This commit is contained in:
sulv 2024-10-09 23:17:42 +08:00
parent 02a3922c7b
commit 23cd0a7b21
7 changed files with 952 additions and 428 deletions

View File

@ -25,10 +25,11 @@ public class VideoInferenceApp extends JFrame {
private VideoPlayer videoPlayer;
private ModelManager modelManager;
public VideoInferenceApp() {
// 设置窗口标题
super("Video Inference Player");
super("https://gitee.com/sulv0302/onnx-inference4j-play.git");
// 初始化UI组件
initializeUI();
}

View File

@ -0,0 +1,410 @@
package com.ly.lishi;
import ai.onnxruntime.*;
import com.alibaba.fastjson.JSON;
import com.ly.onnx.model.BoundingBox;
import com.ly.onnx.model.InferenceResult;
import lombok.Data;
import org.opencv.core.*;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import java.nio.FloatBuffer;
import java.util.*;
@Data
public class InferenceEngine {
private OrtEnvironment environment;
private OrtSession.SessionOptions sessionOptions;
private OrtSession session;
private String modelPath;
private List<String> labels;
// 用于存储图像预处理信息的类变量
private long[] inputShape = null;
static {
nu.pattern.OpenCV.loadLocally();
}
public InferenceEngine(String modelPath, List<String> labels) {
this.modelPath = modelPath;
this.labels = labels;
init();
}
public void init() {
try {
environment = OrtEnvironment.getEnvironment();
sessionOptions = new OrtSession.SessionOptions();
sessionOptions.addCUDA(0); // 使用 GPU
session = environment.createSession(modelPath, sessionOptions);
Map<String, NodeInfo> inputInfo = session.getInputInfo();
NodeInfo nodeInfo = inputInfo.values().iterator().next();
TensorInfo tensorInfo = (TensorInfo) nodeInfo.getInfo();
inputShape = tensorInfo.getShape(); // 从模型中获取输入形状
logModelInfo(session);
} catch (OrtException e) {
throw new RuntimeException("模型加载失败", e);
}
}
public InferenceResult infer(int w, int h, Map<String, Object> preprocessParams) {
long startTime = System.currentTimeMillis();
// Map 中获取偏移相关的变量
float[] inputData = (float[]) preprocessParams.get("inputData");
int origWidth = (int) preprocessParams.get("origWidth");
int origHeight = (int) preprocessParams.get("origHeight");
float scalingFactor = (float) preprocessParams.get("scalingFactor");
int xOffset = (int) preprocessParams.get("xOffset");
int yOffset = (int) preprocessParams.get("yOffset");
try {
Map<String, NodeInfo> inputInfo = session.getInputInfo();
String inputName = inputInfo.keySet().iterator().next(); // 假设只有一个输入
long[] inputShape = {1, 3, h, w}; // 根据模型需求调整形状
// 创建输入张量时使用 CHW 格式的数据
OnnxTensor inputTensor = OnnxTensor.createTensor(environment, FloatBuffer.wrap(inputData), inputShape);
// 执行推理
long inferenceStart = System.currentTimeMillis();
OrtSession.Result result = session.run(Collections.singletonMap(inputName, inputTensor));
long inferenceEnd = System.currentTimeMillis();
System.out.println("模型推理耗时:" + (inferenceEnd - inferenceStart) + " ms");
// 解析推理结果
String outputName = session.getOutputInfo().keySet().iterator().next(); // 假设只有一个输出
float[][][] outputData = (float[][][]) result.get(outputName).get().getValue(); // 输出形状[1, N, 6]
// 设定置信度阈值
float confidenceThreshold = 0.25f; // 您可以根据需要调整
// 根据模型的输出结果解析边界框
List<BoundingBox> boxes = new ArrayList<>();
for (float[] data : outputData[0]) { // 遍历所有检测框
// 根据模型输出格式解析中心坐标和宽高
float x_center = data[0];
float y_center = data[1];
float width = data[2];
float height = data[3];
float confidence = data[4];
if (confidence >= confidenceThreshold) {
// 将中心坐标转换为左上角和右下角坐标
float x1 = x_center - width / 2;
float y1 = y_center - height / 2;
float x2 = x_center + width / 2;
float y2 = y_center + height / 2;
// 调整坐标减去偏移并除以缩放因子
float x1Adjusted = (x1 - xOffset) / scalingFactor;
float y1Adjusted = (y1 - yOffset) / scalingFactor;
float x2Adjusted = (x2 - xOffset) / scalingFactor;
float y2Adjusted = (y2 - yOffset) / scalingFactor;
// 确保坐标的正确顺序
float xMinAdjusted = Math.min(x1Adjusted, x2Adjusted);
float xMaxAdjusted = Math.max(x1Adjusted, x2Adjusted);
float yMinAdjusted = Math.min(y1Adjusted, y2Adjusted);
float yMaxAdjusted = Math.max(y1Adjusted, y2Adjusted);
// 确保坐标在原始图像范围内
int x = (int) Math.max(0, xMinAdjusted);
int y = (int) Math.max(0, yMinAdjusted);
int xMax = (int) Math.min(origWidth, xMaxAdjusted);
int yMax = (int) Math.min(origHeight, yMaxAdjusted);
int wBox = xMax - x;
int hBox = yMax - y;
// 仅当宽度和高度为正时才添加边界框
if (wBox > 0 && hBox > 0) {
// 使用您的单一标签
String label = labels.get(0);
boxes.add(new BoundingBox(x, y, wBox, hBox, label, confidence));
}
}
}
// 非极大值抑制NMS
long nmsStart = System.currentTimeMillis();
List<BoundingBox> nmsBoxes = nonMaximumSuppression(boxes, 0.5f);
System.out.println("检测到的标签:" + JSON.toJSONString(nmsBoxes));
if (!nmsBoxes.isEmpty()) {
for (BoundingBox box : nmsBoxes) {
System.out.println(box);
}
}
long nmsEnd = System.currentTimeMillis();
System.out.println("NMS 耗时:" + (nmsEnd - nmsStart) + " ms");
// 封装结果并返回
InferenceResult inferenceResult = new InferenceResult();
inferenceResult.setBoundingBoxes(nmsBoxes);
long endTime = System.currentTimeMillis();
System.out.println("一次推理总耗时:" + (endTime - startTime) + " ms");
return inferenceResult;
} catch (OrtException e) {
throw new RuntimeException("推理失败", e);
}
}
// 计算两个边界框的 IoU
private float computeIoU(BoundingBox box1, BoundingBox box2) {
