tobudos-kernel/core/include/tos_task.h

469 lines
16 KiB
C

/*----------------------------------------------------------------------------
* Tencent is pleased to support the open source community by making TencentOS
* available.
*
* Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
* If you have downloaded a copy of the TencentOS binary from Tencent, please
* note that the TencentOS binary is licensed under the BSD 3-Clause License.
*
* If you have downloaded a copy of the TencentOS source code from Tencent,
* please note that TencentOS source code is licensed under the BSD 3-Clause
* License, except for the third-party components listed below which are
* subject to different license terms. Your integration of TencentOS into your
* own projects may require compliance with the BSD 3-Clause License, as well
* as the other licenses applicable to the third-party components included
* within TencentOS.
*---------------------------------------------------------------------------*/
#ifndef _TOS_TASK_H_
#define _TOS_TASK_H_
__CDECLS_BEGIN
#define K_TASK_NAME_LEN_MAX (15u)
#define K_TASK_NAME_MAX (K_TASK_NAME_LEN_MAX + 1)
#define K_TASK_STK_SIZE_MIN (sizeof(cpu_context_t))
// task state is just a flag, indicating which manager list we are in.
// ready to schedule
// a task's pend_list is in readyqueue
#define K_TASK_STATE_READY (k_task_state_t)0x0000
// delayed, or pend for a timeout
// a task's tick_list is in k_tick_list
#define K_TASK_STATE_SLEEP (k_task_state_t)0x0001
// pend for something
// a task's pend_list is in some pend object's list
#define K_TASK_STATE_PEND (k_task_state_t)0x0002
// suspended
#define K_TASK_STATE_SUSPENDED (k_task_state_t)0x0004
// deleted
#define K_TASK_STATE_DELETED (k_task_state_t)0x0008
// actually we don't really need those TASK_STATE below, if you understand the task state deeply, the code can be much more elegant.
// we are pending, also we are waitting for a timeout(eg. tos_sem_pend with a valid timeout, not TOS_TIME_FOREVER)
// both a task's tick_list and pend_list is not empty
#define K_TASK_STATE_PENDTIMEOUT (k_task_state_t)(K_TASK_STATE_PEND | K_TASK_STATE_SLEEP)
// suspended when sleeping
#define K_TASK_STATE_SLEEP_SUSPENDED (k_task_state_t)(K_TASK_STATE_SLEEP | K_TASK_STATE_SUSPENDED)
// suspended when pending
#define K_TASK_STATE_PEND_SUSPENDED (k_task_state_t)(K_TASK_STATE_PEND | K_TASK_STATE_SUSPENDED)
// suspended when pendtimeout
#define K_TASK_STATE_PENDTIMEOUT_SUSPENDED (k_task_state_t)(K_TASK_STATE_PENDTIMEOUT | K_TASK_STATE_SUSPENDED)
// if you configure TOS_CFG_TASK_PRIO_MAX as 10, means the priority for kernel is (0 ... 9]
// the priority 9(TOS_CFG_TASK_PRIO_MAX - 1) is only for idle, so avaliable priority for you is (0 ... 8]
#define K_TASK_PRIO_IDLE (k_prio_t)(TOS_CFG_TASK_PRIO_MAX - (k_prio_t)1u)
#define K_TASK_PRIO_INVALID (k_prio_t)(TOS_CFG_TASK_PRIO_MAX)
typedef void (*k_task_entry_t)(void *arg);
typedef void (*k_task_walker_t)(k_task_t *task);
/**
* task control block
*/
struct k_task_st {
k_stack_t *sp; /**< task stack pointer. This lady always comes first, we count on her in port_s.S for context switch. */
knl_obj_t knl_obj; /**< just for verification, test whether current object is really a task. */
char name[K_TASK_NAME_MAX]; /**< task name */
k_task_entry_t entry; /**< task entry */
void *arg; /**< argument for task entry */
k_task_state_t state; /**< just state */
k_prio_t prio; /**< just priority */
k_stack_t *stk_base; /**< task stack base address */
size_t stk_size; /**< stack size of the task */
#if TOS_CFG_OBJ_DYNAMIC_CREATE_EN > 0u
k_list_t dead_list; /**< when a dynamic allocated task destroyed, we hook the task's dead_list to the k_dead_task_list */
#endif
k_list_t stat_list; /**< list for hooking us to the k_stat_list */
k_tick_t tick_expires; /**< if we are in k_tick_list, how much time will we wait for? */
k_list_t tick_list; /**< list for hooking us to the k_tick_list */
k_list_t pend_list; /**< when we are ready, our pend_list is in readyqueue; when pend, in a certain pend object's list. */
#if TOS_CFG_MUTEX_EN > 0u
k_list_t mutex_own_list; /**< the list hold all the mutex we own.
