update
This commit is contained in:
parent
02a3922c7b
commit
23cd0a7b21
|
@ -25,10 +25,11 @@ public class VideoInferenceApp extends JFrame {
|
|||
private VideoPlayer videoPlayer;
|
||||
private ModelManager modelManager;
|
||||
|
||||
|
||||
|
||||
public VideoInferenceApp() {
|
||||
// 设置窗口标题
|
||||
super("Video Inference Player");
|
||||
|
||||
super("https://gitee.com/sulv0302/onnx-inference4j-play.git");
|
||||
// 初始化UI组件
|
||||
initializeUI();
|
||||
}
|
||||
|
|
|
@ -0,0 +1,410 @@
|
|||
package com.ly.lishi;
|
||||
|
||||
import ai.onnxruntime.*;
|
||||
import com.alibaba.fastjson.JSON;
|
||||
import com.ly.onnx.model.BoundingBox;
|
||||
import com.ly.onnx.model.InferenceResult;
|
||||
import lombok.Data;
|
||||
import org.opencv.core.*;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
import java.nio.FloatBuffer;
|
||||
import java.util.*;
|
||||
|
||||
@Data
|
||||
public class InferenceEngine {
|
||||
|
||||
private OrtEnvironment environment;
|
||||
private OrtSession.SessionOptions sessionOptions;
|
||||
private OrtSession session;
|
||||
|
||||
private String modelPath;
|
||||
private List<String> labels;
|
||||
|
||||
// 用于存储图像预处理信息的类变量
|
||||
private long[] inputShape = null;
|
||||
|
||||
static {
|
||||
nu.pattern.OpenCV.loadLocally();
|
||||
}
|
||||
|
||||
public InferenceEngine(String modelPath, List<String> labels) {
|
||||
this.modelPath = modelPath;
|
||||
this.labels = labels;
|
||||
init();
|
||||
}
|
||||
|
||||
public void init() {
|
||||
try {
|
||||
environment = OrtEnvironment.getEnvironment();
|
||||
sessionOptions = new OrtSession.SessionOptions();
|
||||
sessionOptions.addCUDA(0); // 使用 GPU
|
||||
session = environment.createSession(modelPath, sessionOptions);
|
||||
Map<String, NodeInfo> inputInfo = session.getInputInfo();
|
||||
NodeInfo nodeInfo = inputInfo.values().iterator().next();
|
||||
TensorInfo tensorInfo = (TensorInfo) nodeInfo.getInfo();
|
||||
inputShape = tensorInfo.getShape(); // 从模型中获取输入形状
|
||||
logModelInfo(session);
|
||||
} catch (OrtException e) {
|
||||
throw new RuntimeException("模型加载失败", e);
|
||||
}
|
||||
}
|
||||
|
||||
public InferenceResult infer(int w, int h, Map<String, Object> preprocessParams) {
|
||||
long startTime = System.currentTimeMillis();
|
||||
|
||||
// 从 Map 中获取偏移相关的变量
|
||||
float[] inputData = (float[]) preprocessParams.get("inputData");
|
||||
int origWidth = (int) preprocessParams.get("origWidth");
|
||||
int origHeight = (int) preprocessParams.get("origHeight");
|
||||
float scalingFactor = (float) preprocessParams.get("scalingFactor");
|
||||
int xOffset = (int) preprocessParams.get("xOffset");
|
||||
int yOffset = (int) preprocessParams.get("yOffset");
|
||||
|
||||
try {
|
||||
Map<String, NodeInfo> inputInfo = session.getInputInfo();
|
||||
String inputName = inputInfo.keySet().iterator().next(); // 假设只有一个输入
|
||||
|
||||
long[] inputShape = {1, 3, h, w}; // 根据模型需求调整形状
|
||||
|
||||
// 创建输入张量时,使用 CHW 格式的数据
|
||||
OnnxTensor inputTensor = OnnxTensor.createTensor(environment, FloatBuffer.wrap(inputData), inputShape);
|
||||
|
||||
// 执行推理
|
||||
long inferenceStart = System.currentTimeMillis();
|
||||
OrtSession.Result result = session.run(Collections.singletonMap(inputName, inputTensor));
|
||||
long inferenceEnd = System.currentTimeMillis();
|
||||
System.out.println("模型推理耗时:" + (inferenceEnd - inferenceStart) + " ms");
|
||||
|
||||
// 解析推理结果
|
||||
String outputName = session.getOutputInfo().keySet().iterator().next(); // 假设只有一个输出
|
||||
float[][][] outputData = (float[][][]) result.get(outputName).get().getValue(); // 输出形状:[1, N, 6]
|
||||
|
||||
// 设定置信度阈值
|
||||
float confidenceThreshold = 0.25f; // 您可以根据需要调整
|
||||
|
||||
// 根据模型的输出结果解析边界框
|
||||
List<BoundingBox> boxes = new ArrayList<>();
|
||||
for (float[] data : outputData[0]) { // 遍历所有检测框
|
||||
// 根据模型输出格式,解析中心坐标和宽高
|
||||
float x_center = data[0];
|
||||
float y_center = data[1];
|
||||
float width = data[2];
|
||||
float height = data[3];
|
||||
float confidence = data[4];
|
||||
|
||||
if (confidence >= confidenceThreshold) {
|
||||
// 将中心坐标转换为左上角和右下角坐标
|
||||
float x1 = x_center - width / 2;
|
||||
float y1 = y_center - height / 2;
|
||||
float x2 = x_center + width / 2;
|
||||
float y2 = y_center + height / 2;
|
||||
|
||||
// 调整坐标,减去偏移并除以缩放因子
|
||||
float x1Adjusted = (x1 - xOffset) / scalingFactor;
|
||||
float y1Adjusted = (y1 - yOffset) / scalingFactor;
|
||||
float x2Adjusted = (x2 - xOffset) / scalingFactor;
|
||||
float y2Adjusted = (y2 - yOffset) / scalingFactor;
|
||||
|
||||
// 确保坐标的正确顺序
|
||||
float xMinAdjusted = Math.min(x1Adjusted, x2Adjusted);
|
||||
float xMaxAdjusted = Math.max(x1Adjusted, x2Adjusted);
|
||||
float yMinAdjusted = Math.min(y1Adjusted, y2Adjusted);
|
||||
float yMaxAdjusted = Math.max(y1Adjusted, y2Adjusted);
|
||||
|
||||
// 确保坐标在原始图像范围内
|
||||
int x = (int) Math.max(0, xMinAdjusted);
|
||||
int y = (int) Math.max(0, yMinAdjusted);
|
||||
int xMax = (int) Math.min(origWidth, xMaxAdjusted);
|
||||
int yMax = (int) Math.min(origHeight, yMaxAdjusted);
|
||||
int wBox = xMax - x;
|
||||
int hBox = yMax - y;
|
||||
|
||||
// 仅当宽度和高度为正时,才添加边界框
|
||||
if (wBox > 0 && hBox > 0) {
|
||||
// 使用您的单一标签
|
||||
String label = labels.get(0);
|
||||
|
||||
boxes.add(new BoundingBox(x, y, wBox, hBox, label, confidence));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 非极大值抑制(NMS)
|
||||
long nmsStart = System.currentTimeMillis();
|
||||
List<BoundingBox> nmsBoxes = nonMaximumSuppression(boxes, 0.5f);
|
||||
|
||||
System.out.println("检测到的标签:" + JSON.toJSONString(nmsBoxes));
|
||||
if (!nmsBoxes.isEmpty()) {
|
||||
for (BoundingBox box : nmsBoxes) {
|
||||
System.out.println(box);
|
||||
}
|
||||
}
|
||||
long nmsEnd = System.currentTimeMillis();
|
||||
System.out.println("NMS 耗时:" + (nmsEnd - nmsStart) + " ms");
|
||||
|
||||
// 封装结果并返回
|
||||
InferenceResult inferenceResult = new InferenceResult();
|
||||
inferenceResult.setBoundingBoxes(nmsBoxes);
|
||||
|
||||
long endTime = System.currentTimeMillis();
|
||||
System.out.println("一次推理总耗时:" + (endTime - startTime) + " ms");
|
||||
|
||||
return inferenceResult;
|
||||
|
||||
} catch (OrtException e) {
|
||||
throw new RuntimeException("推理失败", e);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// 计算两个边界框的 IoU
|
||||
private float computeIoU(BoundingBox box1, BoundingBox box2) {
|
||||
int x1 = Math.max(box1.getX(), box2.getX());
|
||||
int y1 = Math.max(box1.getY(), box2.getY());
|
||||
int x2 = Math.min(box1.getX() + box1.getWidth(), box2.getX() + box2.getWidth());
|
||||
int y2 = Math.min(box1.getY() + box1.getHeight(), box2.getY() + box2.getHeight());
|
||||
|
||||
