else
{
return ( uint32_t )( ( double )XTAL_FREQ / ( mantisse * ( double )pow( 2, exponent + 3 ) ) );
}
}
/*!
* \brief Computes the mantisse and exponent from the bandwitdh value
*
* \param [IN] rxBwValue Bandwidth value
* \param [OUT] mantisse Mantisse of the bandwidth value
* \param [OUT] exponent Exponent of the bandwidth value
*/
static void SX1276FskComputeRxBwMantExp( uint32_t rxBwValue, uint8_t* mantisse, uint8_t* exponent )
{
uint8_t tmpExp = 0;
uint8_t tmpMant = 0;
double tmpRxBw = 0;
double rxBwMin = 10e6;
for( tmpExp = 0; tmpExp < 8; tmpExp++ )
{
for( tmpMant = 16; tmpMant <= 24; tmpMant += 4 )
{
if( ( SX1276->RegOpMode & RF_OPMODE_MODULATIONTYPE_FSK ) == RF_OPMODE_MODULATIONTYPE_FSK )
{
tmpRxBw = ( double )XTAL_FREQ / ( tmpMant * ( double )pow( 2, tmpExp + 2 ) );
}
else
{
tmpRxBw = ( double )XTAL_FREQ / ( tmpMant * ( double )pow( 2, tmpExp + 3 ) );
}
if( fabs( tmpRxBw - rxBwValue ) < rxBwMin )
{
rxBwMin = fabs( tmpRxBw - rxBwValue );
*mantisse = tmpMant;
*exponent = tmpExp;
}
}
}
}
void SX1276FskSetDccBw( uint8_t* reg, uint32_t dccValue, uint32_t rxBwValue )
{
uint8_t mantisse = 0;
uint8_t exponent = 0;
if( reg == &SX1276->RegRxBw )
{
*reg = ( uint8_t )dccValue & 0x60;
}
else
{
*reg = 0;
}
SX1276FskComputeRxBwMantExp( rxBwValue, &mantisse, &exponent );
switch( mantisse )
{
case 16:
*reg |= ( uint8_t )( 0x00 | ( exponent & 0x07 ) );
break;
case 20:
*reg |= ( uint8_t )( 0x08 | ( exponent & 0x07 ) );
break;
case 24:
*reg |= ( uint8_t )( 0x10 | ( exponent & 0x07 ) );
break;
default:
// Something went terribely wrong
break;
}
if( reg == &SX1276->RegRxBw )
{
SX1276Write( REG_RXBW, *reg );
FskSettings.RxBw = rxBwValue;
}
else
{
SX1276Write( REG_AFCBW, *reg );
FskSettings.RxBwAfc = rxBwValue;
}
}
uint32_t SX1276FskGetBw( uint8_t* reg )
{
uint32_t rxBwValue = 0;
uint8_t mantisse = 0;
switch( ( *reg & 0x18 ) >> 3 )
{
case 0:
mantisse = 16;
break;
case 1:
mantisse = 20;
break;
case 2:
mantisse = 24;
break;
default:
break;
}
rxBwValue = SX1276FskComputeRxBw( mantisse, ( uint8_t )*reg & 0x07 );
if( reg == &SX1276->RegRxBw )
{
return FskSettings.RxBw = rxBwValue;
}
else
{
return FskSettings.RxBwAfc = rxBwValue;
}
}
void SX1276FskSetPacketCrcOn( bool enable )
{
SX1276Read( REG_PACKETCONFIG1, &SX1276->RegPacketConfig1 );
SX1276->RegPacketConfig1 = ( SX1276->RegPacketConfig1 & RF_PACKETCONFIG1_CRC_MASK ) | ( enable << 4 );
SX1276Write( REG_PACKETCONFIG1, SX1276->RegPacketConfig1 );
FskSettings.CrcOn = enable;
}
bool SX1276FskGetPacketCrcOn( void )
{
SX1276Read( REG_PACKETCONFIG1, &SX1276->RegPacketConfig1 );
FskSettings.CrcOn = ( SX1276->RegPacketConfig1 & RF_PACKETCONFIG1_CRC_ON ) >> 4;
return FskSettings.CrcOn;
}
void SX1276FskSetAfcOn( bool enable )
{
SX1276Read( REG_RXCONFIG, &SX1276->RegRxConfig );
SX1276->RegRxConfig = ( SX1276->RegRxConfig & RF_RXCONFIG_AFCAUTO_MASK ) | ( enable << 4 );
SX1276Write( REG_RXCONFIG, SX1276->RegRxConfig );
FskSettings.AfcOn = enable;
}
bool SX1276FskGetAfcOn( void )
{
SX1276Read( REG_RXCONFIG, &SX1276->RegRxConfig );
FskSettings.AfcOn = ( SX1276->RegRxConfig & RF_RXCONFIG_AFCAUTO_ON ) >> 4;
return FskSettings.AfcOn;
}
void SX1276FskSetPayloadLength( uint8_t value )
{
SX1276->RegPayloadLength = value;
SX1276Write( REG_PAYLOADLENGTH, SX1276->RegPayloadLength );
FskSettings.PayloadLength = value;
}
uint8_t SX1276FskGetPayloadLength( void )
{
SX1276Read( REG_PAYLOADLENGTH, &SX1276->RegPayloadLength );
FskSettings.PayloadLength = SX1276->RegPayloadLength;
return FskSettings.PayloadLength;
}
void SX1276FskSetPa20dBm( bool enale )
{
SX1276Read( REG_PADAC, &SX1276->RegPaDac );
SX1276Read( REG_PACONFIG, &SX1276->RegPaConfig );
if( ( SX1276->RegPaConfig & RF_PACONFIG_PASELECT_PABOOST ) == RF_PACONFIG_PASELECT_PABOOST )
{
if( enale == true )
{
SX1276->RegPaDac = 0x87;
}
}
else
{
SX1276->RegPaDac = 0x84;
}
SX1276Write( REG_PADAC, SX1276->RegPaDac );
}
bool SX1276FskGetPa20dBm( void )
{
SX1276Read( REG_PADAC, &SX1276->RegPaDac );
return ( ( SX1276->RegPaDac & 0x07 ) == 0x07 ) ? true : false;
}
void SX1276FskSetPAOutput( uint8_t outputPin )
{
SX1276Read( REG_PACONFIG, &SX1276->RegPaConfig );
SX1276->RegPaConfig = (SX1276->RegPaConfig & RF_PACONFIG_PASELECT_MASK ) | outputPin;
SX1276Write( REG_PACONFIG, SX1276->RegPaConfig );
}
uint8_t SX1276FskGetPAOutput( void )
{
SX1276Read( REG_PACONFIG, &SX1276->RegPaConfig );
return SX1276->RegPaConfig & ~RF_PACONFIG_PASELECT_MASK;
}
void SX1276FskSetPaRamp( uint8_t value )
{
SX1276Read( REG_PARAMP, &SX1276->RegPaRamp );
SX1276->RegPaRamp = ( SX1276->RegPaRamp & RF_PARAMP_MASK ) | ( value & ~RF_PARAMP_MASK );
SX1276Write( REG_PARAMP, SX1276->RegPaRamp );
}
uint8_t SX1276FskGetPaRamp( void )
{
SX1276Read( REG_PARAMP, &SX1276->RegPaRamp );
return SX1276->RegPaRamp & ~RF_PARAMP_MASK;
}
void SX1276FskSetRssiOffset( int8_t offset )
{
SX1276Read( REG_RSSICONFIG, &SX1276->RegRssiConfig );
if( offset < 0 )
{
offset = ( ~offset & 0x1F );
offset += 1;
offset = -offset;
}
SX1276->RegRssiConfig |= ( uint8_t )( ( offset & 0x1F ) << 3 );
SX1276Write( REG_RSSICONFIG, SX1276->RegRssiConfig );
}
int8_t SX1276FskGetRssiOffset( void )
{
int8_t offset;
SX1276Read( REG_RSSICONFIG, &SX1276->RegRssiConfig );
offset = SX1276->RegRssiConfig >> 3;
if( ( offset & 0x10 ) == 0x10 )
{
offset = ( ~offset & 0x1F );
offset += 1;
offset = -offset;
}
return offset;
}
int8_t SX1276FskGetRawTemp( void )
{
int8_t temp = 0;
uint8_t previousOpMode;
uint32_t startTick;
// Enable Temperature reading
SX1276Read( REG_IMAGECAL, &SX1276->RegImageCal );
SX1276->RegImageCal = ( SX1276->RegImageCal & RF_IMAGECAL_TEMPMONITOR_MASK ) | RF_IMAGECAL_TEMPMONITOR_ON;
SX1276Write( REG_IMAGECAL, SX1276->RegImageCal );
// save current Op Mode
SX1276Read( REG_OPMODE, &SX1276->RegOpMode );
previousOpMode = SX1276->RegOpMode;
// put device in FSK RxSynth
SX1276->RegOpMode = RF_OPMODE_SYNTHESIZER_RX;
SX1276Write( REG_OPMODE, SX1276->RegOpMode );
// Wait 1ms
startTick = GET_TICK_COUNT( );
while( ( GET_TICK_COUNT( ) - startTick ) < TICK_RATE_MS( 1 ) );
// Disable Temperature reading
SX1276Read( REG_IMAGECAL, &SX1276->RegImageCal );
SX1276->RegImageCal = ( SX1276->RegImageCal & RF_IMAGECAL_TEMPMONITOR_MASK ) | RF_IMAGECAL_TEMPMONITOR_OFF;
SX1276Write( REG_IMAGECAL, SX1276->RegImageCal );
// Read temperature
SX1276Read( REG_TEMP, &SX1276->RegTemp );
temp = SX1276->RegTemp & 0x7F;
if( ( SX1276->RegTemp & 0x80 ) == 0x80 )
{
temp *= -1;
}
// Reload previous Op Mode
SX1276Write( REG_OPMODE, previousOpMode );
return temp;
}
int8_t SX1276FskCalibreateTemp( int8_t actualTemp )
{
return actualTemp - SX1276FskGetRawTemp( );
}
int8_t SX1276FskGetTemp( int8_t compensationFactor )
{
return SX1276FskGetRawTemp( ) + compensationFactor;
}
#endif // USE_SX1276_RADIO

View File

@ -0,0 +1,251 @@
/*
* THE FOLLOWING FIRMWARE IS PROVIDED: (1) "AS IS" WITH NO WARRANTY; AND
* (2)TO ENABLE ACCESS TO CODING INFORMATION TO GUIDE AND FACILITATE CUSTOMER.
* CONSEQUENTLY, SEMTECH SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
* CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
* OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION
* CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* Copyright (C) SEMTECH S.A.