When we die(tos_task_destroy), we have an obligation to wakeup all the task pending for those mutexs we own;
if not, those pending tasks may never get a chance to wakeup. */
k_prio_t prio_pending; /*< when tos_task_prio_change called, we may be just the owner of a mutex.
to avoid PRIORITY INVERSION, must make sure our priority is higher than any one who is pending for
the mutex we hold. So, if the prio_new of tos_task_prio_change is not appropriate
(may against the principle of PRIORITY INVERSION), we just mark the prio_new here, do the real priority
change in the right time(mutex_old_owner_release) later. */
#endif
pend_obj_t *pending_obj; /**< if we are pending, which pend object's list we are in? */
pend_state_t pend_state; /**< why we wakeup from a pend */
#if TOS_CFG_ROUND_ROBIN_EN > 0u
k_timeslice_t timeslice_reload; /**< if current time slice is used up, use time_slice_reload to reload our time slice */
k_timeslice_t timeslice; /**< how much time slice left for us? */
#endif
#if (TOS_CFG_MESSAGE_QUEUE_EN > 0u) || (TOS_CFG_PRIORITY_MESSAGE_QUEUE_EN > 0u)
void *msg; /**< if we pend a message queue successfully, our msg will be set by the message queue poster */
#endif
#if (TOS_CFG_MAIL_QUEUE_EN > 0u) || (TOS_CFG_PRIORITY_MAIL_QUEUE_EN > 0u)
void *mail; /**< if we pend a mail queue successfully, our mail and mail_size will be set by the message queue poster */
size_t mail_size;
#endif
#if TOS_CFG_EVENT_EN > 0u
k_opt_t opt_event_pend; /**< if we are pending an event, what's the option for the pending(TOS_OPT_EVENT_PEND_*)? */
k_event_flag_t flag_expect; /**< if we are pending an event, what event flag are we pending for ? */
k_event_flag_t *flag_match; /**< if we pend an event successfully, flag_match will be set by the event poster, and will be returned
by tos_event_pend to the caller */
#endif
};
/**
* @brief Create a task.
* create a task.
*
* @attention None
*
* @param[in] task pointer to the handler of the task.
* @param[in] name name of the task.
* @param[in] entry running entry of the task.
* @param[in] arg argument for the entry of the task.
* @param[in] prio priority of the task.
* @param[in] stk_base stack base address of the task.
* @param[in] stk_size stack size of the task.
* @param[in] timeslice time slice of the task.
*
* @return errcode
* @retval #K_ERR_TASK_STK_SIZE_INVALID stack size is invalid.
* @retval #K_ERR_TASK_PRIO_INVALID priority is invalid.
* @retval #K_ERR_NONE return successfully.
*/
__API__ k_err_t tos_task_create(k_task_t *task,
const char *name,
k_task_entry_t entry,
void *arg,
k_prio_t prio,
k_stack_t *stk_base,
size_t stk_size,
k_timeslice_t timeslice);
/**
* @brief Destroy a task.
* delete a task.
*
* @attention None
*
* @param[in] task pointer to the handler of the task to be deleted.
*
* @return errcode
* @retval #K_ERR_TASK_DESTROY_IDLE attempt to destroy idle task.
* @retval #K_ERR_NONE return successfully.
*/
__API__ k_err_t tos_task_destroy(k_task_t *task);
#if TOS_CFG_OBJ_DYNAMIC_CREATE_EN > 0u
/**
* @brief Create a task with a dynamic allocated task handler and stack.
* create a task with a dynamic allocated task handler and stack.
*
* @param[out] task dynamic allocated task handler.
* @param[in] name name of the task.