int intersectionArea = Math.max(0, x2 - x1) * Math.max(0, y2 - y1);
|
||||
int box1Area = box1.getWidth() * box1.getHeight();
|
||||
int box2Area = box2.getWidth() * box2.getHeight();
|
||||
|
||||
return (float) intersectionArea / (box1Area + box2Area - intersectionArea);
|
||||
}
|
||||
|
||||
// 非极大值抑制(NMS)方法
|
||||
private List<BoundingBox> nonMaximumSuppression(List<BoundingBox> boxes, float iouThreshold) {
|
||||
// 按置信度排序(从高到低)
|
||||
boxes.sort((a, b) -> Float.compare(b.getConfidence(), a.getConfidence()));
|
||||
|
||||
List<BoundingBox> result = new ArrayList<>();
|
||||
|
||||
while (!boxes.isEmpty()) {
|
||||
BoundingBox bestBox = boxes.remove(0);
|
||||
result.add(bestBox);
|
||||
|
||||
Iterator<BoundingBox> iterator = boxes.iterator();
|
||||
while (iterator.hasNext()) {
|
||||
BoundingBox box = iterator.next();
|
||||
if (computeIoU(bestBox, box) > iouThreshold) {
|
||||
iterator.remove();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// 打印模型信息
|
||||
private void logModelInfo(OrtSession session) {
|
||||
System.out.println("模型输入信息:");
|
||||
try {
|
||||
for (Map.Entry<String, NodeInfo> entry : session.getInputInfo().entrySet()) {
|
||||
String name = entry.getKey();
|
||||
NodeInfo info = entry.getValue();
|
||||
System.out.println("输入名称: " + name);
|
||||
System.out.println("输入信息: " + info.toString());
|
||||
}
|
||||
} catch (OrtException e) {
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
|
||||
System.out.println("模型输出信息:");
|
||||
try {
|
||||
for (Map.Entry<String, NodeInfo> entry : session.getOutputInfo().entrySet()) {
|
||||
String name = entry.getKey();
|
||||
NodeInfo info = entry.getValue();
|
||||
System.out.println("输出名称: " + name);
|
||||
System.out.println("输出信息: " + info.toString());
|
||||
}
|
||||
} catch (OrtException e) {
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// 加载 OpenCV 库
|
||||
|
||||
// 初始化标签列表(只有一个标签)
|
||||
List<String> labels = Arrays.asList("person");
|
||||
|
||||
// 创建 InferenceEngine 实例
|
||||
InferenceEngine inferenceEngine = new InferenceEngine("C:\\Users\\ly\\Desktop\\person.onnx", labels);
|
||||
|
||||
for (int j = 0; j < 10; j++) {
|
||||
try {
|
||||
// 加载图片
|
||||
Mat inputImage = Imgcodecs.imread("C:\\Users\\ly\\Desktop\\10230731212230.png");
|
||||
|
||||
// 预处理图像
|
||||
long l1 = System.currentTimeMillis();
|
||||
Map<String, Object> preprocessResult = inferenceEngine.preprocessImage(inputImage);
|
||||
float[] inputData = (float[]) preprocessResult.get("inputData");
|
||||
|
||||
InferenceResult result = null;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
long l = System.currentTimeMillis();
|
||||
result = inferenceEngine.infer( 640, 640, preprocessResult);
|
||||
System.out.println("第 " + (i + 1) + " 次推理耗时:" + (System.currentTimeMillis() - l) + " ms");
|
||||
}
|
||||
|
||||
|
||||
// 处理并显示结果
|
||||
System.out.println("推理结果:");
|
||||
for (BoundingBox box : result.getBoundingBoxes()) {
|
||||
System.out.println(box);
|
||||
}
|
||||
|
||||
// 可视化并保存带有边界框的图像
|
||||
Mat outputImage = inferenceEngine.drawBoundingBoxes(inputImage, result.getBoundingBoxes());
|
||||
|
||||
// 保存图片到本地文件
|
||||
String outputFilePath = "output_image_with_boxes.jpg";
|
||||
Imgcodecs.imwrite(outputFilePath, outputImage);
|
||||
|
||||
System.out.println("已保存结果图片: " + outputFilePath);
|
||||
|
||||
} catch (Exception e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 在图像上绘制边界框和标签
|
||||
private Mat drawBoundingBoxes(Mat image, List<BoundingBox> boxes) {
|
||||
for (BoundingBox box : boxes) {
|
||||
// 绘制矩形边界框
|
||||
Imgproc.rectangle(image, new Point(box.getX(), box.getY()),
|
||||
new Point(box.getX() + box.getWidth(), box.getY() + box.getHeight()),
|
||||
new Scalar(0, 0, 255), 2); // 红色边框
|
||||
|
||||
// 绘制标签文字和置信度
|
||||
String label = box.getLabel() + " " + String.format("%.2f", box.getConfidence());
|
||||
int baseLine[] = new int[1];
|
||||
Size labelSize = Imgproc.getTextSize(label, Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine);
|
||||
int top = Math.max(box.getY(), (int) labelSize.height);
|
||||
Imgproc.putText(image, label, new Point(box.getX(), top),
|
||||
Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(255, 255, 255), 1);
|
||||
}
|
||||
|
||||
return image;
|
||||
}
|
||||
|
||||
|
||||
public Map<String, Object> preprocessImage(Mat image) {
|
||||
int targetWidth = 640;
|
||||
int targetHeight = 640;
|
||||
|
||||
int origWidth = image.width();
|
||||
int origHeight = image.height();
|
||||
|
||||
// 计算缩放因子
|
||||
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
|
||||
|
||||
// 计算新的图像尺寸
|
||||
int newWidth = Math.round(origWidth * scalingFactor);
|
||||
int newHeight = Math.round(origHeight * scalingFactor);
|
||||
|
||||
// 计算偏移量以居中图像
|
||||
int xOffset = (targetWidth - newWidth) / 2;
|
||||
int yOffset = (targetHeight - newHeight) / 2;
|
||||
|
||||
// 调整图像尺寸
|
||||
Mat resizedImage = new Mat();
|
||||
Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight), 0, 0, Imgproc.INTER_LINEAR);
|
||||
|
||||
// 转换为 RGB 并归一化
|
||||
Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
|
||||
resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
|
||||
|
||||
// 创建填充后的图像
|
||||
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
|
||||
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
|
||||
resizedImage.copyTo(paddedImage.submat(roi));
|
||||
|
||||
// 将图像数据转换为数组
|
||||
int imageSize = targetWidth * targetHeight;
|
||||
float[] chwData = new float[3 * imageSize];
|
||||
float[] hwcData = new float[3 * imageSize];
|
||||
paddedImage.get(0, 0, hwcData);
|
||||
|
||||
// 转换为 CHW 格式
|
||||
int channelSize = imageSize;
|
||||
for (int c = 0; c < 3; c++) {
|
||||
for (int i = 0; i < imageSize; i++) {
|
||||
chwData[c * channelSize + i] = hwcData[i * 3 + c];
|
||||
}
|
||||
}
|
||||
|
||||
// 释放图像资源
|
||||
resizedImage.release();
|
||||
paddedImage.release();
|
||||
|
||||
// 将预处理结果和偏移信息存入 Map
|
||||
Map<String, Object> result = new HashMap<>();
|
||||
result.put("inputData", chwData);
|
||||
result.put("origWidth", origWidth);
|
||||
result.put("origHeight", origHeight);
|
||||
result.put("scalingFactor", scalingFactor);
|
||||
result.put("xOffset", xOffset);
|
||||
result.put("yOffset", yOffset);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
// 图像预处理
|
||||
// public float[] preprocessImage(Mat image) {
|
||||
// int targetWidth = 640;
|
||||
// int targetHeight = 640;
|
||||
//
|
||||
// origWidth = image.width();
|
||||
// origHeight = image.height();
|
||||
//
|
||||
// // 计算缩放因子
|
||||
// scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
|
||||
//
|
||||
// // 计算新的图像尺寸
|