*/
/*!
* \file sx1276-FskMisc.h
* \brief SX1276 RF chip high level functions driver
*
* \remark Optional support functions.
* These functions are defined only to easy the change of the
* parameters.
* For a final firmware the radio parameters will be known so
* there is no need to support all possible parameters.
* Removing these functions will greatly reduce the final firmware
* size.
*
* \version 2.0.B2
* \date May 6 2013
* \author Gregory Cristian
*
* Last modified by Miguel Luis on Jun 19 2013
*/
/*************************************************
File name: sx1276-FskMisc.h
Description: support aiit board configure and register function
History:
1. Date: 2021-04-25
Author: AIIT XUOS Lab
Modification:
1. replace original macro and basic date type with AIIT XUOS Lab's own defination
*************************************************/
#ifndef __SX1276_FSK_MISC_H__
#define __SX1276_FSK_MISC_H__
/*!
* \brief Writes the new RF frequency value
*
* \param [IN] freq New RF frequency value in [Hz]
*/
void SX1276FskSetRFFrequency( uint32_t freq );
/*!
* \brief Reads the current RF frequency value
*
* \retval freq Current RF frequency value in [Hz]
*/
uint32_t SX1276FskGetRFFrequency( void );
/*!
* \brief Calibrate RSSI and I/Q mismatch for HF
*
* \retval none
*/
void SX1276FskRxCalibrate( void );
/*!
* \brief Writes the new bitrate value
*
* \param [IN] bitrate New bitrate value in [bps]
*/
void SX1276FskSetBitrate( uint32_t bitrate );
/*!
* \brief Reads the current bitrate value
*
* \retval bitrate Current bitrate value in [bps]
*/
uint32_t SX1276FskGetBitrate( void );
/*!
* \brief Writes the new frequency deviation value
*
* \param [IN] fdev New frequency deviation value in [Hz]
*/
void SX1276FskSetFdev( uint32_t fdev );
/*!
* \brief Reads the current frequency deviation value
*
* \retval fdev Current frequency deviation value in [Hz]
*/
uint32_t SX1276FskGetFdev( void );
/*!
* \brief Writes the new RF output power value
*
* \param [IN] power New output power value in [dBm]
*/
void SX1276FskSetRFPower( int8_t power );
/*!
* \brief Reads the current RF output power value
*
* \retval power Current output power value in [dBm]
*/
int8_t SX1276FskGetRFPower( void );
/*!
* \brief Writes the DC offset canceller and Rx bandwidth values
*
* \remark For SX1276 there is no DCC setting. dccValue should be 0
* ie: SX1276SetDccBw( &SX1276.RegRxBw, 0, 62500 );
*
* \param [IN] reg Register pointer to either SX1231.RegRxBw or SX1231.RegAfcBw
* \param [IN] dccValue New DC offset canceller value in [Hz] ( SX1231 only )
* \param [IN] rxBwValue New Rx bandwidth value in [Hz]
*/
void SX1276FskSetDccBw( uint8_t* reg, uint32_t dccValue, uint32_t rxBwValue );
/*!
* \brief Reads the current bandwidth setting
*
* \param [IN] reg Register pointer to either SX1231.RegRxBw or SX1231.RegAfcBw
*
* \retval bandwidth Bandwidth value
*/
uint32_t SX1276FskGetBw( uint8_t* reg );
/*!
* \brief Enables/Disables CRC
*
* \param [IN] enable CRC enable/disable
*/
void SX1276FskSetPacketCrcOn( bool enable );
/*!
* \brief Reads the current CRC Enable/Disbale value
*
* \retval enable Current CRC Enable/Disbale value
*/
bool SX1276FskGetPacketCrcOn( void );
/*!
* \brief Enables/Disables AFC
*
* \param [IN] enable AFC enable/disable
*/
void SX1276FskSetAfcOn( bool enable );
/*!
* \brief Reads the current AFC Enable/Disbale value
*
* \retval enable Current AFC Enable/Disbale value
*/
bool SX1276FskGetAfcOn( void );
/*!
* \brief Writes the new payload length value
*
* \param [IN] value New payload length value
*/
void SX1276FskSetPayloadLength( uint8_t value );
/*!
* \brief Reads the current payload length value
*
* \retval value Current payload length value
*/
uint8_t SX1276FskGetPayloadLength( void );
/*!
* \brief Enables/Disables the 20 dBm PA
*
* \param [IN] enable [true, false]
*/
void SX1276FskSetPa20dBm( bool enale );
/*!
* \brief Gets the current 20 dBm PA status
*
* \retval enable [true, false]
*/
bool SX1276FskGetPa20dBm( void );
/*!
* \brief Set the RF Output pin
*
* \param [IN] RF_PACONFIG_PASELECT_PABOOST or RF_PACONFIG_PASELECT_RFO
*/
void SX1276FskSetPAOutput( uint8_t outputPin );
/*!
* \brief Gets the used RF Ouptu pin
*
* \retval RF_PACONFIG_PASELECT_PABOOST or RF_PACONFIG_PASELECT_RFO
*/
uint8_t SX1276FskGetPAOutput( void );
/*!
* \brief Writes the new PA rise/fall time of ramp up/down value
*
* \param [IN] value New PaRamp value
*/
void SX1276FskSetPaRamp( uint8_t value );
/*!
* \brief Reads the current PA rise/fall time of ramp up/down value
*
* \retval value Current PaRamp value
*/
uint8_t SX1276FskGetPaRamp( void );
/*!
* \brief Applies an offset to the RSSI. Compensates board components
*
* \param [IN] offset Offset to be applied (+/-)
*/
void SX1276FskSetRssiOffset( int8_t offset );
/*!
* \brief Gets the current RSSI offset.
*
* \retval offset Current offset (+/-)
*/
int8_t SX1276FskGetRssiOffset( void );
/*!
* \brief Writes the new value for the preamble size
*
* \param [IN] size New value of pramble size
*/
void SX1276FskSetPreambleSize( uint16_t size );
/*!
* Reads the raw temperature
* \retval temperature New raw temperature reading in 2's complement format
*/
int8_t SX1276FskGetRawTemp( void );
/*!
* Computes the temperature compensation factor
* \param [IN] actualTemp Actual temperature measured by an external device
* \retval compensationFactor Computed compensation factor
*/
int8_t SX1276FskCalibreateTemp( int8_t actualTemp );
/*!
* Gets the actual compensated temperature
* \param [IN] compensationFactor Return value of the calibration function
* \retval New compensated temperature value
*/
int8_t SX1276FskGetTemp( int8_t compensationFactor );
#endif //__SX1276_FSK_MISC_H__

View File

@ -0,0 +1,170 @@
/*
* THE FOLLOWING FIRMWARE IS PROVIDED: (1) "AS IS" WITH NO WARRANTY; AND
* (2)TO ENABLE ACCESS TO CODING INFORMATION TO GUIDE AND FACILITATE CUSTOMER.
* CONSEQUENTLY, SEMTECH SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
* CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
* OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION
* CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* Copyright (C) SEMTECH S.A.
*/
/*!
* \file sx1276-Hal.h
* \brief SX1276 Hardware Abstraction Layer
*
* \version 2.0.B2
* \date Nov 21 2012
* \author Miguel Luis
*
* Last modified by Miguel Luis on Jun 19 2013
*/
/*************************************************
File name: sx1276-Hal.h
Description: support aiit board configure and register function
History:
1. Date: 2021-04-25
Author: AIIT XUOS Lab
Modification:
1. replace original macro and basic date type with AIIT XUOS Lab's own defination
*************************************************/
#ifndef __SX1276_HAL_H__
#define __SX1276_HAL_H__
#include "platform.h"
/*!
* DIO state read functions mapping
*/
#define DIO0 SX1276ReadDio0( )
#define DIO1 SX1276ReadDio1( )
#define DIO2 SX1276ReadDio2( )
#define DIO3 SX1276ReadDio3( )
#define DIO4 SX1276ReadDio4( )
#define DIO5 SX1276ReadDio5( )
// RXTX pin control see errata note
#define RXTX( txEnable ) SX1276WriteRxTx( txEnable );
#define GET_TICK_COUNT( ) CurrentTicksGain()
#define TICK_RATE_MS( ms ) ( ms )
typedef enum
{
RADIO_RESET_OFF,
RADIO_RESET_ON,
}tRadioResetState;
/*!
* \brief Initializes the radio interface I/Os
*/
void SX1276InitIo( void );
/*!
* \brief Set the radio reset pin state
*
* \param state New reset pin state
*/
void SX1276SetReset( uint8_t state );
/*!
* \brief Writes the radio register at the specified address
*
* \param [IN]: addr Register address
* \param [IN]: data New register value
*/
void SX1276Write( uint8_t addr, uint8_t data );
/*!
* \brief Reads the radio register at the specified address
*
* \param [IN]: addr Register address
* \param [OUT]: data Register value
*/
void SX1276Read( uint8_t addr, uint8_t *data );
/*!
* \brief Writes multiple radio registers starting at address
*
* \param [IN] addr First Radio register address
* \param [IN] buffer Buffer containing the new register's values
* \param [IN] size Number of registers to be written
*/
void SX1276WriteBuffer( uint8_t addr, uint8_t *buffer, uint8_t size );
/*!
* \brief Reads multiple radio registers starting at address
*
* \param [IN] addr First Radio register address
* \param [OUT] buffer Buffer where to copy the registers data
* \param [IN] size Number of registers to be read
*/
void SX1276ReadBuffer( uint8_t addr, uint8_t *buffer, uint8_t size );
/*!
* \brief Writes the buffer contents to the radio FIFO
*
* \param [IN] buffer Buffer containing data to be put on the FIFO.
* \param [IN] size Number of bytes to be written to the FIFO
*/
void SX1276WriteFifo( uint8_t *buffer, uint8_t size );
/*!
* \brief Reads the contents of the radio FIFO
*
* \param [OUT] buffer Buffer where to copy the FIFO read data.
* \param [IN] size Number of bytes to be read from the FIFO
*/
void SX1276ReadFifo( uint8_t *buffer, uint8_t size );
/*!
* \brief Gets the SX1276 DIO0 hardware pin status
*
* \retval status Current hardware pin status [1, 0]
*/
inline uint8_t SX1276ReadDio0( void );
/*!
* \brief Ge// USE_SX1276_RADIOts the SX1276 DIO1 hardware pin status
*
* \retval status Current hardware pin status [1, 0]
*/
inline uint8_t SX1276ReadDio1( void );
/*!