int x1 = Math.max(box1.getX(), box2.getX());
int y1 = Math.max(box1.getY(), box2.getY());
int x2 = Math.min(box1.getX() + box1.getWidth(), box2.getX() + box2.getWidth());
int y2 = Math.min(box1.getY() + box1.getHeight(), box2.getY() + box2.getHeight());
int intersectionArea = Math.max(0, x2 - x1) * Math.max(0, y2 - y1);
int box1Area = box1.getWidth() * box1.getHeight();
int box2Area = box2.getWidth() * box2.getHeight();
return (float) intersectionArea / (box1Area + box2Area - intersectionArea);
}
// 非极大值抑制NMS方法
private List<BoundingBox> nonMaximumSuppression(List<BoundingBox> boxes, float iouThreshold) {
// 按置信度排序从高到低
boxes.sort((a, b) -> Float.compare(b.getConfidence(), a.getConfidence()));
List<BoundingBox> result = new ArrayList<>();
while (!boxes.isEmpty()) {
BoundingBox bestBox = boxes.remove(0);
result.add(bestBox);
Iterator<BoundingBox> iterator = boxes.iterator();
while (iterator.hasNext()) {
BoundingBox box = iterator.next();
if (computeIoU(bestBox, box) > iouThreshold) {
iterator.remove();
}
}
}
return result;
}
// 打印模型信息
private void logModelInfo(OrtSession session) {
System.out.println("模型输入信息:");
try {
for (Map.Entry<String, NodeInfo> entry : session.getInputInfo().entrySet()) {
String name = entry.getKey();
NodeInfo info = entry.getValue();
System.out.println("输入名称: " + name);
System.out.println("输入信息: " + info.toString());
}
} catch (OrtException e) {
throw new RuntimeException(e);
}
System.out.println("模型输出信息:");
try {
for (Map.Entry<String, NodeInfo> entry : session.getOutputInfo().entrySet()) {
String name = entry.getKey();
NodeInfo info = entry.getValue();
System.out.println("输出名称: " + name);
System.out.println("输出信息: " + info.toString());
}
} catch (OrtException e) {
throw new RuntimeException(e);
}
}
public static void main(String[] args) {
// 加载 OpenCV
// 初始化标签列表只有一个标签
List<String> labels = Arrays.asList("person");
// 创建 InferenceEngine 实例
InferenceEngine inferenceEngine = new InferenceEngine("C:\\Users\\ly\\Desktop\\person.onnx", labels);
for (int j = 0; j < 10; j++) {
try {
// 加载图片
Mat inputImage = Imgcodecs.imread("C:\\Users\\ly\\Desktop\\10230731212230.png");
// 预处理图像
long l1 = System.currentTimeMillis();
Map<String, Object> preprocessResult = inferenceEngine.preprocessImage(inputImage);
float[] inputData = (float[]) preprocessResult.get("inputData");
InferenceResult result = null;
for (int i = 0; i < 10; i++) {
long l = System.currentTimeMillis();
result = inferenceEngine.infer( 640, 640, preprocessResult);
System.out.println("" + (i + 1) + " 次推理耗时:" + (System.currentTimeMillis() - l) + " ms");
}
// 处理并显示结果
System.out.println("推理结果:");
for (BoundingBox box : result.getBoundingBoxes()) {
System.out.println(box);
}
// 可视化并保存带有边界框的图像
Mat outputImage = inferenceEngine.drawBoundingBoxes(inputImage, result.getBoundingBoxes());
// 保存图片到本地文件
String outputFilePath = "output_image_with_boxes.jpg";
Imgcodecs.imwrite(outputFilePath, outputImage);
System.out.println("已保存结果图片: " + outputFilePath);
} catch (Exception e) {
e.printStackTrace();
}
}
}
// 在图像上绘制边界框和标签
private Mat drawBoundingBoxes(Mat image, List<BoundingBox> boxes) {
for (BoundingBox box : boxes) {
// 绘制矩形边界框
Imgproc.rectangle(image, new Point(box.getX(), box.getY()),
new Point(box.getX() + box.getWidth(), box.getY() + box.getHeight()),
new Scalar(0, 0, 255), 2); // 红色边框
// 绘制标签文字和置信度
String label = box.getLabel() + " " + String.format("%.2f", box.getConfidence());
int baseLine[] = new int[1];
Size labelSize = Imgproc.getTextSize(label, Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine);
int top = Math.max(box.getY(), (int) labelSize.height);
Imgproc.putText(image, label, new Point(box.getX(), top),
Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(255, 255, 255), 1);
}
return image;
}
public Map<String, Object> preprocessImage(Mat image) {
int targetWidth = 640;
int targetHeight = 640;
int origWidth = image.width();
int origHeight = image.height();
// 计算缩放因子
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
// 计算新的图像尺寸
int newWidth = Math.round(origWidth * scalingFactor);
int newHeight = Math.round(origHeight * scalingFactor);
// 计算偏移量以居中图像
int xOffset = (targetWidth - newWidth) / 2;
int yOffset = (targetHeight - newHeight) / 2;
// 调整图像尺寸
Mat resizedImage = new Mat();
Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight), 0, 0, Imgproc.INTER_LINEAR);
// 转换为 RGB 并归一化
Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
// 创建填充后的图像
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
resizedImage.copyTo(paddedImage.submat(roi));
// 将图像数据转换为数组
int imageSize = targetWidth * targetHeight;
float[] chwData = new float[3 * imageSize];
float[] hwcData = new float[3 * imageSize];
paddedImage.get(0, 0, hwcData);
// 转换为 CHW 格式
int channelSize = imageSize;
for (int c = 0; c < 3; c++) {
for (int i = 0; i < imageSize; i++) {
chwData[c * channelSize + i] = hwcData[i * 3 + c];
}
}
// 释放图像资源
resizedImage.release();
paddedImage.release();
// 将预处理结果和偏移信息存入 Map
Map<String, Object> result = new HashMap<>();
result.put("inputData", chwData);
result.put("origWidth", origWidth);
result.put("origHeight", origHeight);
result.put("scalingFactor", scalingFactor);
result.put("xOffset", xOffset);
result.put("yOffset", yOffset);