||||
// newWidth = Math.round(origWidth * scalingFactor);
|
||||
// newHeight = Math.round(origHeight * scalingFactor);
|
||||
//
|
||||
// // 计算偏移量以居中图像
|
||||
// xOffset = (targetWidth - newWidth) / 2;
|
||||
// yOffset = (targetHeight - newHeight) / 2;
|
||||
//
|
||||
// // 调整图像尺寸
|
||||
// Mat resizedImage = new Mat();
|
||||
// Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight), 0, 0, Imgproc.INTER_LINEAR);
|
||||
//
|
||||
// // 转换为 RGB 并归一化
|
||||
// Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
|
||||
// resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
|
||||
//
|
||||
// // 创建填充后的图像
|
||||
// Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
|
||||
// Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
|
||||
// resizedImage.copyTo(paddedImage.submat(roi));
|
||||
//
|
||||
// // 将图像数据转换为数组
|
||||
// int imageSize = targetWidth * targetHeight;
|
||||
// float[] chwData = new float[3 * imageSize];
|
||||
// float[] hwcData = new float[3 * imageSize];
|
||||
// paddedImage.get(0, 0, hwcData);
|
||||
//
|
||||
// // 转换为 CHW 格式
|
||||
// int channelSize = imageSize;
|
||||
// for (int c = 0; c < 3; c++) {
|
||||
// for (int i = 0; i < imageSize; i++) {
|
||||
// chwData[c * channelSize + i] = hwcData[i * 3 + c];
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // 释放图像资源
|
||||
// resizedImage.release();
|
||||
// paddedImage.release();
|
||||
//
|
||||
// return chwData;
|
||||
// }
|
||||
|
||||
}
|
|
@ -0,0 +1,378 @@
|
|||
package com.ly.lishi;
|
||||
|
||||
import com.ly.layout.VideoPanel;
|
||||
import com.ly.model_load.ModelManager;
|
||||
import com.ly.onnx.engine.InferenceEngine;
|
||||
import com.ly.onnx.model.InferenceResult;
|
||||
import com.ly.onnx.utils.DrawImagesUtils;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.Rect;
|
||||
import org.opencv.core.Size;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
import org.opencv.videoio.VideoCapture;
|
||||
import org.opencv.videoio.Videoio;
|
||||
|
||||
import javax.swing.*;
|
||||
import java.awt.image.BufferedImage;
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.concurrent.BlockingQueue;
|
||||
import java.util.concurrent.LinkedBlockingQueue;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
|
||||
import static com.ly.onnx.utils.ImageUtils.matToBufferedImage;
|
||||
|
||||
public class VideoPlayer {
|
||||
static {
|
||||
// 加载 OpenCV 库
|
||||
nu.pattern.OpenCV.loadLocally();
|
||||
String OS = System.getProperty("os.name").toLowerCase();
|
||||
if (OS.contains("win")) {
|
||||
System.load(ClassLoader.getSystemResource("lib/win/opencv_videoio_ffmpeg470_64.dll").getPath());
|
||||
}
|
||||
}
|
||||
|
||||
private VideoCapture videoCapture;
|
||||
private volatile boolean isPlaying = false;
|
||||
private volatile boolean isPaused = false;
|
||||
private Thread frameReadingThread;
|
||||
private Thread inferenceThread;
|
||||
private VideoPanel videoPanel;
|
||||
|
||||
private long videoDuration = 0; // 毫秒
|
||||
private long currentTimestamp = 0; // 毫秒
|
||||
|
||||
|
||||
|
||||
private ModelManager modelManager;
|
||||
private List<InferenceEngine> inferenceEngines = new ArrayList<>();
|
||||
|
||||
// 定义阻塞队列来缓冲转换后的数据
|
||||
private BlockingQueue<FrameData> frameDataQueue = new LinkedBlockingQueue<>(10); // 队列容量可根据需要调整
|
||||
|
||||
public VideoPlayer(VideoPanel videoPanel, ModelManager modelManager) {
|
||||
this.videoPanel = videoPanel;
|
||||
this.modelManager = modelManager;
|
||||
}
|
||||
|
||||
// 加载视频或流
|
||||
public void loadVideo(String videoFilePathOrStreamUrl) throws Exception {
|
||||
stopVideo();
|
||||
if (videoFilePathOrStreamUrl.equals("0")) {
|
||||
int cameraIndex = Integer.parseInt(videoFilePathOrStreamUrl);
|
||||
videoCapture = new VideoCapture(cameraIndex);
|
||||
if (!videoCapture.isOpened()) {
|
||||
throw new Exception("无法打开摄像头");
|
||||
}
|
||||
videoDuration = 0; // 摄像头没有固定的时长
|
||||
playVideo();
|
||||
} else {
|
||||
// 输入不是数字,尝试打开视频文件
|
||||
videoCapture = new VideoCapture(videoFilePathOrStreamUrl, Videoio.CAP_FFMPEG);
|
||||
if (!videoCapture.isOpened()) {
|
||||
throw new Exception("无法打开视频文件:" + videoFilePathOrStreamUrl);
|
||||
}
|
||||
double frameCount = videoCapture.get(Videoio.CAP_PROP_FRAME_COUNT);
|
||||
double fps = videoCapture.get(Videoio.CAP_PROP_FPS);
|
||||
if (fps <= 0 || Double.isNaN(fps)) {
|
||||
fps = 25; // 默认帧率
|
||||
}
|
||||
videoDuration = (long) (frameCount / fps * 1000); // 转换为毫秒
|
||||
}
|
||||
|
||||
// 显示第一帧
|
||||
Mat frame = new Mat();
|
||||
if (videoCapture.read(frame)) {
|
||||
BufferedImage bufferedImage = matToBufferedImage(frame);
|
||||
videoPanel.updateImage(bufferedImage);
|
||||
currentTimestamp = 0;
|
||||
} else {
|
||||
throw new Exception("无法读取第一帧");
|
||||
}
|
||||
|
||||
// 重置到视频开始位置
|
||||
videoCapture.set(Videoio.CAP_PROP_POS_FRAMES, 0);
|
||||
currentTimestamp = 0;
|
||||
}
|
||||
|
||||
// 播放
|
||||
public void playVideo() {
|
||||
if (videoCapture == null || !videoCapture.isOpened()) {
|
||||
JOptionPane.showMessageDialog(null, "请先加载视频文件或流。", "提示", JOptionPane.WARNING_MESSAGE);
|
||||
return;
|
||||
}
|
||||
|
||||
if (isPlaying) {
|
||||
if (isPaused) {
|
||||
isPaused = false; // 恢复播放
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
isPlaying = true;
|
||||
isPaused = false;
|
||||
|
||||
frameDataQueue.clear(); // 开始播放前清空队列
|
||||
|
||||
// 创建并启动帧读取和转换线程
|
||||
frameReadingThread = new Thread(() -> {
|
||||
try {
|
||||
double fps = videoCapture.get(Videoio.CAP_PROP_FPS);
|
||||
if (fps <= 0 || Double.isNaN(fps)) {
|
||||
fps = 25; // 默认帧率
|
||||
}
|
||||
long frameDelay = (long) (1000 / fps);
|
||||
|
||||
while (isPlaying) {
|
||||
if (Thread.currentThread().isInterrupted()) {
|
||||
break;
|
||||
}
|
||||
if (isPaused) {
|
||||
Thread.sleep(10);
|
||||
continue;
|
||||
}
|
||||
|
||||
Mat frame = new Mat();
|
||||
if (!videoCapture.read(frame) || frame.empty()) {
|
||||
isPlaying = false;
|
||||
break;
|
||||
}
|
||||
|
||||
long startTime = System.currentTimeMillis();
|
||||
BufferedImage bufferedImage = matToBufferedImage(frame);
|
||||
|
||||
if (bufferedImage != null) {
|
||||
// float[] floats = preprocessAndConvertBufferedImage(bufferedImage);
|
||||
Map<String, Object> stringObjectMap = preprocessImage(frame);
|
||||
// 创建 FrameData 对象并放入队列
|
||||
FrameData frameData = new FrameData(bufferedImage, null,stringObjectMap);
|
||||
frameDataQueue.put(frameData); // 阻塞,如果队列已满
|
||||
}
|
||||
|
||||
// 控制帧率
|
||||
currentTimestamp = (long) videoCapture.get(Videoio.CAP_PROP_POS_MSEC);
|
||||
|
||||
// 控制播放速度
|
||||
long processingTime = System.currentTimeMillis() - startTime;
|
||||