* \brief Gets the SX1276 DIO2 hardware pin status
*
* \retval status Current hardware pin status [1, 0]
*/
inline uint8_t SX1276ReadDio2( void );
/*!
* \brief Gets the SX1276 DIO3 hardware pin status
*
* \retval status Current hardware pin status [1, 0]
*/
inline uint8_t SX1276ReadDio3( void );
/*!
* \brief Gets the SX1276 DIO4 hardware pin status
*
* \retval status Current hardware pin status [1, 0]
*/
inline uint8_t SX1276ReadDio4( void );
/*!
* \brief Gets the SX1276 DIO5 hardware pin status
*
* \retval status Current hardware pin status [1, 0]
*/
inline uint8_t SX1276ReadDio5( void );
/*!
* \brief Writes the external RxTx pin value
*
* \remark see errata note
*
* \param [IN] txEnable [1: Tx, 0: Rx]
*/
inline void SX1276WriteRxTx( uint8_t txEnable );
#endif //__SX1276_HAL_H__

View File

@ -0,0 +1,723 @@
/*
* THE FOLLOWING FIRMWARE IS PROVIDED: (1) "AS IS" WITH NO WARRANTY; AND
* (2)TO ENABLE ACCESS TO CODING INFORMATION TO GUIDE AND FACILITATE CUSTOMER.
* CONSEQUENTLY, SEMTECH SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
* CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
* OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION
* CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* Original Copyright (C) SEMTECH S.A.
* Modified Copyright (C) 2020 AIIT XUOS Lab
*/
/*!
* \file sx1276-LoRa.c
* \brief SX1276 RF chip driver mode LoRa
*
* \version 2.0.0
* \date Nov 21 2012
* \author Miguel Luis
*
* Last modified by Miguel Luis on Jun 19 2013
*/
/*************************************************
File name: sx1276-LoRa.c
Description: support aiit board configure and register function
History:
1. Date: 2021-04-25
Author: AIIT XUOS Lab
Modification:
1. replace original macro and basic date type with AIIT XUOS Lab's own defination
*************************************************/
#include <string.h>
#include "platform.h"
#if defined( USE_SX1276_RADIO )
#include "radio.h"
#include "sx1276-Hal.h"
#include "sx1276.h"
#include "sx1276-LoRaMisc.h"
#include "sx1276-LoRa.h"
#define LoRa_FREQENCY 433000000
#define RSSI_OFFSET_LF -155.0
#define RSSI_OFFSET_HF -150.0
#define NOISE_ABSOLUTE_ZERO -174.0
#define NOISE_FIGURE_LF 4.0
#define NOISE_FIGURE_HF 6.0
volatile uint32 TickCounter = 0;
uint32 Tx_Time_Start,Tx_Time_End;
uint32 Rx_Time_Start,Rx_Time_End;
//Signal bandwidth, used to calculate RSSI
const double SignalBwLog[] =
{
3.8927900303521316335038277369285, // 7.8 kHz
4.0177301567005500940384239336392, // 10.4 kHz
4.193820026016112828717566631653, // 15.6 kHz
4.31875866931372901183597627752391, // 20.8 kHz
4.4948500216800940239313055263775, // 31.2 kHz
4.6197891057238405255051280399961, // 41.6 kHz
4.795880017344075219145044421102, // 62.5 kHz
5.0969100130080564143587833158265, // 125 kHz
5.397940008672037609572522210551, // 250 kHz
5.6989700043360188047862611052755 // 500 kHz
};
//These values need testing
const double RssiOffsetLF[] =
{
-155.0,
-155.0,
-155.0,
-155.0,
-155.0,
-155.0,
-155.0,
-155.0,
-155.0,
-155.0,
};
//These values need testing
const double RssiOffsetHF[] =
{
-150.0,
-150.0,
-150.0,
-150.0,
-150.0,
-150.0,
-150.0,
-150.0,
-150.0,
-150.0,
};
/*!
* Frequency hopping frequencies table
*/
const int32_t HoppingFrequencies[] =
{
916500000,
923500000,
906500000,
917500000,
917500000,
909000000,
903000000,
916000000,
912500000,
926000000,
925000000,
909500000,
913000000,
918500000,
918500000,
902500000,
911500000,
926500000,
902500000,
922000000,
924000000,
903500000,
913000000,
922000000,
926000000,
910000000,
920000000,
922500000,
911000000,
922000000,
909500000,
926000000,
922000000,
918000000,
925500000,
908000000,
917500000,
926500000,
908500000,
916000000,
905500000,
916000000,
903000000,
905000000,
915000000,
913000000,
907000000,
910000000,
926500000,
925500000,
911000000,
};
// Default settings
tLoRaSettings LoRaSettings =
{
LoRa_FREQENCY , // RFFrequency
20, // Power
9, // SignalBw [0: 125 kHz, 1: 250 kHz, 2: 500 kHz, 3: Reserved]
12, // SpreadingFactor [6: 64, 7: 128, 8: 256, 9: 512, 10: 1024, 11: 2048, 12: 4096 chips]
2, // ErrorCoding [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
true, // CrcOn [0: OFF, 1: ON]
false, // ImplicitHeaderOn [0: OFF, 1: ON]
0, // RxSingleOn [0: Continuous, 1 Single]
0, // FreqHopOn [0: OFF, 1: ON]
4, // HopPeriod Hops every frequency hopping period symbols
1000, // TxPacketTimeout
1000, // RxPacketTimeout
128, // PayloadLength (used for implicit header mode)
};
/*!
* SX1276 LoRa registers variable
*/
tSX1276LR* SX1276LR;
/*!
* Local RF buffer for communication support
*/
static uint8_t RFBuffer[RF_BUFFER_SIZE];
static uint8_t TFBuffer[RF_BUFFER_SIZE];
/*!
* RF state machine variable
*/
static uint8_t RFLRState = RFLR_STATE_IDLE;
/*!
* Rx management support variables
*/
static uint16_t RxPacketSize = 0;
static int8_t RxPacketSnrEstimate;
static double RxPacketRssiValue;
static uint8_t RxGain = 1;
static uint32_t RxTimeoutTimer = 0;
/*!
* PacketTimeout Stores the Rx window time value for packet reception
*/
static uint32_t PacketTimeout;
/*!
* Tx management support variables
*/
static uint16_t TxPacketSize = 0;
void SX1276LoRaInit( void )
{
RFLRState = RFLR_STATE_IDLE;
SX1276LoRaSetDefaults();
SX1276ReadBuffer( REG_LR_OPMODE, SX1276Regs + 1, 0x70 - 1 );
//SX1276LoRaSetOpMode( RFLR_OPMODE_SLEEP );
SX1276LR->RegLna = RFLR_LNA_GAIN_G1;
SX1276WriteBuffer( REG_LR_OPMODE, SX1276Regs + 1, 0x70 - 1 );
// set the RF settings
SX1276LoRaSetRFFrequency( LoRaSettings.RFFrequency );
SX1276LoRaSetSpreadingFactor( LoRaSettings.SpreadingFactor );
SX1276LoRaSetErrorCoding( LoRaSettings.ErrorCoding );
SX1276LoRaSetPacketCrcOn( LoRaSettings.CrcOn );
SX1276LoRaSetSignalBandwidth( LoRaSettings.SignalBw );
SX1276LoRaSetImplicitHeaderOn( LoRaSettings.ImplicitHeaderOn );
SX1276LoRaSetSymbTimeout(0x3FF);
SX1276LoRaSetPayloadLength( LoRaSettings.PayloadLength );
SX1276LoRaSetLowDatarateOptimize( true );
#if( ( MODULE_SX1276RF1IAS == 1 ) || ( MODULE_SX1276RF1KAS == 1 ) )
if( LoRaSettings.RFFrequency > 860000000 )
{
SX1276LoRaSetPAOutput( RFLR_PACONFIG_PASELECT_RFO );
SX1276LoRaSetPa20dBm( false );
LoRaSettings.Power = 14;
SX1276LoRaSetRFPower( LoRaSettings.Power );
}
else
{
//SX1276Write( REG_LR_OCP, 0x3f );
SX1276LoRaSetPAOutput( RFLR_PACONFIG_PASELECT_PABOOST );
SX1276LoRaSetPa20dBm( true );
LoRaSettings.Power = 20;
SX1276LoRaSetRFPower( LoRaSettings.Power );
}
#elif( MODULE_SX1276RF1JAS == 1 )
if( LoRaSettings.RFFrequency > 380000000 )
{
SX1276LoRaSetPAOutput( RFLR_PACONFIG_PASELECT_PABOOST );
SX1276LoRaSetPa20dBm( true );
LoRaSettings.Power = 20;
SX1276LoRaSetRFPower( LoRaSettings.Power );
}
else
{
SX1276LoRaSetPAOutput( RFLR_PACONFIG_PASELECT_RFO );
SX1276LoRaSetPa20dBm( false );
LoRaSettings.Power = 14;
SX1276LoRaSetRFPower( LoRaSettings.Power );
}
#endif
SX1276LoRaSetOpMode( RFLR_OPMODE_STANDBY );
SX1276ReadBuffer( REG_LR_OPMODE, SX1276Regs + 1, 0x70 - 1 );
}
void SX1276LoRaSetDefaults( void )
{
// REMARK: See SX1276 datasheet for modified default values.