return result;
}
// 图像预处理
// public float[] preprocessImage(Mat image) {
// int targetWidth = 640;
// int targetHeight = 640;
//
// origWidth = image.width();
// origHeight = image.height();
//
// // 计算缩放因子
// scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
//
// // 计算新的图像尺寸
// newWidth = Math.round(origWidth * scalingFactor);
// newHeight = Math.round(origHeight * scalingFactor);
//
// // 计算偏移量以居中图像
// xOffset = (targetWidth - newWidth) / 2;
// yOffset = (targetHeight - newHeight) / 2;
//
// // 调整图像尺寸
// Mat resizedImage = new Mat();
// Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight), 0, 0, Imgproc.INTER_LINEAR);
//
// // 转换为 RGB 并归一化
// Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
// resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
//
// // 创建填充后的图像
// Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
// Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
// resizedImage.copyTo(paddedImage.submat(roi));
//
// // 将图像数据转换为数组
// int imageSize = targetWidth * targetHeight;
// float[] chwData = new float[3 * imageSize];
// float[] hwcData = new float[3 * imageSize];
// paddedImage.get(0, 0, hwcData);
//
// // 转换为 CHW 格式
// int channelSize = imageSize;
// for (int c = 0; c < 3; c++) {
// for (int i = 0; i < imageSize; i++) {
// chwData[c * channelSize + i] = hwcData[i * 3 + c];
// }
// }
//
// // 释放图像资源
// resizedImage.release();
// paddedImage.release();
//
// return chwData;
// }
}

View File

@ -0,0 +1,378 @@
package com.ly.lishi;
import com.ly.layout.VideoPanel;
import com.ly.model_load.ModelManager;
import com.ly.onnx.engine.InferenceEngine;
import com.ly.onnx.model.InferenceResult;
import com.ly.onnx.utils.DrawImagesUtils;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;
import org.opencv.videoio.VideoCapture;
import org.opencv.videoio.Videoio;
import javax.swing.*;
import java.awt.image.BufferedImage;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit;
import static com.ly.onnx.utils.ImageUtils.matToBufferedImage;
public class VideoPlayer {
static {
// 加载 OpenCV
nu.pattern.OpenCV.loadLocally();
String OS = System.getProperty("os.name").toLowerCase();
if (OS.contains("win")) {
System.load(ClassLoader.getSystemResource("lib/win/opencv_videoio_ffmpeg470_64.dll").getPath());
}
}
private VideoCapture videoCapture;
private volatile boolean isPlaying = false;
private volatile boolean isPaused = false;
private Thread frameReadingThread;
private Thread inferenceThread;
private VideoPanel videoPanel;
private long videoDuration = 0; // 毫秒
private long currentTimestamp = 0; // 毫秒
private ModelManager modelManager;
private List<InferenceEngine> inferenceEngines = new ArrayList<>();
// 定义阻塞队列来缓冲转换后的数据
private BlockingQueue<FrameData> frameDataQueue = new LinkedBlockingQueue<>(10); // 队列容量可根据需要调整
public VideoPlayer(VideoPanel videoPanel, ModelManager modelManager) {
this.videoPanel = videoPanel;
this.modelManager = modelManager;
}
// 加载视频或流
public void loadVideo(String videoFilePathOrStreamUrl) throws Exception {
stopVideo();
if (videoFilePathOrStreamUrl.equals("0")) {
int cameraIndex = Integer.parseInt(videoFilePathOrStreamUrl);
videoCapture = new VideoCapture(cameraIndex);
if (!videoCapture.isOpened()) {
throw new Exception("无法打开摄像头");
}
videoDuration = 0; // 摄像头没有固定的时长
playVideo();
} else {
// 输入不是数字尝试打开视频文件
videoCapture = new VideoCapture(videoFilePathOrStreamUrl, Videoio.CAP_FFMPEG);
if (!videoCapture.isOpened()) {
throw new Exception("无法打开视频文件:" + videoFilePathOrStreamUrl);
}
double frameCount = videoCapture.get(Videoio.CAP_PROP_FRAME_COUNT);
double fps = videoCapture.get(Videoio.CAP_PROP_FPS);
if (fps <= 0 || Double.isNaN(fps)) {
fps = 25; // 默认帧率
}
videoDuration = (long) (frameCount / fps * 1000); // 转换为毫秒
}
// 显示第一帧
Mat frame = new Mat();
if (videoCapture.read(frame)) {
BufferedImage bufferedImage = matToBufferedImage(frame);
videoPanel.updateImage(bufferedImage);
currentTimestamp = 0;
} else {
throw new Exception("无法读取第一帧");
}
// 重置到视频开始位置
videoCapture.set(Videoio.CAP_PROP_POS_FRAMES, 0);
currentTimestamp = 0;
}
// 播放
public void playVideo() {
if (videoCapture == null || !videoCapture.isOpened()) {
JOptionPane.showMessageDialog(null, "请先加载视频文件或流。", "提示", JOptionPane.WARNING_MESSAGE);
return;
}
if (isPlaying) {
if (isPaused) {
isPaused = false; // 恢复播放
}
return;
}
isPlaying = true;
isPaused = false;
frameDataQueue.clear(); // 开始播放前清空队列
// 创建并启动帧读取和转换线程
frameReadingThread = new Thread(() -> {
try {
double fps = videoCapture.get(Videoio.CAP_PROP_FPS);
if (fps <= 0 || Double.isNaN(fps)) {
fps = 25; // 默认帧率
}
long frameDelay = (long) (1000 / fps);
while (isPlaying) {
if (Thread.currentThread().isInterrupted()) {
break;
}
if (isPaused) {
Thread.sleep(10);
continue;
}
Mat frame = new Mat();
if (!videoCapture.read(frame) || frame.empty()) {
isPlaying = false;
break;
}
long startTime = System.currentTimeMillis();
BufferedImage bufferedImage = matToBufferedImage(frame);
if (bufferedImage != null) {
// float[] floats = preprocessAndConvertBufferedImage(bufferedImage);
Map<String, Object> stringObjectMap = preprocessImage(frame);
// 创建 FrameData 对象并放入队列
FrameData frameData = new FrameData(bufferedImage, null,stringObjectMap);