long sleepTime = frameDelay - processingTime;
|
||||
if (sleepTime > 0) {
|
||||
Thread.sleep(sleepTime);
|
||||
}
|
||||
}
|
||||
} catch (Exception ex) {
|
||||
ex.printStackTrace();
|
||||
} finally {
|
||||
isPlaying = false;
|
||||
}
|
||||
});
|
||||
|
||||
// 创建并启动推理线程
|
||||
inferenceThread = new Thread(() -> {
|
||||
try {
|
||||
while (isPlaying || !frameDataQueue.isEmpty()) {
|
||||
if (Thread.currentThread().isInterrupted()) {
|
||||
break;
|
||||
}
|
||||
if (isPaused) {
|
||||
Thread.sleep(100);
|
||||
continue;
|
||||
}
|
||||
|
||||
FrameData frameData = frameDataQueue.poll(100, TimeUnit.MILLISECONDS); // 等待数据
|
||||
if (frameData == null) {
|
||||
continue; // 没有数据,继续检查 isPlaying
|
||||
}
|
||||
|
||||
BufferedImage bufferedImage = frameData.image;
|
||||
Map<String, Object> floatObjectMap = frameData.floatObjectMap;
|
||||
|
||||
// 执行推理
|
||||
List<InferenceResult> inferenceResults = new ArrayList<>();
|
||||
for (InferenceEngine inferenceEngine : inferenceEngines) {
|
||||
// 假设 InferenceEngine 有 infer 方法接受 float 数组
|
||||
// inferenceResults.add(inferenceEngine.infer( 640, 640,floatObjectMap));
|
||||
}
|
||||
// 绘制推理结果
|
||||
DrawImagesUtils.drawInferenceResult(bufferedImage, inferenceResults);
|
||||
|
||||
// 更新绘制后图像
|
||||
videoPanel.updateImage(bufferedImage);
|
||||
}
|
||||
} catch (Exception ex) {
|
||||
ex.printStackTrace();
|
||||
}
|
||||
});
|
||||
|
||||
frameReadingThread.start();
|
||||
inferenceThread.start();
|
||||
}
|
||||
|
||||
// 暂停视频
|
||||
public void pauseVideo() {
|
||||
if (!isPlaying) {
|
||||
return;
|
||||
}
|
||||
isPaused = true;
|
||||
}
|
||||
|
||||
// 重播视频
|
||||
public void replayVideo() {
|
||||
try {
|
||||
stopVideo(); // 停止当前播放
|
||||
if (videoCapture != null) {
|
||||
videoCapture.set(Videoio.CAP_PROP_POS_FRAMES, 0);
|
||||
currentTimestamp = 0;
|
||||
|
||||
// 显示第一帧
|
||||
Mat frame = new Mat();
|
||||
if (videoCapture.read(frame)) {
|
||||
BufferedImage bufferedImage = matToBufferedImage(frame);
|
||||
videoPanel.updateImage(bufferedImage);
|
||||
}
|
||||
|
||||
playVideo(); // 开始播放
|
||||
}
|
||||
} catch (Exception e) {
|
||||
e.printStackTrace();
|
||||
JOptionPane.showMessageDialog(null, "重播失败: " + e.getMessage(), "错误", JOptionPane.ERROR_MESSAGE);
|
||||
}
|
||||
}
|
||||
|
||||
// 停止视频
|
||||
public void stopVideo() {
|
||||
isPlaying = false;
|
||||
isPaused = false;
|
||||
|
||||
if (frameReadingThread != null && frameReadingThread.isAlive()) {
|
||||
frameReadingThread.interrupt();
|
||||
}
|
||||
|
||||
if (inferenceThread != null && inferenceThread.isAlive()) {
|
||||
inferenceThread.interrupt();
|
||||
}
|
||||
|
||||
if (videoCapture != null) {
|
||||
videoCapture.release();
|
||||
videoCapture = null;
|
||||
}
|
||||
|
||||
frameDataQueue.clear();
|
||||
}
|
||||
|
||||
// 快进或后退
|
||||
public void seekTo(long seekTime) {
|
||||
if (videoCapture == null) return;
|
||||
try {
|
||||
isPaused = false; // 取消暂停
|
||||
stopVideo(); // 停止当前播放
|
||||
videoCapture.set(Videoio.CAP_PROP_POS_MSEC, seekTime);
|
||||
currentTimestamp = seekTime;
|
||||
|
||||
Mat frame = new Mat();
|
||||
if (videoCapture.read(frame)) {
|
||||
BufferedImage bufferedImage = matToBufferedImage(frame);
|
||||
videoPanel.updateImage(bufferedImage);
|
||||
}
|
||||
|
||||
// 重新开始播放
|
||||
playVideo();
|
||||
|
||||
} catch (Exception ex) {
|
||||
ex.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
// 快进
|
||||
public void fastForward(long milliseconds) {
|
||||
long newTime = Math.min(currentTimestamp + milliseconds, videoDuration);
|
||||
seekTo(newTime);
|
||||
}
|
||||
|
||||
// 后退
|
||||
public void rewind(long milliseconds) {
|
||||
long newTime = Math.max(currentTimestamp - milliseconds, 0);
|
||||
seekTo(newTime);
|
||||
}
|
||||
|
||||
public void addInferenceEngines(InferenceEngine inferenceEngine) {
|
||||
this.inferenceEngines.add(inferenceEngine);
|
||||
}
|
||||
|
||||
// 定义一个内部类来存储帧数据
|
||||
private static class FrameData {
|
||||
public BufferedImage image;
|
||||
public float[] floatArray;
|
||||
public Map<String, Object> floatObjectMap;
|
||||
|
||||
public FrameData(BufferedImage image, float[] floatArray, Map<String, Object> floatObjectMap) {
|
||||
this.image = image;
|
||||
this.floatArray = floatArray;
|
||||
this.floatObjectMap = floatObjectMap;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// 可选的预处理方法
|
||||
public Map<String, Object> preprocessImage(Mat image) {
|
||||
int targetWidth = 640;
|
||||
int targetHeight = 640;
|
||||
|
||||
int origWidth = image.width();
|
||||
int origHeight = image.height();
|
||||
|
||||
// 计算缩放因子
|
||||
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
|
||||
|
||||
// 计算新的图像尺寸
|
||||
int newWidth = Math.round(origWidth * scalingFactor);
|
||||
int newHeight = Math.round(origHeight * scalingFactor);
|
||||
|
||||
// 调整图像尺寸
|
||||
Mat resizedImage = new Mat();
|
||||
Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight));
|
||||
|
||||
// 转换为 RGB 并归一化
|
||||
Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
|
||||
resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
|
||||
|
||||
// 创建填充后的图像
|
||||
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
|
||||
int xOffset = (targetWidth - newWidth) / 2;
|
||||
int yOffset = (targetHeight - newHeight) / 2;
|
||||
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
|
||||
resizedImage.copyTo(paddedImage.submat(roi));
|
||||
|
||||
// 将图像数据转换为数组
|
||||
int imageSize = targetWidth * targetHeight;
|
||||
float[] chwData = new float[3 * imageSize];
|
||||
float[] hwcData = new float[3 * imageSize];
|
||||
paddedImage.get(0, 0, hwcData);
|
||||
|
||||
// 转换为 CHW 格式
|
||||
int channelSize = imageSize;
|
||||
for (int c = 0; c < 3; c++) {
|
||||
for (int i = 0; i < imageSize; i++) {
|
||||
chwData[c * channelSize + i] = hwcData[i * 3 + c];
|
||||
}
|
||||
}
|
||||
|
||||
// 释放图像资源
|
||||
resizedImage.release();
|
||||
paddedImage.release();
|
||||
|
||||
// 将预处理结果和偏移信息存入 Map
|
||||
Map<String, Object> result = new HashMap<>();
|
||||
result.put("inputData", chwData);
|
||||
result.put("origWidth", origWidth);
|
||||
result.put("origHeight", origHeight);
|
||||
result.put("scalingFactor", scalingFactor);
|
||||
result.put("xOffset", xOffset);
|
||||
result.put("yOffset", yOffset);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
|
@ -5,6 +5,7 @@ import com.alibaba.fastjson.JSON;
|
|||
import com.ly.onnx.model.BoundingBox;
|
||||
import com.ly.onnx.model.InferenceResult;
|
||||
|
||||
import lombok.Data;
|
||||
import org.opencv.core.*;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
@ -12,6 +13,7 @@ import org.opencv.imgproc.Imgproc;