// Sets IF frequency selection manual
SX1276Read( REG_LR_VERSION, &SX1276LR->RegVersion );
}
void SX1276LoRaReset( void )
{
uint32_t startTick;
SX1276SetReset( RADIO_RESET_ON );
// Wait 1ms
startTick = GET_TICK_COUNT( );
while( ( GET_TICK_COUNT( ) - startTick ) < TICK_RATE_MS( 1 ) );
SX1276SetReset( RADIO_RESET_OFF );
// Wait 6ms
startTick = GET_TICK_COUNT( );
while( ( GET_TICK_COUNT( ) - startTick ) < TICK_RATE_MS( 6 ) );
}
void SX1276LoRaSetOpMode( uint8_t opMode )
{
static uint8_t opModePrev = RFLR_OPMODE_STANDBY;
static bool antennaSwitchTxOnPrev = true;
bool antennaSwitchTxOn = false;
opModePrev = SX1276LR->RegOpMode & ~RFLR_OPMODE_MASK;
if( opMode != opModePrev )
{
if( opMode == RFLR_OPMODE_TRANSMITTER )
{
antennaSwitchTxOn = true;
}
else
{
antennaSwitchTxOn = false;
}
if( antennaSwitchTxOn != antennaSwitchTxOnPrev )
{
antennaSwitchTxOnPrev = antennaSwitchTxOn; // Antenna switch control
RXTX( antennaSwitchTxOn );
}
SX1276LR->RegOpMode = ( SX1276LR->RegOpMode & RFLR_OPMODE_MASK ) | opMode | RFLR_OPMODE_FREQMODE_ACCESS_LF;
SX1276Write( REG_LR_OPMODE, SX1276LR->RegOpMode );
}
}
uint8_t SX1276LoRaGetOpMode( void )
{
SX1276Read( REG_LR_OPMODE, &SX1276LR->RegOpMode );
return SX1276LR->RegOpMode & ~RFLR_OPMODE_MASK;
}
uint8_t SX1276LoRaReadRxGain( void )
{
SX1276Read( REG_LR_LNA, &SX1276LR->RegLna );
return( SX1276LR->RegLna >> 5 ) & 0x07;
}
double SX1276LoRaReadRssi( void )
{
// Reads the RSSI value
SX1276Read( REG_LR_RSSIVALUE, &SX1276LR->RegRssiValue );
if( LoRaSettings.RFFrequency < 860000000 )
{
return RssiOffsetLF[LoRaSettings.SignalBw] + ( double )SX1276LR->RegRssiValue;
}
else
{
return RssiOffsetHF[LoRaSettings.SignalBw] + ( double )SX1276LR->RegRssiValue;
}
}
uint8_t SX1276LoRaGetPacketRxGain( void )
{
return RxGain;
}
int8_t SX1276LoRaGetPacketSnr( void )
{
return RxPacketSnrEstimate;
}
double SX1276LoRaGetPacketRssi( void )
{
return RxPacketRssiValue;
}
void SX1276LoRaStartRx( void )
{
SX1276LoRaSetRFState( RFLR_STATE_RX_INIT );
}
void SX1276LoRaGetRxPacket( void *buffer, uint16_t *size )
{
*size = RxPacketSize;
RxPacketSize = 0;
memcpy( (void*)buffer, (void*)RFBuffer, (size_t)*size );
}
void SX1276LoRaSetTxPacket( const void *buffer, uint16_t size )
{
if( LoRaSettings.FreqHopOn == false )
{
TxPacketSize = size;
}
else
{
TxPacketSize = 255;
}
memcpy( ( void * )TFBuffer, buffer, ( size_t )TxPacketSize );
RFLRState = RFLR_STATE_TX_INIT;
}
uint8_t SX1276LoRaGetRFState( void )
{
return RFLRState;
}
void SX1276LoRaSetRFState( uint8_t state )
{
RFLRState = state;
}
/*!
* \brief Process the LoRa modem Rx and Tx state machines depending on the
* SX1276 operating mode.
*
* \retval rfState Current RF state [RF_IDLE, RF_BUSY,
* RF_RX_DONE, RF_RX_TIMEOUT,
* RF_TX_DONE, RF_TX_TIMEOUT]
*/
uint32_t SX1276LoRaProcess( void )
{
uint32_t result = RF_BUSY;
uint8_t regValue = 0;
switch( RFLRState )
{
case RFLR_STATE_IDLE:
break;
case RFLR_STATE_RX_INIT:
SX1276LoRaSetOpMode(RFLR_OPMODE_STANDBY);
SX1276LR->RegIrqFlagsMask = RFLR_IRQFLAGS_RXTIMEOUT |
//RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED;
SX1276Write( REG_LR_IRQFLAGSMASK, SX1276LR->RegIrqFlagsMask );
if(LoRaSettings.FreqHopOn == true )
{
SX1276LR->RegHopPeriod = LoRaSettings.HopPeriod;
SX1276Read( REG_LR_HOPCHANNEL, &SX1276LR->RegHopChannel );
SX1276LoRaSetRFFrequency( HoppingFrequencies[SX1276LR->RegHopChannel & RFLR_HOPCHANNEL_CHANNEL_MASK] );
}
else
{
SX1276LR->RegHopPeriod = 255;
}
SX1276Write( REG_LR_HOPPERIOD, SX1276LR->RegHopPeriod );
if( LoRaSettings.RxSingleOn == true ) // Rx single mode
{
SX1276LoRaSetOpMode( RFLR_OPMODE_RECEIVER_SINGLE );
}
else // Rx continuous mode
{
SX1276LR->RegFifoAddrPtr = SX1276LR->RegFifoRxBaseAddr;
SX1276Write( REG_LR_FIFOADDRPTR, SX1276LR->RegFifoAddrPtr );
SX1276LoRaSetOpMode( RFLR_OPMODE_RECEIVER );
}
memset( RFBuffer, 0, ( size_t )RF_BUFFER_SIZE );
Rx_Time_Start=TickCounter;
PacketTimeout = LoRaSettings.RxPacketTimeout;
RxTimeoutTimer = GET_TICK_COUNT( );
RFLRState = RFLR_STATE_RX_RUNNING;
break;
case RFLR_STATE_RX_RUNNING:
SX1276Read(0x12, &regValue);
// RxDone
if(regValue & (1<<6))
{
RxTimeoutTimer = GET_TICK_COUNT( );
if( LoRaSettings.FreqHopOn == true )
{
SX1276Read( REG_LR_HOPCHANNEL, &SX1276LR->RegHopChannel );
SX1276LoRaSetRFFrequency( HoppingFrequencies[SX1276LR->RegHopChannel & RFLR_HOPCHANNEL_CHANNEL_MASK] );
}
// Clear Irq
SX1276Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_RXDONE );
RFLRState = RFLR_STATE_RX_DONE;
}
// FHSS Changed Channel
if(regValue & (1<<1))
{
RxTimeoutTimer = GET_TICK_COUNT( );
if( LoRaSettings.FreqHopOn == true )
{
SX1276Read( REG_LR_HOPCHANNEL, &SX1276LR->RegHopChannel );
SX1276LoRaSetRFFrequency( HoppingFrequencies[SX1276LR->RegHopChannel & RFLR_HOPCHANNEL_CHANNEL_MASK] );
}
// Clear Irq
SX1276Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL );
//RxGain = SX1276LoRaReadRxGain( );
}
if( LoRaSettings.RxSingleOn == true ) // Rx single mode
{
if( ( GET_TICK_COUNT( ) - RxTimeoutTimer ) > PacketTimeout )
{
RFLRState = RFLR_STATE_RX_TIMEOUT;
}
}
break;
case RFLR_STATE_RX_DONE:
SX1276Read( REG_LR_IRQFLAGS, &SX1276LR->RegIrqFlags );
if( ( SX1276LR->RegIrqFlags & RFLR_IRQFLAGS_PAYLOADCRCERROR ) == RFLR_IRQFLAGS_PAYLOADCRCERROR )
{
// Clear Irq
SX1276Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_PAYLOADCRCERROR );
if( LoRaSettings.RxSingleOn == true ) // Rx single mode
{
RFLRState = RFLR_STATE_RX_INIT;
}
else
{
RFLRState = RFLR_STATE_RX_RUNNING;
}
break;
}
if( LoRaSettings.RxSingleOn == true ) // Rx single mode
{
SX1276LR->RegFifoAddrPtr = SX1276LR->RegFifoRxBaseAddr;
SX1276Write( REG_LR_FIFOADDRPTR, SX1276LR->RegFifoAddrPtr );
if( LoRaSettings.ImplicitHeaderOn == true )
{
RxPacketSize = SX1276LR->RegPayloadLength;
SX1276ReadFifo( RFBuffer, SX1276LR->RegPayloadLength );
}
else
{
SX1276Read( REG_LR_NBRXBYTES, &SX1276LR->RegNbRxBytes );
RxPacketSize = SX1276LR->RegNbRxBytes;
SX1276ReadFifo( RFBuffer, SX1276LR->RegNbRxBytes );
}
}
else // Rx continuous mode
{
SX1276Read( REG_LR_FIFORXCURRENTADDR, &SX1276LR->RegFifoRxCurrentAddr );
if( LoRaSettings.ImplicitHeaderOn == true )
{
RxPacketSize = SX1276LR->RegPayloadLength;
SX1276LR->RegFifoAddrPtr = SX1276LR->RegFifoRxCurrentAddr;
SX1276Write( REG_LR_FIFOADDRPTR, SX1276LR->RegFifoAddrPtr );
SX1276ReadFifo( RFBuffer, SX1276LR->RegPayloadLength );
}
else
{
SX1276Read( REG_LR_NBRXBYTES, &SX1276LR->RegNbRxBytes );
RxPacketSize = SX1276LR->RegNbRxBytes;
SX1276LR->RegFifoAddrPtr = SX1276LR->RegFifoRxCurrentAddr;
SX1276Write( REG_LR_FIFOADDRPTR, SX1276LR->RegFifoAddrPtr );
SX1276ReadFifo( RFBuffer, SX1276LR->RegNbRxBytes );
}
}
if( LoRaSettings.RxSingleOn == true ) // Rx single mode
{
RFLRState = RFLR_STATE_RX_INIT;
}