frameDataQueue.put(frameData); // 阻塞如果队列已满
}
// 控制帧率
currentTimestamp = (long) videoCapture.get(Videoio.CAP_PROP_POS_MSEC);
// 控制播放速度
long processingTime = System.currentTimeMillis() - startTime;
long sleepTime = frameDelay - processingTime;
if (sleepTime > 0) {
Thread.sleep(sleepTime);
}
}
} catch (Exception ex) {
ex.printStackTrace();
} finally {
isPlaying = false;
}
});
// 创建并启动推理线程
inferenceThread = new Thread(() -> {
try {
while (isPlaying || !frameDataQueue.isEmpty()) {
if (Thread.currentThread().isInterrupted()) {
break;
}
if (isPaused) {
Thread.sleep(100);
continue;
}
FrameData frameData = frameDataQueue.poll(100, TimeUnit.MILLISECONDS); // 等待数据
if (frameData == null) {
continue; // 没有数据继续检查 isPlaying
}
BufferedImage bufferedImage = frameData.image;
Map<String, Object> floatObjectMap = frameData.floatObjectMap;
// 执行推理
List<InferenceResult> inferenceResults = new ArrayList<>();
for (InferenceEngine inferenceEngine : inferenceEngines) {
// 假设 InferenceEngine infer 方法接受 float 数组
// inferenceResults.add(inferenceEngine.infer( 640, 640,floatObjectMap));
}
// 绘制推理结果
DrawImagesUtils.drawInferenceResult(bufferedImage, inferenceResults);
// 更新绘制后图像
videoPanel.updateImage(bufferedImage);
}
} catch (Exception ex) {
ex.printStackTrace();
}
});
frameReadingThread.start();
inferenceThread.start();
}
// 暂停视频
public void pauseVideo() {
if (!isPlaying) {
return;
}
isPaused = true;
}
// 重播视频
public void replayVideo() {
try {
stopVideo(); // 停止当前播放
if (videoCapture != null) {
videoCapture.set(Videoio.CAP_PROP_POS_FRAMES, 0);
currentTimestamp = 0;
// 显示第一帧
Mat frame = new Mat();
if (videoCapture.read(frame)) {
BufferedImage bufferedImage = matToBufferedImage(frame);
videoPanel.updateImage(bufferedImage);
}
playVideo(); // 开始播放
}
} catch (Exception e) {
e.printStackTrace();
JOptionPane.showMessageDialog(null, "重播失败: " + e.getMessage(), "错误", JOptionPane.ERROR_MESSAGE);
}
}
// 停止视频
public void stopVideo() {
isPlaying = false;
isPaused = false;
if (frameReadingThread != null && frameReadingThread.isAlive()) {
frameReadingThread.interrupt();
}
if (inferenceThread != null && inferenceThread.isAlive()) {
inferenceThread.interrupt();
}
if (videoCapture != null) {
videoCapture.release();
videoCapture = null;
}
frameDataQueue.clear();
}
// 快进或后退
public void seekTo(long seekTime) {
if (videoCapture == null) return;
try {
isPaused = false; // 取消暂停
stopVideo(); // 停止当前播放
videoCapture.set(Videoio.CAP_PROP_POS_MSEC, seekTime);
currentTimestamp = seekTime;
Mat frame = new Mat();
if (videoCapture.read(frame)) {
BufferedImage bufferedImage = matToBufferedImage(frame);
videoPanel.updateImage(bufferedImage);
}
// 重新开始播放
playVideo();
} catch (Exception ex) {
ex.printStackTrace();
}
}
// 快进
public void fastForward(long milliseconds) {
long newTime = Math.min(currentTimestamp + milliseconds, videoDuration);
seekTo(newTime);
}
// 后退
public void rewind(long milliseconds) {
long newTime = Math.max(currentTimestamp - milliseconds, 0);
seekTo(newTime);
}
public void addInferenceEngines(InferenceEngine inferenceEngine) {
this.inferenceEngines.add(inferenceEngine);
}
// 定义一个内部类来存储帧数据
private static class FrameData {
public BufferedImage image;
public float[] floatArray;
public Map<String, Object> floatObjectMap;
public FrameData(BufferedImage image, float[] floatArray, Map<String, Object> floatObjectMap) {
this.image = image;
this.floatArray = floatArray;
this.floatObjectMap = floatObjectMap;
}
}
// 可选的预处理方法
public Map<String, Object> preprocessImage(Mat image) {
int targetWidth = 640;
int targetHeight = 640;
int origWidth = image.width();
int origHeight = image.height();
// 计算缩放因子
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
// 计算新的图像尺寸
int newWidth = Math.round(origWidth * scalingFactor);
int newHeight = Math.round(origHeight * scalingFactor);
// 调整图像尺寸
Mat resizedImage = new Mat();
Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight));
// 转换为 RGB 并归一化
Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
// 创建填充后的图像
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
int xOffset = (targetWidth - newWidth) / 2;
int yOffset = (targetHeight - newHeight) / 2;
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
resizedImage.copyTo(paddedImage.submat(roi));
// 将图像数据转换为数组
int imageSize = targetWidth * targetHeight;
float[] chwData = new float[3 * imageSize];
float[] hwcData = new float[3 * imageSize];
paddedImage.get(0, 0, hwcData);
// 转换为 CHW 格式
int channelSize = imageSize;
for (int c = 0; c < 3; c++) {
for (int i = 0; i < imageSize; i++) {
chwData[c * channelSize + i] = hwcData[i * 3 + c];
}
}
// 释放图像资源
resizedImage.release();
paddedImage.release();
// 将预处理结果和偏移信息存入 Map
Map<String, Object> result = new HashMap<>();
result.put("inputData", chwData);
result.put("origWidth", origWidth);
result.put("origHeight", origHeight);
result.put("scalingFactor", scalingFactor);
result.put("xOffset", xOffset);
result.put("yOffset", yOffset);
return result;
}
}

View File

@ -5,6 +5,7 @@ import com.alibaba.fastjson.JSON;
import com.ly.onnx.model.BoundingBox;
import com.ly.onnx.model.InferenceResult;
import lombok.Data;
import org.opencv.core.*;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
@ -12,6 +13,7 @@ import org.opencv.imgproc.Imgproc;