|
|||
import java.nio.FloatBuffer;
|
||||
import java.util.*;
|
||||
|
||||
@Data
|
||||
public class InferenceEngine {
|
||||
|
||||
private OrtEnvironment environment;
|
||||
|
@ -21,14 +23,11 @@ public class InferenceEngine {
|
|||
private String modelPath;
|
||||
private List<String> labels;
|
||||
|
||||
//preprocessParams输入数据的索引
|
||||
private int index;
|
||||
|
||||
// 用于存储图像预处理信息的类变量
|
||||
private int origWidth;
|
||||
private int origHeight;
|
||||
private int newWidth;
|
||||
private int newHeight;
|
||||
private float scalingFactor;
|
||||
private int xOffset;
|
||||
private int yOffset;
|
||||
private long[] inputShape = null;
|
||||
|
||||
static {
|
||||
nu.pattern.OpenCV.loadLocally();
|
||||
|
@ -46,28 +45,32 @@ public class InferenceEngine {
|
|||
sessionOptions = new OrtSession.SessionOptions();
|
||||
sessionOptions.addCUDA(0); // 使用 GPU
|
||||
session = environment.createSession(modelPath, sessionOptions);
|
||||
Map<String, NodeInfo> inputInfo = session.getInputInfo();
|
||||
NodeInfo nodeInfo = inputInfo.values().iterator().next();
|
||||
TensorInfo tensorInfo = (TensorInfo) nodeInfo.getInfo();
|
||||
inputShape = tensorInfo.getShape(); // 从模型中获取输入形状
|
||||
logModelInfo(session);
|
||||
} catch (OrtException e) {
|
||||
throw new RuntimeException("模型加载失败", e);
|
||||
}
|
||||
}
|
||||
|
||||
public InferenceResult infer(float[] inputData, int w, int h, Map<String, Object> preprocessParams) {
|
||||
public InferenceResult infer(Map<Integer, Object> preprocessParams) {
|
||||
long startTime = System.currentTimeMillis();
|
||||
|
||||
//获取对模型需要的输入大小
|
||||
Map<String, Object> params = (Map<String, Object>) preprocessParams.get(index);
|
||||
// 从 Map 中获取偏移相关的变量
|
||||
int origWidth = (int) preprocessParams.get("origWidth");
|
||||
int origHeight = (int) preprocessParams.get("origHeight");
|
||||
float scalingFactor = (float) preprocessParams.get("scalingFactor");
|
||||
int xOffset = (int) preprocessParams.get("xOffset");
|
||||
int yOffset = (int) preprocessParams.get("yOffset");
|
||||
float[] inputData = (float[]) params.get("inputData");
|
||||
int origWidth = (int) params.get("origWidth");
|
||||
int origHeight = (int) params.get("origHeight");
|
||||
float scalingFactor = (float) params.get("scalingFactor");
|
||||
int xOffset = (int) params.get("xOffset");
|
||||
int yOffset = (int) params.get("yOffset");
|
||||
|
||||
try {
|
||||
Map<String, NodeInfo> inputInfo = session.getInputInfo();
|
||||
String inputName = inputInfo.keySet().iterator().next(); // 假设只有一个输入
|
||||
|
||||
long[] inputShape = {1, 3, h, w}; // 根据模型需求调整形状
|
||||
|
||||
// 创建输入张量时,使用 CHW 格式的数据
|
||||
OnnxTensor inputTensor = OnnxTensor.createTensor(environment, FloatBuffer.wrap(inputData), inputShape);
|
||||
|
||||
|
@ -223,188 +226,5 @@ public class InferenceEngine {
|
|||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// 加载 OpenCV 库
|
||||
|
||||
// 初始化标签列表(只有一个标签)
|
||||
List<String> labels = Arrays.asList("person");
|
||||
|
||||
// 创建 InferenceEngine 实例
|
||||
InferenceEngine inferenceEngine = new InferenceEngine("C:\\Users\\ly\\Desktop\\person.onnx", labels);
|
||||
|
||||
for (int j = 0; j < 10; j++) {
|
||||
try {
|
||||
// 加载图片
|
||||
Mat inputImage = Imgcodecs.imread("C:\\Users\\ly\\Desktop\\10230731212230.png");
|
||||
|
||||
// 预处理图像
|
||||
long l1 = System.currentTimeMillis();
|
||||
Map<String, Object> preprocessResult = inferenceEngine.preprocessImage(inputImage);
|
||||
float[] inputData = (float[]) preprocessResult.get("inputData");
|
||||
|
||||
InferenceResult result = null;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
long l = System.currentTimeMillis();
|
||||
result = inferenceEngine.infer(inputData, 640, 640, preprocessResult);
|
||||
System.out.println("第 " + (i + 1) + " 次推理耗时:" + (System.currentTimeMillis() - l) + " ms");
|
||||
}
|
||||
|
||||
|
||||
// 处理并显示结果
|
||||
System.out.println("推理结果:");
|
||||
for (BoundingBox box : result.getBoundingBoxes()) {
|
||||
System.out.println(box);
|
||||
}
|
||||
|
||||
// 可视化并保存带有边界框的图像
|
||||
Mat outputImage = inferenceEngine.drawBoundingBoxes(inputImage, result.getBoundingBoxes());
|
||||
|
||||
// 保存图片到本地文件
|
||||
String outputFilePath = "output_image_with_boxes.jpg";
|
||||
Imgcodecs.imwrite(outputFilePath, outputImage);
|
||||
|
||||
System.out.println("已保存结果图片: " + outputFilePath);
|
||||
|
||||
} catch (Exception e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 在图像上绘制边界框和标签
|
||||
private Mat drawBoundingBoxes(Mat image, List<BoundingBox> boxes) {
|
||||
for (BoundingBox box : boxes) {
|
||||
// 绘制矩形边界框
|
||||
Imgproc.rectangle(image, new Point(box.getX(), box.getY()),
|
||||
new Point(box.getX() + box.getWidth(), box.getY() + box.getHeight()),
|
||||
new Scalar(0, 0, 255), 2); // 红色边框
|
||||
|
||||
// 绘制标签文字和置信度
|
||||
String label = box.getLabel() + " " + String.format("%.2f", box.getConfidence());
|
||||
int baseLine[] = new int[1];
|
||||
Size labelSize = Imgproc.getTextSize(label, Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine);
|
||||
int top = Math.max(box.getY(), (int) labelSize.height);
|
||||
Imgproc.putText(image, label, new Point(box.getX(), top),
|
||||
Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(255, 255, 255), 1);
|
||||
}
|
||||
|
||||
return image;
|
||||
}
|
||||
|
||||
|
||||
public Map<String, Object> preprocessImage(Mat image) {
|
||||
int targetWidth = 640;
|
||||
int targetHeight = 640;
|
||||
|
||||
int origWidth = image.width();
|
||||
int origHeight = image.height();
|
||||
|
||||
// 计算缩放因子
|
||||
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
|
||||
|
||||
// 计算新的图像尺寸
|
||||
int newWidth = Math.round(origWidth * scalingFactor);
|
||||
int newHeight = Math.round(origHeight * scalingFactor);
|
||||
|
||||
// 计算偏移量以居中图像
|
||||
int xOffset = (targetWidth - newWidth) / 2;
|
||||
int yOffset = (targetHeight - newHeight) / 2;
|
||||
|
||||
// 调整图像尺寸
|
||||
Mat resizedImage = new Mat();
|
||||
Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight), 0, 0, Imgproc.INTER_LINEAR);
|
||||
|
||||
// 转换为 RGB 并归一化
|
||||
Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
|
||||
resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
|
||||
|
||||
// 创建填充后的图像
|
||||
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
|
||||
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
|
||||
resizedImage.copyTo(paddedImage.submat(roi));
|
||||
|
||||
// 将图像数据转换为数组
|
||||
int imageSize = targetWidth * targetHeight;
|
||||
float[] chwData = new float[3 * imageSize];
|
||||
float[] hwcData = new float[3 * imageSize];
|
||||
paddedImage.get(0, 0, hwcData);
|
||||
|
||||
// 转换为 CHW 格式