else // Rx continuous mode
{
RFLRState = RFLR_STATE_RX_RUNNING;
}
Rx_Time_End=TickCounter;
result = RF_RX_DONE;
break;
case RFLR_STATE_RX_TIMEOUT:
RFLRState = RFLR_STATE_RX_INIT;
result = RF_RX_TIMEOUT;
break;
case RFLR_STATE_TX_INIT:
Tx_Time_Start = TickCounter;
// Initializes the payload size
SX1276LR->RegPayloadLength = TxPacketSize;
SX1276Write( REG_LR_PAYLOADLENGTH, SX1276LR->RegPayloadLength );
SX1276LR->RegFifoTxBaseAddr = 0x00; // Full buffer used for Tx
SX1276Write( REG_LR_FIFOTXBASEADDR, SX1276LR->RegFifoTxBaseAddr );
SX1276LR->RegFifoAddrPtr = SX1276LR->RegFifoTxBaseAddr;
SX1276Write( REG_LR_FIFOADDRPTR, SX1276LR->RegFifoAddrPtr );
SX1276LoRaSetOpMode( RFLR_OPMODE_STANDBY );
// Write payload buffer to LORA modem
SX1276WriteFifo( TFBuffer, SX1276LR->RegPayloadLength );
if( LoRaSettings.FreqHopOn == true )
{
SX1276LR->RegIrqFlagsMask = RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
//RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED;
SX1276LR->RegHopPeriod = LoRaSettings.HopPeriod;
SX1276Read( REG_LR_HOPCHANNEL, &SX1276LR->RegHopChannel );
SX1276LoRaSetRFFrequency( HoppingFrequencies[SX1276LR->RegHopChannel & RFLR_HOPCHANNEL_CHANNEL_MASK] );
}
else
{
SX1276LR->RegIrqFlagsMask = RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
//RFLR_IRQFLAGS_TXDONE |
RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
RFLR_IRQFLAGS_CADDETECTED;
SX1276LR->RegHopPeriod = 0;
}
SX1276Write( REG_LR_HOPPERIOD, SX1276LR->RegHopPeriod );
SX1276Write( REG_LR_IRQFLAGSMASK, SX1276LR->RegIrqFlagsMask );
SX1276Write( REG_LR_DIOMAPPING1, ( regValue & RFLR_DIOMAPPING1_DIO0_MASK ) | RFLR_DIOMAPPING1_DIO0_01 );//DIO0设置为TXdone中断
SX1276LoRaSetOpMode( RFLR_OPMODE_TRANSMITTER );
RFLRState = RFLR_STATE_TX_RUNNING;
break;
case RFLR_STATE_TX_RUNNING:
SX1276Read(0x12, &regValue);
if(regValue & (1<<3))
{
// Clear Irq
SX1276Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_TXDONE );
RFLRState = RFLR_STATE_TX_DONE;
}
// FHSS Changed Channel
if(regValue & (1<<3))
{
if( LoRaSettings.FreqHopOn == true )
{
SX1276Read( REG_LR_HOPCHANNEL, &SX1276LR->RegHopChannel );
SX1276LoRaSetRFFrequency( HoppingFrequencies[SX1276LR->RegHopChannel & RFLR_HOPCHANNEL_CHANNEL_MASK] );
}
// Clear Irq
SX1276Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL );
}
break;
case RFLR_STATE_TX_DONE:
Tx_Time_End=TickCounter;
SX1276LoRaSetOpMode( RFLR_OPMODE_STANDBY );
RFLRState = RFLR_STATE_IDLE;
result = RF_TX_DONE;
break;
case RFLR_STATE_CAD_INIT:
// optimize the power consumption by switching off the transmitter as soon as the packet has been sent
SX1276LoRaSetOpMode( RFLR_OPMODE_STANDBY );
SX1276LR->RegIrqFlagsMask = RFLR_IRQFLAGS_RXTIMEOUT |
RFLR_IRQFLAGS_RXDONE |
RFLR_IRQFLAGS_PAYLOADCRCERROR |
RFLR_IRQFLAGS_VALIDHEADER |
RFLR_IRQFLAGS_TXDONE |
//RFLR_IRQFLAGS_CADDONE |
RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL;
//RFLR_IRQFLAGS_CADDETECTED;
SX1276Write( REG_LR_IRQFLAGSMASK, SX1276LR->RegIrqFlagsMask );
SX1276LoRaSetOpMode( RFLR_OPMODE_CAD );
RFLRState = RFLR_STATE_CAD_RUNNING;
break;
case RFLR_STATE_CAD_RUNNING:
SX1276Read(0x12,&regValue);
int cad_done = regValue & (1<<2);
int cad_detected = regValue & (1<<0);
if( cad_done ) //CAD Done interrupt
{
SX1276Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_CADDONE );
if( cad_detected ) // CAD Detected interrupt
{
SX1276Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_CADDETECTED );
//CAD detected, we have a LoRa preamble
RFLRState = RFLR_STATE_RX_INIT;
result = RF_CHANNEL_ACTIVITY_DETECTED;
}
else
{
// The device goes in Standby Mode automatically
RFLRState = RFLR_STATE_IDLE;
result = RF_CHANNEL_EMPTY;
}
}
break;
default:
break;
}
return result;
}
uint32_t SX1276LoraChannelEmpty( void )
{
uint32_t result = 0;
RFLRState = RFLR_STATE_CAD_INIT;
SX1276LoRaProcess();
while(RFLRState == RFLR_STATE_CAD_RUNNING)
{
//KPrintf("\nLora--SX1276LoRaProcess()");
result = SX1276LoRaProcess();
}
if(result == RF_CHANNEL_EMPTY)
{
KPrintf("\nLora--RF_CHANNEL_EMPTY\n");
return 0;
}
else if(result == RF_CHANNEL_ACTIVITY_DETECTED)
{
KPrintf("\nLora--RF_CHANNEL_ACTIVITY_DETECTED\n");
return 1;
}
else
{
return 2;
}
}
#endif // USE_SX1276_RADIO

View File

@ -0,0 +1,820 @@
/*
* THE FOLLOWING FIRMWARE IS PROVIDED: (1) "AS IS" WITH NO WARRANTY; AND
* (2)TO ENABLE ACCESS TO CODING INFORMATION TO GUIDE AND FACILITATE CUSTOMER.
* CONSEQUENTLY, SEMTECH SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
* CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
* OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION
* CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* Original Copyright (C) SEMTECH S.A.
* Modified Copyright (C) 2020 AIIT XUOS Lab
*/
/*!
* \file sx1276-LoRa.h
* \brief SX1276 RF chip driver mode LoRa
*
* \version 2.0.0
* \date Nov 21 2012
* \author Miguel Luis
*
* Last modified by Miguel Luis on Jun 19 2013
*/
/*************************************************
File name: sx1276-LoRa.h
Description: support aiit board configure and register function
History:
1. Date: 2021-04-25
Author: AIIT XUOS Lab
Modification:
1. replace original macro and basic date type with AIIT XUOS Lab's own defination
*************************************************/
#ifndef __SX1276_LORA_H__
#define __SX1276_LORA_H__
#include "stdint.h"
#include "stdbool.h"
//SX1276一些配置参数设置
typedef struct sLoRaSettings
{
uint32_t RFFrequency; //无线通信频率
int8_t Power; //功率
uint8_t SignalBw; //LORA 带宽[0: 7.8 kHz, 1: 10.4 kHz, 2: 15.6 kHz, 3: 20.8 kHz, 4: 31.2 kHz,
//5: 41.6 kHz, 6: 62.5 kHz, 7: 125 kHz, 8: 250 kHz, 9: 500 kHz, other: Reserved]
uint8_t SpreadingFactor; //扩频因子 LORA [6: 64, 7: 128, 8: 256, 9: 512, 10: 1024, 11: 2048, 12: 4096 chips]
uint8_t ErrorCoding; //LORA 纠错码 [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
bool CrcOn; //CRC效验开关 [0: OFF, 1: ON]
bool ImplicitHeaderOn; //隐藏头部信息开关 [0: OFF, 1: ON]
bool RxSingleOn; //接收单次模式\连续模式配置[0: Continuous, 1 Single]
bool FreqHopOn; //跳频模式开关 [0: OFF, 1: ON]
uint8_t HopPeriod; //跳频之间的周期长度 Hops every frequency hopping period symbols
uint32_t TxPacketTimeout; //最大发送时间
uint32_t RxPacketTimeout; //最大接收时间
uint8_t PayloadLength; //数据长度
}tLoRaSettings;
//RF数据包大小(模块配备了256Byte的RAM缓存该缓存仅能通过LoRa模式访问)
#define RF_BUFFER_SIZE_MAX 256
#define RF_BUFFER_SIZE 256
//LoRa的返回值
typedef enum
{
RFLR_STATE_IDLE,
RFLR_STATE_RX_INIT,
RFLR_STATE_RX_RUNNING,
RFLR_STATE_RX_DONE,
RFLR_STATE_RX_TIMEOUT,
RFLR_STATE_TX_INIT,
RFLR_STATE_TX_RUNNING,
RFLR_STATE_TX_DONE,
RFLR_STATE_TX_TIMEOUT,
RFLR_STATE_CAD_INIT,
RFLR_STATE_CAD_RUNNING,
}tRFLRStates;
//SX1276 definitions
#define XTAL_FREQ 32000000
#define FREQ_STEP 61.03515625
/*LoRa模式寄存器映射*/
//SX1276内部寄存器地址
#define REG_LR_FIFO 0x00 //FIFO 数据输入/输出。当器件处于睡眠模式时FIFO被清零无法访问。