import java.nio.FloatBuffer;
import java.util.*;
@Data
public class InferenceEngine {
private OrtEnvironment environment;
@ -21,14 +23,11 @@ public class InferenceEngine {
private String modelPath;
private List<String> labels;
//preprocessParams输入数据的索引
private int index;
// 用于存储图像预处理信息的类变量
private int origWidth;
private int origHeight;
private int newWidth;
private int newHeight;
private float scalingFactor;
private int xOffset;
private int yOffset;
private long[] inputShape = null;
static {
nu.pattern.OpenCV.loadLocally();
@ -46,28 +45,32 @@ public class InferenceEngine {
sessionOptions = new OrtSession.SessionOptions();
sessionOptions.addCUDA(0); // 使用 GPU
session = environment.createSession(modelPath, sessionOptions);
Map<String, NodeInfo> inputInfo = session.getInputInfo();
NodeInfo nodeInfo = inputInfo.values().iterator().next();
TensorInfo tensorInfo = (TensorInfo) nodeInfo.getInfo();
inputShape = tensorInfo.getShape(); // 从模型中获取输入形状
logModelInfo(session);
} catch (OrtException e) {
throw new RuntimeException("模型加载失败", e);
}
}
public InferenceResult infer(float[] inputData, int w, int h, Map<String, Object> preprocessParams) {
public InferenceResult infer(Map<Integer, Object> preprocessParams) {
long startTime = System.currentTimeMillis();
//获取对模型需要的输入大小
Map<String, Object> params = (Map<String, Object>) preprocessParams.get(index);
// Map 中获取偏移相关的变量
int origWidth = (int) preprocessParams.get("origWidth");
int origHeight = (int) preprocessParams.get("origHeight");
float scalingFactor = (float) preprocessParams.get("scalingFactor");
int xOffset = (int) preprocessParams.get("xOffset");
int yOffset = (int) preprocessParams.get("yOffset");
float[] inputData = (float[]) params.get("inputData");
int origWidth = (int) params.get("origWidth");
int origHeight = (int) params.get("origHeight");
float scalingFactor = (float) params.get("scalingFactor");
int xOffset = (int) params.get("xOffset");
int yOffset = (int) params.get("yOffset");
try {
Map<String, NodeInfo> inputInfo = session.getInputInfo();
String inputName = inputInfo.keySet().iterator().next(); // 假设只有一个输入
long[] inputShape = {1, 3, h, w}; // 根据模型需求调整形状
// 创建输入张量时使用 CHW 格式的数据
OnnxTensor inputTensor = OnnxTensor.createTensor(environment, FloatBuffer.wrap(inputData), inputShape);
@ -223,188 +226,5 @@ public class InferenceEngine {
}
}
public static void main(String[] args) {
// 加载 OpenCV
// 初始化标签列表只有一个标签
List<String> labels = Arrays.asList("person");
// 创建 InferenceEngine 实例
InferenceEngine inferenceEngine = new InferenceEngine("C:\\Users\\ly\\Desktop\\person.onnx", labels);
for (int j = 0; j < 10; j++) {
try {
// 加载图片
Mat inputImage = Imgcodecs.imread("C:\\Users\\ly\\Desktop\\10230731212230.png");
// 预处理图像
long l1 = System.currentTimeMillis();
Map<String, Object> preprocessResult = inferenceEngine.preprocessImage(inputImage);
float[] inputData = (float[]) preprocessResult.get("inputData");
InferenceResult result = null;
for (int i = 0; i < 10; i++) {
long l = System.currentTimeMillis();
result = inferenceEngine.infer(inputData, 640, 640, preprocessResult);
System.out.println("" + (i + 1) + " 次推理耗时:" + (System.currentTimeMillis() - l) + " ms");
}
// 处理并显示结果
System.out.println("推理结果:");
for (BoundingBox box : result.getBoundingBoxes()) {
System.out.println(box);
}
// 可视化并保存带有边界框的图像
Mat outputImage = inferenceEngine.drawBoundingBoxes(inputImage, result.getBoundingBoxes());
// 保存图片到本地文件
String outputFilePath = "output_image_with_boxes.jpg";
Imgcodecs.imwrite(outputFilePath, outputImage);
System.out.println("已保存结果图片: " + outputFilePath);
} catch (Exception e) {
e.printStackTrace();
}
}
}
// 在图像上绘制边界框和标签
private Mat drawBoundingBoxes(Mat image, List<BoundingBox> boxes) {
for (BoundingBox box : boxes) {
// 绘制矩形边界框
Imgproc.rectangle(image, new Point(box.getX(), box.getY()),
new Point(box.getX() + box.getWidth(), box.getY() + box.getHeight()),
new Scalar(0, 0, 255), 2); // 红色边框
// 绘制标签文字和置信度
String label = box.getLabel() + " " + String.format("%.2f", box.getConfidence());
int baseLine[] = new int[1];
Size labelSize = Imgproc.getTextSize(label, Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine);
int top = Math.max(box.getY(), (int) labelSize.height);
Imgproc.putText(image, label, new Point(box.getX(), top),
Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(255, 255, 255), 1);
}
return image;
}
public Map<String, Object> preprocessImage(Mat image) {
int targetWidth = 640;
int targetHeight = 640;
int origWidth = image.width();
int origHeight = image.height();
// 计算缩放因子
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
// 计算新的图像尺寸
int newWidth = Math.round(origWidth * scalingFactor);
int newHeight = Math.round(origHeight * scalingFactor);
// 计算偏移量以居中图像
int xOffset = (targetWidth - newWidth) / 2;
int yOffset = (targetHeight - newHeight) / 2;
// 调整图像尺寸
Mat resizedImage = new Mat();
Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight), 0, 0, Imgproc.INTER_LINEAR);
// 转换为 RGB 并归一化
Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
// 创建填充后的图像
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
resizedImage.copyTo(paddedImage.submat(roi));
// 将图像数据转换为数组
int imageSize = targetWidth * targetHeight;
float[] chwData = new float[3 * imageSize];
float[] hwcData = new float[3 * imageSize];
paddedImage.get(0, 0, hwcData);
// 转换为 CHW 格式
int channelSize = imageSize;
for (int c = 0; c < 3; c++) {
for (int i = 0; i < imageSize; i++) {
chwData[c * channelSize + i] = hwcData[i * 3 + c];
}
}
// 释放图像资源
resizedImage.release();
paddedImage.release();
// 将预处理结果和偏移信息存入 Map
Map<String, Object> result = new HashMap<>();
result.put("inputData", chwData);
result.put("origWidth", origWidth);
result.put("origHeight", origHeight);
result.put("scalingFactor", scalingFactor);
result.put("xOffset", xOffset);
result.put("yOffset", yOffset);
return result;
}
// 图像预处理
// public float[] preprocessImage(Mat image) {
// int targetWidth = 640;
// int targetHeight = 640;
//
// origWidth = image.width();
// origHeight = image.height();
//
// // 计算缩放因子
// scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
//
// // 计算新的图像尺寸
// newWidth = Math.round(origWidth * scalingFactor);
// newHeight = Math.round(origHeight * scalingFactor);
//
// // 计算偏移量以居中图像
// xOffset = (targetWidth - newWidth) / 2;
// yOffset = (targetHeight - newHeight) / 2;
//
// // 调整图像尺寸
// Mat resizedImage = new Mat();
// Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight), 0, 0, Imgproc.INTER_LINEAR);
//
// // 转换为 RGB 并归一化
// Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
// resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
//
// // 创建填充后的图像
// Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
// Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
// resizedImage.copyTo(paddedImage.submat(roi));
//
// // 将图像数据转换为数组
// int imageSize = targetWidth * targetHeight;
// float[] chwData = new float[3 * imageSize];
// float[] hwcData = new float[3 * imageSize];
// paddedImage.get(0, 0, hwcData);
//
// // 转换为 CHW 格式
// int channelSize = imageSize;
// for (int c = 0; c < 3; c++) {
// for (int i = 0; i < imageSize; i++) {
// chwData[c * channelSize + i] = hwcData[i * 3 + c];
// }
// }
//
// // 释放图像资源
// resizedImage.release();
// paddedImage.release();
//
// return chwData;
// }
}

View File

@ -7,16 +7,45 @@ import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.imgproc.Imgproc;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.util.List;
public class DrawImagesUtils {
public static void drawInferenceResult(BufferedImage bufferedImage, List<InferenceResult> result) {
public static void drawInferenceResult(BufferedImage bufferedImage, List<InferenceResult> inferenceResults) {
Graphics2D g2d = bufferedImage.createGraphics();
g2d.setFont(new Font("Arial", Font.PLAIN, 12));
for (InferenceResult result : inferenceResults) {
for (BoundingBox box : result.getBoundingBoxes()) {
// 绘制矩形
g2d.setColor(Color.RED);
g2d.drawRect(box.getX(), box.getY(), box.getWidth(), box.getHeight());
// 绘制标签
String label = box.getLabel() + " " + String.format("%.2f", box.getConfidence());
FontMetrics metrics = g2d.getFontMetrics();
int labelWidth = metrics.stringWidth(label);
int labelHeight = metrics.getHeight();
// 确保文字不会超出图像
int y = Math.max(box.getY(), labelHeight);
// 绘制文字背景
g2d.setColor(Color.RED);
g2d.fillRect(box.getX(), y - labelHeight, labelWidth, labelHeight);
// 绘制文字
g2d.setColor(Color.WHITE);
g2d.drawString(label, box.getX(), y);
}
}
g2d.dispose(); // 释放资源
}
// Mat 上绘制推理结果
public static void drawInferenceResult(Mat image, List<InferenceResult> inferenceResults) {
for (InferenceResult result : inferenceResults) {

View File

@ -77,30 +77,5 @@ public class ImageUtils {
return image;
}
// Mat 转换为 float 数组适用于推理
public static float[] matToFloatArray(Mat mat) {
// 假设 InferenceEngine 需要 RGB 格式的图像
Mat rgbMat = new Mat();
Imgproc.cvtColor(mat, rgbMat, Imgproc.COLOR_BGR2RGB);
// 假设图像已经被预处理缩放归一化等否则需要在这里添加预处理步骤
// Mat 数据转换为 float 数组
int channels = rgbMat.channels();
int rows = rgbMat.rows();
int cols = rgbMat.cols();
float[] floatData = new float[channels * rows * cols];
byte[] byteData = new byte[channels * rows * cols];
rgbMat.get(0, 0, byteData);
for (int i = 0; i < floatData.length; i++) {
// unsigned byte 转换为 float [0,1]
floatData[i] = (byteData[i] & 0xFF) / 255.0f;
}
rgbMat.release();
return floatData;
}
}

View File

@ -5,22 +5,17 @@ import com.ly.model_load.ModelManager;
import com.ly.onnx.engine.InferenceEngine;
import com.ly.onnx.model.InferenceResult;
import com.ly.onnx.utils.DrawImagesUtils;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.core.Size;
import org.opencv.core.*;
import org.opencv.imgproc.Imgproc;
import org.opencv.videoio.VideoCapture;
import org.opencv.videoio.Videoio;
import javax.swing.*;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.*;
import java.util.*;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit;
import static com.ly.onnx.utils.ImageUtils.matToBufferedImage;
@ -44,6 +39,7 @@ public class VideoPlayer {
private long videoDuration = 0; // 毫秒
private long currentTimestamp = 0; // 毫秒
private ModelManager modelManager;
private List<InferenceEngine> inferenceEngines = new ArrayList<>();
@ -72,8 +68,8 @@ public class VideoPlayer {
if (!videoCapture.isOpened()) {
throw new Exception("无法打开视频文件:" + videoFilePathOrStreamUrl);
}
double frameCount = videoCapture.get(org.opencv.videoio.Videoio.CAP_PROP_FRAME_COUNT);
double fps = videoCapture.get(org.opencv.videoio.Videoio.CAP_PROP_FPS);
double frameCount = videoCapture.get(Videoio.CAP_PROP_FRAME_COUNT);
double fps = videoCapture.get(Videoio.CAP_PROP_FPS);
if (fps <= 0 || Double.isNaN(fps)) {
fps = 25; // 默认帧率
}
@ -91,7 +87,7 @@ public class VideoPlayer {
}
// 重置到视频开始位置
videoCapture.set(org.opencv.videoio.Videoio.CAP_PROP_POS_FRAMES, 0);
videoCapture.set(Videoio.CAP_PROP_POS_FRAMES, 0);
currentTimestamp = 0;
}
@ -117,12 +113,11 @@ public class VideoPlayer {
// 创建并启动帧读取和转换线程
frameReadingThread = new Thread(() -> {
try {
double fps = videoCapture.get(org.opencv.videoio.Videoio.CAP_PROP_FPS);
double fps = videoCapture.get(Videoio.CAP_PROP_FPS);
if (fps <= 0 || Double.isNaN(fps)) {
fps = 25; // 默认帧率
}
long frameDelay = (long) (1000 / fps);
while (isPlaying) {
if (Thread.currentThread().isInterrupted()) {
break;
@ -131,27 +126,19 @@ public class VideoPlayer {
Thread.sleep(10);
continue;
}
Mat frame = new Mat();
if (!videoCapture.read(frame) || frame.empty()) {
isPlaying = false;
break;
}
long startTime = System.currentTimeMillis();
BufferedImage bufferedImage = matToBufferedImage(frame);
if (bufferedImage != null) {
float[] floats = preprocessAndConvertBufferedImage(bufferedImage);
// 创建 FrameData 对象并放入队列
FrameData frameData = new FrameData(bufferedImage, floats);
frameDataQueue.put(frameData); // 阻塞如果队列已满
}
Map<Integer, Object> stringObjectMap = preprocessImage(frame);
// 创建 FrameData 对象并放入队列
FrameData frameData = new FrameData(bufferedImage, stringObjectMap);
frameDataQueue.put(frameData); // 阻塞如果队列已满
// 控制帧率
currentTimestamp = (long) videoCapture.get(org.opencv.videoio.Videoio.CAP_PROP_POS_MSEC);
currentTimestamp = (long) videoCapture.get(Videoio.CAP_PROP_POS_MSEC);
// 控制播放速度
long processingTime = System.currentTimeMillis() - startTime;
long sleepTime = frameDelay - processingTime;
@ -184,17 +171,16 @@ public class VideoPlayer {
}
BufferedImage bufferedImage = frameData.image;
float[] floatArray = frameData.floatArray;
Map<Integer, Object> floatObjectMap = frameData.floatObjectMap;
// 执行推理
List<InferenceResult> inferenceResults = new ArrayList<>();
for (InferenceEngine inferenceEngine : inferenceEngines) {
// 假设 InferenceEngine infer 方法接受 float 数组
// inferenceResults.add(inferenceEngine.infer(floatArray, 640, 640));
inferenceResults.add(inferenceEngine.infer(floatObjectMap));
}
// 绘制推理结果
DrawImagesUtils.drawInferenceResult(bufferedImage, inferenceResults);
// 更新绘制后图像
videoPanel.updateImage(bufferedImage);
}
@ -202,7 +188,6 @@ public class VideoPlayer {
ex.printStackTrace();
}
});
frameReadingThread.start();
inferenceThread.start();
}
@ -215,29 +200,6 @@ public class VideoPlayer {
isPaused = true;
}
// 重播视频
public void replayVideo() {
try {
stopVideo(); // 停止当前播放
if (videoCapture != null) {
videoCapture.set(org.opencv.videoio.Videoio.CAP_PROP_POS_FRAMES, 0);
currentTimestamp = 0;
// 显示第一帧
Mat frame = new Mat();
if (videoCapture.read(frame)) {
BufferedImage bufferedImage = matToBufferedImage(frame);
videoPanel.updateImage(bufferedImage);
}
playVideo(); // 开始播放
}
} catch (Exception e) {
e.printStackTrace();
JOptionPane.showMessageDialog(null, "重播失败: " + e.getMessage(), "错误", JOptionPane.ERROR_MESSAGE);
}
}
// 停止视频
public void stopVideo() {
isPlaying = false;
@ -259,41 +221,6 @@ public class VideoPlayer {
frameDataQueue.clear();
}
// 快进或后退
public void seekTo(long seekTime) {
if (videoCapture == null) return;
try {
isPaused = false; // 取消暂停
stopVideo(); // 停止当前播放
videoCapture.set(org.opencv.videoio.Videoio.CAP_PROP_POS_MSEC, seekTime);
currentTimestamp = seekTime;
Mat frame = new Mat();
if (videoCapture.read(frame)) {
BufferedImage bufferedImage = matToBufferedImage(frame);
videoPanel.updateImage(bufferedImage);
}
// 重新开始播放
playVideo();
} catch (Exception ex) {
ex.printStackTrace();
}
}
// 快进
public void fastForward(long milliseconds) {
long newTime = Math.min(currentTimestamp + milliseconds, videoDuration);
seekTo(newTime);
}
// 后退
public void rewind(long milliseconds) {
long newTime = Math.max(currentTimestamp - milliseconds, 0);
seekTo(newTime);
}
public void addInferenceEngines(InferenceEngine inferenceEngine) {
this.inferenceEngines.add(inferenceEngine);
}
@ -301,127 +228,111 @@ public class VideoPlayer {
// 定义一个内部类来存储帧数据
private static class FrameData {
public BufferedImage image;
public float[] floatArray;
public FrameData(BufferedImage image, float[] floatArray) {
public Map<Integer, Object> floatObjectMap;
public FrameData(BufferedImage image, Map<Integer, Object> floatObjectMap) {
this.image = image;
this.floatArray = floatArray;
this.floatObjectMap = floatObjectMap;
}
}
// BufferedImage 预处理并转换为一维 float[] 数组
public static float[] preprocessAndConvertBufferedImage(BufferedImage image) {
int targetWidth = 640;
int targetHeight = 640;
// BufferedImage 转换为 Mat
Mat matImage = bufferedImageToMat(image);
// 原始图像尺寸
int origWidth = matImage.width();
int origHeight = matImage.height();
// 计算缩放因子
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
// 计算新的图像尺寸
int newWidth = Math.round(origWidth * scalingFactor);
int newHeight = Math.round(origHeight * scalingFactor);
// 调整图像尺寸
Mat resizedImage = new Mat();
Imgproc.resize(matImage, resizedImage, new Size(newWidth, newHeight));