* @param[in] entry running entry of the task.
* @param[in] arg argument for the entry of the task.
* @param[in] prio priority of the task.
* @param[in] stk_size stack size of the task.
* @param[in] timeslice time slice of the task.
*
* @return errcode
* @retval #K_ERR_TASK_STK_SIZE_INVALID stack size is invalid.
* @retval #K_ERR_TASK_PRIO_INVALID priority is invalid.
* @retval #K_ERR_TASK_OUT_OF_MEMORY out of memory(insufficient heap memory).
* @retval #K_ERR_NONE return successfully.
*/
__API__ k_err_t tos_task_create_dyn(k_task_t **task,
const char *name,
k_task_entry_t entry,
void *arg,
k_prio_t prio,
size_t stk_size,
k_timeslice_t timeslice);
/**
* @brief Destroy a dynamic allocated task.
* delete a dynamic allocated task.
*
* @attention None
*
* @param[in] task pointer to the handler of the task to be deleted.
*
* @return errcode
* @retval #K_ERR_TASK_DESTROY_IDLE attempt to destroy idle task.
* @retval #K_ERR_NONE return successfully.
*/
__API__ k_err_t tos_task_destroy_dyn(k_task_t *task);
#endif
/**
* @brief Delay current task for ticks.
* Delay for a specified amount of ticks.
*
* @attention None
*
* @param[in] delay amount of ticks to delay.
*
* @return errcode
* @retval #K_ERR_DELAY_ZERO delay is zero.
* @retval #K_ERR_NONE return successfully.
*/
__API__ k_err_t tos_task_delay(k_tick_t delay);
/**
* @brief Resume task from delay.
* Resume a delayed task from delay.
*
* @attention None
*
* @param[in] task the pointer to the handler of the task.
*
* @return errcode
* @retval #K_ERR_TASK_NOT_DELAY task is not delayed.
* @retval #K_ERR_TASK_SUSPENDED task is suspended.
* @retval #K_ERR_NONE return successfully.
*/
__API__ k_err_t tos_task_delay_abort(k_task_t *task);
/**
* @brief Suspend a task.
* Bring a task to sleep.
*
* @attention None
*
* @param[in] task pointer to the handler of the task to be resume.
*
* @return errcode
* @retval #K_ERR_TASK_SUSPEND_IDLE attempt to suspend idle task.
* @retval #K_ERR_NONE return successfully.
*/
__API__ k_err_t tos_task_suspend(k_task_t *task);
/**
* @brief Resume a task.
* Bring a task to run.
*
* @attention None
*
* @param[in] task pointer to the handler of the task to be resume.
*
* @return errcode
* @retval #K_ERR_TASK_RESUME_SELF attempt to resume self-task.
* @retval #K_ERR_NONE return successfully.
*/
__API__ k_err_t tos_task_resume(k_task_t *task);
/**
* @brief Change task priority.
* Change a priority of the task.
*
* @attention None
*
* @param[in] task pointer to the handler of the task to be resume.
* @param[in] prio_new new priority.
*
* @return errcode
* @retval #K_ERR_TASK_PRIO_INVALID new priority is invalid.
* @retval #K_ERR_NONE return successfully.
*/
__API__ k_err_t tos_task_prio_change(k_task_t *task, k_prio_t prio_new);
/**
* @brief Quit schedule this time.
* Quit the cpu this time.
*
* @attention None
*
* @param None
*
* @return None
*/
__API__ void tos_task_yield(void);
/**
* @brief Get current running task.
* Get current running task.
*
* @attention if kernel is not running, you'll get K_NULL
*
* @param None
*
* @return current running task handler
*/
__API__ k_task_t *tos_task_curr_task_get(void);
/**
* @brief Find task by task name.
* Find task by task name.
*
* @param name the name of the task.
*
* @return the matched task handler
*/
__API__ k_task_t *tos_task_find(const char *name);
#if TOS_CFG_TASK_STACK_DRAUGHT_DEPTH_DETACT_EN > 0u
/**
* @brief Get the maximum stack draught depth of a task.
*
* @attention None
*
* @param[in] task pointer to the handler of the task.
* @param[out] depth task stack draught depth.