//通用寄存器
#define REG_LR_OPMODE 0x01 //关于模式选择相关的寄存器
#define REG_LR_BANDSETTING 0x04
#define REG_LR_FRFMSB 0x06 //RF 载波频率最高有效位
#define REG_LR_FRFMID 0x07 //RF 载波频率中间有效位
#define REG_LR_FRFLSB 0x08 //RF 载波频率最低有效位
//RF模块寄存器
#define REG_LR_PACONFIG 0x09
#define REG_LR_PARAMP 0x0A
#define REG_LR_OCP 0x0B
#define REG_LR_LNA 0x0C
//LoRa页面寄存器
#define REG_LR_FIFOADDRPTR 0x0D
#define REG_LR_FIFOTXBASEADDR 0x0E
#define REG_LR_FIFORXBASEADDR 0x0F
#define REG_LR_FIFORXCURRENTADDR 0x10
#define REG_LR_IRQFLAGSMASK 0x11 //IAQ标志屏蔽
#define REG_LR_IRQFLAGS 0x12
#define REG_LR_NBRXBYTES 0x13
#define REG_LR_RXHEADERCNTVALUEMSB 0x14
#define REG_LR_RXHEADERCNTVALUELSB 0x15
#define REG_LR_RXPACKETCNTVALUEMSB 0x16
#define REG_LR_RXPACKETCNTVALUELSB 0x17
#define REG_LR_MODEMSTAT 0x18
#define REG_LR_PKTSNRVALUE 0x19
#define REG_LR_PKTRSSIVALUE 0x1A
#define REG_LR_RSSIVALUE 0x1B
#define REG_LR_HOPCHANNEL 0x1C
#define REG_LR_MODEMCONFIG1 0x1D
#define REG_LR_MODEMCONFIG2 0x1E
#define REG_LR_SYMBTIMEOUTLSB 0x1F
#define REG_LR_PREAMBLEMSB 0x20
#define REG_LR_PREAMBLELSB 0x21
#define REG_LR_PAYLOADLENGTH 0x22
#define REG_LR_PAYLOADMAXLENGTH 0x23
#define REG_LR_HOPPERIOD 0x24
#define REG_LR_FIFORXBYTEADDR 0x25
#define REG_LR_MODEMCONFIG3 0x26
/*以上是LoRa模式寄存器映射*/
//IO控制寄存器关于DI00-DI05的映射设置
#define REG_LR_DIOMAPPING1 0x40
#define REG_LR_DIOMAPPING2 0x41
//版本寄存器
#define REG_LR_VERSION 0x42
//附加寄存器
#define REG_LR_PLLHOP 0x44
#define REG_LR_TCXO 0x4B
#define REG_LR_PADAC 0x4D
#define REG_LR_FORMERTEMP 0x5B
#define REG_LR_BITRATEFRAC 0x5D
#define REG_LR_AGCREF 0x61
#define REG_LR_AGCTHRESH1 0x62
#define REG_LR_AGCTHRESH2 0x63
#define REG_LR_AGCTHRESH3 0x64
//与模式选择相关的宏定义 RegOpMode(寄存器地址0X01)
#define RFLR_OPMODE_LONGRANGEMODE_MASK 0x7F
#define RFLR_OPMODE_LONGRANGEMODE_OFF 0x00 // Default
#define RFLR_OPMODE_LONGRANGEMODE_ON 0x80
#define RFLR_OPMODE_ACCESSSHAREDREG_MASK 0xBF
#define RFLR_OPMODE_ACCESSSHAREDREG_ENABLE 0x40
#define RFLR_OPMODE_ACCESSSHAREDREG_DISABLE 0x00 // Default
#define RFLR_OPMODE_FREQMODE_ACCESS_MASK 0xF7
#define RFLR_OPMODE_FREQMODE_ACCESS_LF 0x08 // Default
#define RFLR_OPMODE_FREQMODE_ACCESS_HF 0x00
#define RFLR_OPMODE_MASK 0xF8
#define RFLR_OPMODE_SLEEP 0x00 //睡眠模式
#define RFLR_OPMODE_STANDBY 0x01 //待机模式
#define RFLR_OPMODE_SYNTHESIZER_TX 0x02 //频率合成器转换至Tx频率
#define RFLR_OPMODE_TRANSMITTER 0x03 //发送模式
#define RFLR_OPMODE_SYNTHESIZER_RX 0x04 //频率合成器转换至Rx频率
#define RFLR_OPMODE_RECEIVER 0x05 //接收模式
#define RFLR_OPMODE_RECEIVER_SINGLE 0x06 //单次接收模式
#define RFLR_OPMODE_CAD 0x07 //CAD模式
//与位带操作相关的宏定义
#define RFLR_BANDSETTING_MASK 0x3F
#define RFLR_BANDSETTING_AUTO 0x00 // Default
#define RFLR_BANDSETTING_DIV_BY_1 0x40
#define RFLR_BANDSETTING_DIV_BY_2 0x80
#define RFLR_BANDSETTING_DIV_BY_6 0xC0
//射频载波频率设置相关宏定义 RegFrf (MHz)(寄存器地址0x060x07,0x08)
#define RFLR_FRFMSB_434_MHZ 0x6C // Default
#define RFLR_FRFMID_434_MHZ 0x80 // Default
#define RFLR_FRFLSB_434_MHZ 0x00 // Default
#define RFLR_FRFMSB_470_MHZ 0x73 // Default
#define RFLR_FRFMID_470_MHZ 0xBB // Default
#define RFLR_FRFLSB_470_MHZ 0xBB // Default
#define RFLR_FRFMSB_863_MHZ 0xD7
#define RFLR_FRFMID_863_MHZ 0xC0
#define RFLR_FRFLSB_863_MHZ 0x00
#define RFLR_FRFMSB_864_MHZ 0xD8
#define RFLR_FRFMID_864_MHZ 0x00
#define RFLR_FRFLSB_864_MHZ 0x00
#define RFLR_FRFMSB_865_MHZ 0xD8
#define RFLR_FRFMID_865_MHZ 0x40
#define RFLR_FRFLSB_865_MHZ 0x00
#define RFLR_FRFMSB_866_MHZ 0xD8
#define RFLR_FRFMID_866_MHZ 0x80
#define RFLR_FRFLSB_866_MHZ 0x00
#define RFLR_FRFMSB_867_MHZ 0xD8
#define RFLR_FRFMID_867_MHZ 0xC0
#define RFLR_FRFLSB_867_MHZ 0x00
#define RFLR_FRFMSB_868_MHZ 0xD9
#define RFLR_FRFMID_868_MHZ 0x00
#define RFLR_FRFLSB_868_MHZ 0x00
#define RFLR_FRFMSB_869_MHZ 0xD9
#define RFLR_FRFMID_869_MHZ 0x40
#define RFLR_FRFLSB_869_MHZ 0x00
#define RFLR_FRFMSB_870_MHZ 0xD9
#define RFLR_FRFMID_870_MHZ 0x80
#define RFLR_FRFLSB_870_MHZ 0x00
#define RFLR_FRFMSB_902_MHZ 0xE1
#define RFLR_FRFMID_902_MHZ 0x80
#define RFLR_FRFLSB_902_MHZ 0x00
#define RFLR_FRFMSB_903_MHZ 0xE1
#define RFLR_FRFMID_903_MHZ 0xC0
#define RFLR_FRFLSB_903_MHZ 0x00
#define RFLR_FRFMSB_904_MHZ 0xE2
#define RFLR_FRFMID_904_MHZ 0x00
#define RFLR_FRFLSB_904_MHZ 0x00
#define RFLR_FRFMSB_905_MHZ 0xE2
#define RFLR_FRFMID_905_MHZ 0x40
#define RFLR_FRFLSB_905_MHZ 0x00
#define RFLR_FRFMSB_906_MHZ 0xE2
#define RFLR_FRFMID_906_MHZ 0x80
#define RFLR_FRFLSB_906_MHZ 0x00
#define RFLR_FRFMSB_907_MHZ 0xE2
#define RFLR_FRFMID_907_MHZ 0xC0
#define RFLR_FRFLSB_907_MHZ 0x00
#define RFLR_FRFMSB_908_MHZ 0xE3
#define RFLR_FRFMID_908_MHZ 0x00
#define RFLR_FRFLSB_908_MHZ 0x00
#define RFLR_FRFMSB_909_MHZ 0xE3
#define RFLR_FRFMID_909_MHZ 0x40
#define RFLR_FRFLSB_909_MHZ 0x00
#define RFLR_FRFMSB_910_MHZ 0xE3
#define RFLR_FRFMID_910_MHZ 0x80
#define RFLR_FRFLSB_910_MHZ 0x00
#define RFLR_FRFMSB_911_MHZ 0xE3
#define RFLR_FRFMID_911_MHZ 0xC0
#define RFLR_FRFLSB_911_MHZ 0x00
#define RFLR_FRFMSB_912_MHZ 0xE4
#define RFLR_FRFMID_912_MHZ 0x00
#define RFLR_FRFLSB_912_MHZ 0x00
#define RFLR_FRFMSB_913_MHZ 0xE4
#define RFLR_FRFMID_913_MHZ 0x40
#define RFLR_FRFLSB_913_MHZ 0x00
#define RFLR_FRFMSB_914_MHZ 0xE4
#define RFLR_FRFMID_914_MHZ 0x80
#define RFLR_FRFLSB_914_MHZ 0x00
#define RFLR_FRFMSB_915_MHZ 0xE4 // Default
#define RFLR_FRFMID_915_MHZ 0xC0 // Default
#define RFLR_FRFLSB_915_MHZ 0x00 // Default
#define RFLR_FRFMSB_916_MHZ 0xE5
#define RFLR_FRFMID_916_MHZ 0x00
#define RFLR_FRFLSB_916_MHZ 0x00
#define RFLR_FRFMSB_917_MHZ 0xE5
#define RFLR_FRFMID_917_MHZ 0x40
#define RFLR_FRFLSB_917_MHZ 0x00
#define RFLR_FRFMSB_918_MHZ 0xE5
#define RFLR_FRFMID_918_MHZ 0x80
#define RFLR_FRFLSB_918_MHZ 0x00
#define RFLR_FRFMSB_919_MHZ 0xE5
#define RFLR_FRFMID_919_MHZ 0xC0
#define RFLR_FRFLSB_919_MHZ 0x00
#define RFLR_FRFMSB_920_MHZ 0xE6
#define RFLR_FRFMID_920_MHZ 0x00
#define RFLR_FRFLSB_920_MHZ 0x00
#define RFLR_FRFMSB_921_MHZ 0xE6
#define RFLR_FRFMID_921_MHZ 0x40
#define RFLR_FRFLSB_921_MHZ 0x00
#define RFLR_FRFMSB_922_MHZ 0xE6
#define RFLR_FRFMID_922_MHZ 0x80
#define RFLR_FRFLSB_922_MHZ 0x00
#define RFLR_FRFMSB_923_MHZ 0xE6
#define RFLR_FRFMID_923_MHZ 0xC0
#define RFLR_FRFLSB_923_MHZ 0x00
#define RFLR_FRFMSB_924_MHZ 0xE7
#define RFLR_FRFMID_924_MHZ 0x00
#define RFLR_FRFLSB_924_MHZ 0x00
#define RFLR_FRFMSB_925_MHZ 0xE7
#define RFLR_FRFMID_925_MHZ 0x40
#define RFLR_FRFLSB_925_MHZ 0x00
#define RFLR_FRFMSB_926_MHZ 0xE7
#define RFLR_FRFMID_926_MHZ 0x80
#define RFLR_FRFLSB_926_MHZ 0x00
#define RFLR_FRFMSB_927_MHZ 0xE7
#define RFLR_FRFMID_927_MHZ 0xC0
#define RFLR_FRFLSB_927_MHZ 0x00
#define RFLR_FRFMSB_928_MHZ 0xE8
#define RFLR_FRFMID_928_MHZ 0x00
#define RFLR_FRFLSB_928_MHZ 0x00
//PA功率放大器 选择和输出功率控制设置相关宏定义 RegPaConfig寄存器地址0X09
#define RFLR_PACONFIG_PASELECT_MASK 0x7F
#define RFLR_PACONFIG_PASELECT_PABOOST 0x80
#define RFLR_PACONFIG_PASELECT_RFO 0x00 // Default
#define RFLR_PACONFIG_MAX_POWER_MASK 0x8F
#define RFLR_PACONFIG_OUTPUTPOWER_MASK 0xF0
//PA功率放大器 斜升/斜降时间和低相噪设置相关定义 RegPaRamp寄存器地址0X0A
#define RFLR_PARAMP_TXBANDFORCE_MASK 0xEF
#define RFLR_PARAMP_TXBANDFORCE_BAND_SEL 0x10
#define RFLR_PARAMP_TXBANDFORCE_AUTO 0x00 // Default
#define RFLR_PARAMP_MASK 0xF0
#define RFLR_PARAMP_3400_US 0x00
#define RFLR_PARAMP_2000_US 0x01
#define RFLR_PARAMP_1000_US 0x02
#define RFLR_PARAMP_0500_US 0x03
#define RFLR_PARAMP_0250_US 0x04
#define RFLR_PARAMP_0125_US 0x05
#define RFLR_PARAMP_0100_US 0x06
#define RFLR_PARAMP_0062_US 0x07
#define RFLR_PARAMP_0050_US 0x08
#define RFLR_PARAMP_0040_US 0x09 // Default
#define RFLR_PARAMP_0031_US 0x0A
#define RFLR_PARAMP_0025_US 0x0B
#define RFLR_PARAMP_0020_US 0x0C
#define RFLR_PARAMP_0015_US 0x0D
#define RFLR_PARAMP_0012_US 0x0E
#define RFLR_PARAMP_0010_US 0x0F
//过流保护控制设置相关宏定义 RegOcp寄存器地址0X0B
#define RFLR_OCP_MASK 0xDF
#define RFLR_OCP_ON 0x20 // Default
#define RFLR_OCP_OFF 0x00
#define RFLR_OCP_TRIM_MASK 0xE0
#define RFLR_OCP_TRIM_045_MA 0x00
#define RFLR_OCP_TRIM_050_MA 0x01
#define RFLR_OCP_TRIM_055_MA 0x02
#define RFLR_OCP_TRIM_060_MA 0x03
#define RFLR_OCP_TRIM_065_MA 0x04
#define RFLR_OCP_TRIM_070_MA 0x05
#define RFLR_OCP_TRIM_075_MA 0x06
#define RFLR_OCP_TRIM_080_MA 0x07
#define RFLR_OCP_TRIM_085_MA 0x08
#define RFLR_OCP_TRIM_090_MA 0x09
#define RFLR_OCP_TRIM_095_MA 0x0A
#define RFLR_OCP_TRIM_100_MA 0x0B // Default
#define RFLR_OCP_TRIM_105_MA 0x0C
#define RFLR_OCP_TRIM_110_MA 0x0D
#define RFLR_OCP_TRIM_115_MA 0x0E
#define RFLR_OCP_TRIM_120_MA 0x0F
#define RFLR_OCP_TRIM_130_MA 0x10
#define RFLR_OCP_TRIM_140_MA 0x11
#define RFLR_OCP_TRIM_150_MA 0x12
#define RFLR_OCP_TRIM_160_MA 0x13
#define RFLR_OCP_TRIM_170_MA 0x14
#define RFLR_OCP_TRIM_180_MA 0x15
#define RFLR_OCP_TRIM_190_MA 0x16
#define RFLR_OCP_TRIM_200_MA 0x17
#define RFLR_OCP_TRIM_210_MA 0x18
#define RFLR_OCP_TRIM_220_MA 0x19
#define RFLR_OCP_TRIM_230_MA 0x1A
#define RFLR_OCP_TRIM_240_MA 0x1B
//LNA低噪声放大器 )设置相关宏定义 RegLna寄存器地址0X0C
#define RFLR_LNA_GAIN_MASK 0x1F
#define RFLR_LNA_GAIN_G1 0x20 // Default
#define RFLR_LNA_GAIN_G2 0x40
#define RFLR_LNA_GAIN_G3 0x60
#define RFLR_LNA_GAIN_G4 0x80
#define RFLR_LNA_GAIN_G5 0xA0
#define RFLR_LNA_GAIN_G6 0xC0
#define RFLR_LNA_BOOST_LF_MASK 0xE7
#define RFLR_LNA_BOOST_LF_DEFAULT 0x00 // Default
#define RFLR_LNA_BOOST_LF_GAIN 0x08
#define RFLR_LNA_BOOST_LF_IP3 0x10
#define RFLR_LNA_BOOST_LF_BOOST 0x18
#define RFLR_LNA_RXBANDFORCE_MASK 0xFB
#define RFLR_LNA_RXBANDFORCE_BAND_SEL 0x04
#define RFLR_LNA_RXBANDFORCE_AUTO 0x00 // Default
#define RFLR_LNA_BOOST_HF_MASK 0xFC
#define RFLR_LNA_BOOST_HF_OFF 0x00 // Default
#define RFLR_LNA_BOOST_HF_ON 0x03
//FIFO 数据缓冲区中 SPI 接口地址指针寄存器地址0X0D
#define RFLR_FIFOADDRPTR 0x00 // Default
//发送信息的起始位置
#define RFLR_FIFOTXBASEADDR 0x80 // Default
//接收信息的起始位置
#define RFLR_FIFORXBASEADDR 0x00 // Default
/*!
* RegFifoRxCurrentAddr (Read Only)
*/
//关于中断屏蔽相关的宏定义
#define RFLR_IRQFLAGS_RXTIMEOUT_MASK 0x80
#define RFLR_IRQFLAGS_RXDONE_MASK 0x40
#define RFLR_IRQFLAGS_PAYLOADCRCERROR_MASK 0x20
#define RFLR_IRQFLAGS_VALIDHEADER_MASK 0x10
#define RFLR_IRQFLAGS_TXDONE_MASK 0x08
#define RFLR_IRQFLAGS_CADDONE_MASK 0x04
#define RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL_MASK 0x02
#define RFLR_IRQFLAGS_CADDETECTED_MASK 0x01
//关于中断打开相关的宏定义
#define RFLR_IRQFLAGS_RXTIMEOUT 0x80
#define RFLR_IRQFLAGS_RXDONE 0x40
#define RFLR_IRQFLAGS_PAYLOADCRCERROR 0x20
#define RFLR_IRQFLAGS_VALIDHEADER 0x10
#define RFLR_IRQFLAGS_TXDONE 0x08
#define RFLR_IRQFLAGS_CADDONE 0x04
#define RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL 0x02
#define RFLR_IRQFLAGS_CADDETECTED 0x01
/*!
* RegFifoRxNbBytes (Read Only) //
*/
/*!
* RegRxHeaderCntValueMsb (Read Only) //
*/
/*!
* RegRxHeaderCntValueLsb (Read Only) //
*/
/*!
* RegRxPacketCntValueMsb (Read Only) //
*/
/*!
* RegRxPacketCntValueLsb (Read Only) //
*/
/*!
* RegModemStat (Read Only) //
*/
#define RFLR_MODEMSTAT_RX_CR_MASK 0x1F
#define RFLR_MODEMSTAT_MODEM_STATUS_MASK 0xE0
/*!
* RegPktSnrValue (Read Only) //
*/
/*!
* RegPktRssiValue (Read Only) //
*/
/*!
* RegRssiValue (Read Only) //
*/
//与信号宽度纠错编码率是否显示报头有关宏定义寄存器位置0X1D
#define RFLR_MODEMCONFIG1_BW_MASK 0x0F
#define RFLR_MODEMCONFIG1_BW_7_81_KHZ 0x00
#define RFLR_MODEMCONFIG1_BW_10_41_KHZ 0x10
#define RFLR_MODEMCONFIG1_BW_15_62_KHZ 0x20
#define RFLR_MODEMCONFIG1_BW_20_83_KHZ 0x30
#define RFLR_MODEMCONFIG1_BW_31_25_KHZ 0x40
#define RFLR_MODEMCONFIG1_BW_41_66_KHZ 0x50
#define RFLR_MODEMCONFIG1_BW_62_50_KHZ 0x60
#define RFLR_MODEMCONFIG1_BW_125_KHZ 0x70 // Default
#define RFLR_MODEMCONFIG1_BW_250_KHZ 0x80
#define RFLR_MODEMCONFIG1_BW_500_KHZ 0x90
#define RFLR_MODEMCONFIG1_CODINGRATE_MASK 0xF1
#define RFLR_MODEMCONFIG1_CODINGRATE_4_5 0x02
#define RFLR_MODEMCONFIG1_CODINGRATE_4_6 0x04 // Default
#define RFLR_MODEMCONFIG1_CODINGRATE_4_7 0x06
#define RFLR_MODEMCONFIG1_CODINGRATE_4_8 0x08
#define RFLR_MODEMCONFIG1_IMPLICITHEADER_MASK 0xFE
#define RFLR_MODEMCONFIG1_IMPLICITHEADER_ON 0x01
#define RFLR_MODEMCONFIG1_IMPLICITHEADER_OFF 0x00 // Default
//与扩频因子接收模式发送CRC开启RX超时相关宏定义
#define RFLR_MODEMCONFIG2_SF_MASK 0x0F
#define RFLR_MODEMCONFIG2_SF_6 0x60
#define RFLR_MODEMCONFIG2_SF_7 0x70 // Default
#define RFLR_MODEMCONFIG2_SF_8 0x80
#define RFLR_MODEMCONFIG2_SF_9 0x90
#define RFLR_MODEMCONFIG2_SF_10 0xA0
#define RFLR_MODEMCONFIG2_SF_11 0xB0
#define RFLR_MODEMCONFIG2_SF_12 0xC0
#define RFLR_MODEMCONFIG2_TXCONTINUOUSMODE_MASK 0xF7
#define RFLR_MODEMCONFIG2_TXCONTINUOUSMODE_ON 0x08
#define RFLR_MODEMCONFIG2_TXCONTINUOUSMODE_OFF 0x00
#define RFLR_MODEMCONFIG2_RXPAYLOADCRC_MASK 0xFB
#define RFLR_MODEMCONFIG2_RXPAYLOADCRC_ON 0x04
#define RFLR_MODEMCONFIG2_RXPAYLOADCRC_OFF 0x00 // Default
#define RFLR_MODEMCONFIG2_SYMBTIMEOUTMSB_MASK 0xFC
#define RFLR_MODEMCONFIG2_SYMBTIMEOUTMSB 0x00 // Default
/*!
* RegHopChannel (Read Only)
*/
#define RFLR_HOPCHANNEL_PLL_LOCK_TIMEOUT_MASK 0x7F
#define RFLR_HOPCHANNEL_PLL_LOCK_FAIL 0x80
#define RFLR_HOPCHANNEL_PLL_LOCK_SUCCEED 0x00 // Default
#define RFLR_HOPCHANNEL_PAYLOAD_CRC16_MASK 0xBF
#define RFLR_HOPCHANNEL_PAYLOAD_CRC16_ON 0x40
#define RFLR_HOPCHANNEL_PAYLOAD_CRC16_OFF 0x00 // Default
#define RFLR_HOPCHANNEL_CHANNEL_MASK 0x3F
/*!
* RegSymbTimeoutLsb
*/
#define RFLR_SYMBTIMEOUTLSB_SYMBTIMEOUT 0x64 // Default
/*!
* RegPreambleLengthMsb
*/
#define RFLR_PREAMBLELENGTHMSB 0x00 // Default
/*!
* RegPreambleLengthLsb
*/
#define RFLR_PREAMBLELENGTHLSB 0x08 // Default
/*!
* RegPayloadLength
*/
#define RFLR_PAYLOADLENGTH 0x0E // Default
/*!
* RegPayloadMaxLength
*/
#define RFLR_PAYLOADMAXLENGTH 0xFF // Default
/*!