// 转换为 RGB
Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
// 创建目标图像并将调整后的图像填充到目标图像中
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
int xOffset = (targetWidth - newWidth) / 2;
int yOffset = (targetHeight - newHeight) / 2;
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
resizedImage.copyTo(paddedImage.submat(roi));
// 将图像数据转换为输入所需的浮点数组
int imageSize = targetWidth * targetHeight;
float[] inputData = new float[3 * imageSize];
paddedImage.reshape(1, imageSize * 3).get(0, 0, inputData);
// 释放资源
matImage.release();
resizedImage.release();
paddedImage.release();
return inputData;
}
// 辅助方法 BufferedImage 转换为 OpenCV Mat 格式
public static Mat bufferedImageToMat(BufferedImage bi) {
int width = bi.getWidth();
int height = bi.getHeight();
Mat mat = new Mat(height, width, CvType.CV_8UC3);
byte[] data = ((DataBufferByte) bi.getRaster().getDataBuffer()).getData();
mat.put(0, 0, data);
return mat;
}
// 可选的预处理方法
public Map<String, Object> preprocessImage(Mat image) {
int targetWidth = 640;
int targetHeight = 640;
public Map<Integer, Object> preprocessImage(Mat image) {
int origWidth = image.width();
int origHeight = image.height();
Map<Integer, Object> dynamicInput = new HashMap<>();
//定义索引
int index = 0;
for (InferenceEngine inferenceEngine : this.inferenceEngines) {
inferenceEngine.setIndex(index);
long[] inputShape = inferenceEngine.getInputShape();
int targetWidth = (int) inputShape[2];
int targetHeight = (int) inputShape[3];
// 计算缩放因子
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
// 计算缩放因子
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
// 计算新的图像尺寸
int newWidth = Math.round(origWidth * scalingFactor);
int newHeight = Math.round(origHeight * scalingFactor);
// 调整图像尺寸
Mat resizedImage = new Mat();
Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight));
// 转换为 RGB 并归一化
Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
// 创建填充后的图像
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
int xOffset = (targetWidth - newWidth) / 2;
int yOffset = (targetHeight - newHeight) / 2;
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
resizedImage.copyTo(paddedImage.submat(roi));
// 将图像数据转换为数组
int imageSize = targetWidth * targetHeight;
float[] chwData = new float[3 * imageSize];
float[] hwcData = new float[3 * imageSize];
paddedImage.get(0, 0, hwcData);
// 转换为 CHW 格式
int channelSize = imageSize;
for (int c = 0; c < 3; c++) {
for (int i = 0; i < imageSize; i++) {
chwData[c * channelSize + i] = hwcData[i * 3 + c];
//检查是否存在输入大小一致的 如果存在则跳过
if (!dynamicInput.isEmpty()) {
for (Map.Entry<Integer, Object> entry : dynamicInput.entrySet()) {
Map<String, Object> input = (Map<String, Object>) entry.getValue();
if (inputShape[2] == (long) input.get("targetHeight") || inputShape[3] == (long) input.get("targetWidth")) {
break;
}
}
}
// 计算新的图像尺寸
int newWidth = Math.round(origWidth * scalingFactor);
int newHeight = Math.round(origHeight * scalingFactor);
// 调整图像尺寸
Mat resizedImage = new Mat();
Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight), 0, 0, Imgproc.INTER_AREA);
// 获取图像的尺寸
int rows = resizedImage.rows();
int cols = resizedImage.cols();
// 准备存储浮点型数据的数组
float[] floatData = new float[rows * cols * 3];
// 获取原始字节数据
byte[] pixelData = new byte[rows * cols * 3];
resizedImage.get(0, 0, pixelData);
// 手动处理像素数据
for (int i = 0; i < rows * cols; i++) {
int byteIndex = i * 3;
int floatIndex = i * 3;
// 读取 BGR 值并转换为 0.0 - 1.0 之间的浮点数
float b = (pixelData[byteIndex] & 0xFF) / 255.0f;
float g = (pixelData[byteIndex + 1] & 0xFF) / 255.0f;
float r = (pixelData[byteIndex + 2] & 0xFF) / 255.0f;
// BGR 转换为 RGB并存储到浮点数组中
floatData[floatIndex] = r;
floatData[floatIndex + 1] = g;
floatData[floatIndex + 2] = b;
}
// 将浮点数组转换回 Mat 对象
Mat floatImage = new Mat(rows, cols, CvType.CV_32FC3);
floatImage.put(0, 0, floatData);
resizedImage = floatImage;
// 创建填充后的图像
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
int xOffset = (targetWidth - newWidth) / 2;
int yOffset = (targetHeight - newHeight) / 2;
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
resizedImage.copyTo(paddedImage.submat(roi));
// 将图像数据转换为数组
int imageSize = targetWidth * targetHeight;
float[] chwData = new float[3 * imageSize];
float[] hwcData = new float[3 * imageSize];
paddedImage.get(0, 0, hwcData);
// 转换为 CHW 格式
int channelSize = imageSize;
for (int c = 0; c < 3; c++) {
for (int i = 0; i < imageSize; i++) {
chwData[c * channelSize + i] = hwcData[i * 3 + c];
}
}
// 释放图像资源
resizedImage.release();
paddedImage.release();
// 将预处理结果和偏移信息存入 Map
Map<String, Object> result = new HashMap<>();
result.put("inputData", chwData);
result.put("origWidth", origWidth);
result.put("origHeight", origHeight);
result.put("scalingFactor", scalingFactor);
result.put("xOffset", xOffset);
result.put("yOffset", yOffset);
dynamicInput.put(index, result);
index++;
}
// 释放图像资源
resizedImage.release();
paddedImage.release();
// 将预处理结果和偏移信息存入 Map
Map<String, Object> result = new HashMap<>();
result.put("inputData", chwData);
result.put("origWidth", origWidth);
result.put("origHeight", origHeight);
result.put("scalingFactor", scalingFactor);
result.put("xOffset", xOffset);
result.put("yOffset", yOffset);
return result;
return dynamicInput;
}
}