*
* @return errcode
* @retval #K_ERR_NONE get depth successfully.
* @retval #K_ERR_TASK_STK_OVERFLOW task stack is overflow.
*/
__API__ k_err_t tos_task_stack_draught_depth(k_task_t *task, int *depth);
#endif
/**
* @brief Walk through all the tasks in the statistic list.
*
* @attention None
*
* @param[in] walker a function involved when meeting each tasks in the list.
*
* @return None
*/
__API__ void tos_task_walkthru(k_task_walker_t walker);
/**
* @brief A debug API for display all tasks information.
*
* @attention None
*
* @param None
*
* @return None
*/
__DEBUG__ void tos_task_info_display(void);
__KNL__ void task_free_all(void);
__KNL__ __STATIC_INLINE__ int task_state_is_ready(k_task_t *task)
{
return task->state == K_TASK_STATE_READY;
}
__KNL__ __STATIC_INLINE__ int task_state_is_sleeping(k_task_t *task)
{
return task->state & K_TASK_STATE_SLEEP;
}
__KNL__ __STATIC_INLINE__ int task_state_is_pending(k_task_t *task)
{
return task->state & K_TASK_STATE_PEND;
}
__KNL__ __STATIC_INLINE__ int task_state_is_suspended(k_task_t *task)
{
return task->state & K_TASK_STATE_SUSPENDED;
}
__KNL__ __STATIC_INLINE__ void task_state_reset_pending(k_task_t *task)
{
task->state &= ~K_TASK_STATE_PEND;
}
__KNL__ __STATIC_INLINE__ void task_state_reset_sleeping(k_task_t *task)
{
task->state &= ~K_TASK_STATE_SLEEP;
}
__KNL__ __STATIC_INLINE__ void task_state_reset_suspended(k_task_t *task)
{
task->state &= ~K_TASK_STATE_SUSPENDED;
}
__KNL__ __STATIC_INLINE__ void task_state_set_suspended(k_task_t *task)
{
task->state |= K_TASK_STATE_SUSPENDED;
}
__KNL__ __STATIC_INLINE__ void task_state_set_pend(k_task_t *task)
{
task->state |= K_TASK_STATE_PEND;
}
__KNL__ __STATIC_INLINE__ void task_state_set_ready(k_task_t *task)
{
task->state = K_TASK_STATE_READY;
}
__KNL__ __STATIC_INLINE__ void task_state_set_deleted(k_task_t *task)
{
task->state = K_TASK_STATE_DELETED;
}
__KNL__ __STATIC_INLINE__ void task_state_set_sleeping(k_task_t *task)
{
task->state |= K_TASK_STATE_SLEEP;
}
__DEBUG__ __STATIC_INLINE__ void task_default_walker(k_task_t *task)
{
char *state_str = "ABNORMAL";
state_str = state_str;
tos_kprintln("tsk name: %s", task->name);
if (tos_task_curr_task_get() == task) {
state_str = "RUNNING";
} else if (task->state == K_TASK_STATE_PENDTIMEOUT_SUSPENDED) {
state_str = "PENDTIMEOUT_SUSPENDED";
} else if (task->state == K_TASK_STATE_PEND_SUSPENDED) {
state_str = "PEND_SUSPENDED";
} else if (task->state == K_TASK_STATE_SLEEP_SUSPENDED) {
state_str = "SLEEP_SUSPENDED";
} else if (task->state == K_TASK_STATE_PENDTIMEOUT) {
state_str = "PENDTIMEOUT";
} else if (task->state == K_TASK_STATE_SUSPENDED) {
state_str = "SUSPENDED";
} else if (task->state == K_TASK_STATE_PEND) {
state_str = "PEND";
} else if (task->state == K_TASK_STATE_SLEEP) {
state_str = "SLEEP";
} else if (task->state == K_TASK_STATE_READY) {
state_str = "READY";
}
tos_kprintln("tsk stat: %s", state_str);
tos_kprintln("stk size: %d", task->stk_size);
tos_kprintln("stk base: 0x%p", task->stk_base);
tos_kprintln("stk top : 0x%p", task->stk_base + task->stk_size);
tos_kprintf("\n");
}
__CDECLS_END
#endif /* _TOS_TASK_H_ */