|
||||
int channelSize = imageSize;
|
||||
for (int c = 0; c < 3; c++) {
|
||||
for (int i = 0; i < imageSize; i++) {
|
||||
chwData[c * channelSize + i] = hwcData[i * 3 + c];
|
||||
}
|
||||
}
|
||||
|
||||
// 释放图像资源
|
||||
resizedImage.release();
|
||||
paddedImage.release();
|
||||
|
||||
// 将预处理结果和偏移信息存入 Map
|
||||
Map<String, Object> result = new HashMap<>();
|
||||
result.put("inputData", chwData);
|
||||
result.put("origWidth", origWidth);
|
||||
result.put("origHeight", origHeight);
|
||||
result.put("scalingFactor", scalingFactor);
|
||||
result.put("xOffset", xOffset);
|
||||
result.put("yOffset", yOffset);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
// 图像预处理
|
||||
// public float[] preprocessImage(Mat image) {
|
||||
// int targetWidth = 640;
|
||||
// int targetHeight = 640;
|
||||
//
|
||||
// origWidth = image.width();
|
||||
// origHeight = image.height();
|
||||
//
|
||||
// // 计算缩放因子
|
||||
// scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
|
||||
//
|
||||
// // 计算新的图像尺寸
|
||||
// newWidth = Math.round(origWidth * scalingFactor);
|
||||
// newHeight = Math.round(origHeight * scalingFactor);
|
||||
//
|
||||
// // 计算偏移量以居中图像
|
||||
// xOffset = (targetWidth - newWidth) / 2;
|
||||
// yOffset = (targetHeight - newHeight) / 2;
|
||||
//
|
||||
// // 调整图像尺寸
|
||||
// Mat resizedImage = new Mat();
|
||||
// Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight), 0, 0, Imgproc.INTER_LINEAR);
|
||||
//
|
||||
// // 转换为 RGB 并归一化
|
||||
// Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
|
||||
// resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
|
||||
//
|
||||
// // 创建填充后的图像
|
||||
// Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
|
||||
// Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
|
||||
// resizedImage.copyTo(paddedImage.submat(roi));
|
||||
//
|
||||
// // 将图像数据转换为数组
|
||||
// int imageSize = targetWidth * targetHeight;
|
||||
// float[] chwData = new float[3 * imageSize];
|
||||
// float[] hwcData = new float[3 * imageSize];
|
||||
// paddedImage.get(0, 0, hwcData);
|
||||
//
|
||||
// // 转换为 CHW 格式
|
||||
// int channelSize = imageSize;
|
||||
// for (int c = 0; c < 3; c++) {
|
||||
// for (int i = 0; i < imageSize; i++) {
|
||||
// chwData[c * channelSize + i] = hwcData[i * 3 + c];
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // 释放图像资源
|
||||
// resizedImage.release();
|
||||
// paddedImage.release();
|
||||
//
|
||||
// return chwData;
|
||||
// }
|
||||
|
||||
}
|
||||
|
|
|
@ -7,16 +7,45 @@ import org.opencv.core.Point;
|
|||
import org.opencv.core.Scalar;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
import java.awt.*;
|
||||
import java.awt.image.BufferedImage;
|
||||
import java.util.List;
|
||||
|
||||
public class DrawImagesUtils {
|
||||
|
||||
|
||||
public static void drawInferenceResult(BufferedImage bufferedImage, List<InferenceResult> result) {
|
||||
public static void drawInferenceResult(BufferedImage bufferedImage, List<InferenceResult> inferenceResults) {
|
||||
Graphics2D g2d = bufferedImage.createGraphics();
|
||||
g2d.setFont(new Font("Arial", Font.PLAIN, 12));
|
||||
|
||||
for (InferenceResult result : inferenceResults) {
|
||||
for (BoundingBox box : result.getBoundingBoxes()) {
|
||||
// 绘制矩形
|
||||
g2d.setColor(Color.RED);
|
||||
g2d.drawRect(box.getX(), box.getY(), box.getWidth(), box.getHeight());
|
||||
|
||||
// 绘制标签
|
||||
String label = box.getLabel() + " " + String.format("%.2f", box.getConfidence());
|
||||
FontMetrics metrics = g2d.getFontMetrics();
|
||||
int labelWidth = metrics.stringWidth(label);
|
||||
int labelHeight = metrics.getHeight();
|
||||
|
||||
// 确保文字不会超出图像
|
||||
int y = Math.max(box.getY(), labelHeight);
|
||||
|
||||
// 绘制文字背景
|
||||
g2d.setColor(Color.RED);
|
||||
g2d.fillRect(box.getX(), y - labelHeight, labelWidth, labelHeight);
|
||||
|
||||
// 绘制文字
|
||||
g2d.setColor(Color.WHITE);
|
||||
g2d.drawString(label, box.getX(), y);
|
||||
}
|
||||
}
|
||||
g2d.dispose(); // 释放资源
|
||||
}
|
||||
|
||||
|
||||
// 在 Mat 上绘制推理结果
|
||||
public static void drawInferenceResult(Mat image, List<InferenceResult> inferenceResults) {
|
||||
for (InferenceResult result : inferenceResults) {
|
||||
|
|
|
@ -77,30 +77,5 @@ public class ImageUtils {
|
|||
return image;
|
||||
}
|
||||
|
||||
// 将 Mat 转换为 float 数组,适用于推理
|
||||
public static float[] matToFloatArray(Mat mat) {
|
||||
// 假设 InferenceEngine 需要 RGB 格式的图像
|
||||
Mat rgbMat = new Mat();
|
||||
Imgproc.cvtColor(mat, rgbMat, Imgproc.COLOR_BGR2RGB);
|
||||
|
||||
// 假设图像已经被预处理(缩放、归一化等),否则需要在这里添加预处理步骤
|
||||
|
||||
// 将 Mat 数据转换为 float 数组
|
||||
int channels = rgbMat.channels();
|
||||
int rows = rgbMat.rows();
|
||||
int cols = rgbMat.cols();
|
||||
float[] floatData = new float[channels * rows * cols];
|
||||
byte[] byteData = new byte[channels * rows * cols];
|
||||
rgbMat.get(0, 0, byteData);
|
||||
for (int i = 0; i < floatData.length; i++) {
|
||||
// 将 unsigned byte 转换为 float [0,1]
|
||||
floatData[i] = (byteData[i] & 0xFF) / 255.0f;
|
||||
}
|
||||
rgbMat.release();
|
||||
return floatData;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -5,22 +5,17 @@ import com.ly.model_load.ModelManager;
|
|||
import com.ly.onnx.engine.InferenceEngine;
|
||||
import com.ly.onnx.model.InferenceResult;
|
||||
import com.ly.onnx.utils.DrawImagesUtils;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.Rect;
|
||||
import org.opencv.core.Size;
|
||||
import org.opencv.core.*;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
import org.opencv.videoio.VideoCapture;
|
||||
import org.opencv.videoio.Videoio;
|
||||
|
||||
import javax.swing.*;
|
||||
import java.awt.image.BufferedImage;
|
||||
import java.awt.image.DataBufferByte;
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.concurrent.*;
|
||||
import java.util.*;
|
||||
import java.util.concurrent.BlockingQueue;
|
||||
import java.util.concurrent.LinkedBlockingQueue;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
|
||||
import static com.ly.onnx.utils.ImageUtils.matToBufferedImage;
|
||||
|
||||
|
@ -44,6 +39,7 @@ public class VideoPlayer {
|
|||
private long videoDuration = 0; // 毫秒
|
||||
private long currentTimestamp = 0; // 毫秒
|
||||
|
||||
|
||||
private ModelManager modelManager;
|
||||
private List<InferenceEngine> inferenceEngines = new ArrayList<>();
|
||||
|
||||
|
@ -72,8 +68,8 @@ public class VideoPlayer {
|
|||
if (!videoCapture.isOpened()) {
|
||||
throw new Exception("无法打开视频文件:" + videoFilePathOrStreamUrl);
|
||||
}
|
||||
double frameCount = videoCapture.get(org.opencv.videoio.Videoio.CAP_PROP_FRAME_COUNT);
|
||||