* RegHopPeriod
*/
#define RFLR_HOPPERIOD_FREQFOPPINGPERIOD 0x00 // Default
/*!
* RegDioMapping1
*/
#define RFLR_DIOMAPPING1_DIO0_MASK 0x3F
#define RFLR_DIOMAPPING1_DIO0_00 0x00 // Default
#define RFLR_DIOMAPPING1_DIO0_01 0x40
#define RFLR_DIOMAPPING1_DIO0_10 0x80
#define RFLR_DIOMAPPING1_DIO0_11 0xC0
#define RFLR_DIOMAPPING1_DIO1_MASK 0xCF
#define RFLR_DIOMAPPING1_DIO1_00 0x00 // Default
#define RFLR_DIOMAPPING1_DIO1_01 0x10
#define RFLR_DIOMAPPING1_DIO1_10 0x20
#define RFLR_DIOMAPPING1_DIO1_11 0x30
#define RFLR_DIOMAPPING1_DIO2_MASK 0xF3
#define RFLR_DIOMAPPING1_DIO2_00 0x00 // Default
#define RFLR_DIOMAPPING1_DIO2_01 0x04
#define RFLR_DIOMAPPING1_DIO2_10 0x08
#define RFLR_DIOMAPPING1_DIO2_11 0x0C
#define RFLR_DIOMAPPING1_DIO3_MASK 0xFC
#define RFLR_DIOMAPPING1_DIO3_00 0x00 // Default
#define RFLR_DIOMAPPING1_DIO3_01 0x01
#define RFLR_DIOMAPPING1_DIO3_10 0x02
#define RFLR_DIOMAPPING1_DIO3_11 0x03
/*!
* RegDioMapping2
*/
#define RFLR_DIOMAPPING2_DIO4_MASK 0x3F
#define RFLR_DIOMAPPING2_DIO4_00 0x00 // Default
#define RFLR_DIOMAPPING2_DIO4_01 0x40
#define RFLR_DIOMAPPING2_DIO4_10 0x80
#define RFLR_DIOMAPPING2_DIO4_11 0xC0
#define RFLR_DIOMAPPING2_DIO5_MASK 0xCF
#define RFLR_DIOMAPPING2_DIO5_00 0x00 // Default
#define RFLR_DIOMAPPING2_DIO5_01 0x10
#define RFLR_DIOMAPPING2_DIO5_10 0x20
#define RFLR_DIOMAPPING2_DIO5_11 0x30
#define RFLR_DIOMAPPING2_MAP_MASK 0xFE
#define RFLR_DIOMAPPING2_MAP_PREAMBLEDETECT 0x01
#define RFLR_DIOMAPPING2_MAP_RSSI 0x00 // Default
/*!
* RegVersion (Read Only)
*/
/*!
* RegAgcRef
*/
/*!
* RegAgcThresh1
*/
/*!
* RegAgcThresh2
*/
/*!
* RegAgcThresh3
*/
/*!
* RegFifoRxByteAddr (Read Only)
*/
/*!
* RegPllHop
*/
#define RFLR_PLLHOP_FASTHOP_MASK 0x7F
#define RFLR_PLLHOP_FASTHOP_ON 0x80
#define RFLR_PLLHOP_FASTHOP_OFF 0x00 // Default
/*!
* RegTcxo
*/
#define RFLR_TCXO_TCXOINPUT_MASK 0xEF
#define RFLR_TCXO_TCXOINPUT_ON 0x10
#define RFLR_TCXO_TCXOINPUT_OFF 0x00 // Default
/*!
* RegPaDac
*/
#define RFLR_PADAC_20DBM_MASK 0xF8
#define RFLR_PADAC_20DBM_ON 0x07
#define RFLR_PADAC_20DBM_OFF 0x04 // Default
/*!
* RegPll
*/
#define RFLR_PLL_BANDWIDTH_MASK 0x3F
#define RFLR_PLL_BANDWIDTH_75 0x00
#define RFLR_PLL_BANDWIDTH_150 0x40
#define RFLR_PLL_BANDWIDTH_225 0x80
#define RFLR_PLL_BANDWIDTH_300 0xC0 // Default
/*!
* RegPllLowPn
*/
#define RFLR_PLLLOWPN_BANDWIDTH_MASK 0x3F
#define RFLR_PLLLOWPN_BANDWIDTH_75 0x00
#define RFLR_PLLLOWPN_BANDWIDTH_150 0x40
#define RFLR_PLLLOWPN_BANDWIDTH_225 0x80
#define RFLR_PLLLOWPN_BANDWIDTH_300 0xC0 // Default
/*!
* RegModemConfig3
*/
#define RFLR_MODEMCONFIG3_LOWDATARATEOPTIMIZE_MASK 0xF7
#define RFLR_MODEMCONFIG3_LOWDATARATEOPTIMIZE_ON 0x08
#define RFLR_MODEMCONFIG3_LOWDATARATEOPTIMIZE_OFF 0x00 // Default
#define RFLR_MODEMCONFIG3_AGCAUTO_MASK 0xFB
#define RFLR_MODEMCONFIG3_AGCAUTO_ON 0x04 // Default
#define RFLR_MODEMCONFIG3_AGCAUTO_OFF 0x00
/*!
* RegFormerTemp
*/
typedef struct sSX1276LR
{
uint8_t RegFifo; // 0x00
// Common settings
uint8_t RegOpMode; // 0x01
uint8_t RegRes02; // 0x02
uint8_t RegRes03; // 0x03
uint8_t RegBandSetting; // 0x04
uint8_t RegRes05; // 0x05
uint8_t RegFrfMsb; // 0x06
uint8_t RegFrfMid; // 0x07
uint8_t RegFrfLsb; // 0x08
// Tx settings
uint8_t RegPaConfig; // 0x09
uint8_t RegPaRamp; // 0x0A
uint8_t RegOcp; // 0x0B
// Rx settings
uint8_t RegLna; // 0x0C
// LoRa registers
uint8_t RegFifoAddrPtr; // 0x0D
uint8_t RegFifoTxBaseAddr; // 0x0E
uint8_t RegFifoRxBaseAddr; // 0x0F
uint8_t RegFifoRxCurrentAddr; // 0x10
uint8_t RegIrqFlagsMask; // 0x11
uint8_t RegIrqFlags; // 0x12
uint8_t RegNbRxBytes; // 0x13
uint8_t RegRxHeaderCntValueMsb; // 0x14
uint8_t RegRxHeaderCntValueLsb; // 0x15
uint8_t RegRxPacketCntValueMsb; // 0x16
uint8_t RegRxPacketCntValueLsb; // 0x17
uint8_t RegModemStat; // 0x18
uint8_t RegPktSnrValue; // 0x19
uint8_t RegPktRssiValue; // 0x1A
uint8_t RegRssiValue; // 0x1B
uint8_t RegHopChannel; // 0x1C
uint8_t RegModemConfig1; // 0x1D
uint8_t RegModemConfig2; // 0x1E
uint8_t RegSymbTimeoutLsb; // 0x1F
uint8_t RegPreambleMsb; // 0x20
uint8_t RegPreambleLsb; // 0x21
uint8_t RegPayloadLength; // 0x22
uint8_t RegMaxPayloadLength; // 0x23
uint8_t RegHopPeriod; // 0x24 跳频周期
uint8_t RegFifoRxByteAddr; // 0x25
uint8_t RegModemConfig3; // 0x26
uint8_t RegTestReserved27[0x30 - 0x27]; // 0x27-0x30
uint8_t RegTestReserved31; // 0x31
uint8_t RegTestReserved32[0x40 - 0x32]; // 0x32-0x40
// I/O settings
uint8_t RegDioMapping1; // 0x40
uint8_t RegDioMapping2; // 0x41
// Version
uint8_t RegVersion; // 0x42
// Additional settings
uint8_t RegAgcRef; // 0x43
uint8_t RegAgcThresh1; // 0x44
uint8_t RegAgcThresh2; // 0x45
uint8_t RegAgcThresh3; // 0x46
// Test
uint8_t RegTestReserved47[0x4B - 0x47]; // 0x47-0x4A
// Additional settings
uint8_t RegPllHop; // 0x4B
uint8_t RegTestReserved4C; // 0x4C
uint8_t RegPaDac; // 0x4D
// Test
uint8_t RegTestReserved4E[0x58-0x4E]; // 0x4E-0x57
// Additional settings
uint8_t RegTcxo; // 0x58
// Test
uint8_t RegTestReserved59; // 0x59
// Test
uint8_t RegTestReserved5B; // 0x5B
// Additional settings
uint8_t RegPll; // 0x5C
// Test
uint8_t RegTestReserved5D; // 0x5D
// Additional settings
uint8_t RegPllLowPn; // 0x5E
// Test
uint8_t RegTestReserved5F[0x6C - 0x5F]; // 0x5F-0x6B
// Additional settings
uint8_t RegFormerTemp; // 0x6C
// Test
uint8_t RegTestReserved6D[0x71 - 0x6D]; // 0x6D-0x70
}tSX1276LR;
extern tSX1276LR* SX1276LR;
//初始化SX1276LoRa模式
void SX1276LoRaInit( void );
//读SX1276的版本号
void SX1276LoRaSetDefaults( void );
//启用/禁用LoRa模式
void SX1276LoRaSetLoRaOn( bool enable );
//设置SX1276操作模式
void SX1276LoRaSetOpMode( uint8_t opMode );
//获取SX1276操作模式
uint8_t SX1276LoRaGetOpMode( void );
//读取SX1276低噪声放大器信号放大的增益
uint8_t SX1276LoRaReadRxGain( void );
//读取lora模式下无线信号强度
double SX1276LoRaReadRssi( void );
//获取数据时的增益值
uint8_t SX1276LoRaGetPacketRxGain( void );
//获取数据时的信噪比值,信号和噪声的比值,信噪比越高,说明信号干扰越小。
int8_t SX1276LoRaGetPacketSnr( void );
//获取数据时的无线信号强度
double SX1276LoRaGetPacketRssi( void );
//开始接收
void SX1276LoRaStartRx( void );
//接收数据
void SX1276LoRaGetRxPacket( void *buffer, uint16_t *size );
//发送数据
void SX1276LoRaSetTxPacket( const void *buffer, uint16_t size );
//得到RFLRState状态
uint8_t SX1276LoRaGetRFState( void );
//设置RFLRState状态RFLRState的值决定了下面的函数处理哪一步的代码
void SX1276LoRaSetRFState( uint8_t state );
//SX1276模块接发收数据的处理函数
uint32_t SX1276LoRaProcess( void );
uint32_t SX1276LoraChannelEmpty( void );
#endif

Some files were not shown because too many files have changed in this diff Show More