double fps = videoCapture.get(org.opencv.videoio.Videoio.CAP_PROP_FPS);
|
||||
double frameCount = videoCapture.get(Videoio.CAP_PROP_FRAME_COUNT);
|
||||
double fps = videoCapture.get(Videoio.CAP_PROP_FPS);
|
||||
if (fps <= 0 || Double.isNaN(fps)) {
|
||||
fps = 25; // 默认帧率
|
||||
}
|
||||
|
@ -91,7 +87,7 @@ public class VideoPlayer {
|
|||
}
|
||||
|
||||
// 重置到视频开始位置
|
||||
videoCapture.set(org.opencv.videoio.Videoio.CAP_PROP_POS_FRAMES, 0);
|
||||
videoCapture.set(Videoio.CAP_PROP_POS_FRAMES, 0);
|
||||
currentTimestamp = 0;
|
||||
}
|
||||
|
||||
|
@ -117,12 +113,11 @@ public class VideoPlayer {
|
|||
// 创建并启动帧读取和转换线程
|
||||
frameReadingThread = new Thread(() -> {
|
||||
try {
|
||||
double fps = videoCapture.get(org.opencv.videoio.Videoio.CAP_PROP_FPS);
|
||||
double fps = videoCapture.get(Videoio.CAP_PROP_FPS);
|
||||
if (fps <= 0 || Double.isNaN(fps)) {
|
||||
fps = 25; // 默认帧率
|
||||
}
|
||||
long frameDelay = (long) (1000 / fps);
|
||||
|
||||
while (isPlaying) {
|
||||
if (Thread.currentThread().isInterrupted()) {
|
||||
break;
|
||||
|
@ -131,27 +126,19 @@ public class VideoPlayer {
|
|||
Thread.sleep(10);
|
||||
continue;
|
||||
}
|
||||
|
||||
Mat frame = new Mat();
|
||||
if (!videoCapture.read(frame) || frame.empty()) {
|
||||
isPlaying = false;
|
||||
break;
|
||||
}
|
||||
|
||||
long startTime = System.currentTimeMillis();
|
||||
BufferedImage bufferedImage = matToBufferedImage(frame);
|
||||
|
||||
if (bufferedImage != null) {
|
||||
float[] floats = preprocessAndConvertBufferedImage(bufferedImage);
|
||||
|
||||
// 创建 FrameData 对象并放入队列
|
||||
FrameData frameData = new FrameData(bufferedImage, floats);
|
||||
frameDataQueue.put(frameData); // 阻塞,如果队列已满
|
||||
}
|
||||
|
||||
Map<Integer, Object> stringObjectMap = preprocessImage(frame);
|
||||
// 创建 FrameData 对象并放入队列
|
||||
FrameData frameData = new FrameData(bufferedImage, stringObjectMap);
|
||||
frameDataQueue.put(frameData); // 阻塞,如果队列已满
|
||||
// 控制帧率
|
||||
currentTimestamp = (long) videoCapture.get(org.opencv.videoio.Videoio.CAP_PROP_POS_MSEC);
|
||||
|
||||
currentTimestamp = (long) videoCapture.get(Videoio.CAP_PROP_POS_MSEC);
|
||||
// 控制播放速度
|
||||
long processingTime = System.currentTimeMillis() - startTime;
|
||||
long sleepTime = frameDelay - processingTime;
|
||||
|
@ -184,17 +171,16 @@ public class VideoPlayer {
|
|||
}
|
||||
|
||||
BufferedImage bufferedImage = frameData.image;
|
||||
float[] floatArray = frameData.floatArray;
|
||||
Map<Integer, Object> floatObjectMap = frameData.floatObjectMap;
|
||||
|
||||
// 执行推理
|
||||
List<InferenceResult> inferenceResults = new ArrayList<>();
|
||||
for (InferenceEngine inferenceEngine : inferenceEngines) {
|
||||
// 假设 InferenceEngine 有 infer 方法接受 float 数组
|
||||
// inferenceResults.add(inferenceEngine.infer(floatArray, 640, 640));
|
||||
inferenceResults.add(inferenceEngine.infer(floatObjectMap));
|
||||
}
|
||||
// 绘制推理结果
|
||||
DrawImagesUtils.drawInferenceResult(bufferedImage, inferenceResults);
|
||||
|
||||
// 更新绘制后图像
|
||||
videoPanel.updateImage(bufferedImage);
|
||||
}
|
||||
|
@ -202,7 +188,6 @@ public class VideoPlayer {
|
|||
ex.printStackTrace();
|
||||
}
|
||||
});
|
||||
|
||||
frameReadingThread.start();
|
||||
inferenceThread.start();
|
||||
}
|
||||
|
@ -215,29 +200,6 @@ public class VideoPlayer {
|
|||
isPaused = true;
|
||||
}
|
||||
|
||||
// 重播视频
|
||||
public void replayVideo() {
|
||||
try {
|
||||
stopVideo(); // 停止当前播放
|
||||
if (videoCapture != null) {
|
||||
videoCapture.set(org.opencv.videoio.Videoio.CAP_PROP_POS_FRAMES, 0);
|
||||
currentTimestamp = 0;
|
||||
|
||||
// 显示第一帧
|
||||
Mat frame = new Mat();
|
||||
if (videoCapture.read(frame)) {
|
||||
BufferedImage bufferedImage = matToBufferedImage(frame);
|
||||
videoPanel.updateImage(bufferedImage);
|
||||
}
|
||||
|
||||
playVideo(); // 开始播放
|
||||
}
|
||||
} catch (Exception e) {
|
||||
e.printStackTrace();
|
||||
JOptionPane.showMessageDialog(null, "重播失败: " + e.getMessage(), "错误", JOptionPane.ERROR_MESSAGE);
|
||||
}
|
||||
}
|
||||
|
||||
// 停止视频
|
||||
public void stopVideo() {
|
||||
isPlaying = false;
|
||||
|
@ -259,41 +221,6 @@ public class VideoPlayer {
|
|||
frameDataQueue.clear();
|
||||
}
|
||||
|
||||
// 快进或后退
|
||||
public void seekTo(long seekTime) {
|
||||
if (videoCapture == null) return;
|
||||
try {
|
||||
isPaused = false; // 取消暂停
|
||||
stopVideo(); // 停止当前播放
|
||||
videoCapture.set(org.opencv.videoio.Videoio.CAP_PROP_POS_MSEC, seekTime);
|
||||
currentTimestamp = seekTime;
|
||||
|
||||
Mat frame = new Mat();
|
||||
if (videoCapture.read(frame)) {
|
||||
BufferedImage bufferedImage = matToBufferedImage(frame);
|
||||
videoPanel.updateImage(bufferedImage);
|
||||
}
|
||||
|
||||
// 重新开始播放
|
||||
playVideo();
|
||||
|
||||
} catch (Exception ex) {
|
||||
ex.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
// 快进
|
||||
public void fastForward(long milliseconds) {
|
||||
long newTime = Math.min(currentTimestamp + milliseconds, videoDuration);
|
||||
seekTo(newTime);
|
||||
}
|
||||
|
||||
// 后退
|
||||
public void rewind(long milliseconds) {
|
||||
long newTime = Math.max(currentTimestamp - milliseconds, 0);
|
||||
seekTo(newTime);
|
||||
}
|
||||
|
||||
public void addInferenceEngines(InferenceEngine inferenceEngine) {
|
||||
this.inferenceEngines.add(inferenceEngine);
|
||||
}
|
||||
|
@ -301,127 +228,111 @@ public class VideoPlayer {
|
|||
// 定义一个内部类来存储帧数据
|
||||
private static class FrameData {
|
||||
public BufferedImage image;
|
||||
public float[] floatArray;
|
||||
|
||||
public FrameData(BufferedImage image, float[] floatArray) {
|
||||
public Map<Integer, Object> floatObjectMap;
|
||||
public FrameData(BufferedImage image, Map<Integer, Object> floatObjectMap) {
|
||||
this.image = image;
|
||||
this.floatArray = floatArray;
|
||||
this.floatObjectMap = floatObjectMap;
|
||||
}
|
||||
}
|
||||
|
||||
// 将 BufferedImage 预处理并转换为一维 float[] 数组
|
||||
public static float[] preprocessAndConvertBufferedImage(BufferedImage image) {
|
||||
int targetWidth = 640;
|
||||
int targetHeight = 640;
|
||||
|
||||
// 将 BufferedImage 转换为 Mat
|
||||
Mat matImage = bufferedImageToMat(image);
|
||||
|
||||
// 原始图像尺寸
|
||||
int origWidth = matImage.width();
|
||||
int origHeight = matImage.height();
|
||||
|
||||
// 计算缩放因子
|
||||
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
|
||||
|
||||
// 计算新的图像尺寸
|
||||
int newWidth = Math.round(origWidth * scalingFactor);
|
||||
int newHeight = Math.round(origHeight * scalingFactor);
|
||||
|
||||
// 调整图像尺寸
|
||||
Mat resizedImage = new Mat();
|
||||
Imgproc.resize(matImage, resizedImage, new Size(newWidth, newHeight));
|
||||
|
||||
// 转换为 RGB
|
||||
Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
|
||||
|
||||
// 创建目标图像并将调整后的图像填充到目标图像中
|
||||
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
|
||||
int xOffset = (targetWidth - newWidth) / 2;
|
||||
int yOffset = (targetHeight - newHeight) / 2;
|
||||
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
|
||||
resizedImage.copyTo(paddedImage.submat(roi));
|
||||
|
||||
// 将图像数据转换为输入所需的浮点数组
|
||||
int imageSize = targetWidth * targetHeight;
|
||||
float[] inputData = new float[3 * imageSize];
|
||||
paddedImage.reshape(1, imageSize * 3).get(0, 0, inputData);
|
||||
|
||||
// 释放资源
|
||||
matImage.release();
|
||||
resizedImage.release();
|
||||
paddedImage.release();
|
||||
|
||||
return inputData;
|
||||
}
|
||||
|
||||
// 辅助方法:将 BufferedImage 转换为 OpenCV 的 Mat 格式
|
||||
public static Mat bufferedImageToMat(BufferedImage bi) {
|
||||
int width = bi.getWidth();
|
||||
int height = bi.getHeight();
|
||||
Mat mat = new Mat(height, width, CvType.CV_8UC3);
|
||||
byte[] data = ((DataBufferByte) bi.getRaster().getDataBuffer()).getData();
|
||||
mat.put(0, 0, data);
|
||||
return mat;
|
||||
}
|
||||
|
||||
// 可选的预处理方法
|
||||
public Map<String, Object> preprocessImage(Mat image) {
|
||||
int targetWidth = 640;
|
||||
int targetHeight = 640;
|
||||
|
||||
public Map<Integer, Object> preprocessImage(Mat image) {
|
||||
int origWidth = image.width();
|
||||
int origHeight = image.height();
|
||||
Map<Integer, Object> dynamicInput = new HashMap<>();
|
||||
//定义索引
|
||||
int index = 0;
|
||||
for (InferenceEngine inferenceEngine : this.inferenceEngines) {
|
||||
inferenceEngine.setIndex(index);
|
||||
long[] inputShape = inferenceEngine.getInputShape();
|
||||
int targetWidth = (int) inputShape[2];
|
||||
int targetHeight = (int) inputShape[3];
|
||||
// 计算缩放因子
|
||||
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
|
||||
|
||||
// 计算缩放因子
|
||||
float scalingFactor = Math.min((float) targetWidth / origWidth, (float) targetHeight / origHeight);
|
||||
|
||||
// 计算新的图像尺寸
|
||||
int newWidth = Math.round(origWidth * scalingFactor);
|
||||
int newHeight = Math.round(origHeight * scalingFactor);
|
||||
|
||||
// 调整图像尺寸
|
||||
Mat resizedImage = new Mat();
|
||||
Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight));
|
||||
|
||||
// 转换为 RGB 并归一化
|
||||
Imgproc.cvtColor(resizedImage, resizedImage, Imgproc.COLOR_BGR2RGB);
|
||||
resizedImage.convertTo(resizedImage, CvType.CV_32FC3, 1.0 / 255.0);
|
||||
|
||||
// 创建填充后的图像
|
||||
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
|
||||
int xOffset = (targetWidth - newWidth) / 2;
|
||||
int yOffset = (targetHeight - newHeight) / 2;
|
||||
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
|
||||
resizedImage.copyTo(paddedImage.submat(roi));
|
||||
|
||||
// 将图像数据转换为数组
|
||||
int imageSize = targetWidth * targetHeight;
|
||||
float[] chwData = new float[3 * imageSize];
|
||||
float[] hwcData = new float[3 * imageSize];
|
||||
paddedImage.get(0, 0, hwcData);
|
||||
|
||||
// 转换为 CHW 格式
|
||||
int channelSize = imageSize;
|
||||
for (int c = 0; c < 3; c++) {
|
||||
for (int i = 0; i < imageSize; i++) {
|
||||
chwData[c * channelSize + i] = hwcData[i * 3 + c];
|
||||
//检查是否存在输入大小一致的 如果存在则跳过
|
||||
if (!dynamicInput.isEmpty()) {
|
||||
for (Map.Entry<Integer, Object> entry : dynamicInput.entrySet()) {
|
||||
Map<String, Object> input = (Map<String, Object>) entry.getValue();
|
||||
if (inputShape[2] == (long) input.get("targetHeight") || inputShape[3] == (long) input.get("targetWidth")) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// 计算新的图像尺寸
|
||||
int newWidth = Math.round(origWidth * scalingFactor);
|
||||
int newHeight = Math.round(origHeight * scalingFactor);
|
||||
|
||||
// 调整图像尺寸
|
||||
Mat resizedImage = new Mat();
|
||||
Imgproc.resize(image, resizedImage, new Size(newWidth, newHeight), 0, 0, Imgproc.INTER_AREA);
|
||||
|
||||
// 获取图像的尺寸
|
||||
int rows = resizedImage.rows();
|
||||
int cols = resizedImage.cols();
|
||||
// 准备存储浮点型数据的数组
|
||||
float[] floatData = new float[rows * cols * 3];
|
||||
|
||||
// 获取原始字节数据
|
||||
byte[] pixelData = new byte[rows * cols * 3];
|
||||
resizedImage.get(0, 0, pixelData);
|
||||
|
||||
// 手动处理像素数据
|
||||
for (int i = 0; i < rows * cols; i++) {
|
||||
int byteIndex = i * 3;
|
||||
int floatIndex = i * 3;
|
||||
// 读取 BGR 值并转换为 0.0 - 1.0 之间的浮点数
|
||||
float b = (pixelData[byteIndex] & 0xFF) / 255.0f;
|
||||
float g = (pixelData[byteIndex + 1] & 0xFF) / 255.0f;
|
||||
float r = (pixelData[byteIndex + 2] & 0xFF) / 255.0f;
|
||||
// 将 BGR 转换为 RGB,并存储到浮点数组中
|
||||
floatData[floatIndex] = r;
|
||||
floatData[floatIndex + 1] = g;
|
||||
floatData[floatIndex + 2] = b;
|
||||
}
|
||||
|
||||
// 将浮点数组转换回 Mat 对象
|
||||
Mat floatImage = new Mat(rows, cols, CvType.CV_32FC3);
|
||||
floatImage.put(0, 0, floatData);
|
||||
|
||||
resizedImage = floatImage;
|
||||
|
||||
// 创建填充后的图像
|
||||
Mat paddedImage = Mat.zeros(new Size(targetWidth, targetHeight), CvType.CV_32FC3);
|
||||
int xOffset = (targetWidth - newWidth) / 2;
|
||||
int yOffset = (targetHeight - newHeight) / 2;
|
||||
Rect roi = new Rect(xOffset, yOffset, newWidth, newHeight);
|
||||
resizedImage.copyTo(paddedImage.submat(roi));
|
||||
|
||||
// 将图像数据转换为数组
|
||||
int imageSize = targetWidth * targetHeight;
|
||||
float[] chwData = new float[3 * imageSize];
|
||||
float[] hwcData = new float[3 * imageSize];
|
||||
paddedImage.get(0, 0, hwcData);
|
||||
|
||||
// 转换为 CHW 格式
|
||||
int channelSize = imageSize;
|
||||
for (int c = 0; c < 3; c++) {
|
||||
for (int i = 0; i < imageSize; i++) {
|
||||
chwData[c * channelSize + i] = hwcData[i * 3 + c];
|
||||
}
|
||||
}
|
||||
// 释放图像资源
|
||||
resizedImage.release();
|
||||
paddedImage.release();
|
||||
// 将预处理结果和偏移信息存入 Map
|
||||
Map<String, Object> result = new HashMap<>();
|
||||
result.put("inputData", chwData);
|
||||
result.put("origWidth", origWidth);
|
||||
result.put("origHeight", origHeight);
|
||||
result.put("scalingFactor", scalingFactor);
|
||||
result.put("xOffset", xOffset);
|
||||
result.put("yOffset", yOffset);
|
||||
dynamicInput.put(index, result);
|
||||
index++;
|
||||
}
|
||||
|
||||
// 释放图像资源
|
||||
resizedImage.release();
|
||||
paddedImage.release();
|
||||
|
||||
// 将预处理结果和偏移信息存入 Map
|
||||
Map<String, Object> result = new HashMap<>();
|
||||
result.put("inputData", chwData);
|
||||
result.put("origWidth", origWidth);
|
||||
result.put("origHeight", origHeight);
|
||||
result.put("scalingFactor", scalingFactor);
|
||||
result.put("xOffset", xOffset);
|
||||
result.put("yOffset", yOffset);
|
||||
|
||||
return result;
|
||||
return dynamicInput;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue